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When Academic Press approached me with the proposal that I serve as
editor of a handbook for digital signal processing, I was aware of the need for
such a book in my work in the aerospace industry. Specifically, I wanted basic
digital signal processing principles and approaches described in a book that a
person with a standard engineering background could understand. Also, I
wanted the book to cover the more advanced approaches, to outline the advan-
tages and disadvantages of each approach, and to list references in which I
could find detailed derivations and descriptions of the approaches that might
be most applicable to given implementation problems.

The various authors in this volume have done an outstanding job of ac-
complishing these goals. Coverage of the fundamentals alone makes the book
self-sufficient, yet many advanced techniques are described in readable,
descriptive prose without formal proofs. Detailing fundamental approaches
and describing other available techniques provide an easily understandable
book containing information on a wide range of approaches. For example, the
chapter on adaptive filters derives basic adaptive filter structures and provides
the reader with a background to "see the forest" of adaptive filtering. The
chapter then describes various alternatives, including adaptive lattice struc-
tures that might be applicable to particular engineering problems. This
description is provided without the detailed derivations that get one "lost in
the trees."

Many new useful ideas are presented in this handbook, including new finite
impulse response (FIR) filter design techniques, half-band and multiplierless
FIR filters, interpolated FIR (IFIR) structures, and error spectrum shaping.
The advanced digital filter design techniques provide for low-noise, low-
sensitivity, state-space, and limit-cycle free filters. Filters for decimation and
interpolation are described from an intuitive and easily understandable view-
point. New fast Fourier transform (FFT) ideas include in-place and in-order
mixed-radix FFTs, FFTs computed in nonorthogonal coordinates, and prime
factor and Winograd Fourier transform algorithms. Transmultiplexing discus-
sions carefully describe how to control crosstalk, how to satisfy dynamic range
requirements, and how to avoid aliasing when resampling. Using an over-
determined set of Yule-Walker equations is a key concept described for reduc-
ing data-induced hypersensitivities of parameters in model-based spectral
estimation. Tools are provided for understanding the basic theory, physics,

Preface



xii Preface

and computational algorithms associated with deconvolution and time delay
estimation. Recursive least squares adaptive filter algorithms for both lattice
and transversal structures are compared to other approaches, and their advan-
tage in terms of rapid convergence at the expense of a modest computational
increase is discussed. Extensions of Kalman filtering include square-root filter-
ing. The simplicity and regularity of distributed arithmetic are lucidly described
and are shown to be attractive for VLSI implementation.

There is some overlap in the material covered in various chapters, but
readers will find the overlap helpful. For example* in Chapter 2 there is an ex-
cellent derivation of FIR digital filters that provides the necessary
mathematical framework, and in the first part of Chapter 3 there is an intuitive
explanation of how various FIR filter parameters, such as impulse response
length, affect the filter performance. Similarly, in Chapter 9 the Yule-Walker
equations are discussed in the context of spectral analysis, whereas in Chapter
10 these equations appear from a different viewpoint in the context of decon-
volution.

Many applications in digital signal processing involve the use of computer
programs. After many discussions the chapter authors decided to include
useful programs and to give references to publications in which related pro-
gram listings can be found. For example, Chapter 7 points out that a large
percentage of FFT applications are probably best accomplished with a radix-2
FFT, and such an FFT is found in Appendix 7-C. However, Appendixes 7-D
and 7-E present prime factor algorithms designed for IBM ATs and XTs. The
listing in Appendix 7-E is a highly efficient 1008-point assembly language pro-
gram. Other sources for FFTs are also listed in Appendix 7-B.

The encouragement of Academic Press was crucial to the development of
this book, and I would like to thank the editors for their support and advice. I
would also like to express my appreciation to Stanley A. White for his behind-
the-scenes contribution as an advisor, and to thank all of the chapter authors
for their diligent efforts in developing the book. Finally, I would like to thank
my wife, Carol, for her patience regarding time I spent compiling, editing, and
writing several chapters for the book.



Isb Least significant bit
msb Most significant bit
ADC Analog-to-digital converter
AGC Automatic gain control
ALE Adaptive line enhancer
AR Autoregressive
ARMA Autoregressive moving average
BP Bandpass
BPF Bandpass filter
BR Bounded real
BRO Bit-reversed order
CAD Computer-aided design
CCW Counterclockwise
CO Coherent gain
CMOS Complementary metal-on-silicon
CMT C-matrix transform
CRT Chinese remainder theorem
CSD Canonic sign digit
DA Distributed arithmetic
DAC Digital-to-analog converter
DCT Discrete cosine transform
DFT Discrete Fourier transform
DF2 Direct-form 2
DIP Decimation-in-frequency
DIT Decimation-in-time
DPCM Differential pulse code modulation
DRO Digit-reversed order
DSP Digital signal processing
DST Discrete sine transform
DTFT Discrete-time Fourier transform
DTLTI Discrete-time linear time-invariant
DTRS Discrete-time random sequence
DWT Discrete Walsh transform
EFB Error feedback
ENBW Equivalent noise bandwidth
EPE Energy packing efficiency
ESS Error-spectrum shaping
FDM Frequency-division (domain) multiplexing
FDST Fast discrete sine transform
FFT Fast Fourier transform
FIR Finite impulse response
GT General orthogonal transform
HHT Hadamard-Haar transform
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XIV Acronyms and Abbreviations

HPF Highpass filter
HT Haar transform
IDFT Inverse discrete Fourier transform
IDTFT Inverse discrete-time Fourier transform
IFFT Inverse fast Fourier transform
IFIR Interpolated finite impulse response
IIR Infinite-duration impulse response
IQ In-phase and quadrature
IT Inverse transform; identity transform
KLT Karhunen-Loeve transform
KT Kumaresan-Tufts
LBR Lossless bounded real
LC Inductance-capacitance
LDI Lossless discrete integrator
LHP Left half-plane
LMS Least-mean-square
LP Lowpass
LPC Linear predictive coding
LPF Lowpass filter
LS Least squares
LSA Least squares analysis
LSI Large-scale integration
LTI Linear time-invariant
MA Moving average
MAC Multiplier-accumulator
MFIR Multiplicative finite impulse response
MIR Mixed-radix integer representation
MLMS Modified least-mean-square
MMS Minimum mean-square
MP McClellan-Parks
MSB Mean-squared error
MSP Most significant product
NO Natural order
NTSC National Television Systems Committee
NTT Number-theoretic transform
PFA Prime factor algorithm
PROM Programmable read-only memory
PSD Power spectrum density
PSR Parallel-to-serial register
QMF Quadrature mirror filter
RAM Random-access memory
RC Ruritanian correspondence
RCFA Recursive cyclotomic factorization algorithm
RHT Rationalized Haar transform
RLS Recursive least squares
ROM Read-only memory
RRS Recursive running sum
RT Rapid transform
SD Sign digit
SDSLSI Silicon-on-sapphire large-scale integration
SER Sequential regression
SFG Signal-flow graph
SNR Signal-to-noise ratio



Acronyms and Abbreviations xv

SPR Serial-to-parallel register
SR Shift register
SRFFT Split-register fast Fourier transform
SSBFDM Single-sideband frequency-division multiplexing
ST Slant transform
SVD Singular value decomposition
TDM Time division (domain) multiplexed
VLSI Very large-scale integration
WDF Wave digital filter
WFTA Winograd Fourier transform algorithm
WHT Walsh-Hadamard transform
WSS Wide-sense stationary
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Symbol Meaning

a—b Give variable a the value of expression b (or replace a by b)
a, x, ... Lowercase denotes scalars
a, x, ... Underbar denotes a random variable
a*, x*, ... The complex conjugate of a. x, ...
ak, bk, ck,

Filter coefficients
ak Coefficients for the numerator polynomial of a transfer function, coefficients

of corresponding difference equation
bt, cit di, y, Elements of Jury's array for stability testing
b Number of bits used to represent the value of a number (does not include the

sign bit)
bk Coefficients of the denominator for polynomial of a transfer function, coeffi-

cients in the corresponding difference equation
c Recursive least squares scalar divisor, initial state mean
c, Scale factor given by

= (1 if i*OorN
Cj ~ UA/2 i f / = O o r N

cj(m) Autocovariance sequence for the discrete-time random sequence xj(n) where
cj(m) = E{[xJin) - n&xjin-m) - MJ*}

cty(m) Cross-covariance sequence for the discrete-time random sequences x(n) and
y(n) where
c^m) = E{[x(n) - n,][y(n-m) - M>]*}

d Discrimination factor
d(n), g(n) Input output sequences
d(n) Hilbert transform of d(ri)
[d{n), jd(n)] Analytic signal
d(s,n) Data sequence where s is slow time index (identifies groups) and n is fast time

index (identifies position in a group)
e'UT Steady-state frequency domain contour in the z-plane
e(n) Error sequence
/ Frequency in hertz (Hz)
/0 Filter center frequency
/„ Passband upper edge frequency in hertz
/, Stopband lower edge frequency in hertz
fr Stopband (rejection band) edge frequency in hertz
/, Sampling frequency in hertz;/, = \/T
/,' Resampling frequency
/(z) A linear factor (z - re3*)
f ' ( z ) A linear factor (rz - e^)
g(n), h(ri), ... Time domain scalars
h(n) Filter impulse response, filter coefficient, data sequence window
h,(t) Impulse response of an analog prototype filter

Notation



X V I I I Notation

Symbol

i, j, k, /, m, n
i s m (modulo «)

j
k
In
log
Iog2

tnt

n
q(k,s)

r

/•„("»)

sm

u(n)

x,
x(n)
x(n), y(n),

x(t)
x,(t)
x

x(ri) * y(n)

y(n)

A
A,,
A,

A © B
Arg[H(e^]
Ap

B
a

D
b(e**)
D(z)
DFTM«)]
DTFTLY(«)]

Integer indices
/ is congruent to m (modulo n), i.e., i = In + m where /', /, m, and n are
integers

Transform sequence number, integer step index, selectivity parameter
Logarithm to the base e
Logarithm to the base 10
Logarithm to the base 2
rth multiplier coefficient
Data sequence number (time index), system dynamic order
Data sequence from filter bank where k is the filter index and s is the time
index
Magnitude of a complex number (pole, zero)
Autocorrelation sequence for the discrete-time random sequence x(n)
where rx,(m) = E[x(n)x*(n - m)]
Cross-correlation sequence for the discrete-time random sequences x(n)
and y_(ri) where rty(m) = E[x(ri)y*(n - m)]
Laplace transform variable, 5 = a + jui
Zeros of the inverse Chebyshev filters

10 otherwise
Unit step sequence defined by u(ri) =

Value of inductance or capacitance
Input sequence; «th data sample
Discrete-time random sequences

Time domain scalar-valued function at time t
Sampled function
Estimate of the random variable x

The convolution of the sequences x(ri) and y(ri) where

x(ri) * y(n) = x(m)y(n - m)

Output sequence
z-transform independent variable, z = esT, but used in this book for a nor-
malized sampling period of T = 1 unless otherwise indicated
Minimum stopband attenuation
Filter passband attenuation in decibels, Ap = - 20 log,0 5,
Minimum acceptable filter stopband attenuation in decibels, Ar = 20 log,0
52

Bit by bit addition of the binary numbers A and B
Steady-state frequency domain phase response
Maximum allowable specified passband ripple in decibels
BPF bandwidth (rad s'1)

Chebyshev polynomial of degree n (Chapter 4)
Distortion function
The desired frequency response of a digital filter
Denominator polynomial of a transfer function
The discrete Fourier transform of the sequence x(n)
The discrete-time Fourier transform of the sequence x(n)
Expected value, expectation
Approximation error spectrum

rxf(m)

s
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Symbol

Ei % Ei
F
F,,,(z~')
G(e'a), H(e^),
..., G(z), //(z),
G(z)
G,(z)
Ha(ju>)
H(ejur)
\H(eJtaT)\
H(f)
Hi(z)

H(z)
Ha(z)

//*
//(«)
7, J, K, L, M, N
7(z)

«*)
Im[ ]
IN

I0(x)

J
K (A )
M

N

N(z)
Q
Q[x(n)\
Re[ ]
Rn(u)
S,x(e

JU)

W(ei<j!)

X(ei<J)

X(k)
X(z)
X'(z)
X '(ejt*)

Meaning

Shorthand notation for the matrices of exponents defined by W& Wfr
Analog frequency in hertz
A causal approximant to predictor z

Transform domain scalars
An intermediate complex variable
Intermediate complex variable in cascade description
Steady-state frequency response function for an analog prototype filter
Steady-state frequency response function of a digital filter
Steady-state frequency domain magnitude response
Spectral response (Chapter 3)
Transfer function of individual quadratic blocks in a parallel realization of
a digital filter
Transfer function of a digital filter
Zero-phase part of linear-phase filter with (N + l)-point impulse response,
H(z) = z-"'2//0(z)
Wiener filter transfer function
Complex conjugate of the point spread transfer function
Window (filter) spectrum (Chapter 3)
Integer indices
Discrete integration operator
(1 + z")/(l - *-')
The imaginary part of the quantity in brackets
The TV x N identity matrix
Modified zeroth-order Bessel function of the first kind

Performance measure
Attenuation-related scale factor
The highest power of z in the numerator polynomial of a transfer function
7/(z), number of filter weights (coefficients)
Transform dimension order of a digital filter (the highest power of z in the
characteristic polynomial)
Numerator polynomial of a transfer function
Filter quality factor defined by ratio of center frequency to bandwidth
Quantized value of x(ri) where Q[x(ri)\ = x(ri) + e(n)
The real part of the quantity in brackets
Chebyshev rational function
Spectrum of the autocorrelation sequence rf,(m) where
S«(ey<") = DTFT [/•„(>")]
Sampling interval in seconds
exp(-y2ir/7V)
The matrix defined by (W%(k •">) where (E(k,ri) is a matrix with rows k = 0,
1, ..., K- 1 and columns n - 0, 1, ..., N— 1
Weighted error function that allocates relative errors between a filter pass-
band and stopband
The spectrum of the sequence x(ri) where
X(e^ = DTFT [*(«)] = X(z)\^Ja

Coefficient number A: in a series expansion of a peroidic sequence
The z-transform domain representation of the sequence x(n)
dX(z)/dz
dX(eJ")/du (compare with above)



XX Notation

Symbol Meaning

a, b, x, ... Vectors are designated by lowercase boldfaced letters
a Measurement noise mean vector
b State noise mean, constant measurement bias
u Arbitrary vector
v Measurement noise vector, arbitrary vector
w State noise vector
x State vector
y Arbitrary vector
z Measurement vector
A, B, X, ... Matrices are designated by capital boldfaced letters
A Arbitrary matrix, noise-shaping filter state coupling matrix
A"1 The inverse of matrix A
A* Complex conjugate of matrix A
Ar The transpose of matrix A
At (AT
A(z) A1**-)
A o B The M x N matrix formed from element by element multiplication of the

elements in the M x N matrices A and B; i.e., A oB = (A(k,n)B(k,ri))
A ® B The Kronecker product of A and B
B Arbitrary matrix, noise-shaping filter input coupling matrix
C Noise-shaping filter output coupling matrix
D Composite system input coupling matrix
F State coupling matrix
G Deterministic input coupling matrix
H Equation coefficient matrix, output coupling matrix
Ha(k) Haar transform of size 2*
IM Opposite diagonal matrix
IK Identity matrix of size R x R
K Gain matrix, Kalman gain
L Input noise coupling matrix
M Measurement noise coupling matrix, state error covariance square root
N Square root of inverse state error covariance matrix
O Null matrix
P Covariance matrix, state covariance matrix
P, Steady state prediction error covariance matrix
P* Permutation matrix
Po Initial state covariance matrix
Q State noise covariance matrix
R Measurement noise covariance matrix
RH(&) Rationalized Haar transform of size 2*
S(0 Slant transform of size 2l

W Symmetric weighting matrix
X A transform domain vector resulting from the data vector x
X, DCT of x(n)
X, DFT of x(n)
X* Coefficients of kth basis function
w(n) Data sequence window function; also called a weighting function (Chapters 1 and

2)
y[x(t)\ The Laplace transform of the function x(t)
M(i/ni) The remainder when / is divided by m

(eju) Window function spectrum (Chapters 1 and 2)
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Symbol

&[X(n)\
A, B, C, D
:!f

•^M

a

at
a,
5*
5(«)

e
E(n)
TJ or TJ, or n
0
X
V

k
p
(7

CT2

T(W)

0/

</>„

U)

Ci!c

OJf

U)TO

a>0

OJp

w/>'

wr

a.'.,

A/
Ax
Az
n

XX!

The z-transform of the sequence x(n) where X(z) = 2 [x(n)]
Chain parameters of digital two-pair
Transfer matrix of digital two-pair
Chebyshev polynomial of degree M (Chapter 5)
Ratio of 6-dB bandwidth to sample rate
6-dB bandwidth referred to sample rate
Digital filter coefficients
Peak error in Arth filter band, where 25* is the peak-to-peak error
Unit impulse (also called discrete-time impulse, impulse, or unit sample), defined
by

1, n = 0
0, n * 0

Mean-squared error ripple factor
Quantization error at sample number n
The mean value of the random variable x given by 77 = E[x]
Argument (phase) of a complex number (pole, zero)
Eigenvalue
Covergence parameter
Noise-shaping filter state coupling
Adjacent correlation coefficient
Real part of 5 (the Laplace transform variable)
E[(x - fi)2]
Group delay
Signal power spectra
Noise power spectra
Frequency in radians per second, w = 2wf, where/is usually normalized to/, =
1 Hz in discrete-time systems
Cutoff frequency of a filter, the - 3dB cutoff frequency
The lower cutoff frequency of a bandpass or bandstop filter
Geometric mean frequencey for bandpass transformation
Center frequency (elliptic filters)
Passband edge frequency
Specified passband edge frequency
Stopband (rejection band) edge frequency
Sampling radian frequency given by

The upper cutoff frequency of a bandpass or bandstop filter
Transition bandwidth of a filter, A/ = (u, - wr)/2ir
State error
Measurement error
Continuous-time frequency in radians per second, H = 2ir/
y'th eigenvalue
N x N basis vector
Jcth basis function
/th element of #th basis vector
Arbitrary square matrix, noise-shaping filter initial covariance matrix
Covariance matrix, composite system state coupling matrix
Inverse of state error covariance matrix

*•;
0
0*(0
0*
r
»p
Si
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Symbol

V
1C"]
[A]
(A(L)}
[H(L)]
[#(£)]
[S"l
!(•)!
!!(•)!
\\X(e**)\\

iU(e^) |,

\\X(e^\\f

U-)J
[(•)!

Meaning

The gradient operator
DCT of type m
Factored matrices
DCT of size (2L x 2L)
Walsh-Hadamard matrix of size (21 x 2L)
Product of sparse matrices
DST of type N
Magnitude of (•)
The /,2-norm (Euclidean norm) of (•)
Without subscript means || X(eJW) ||2

f 2T

!0

The Lp-norm of X(eJ<*)
Largest integer <(•); e.g., p.5J = 3, 1-2.5J = -3
Smallest integer >(•); e.g., [3.51 = 4, [-2.51 = ~2



Chapter 1

Transforms and
Transform Properties

DOUGLAS F. ELLIOTT
Rockwell International Corporation

Anaheim, California 92803

INTRODUCTION I

Transforms and transform properties occupy an important compartment of an
engineer's "tool kit" for solving new problems and gaining insight into old ones.
By resolving a time-varying waveform into sinusoidal components, engineers
transform a problem from that of studying time domain phenomena to that of
evaluating frequency domain properties. These properties often lead to simple
explanations of otherwise complicated occurrences.

Continuous waveforms are not alone in being amenable to analysis by
transforms and transform properties. Data sequences that result from sampling
waveforms likewise may be studied in terms of their frequency content. Sampling,
however, introduces a new problem: analog waveforms that do not look anything
alike before sampling yield exactly the same sampled data; one sampled
waveform "aliases" as the other.

This chapter briefly reviews the nature of sampled data and develops
transforms and transform properties for the analysis of data sequences. We start
by reviewing Fourier series that represent periodic waveforms. We note that the
aliasing phenomenon leads to a periodic spectrum for data sequences so that the
spectrum has a Fourier representation in terms of the data. We can find this
representation from the data by using the discrete-time Fourier transform
(DTFT).

The (DTFT) is generalized to the z-transform, which is a powerful tool for data
sequence analysis. We also review the discrete Fourier transform (DFT) and
recall the Laplace transform. We review discrete-time random sequences before
discussing correlation and covariance sequences and their power spectral
densities. Tables of properties are presented for each transform.

HANDBOOK OF DIGITAL SIGNAL PROCESSING Copyright ©1987 by Academic Press, Inc.
All rights of reproduction in any form reserved



2 Douglas F. Elliott

II REVIEW OF FOURIER SERIES

Fourier series have been a fundamental engineering tool since J. Fourier
announced in 1807 that an arbitrary periodic function could be represented as the
summation of scaled cosine and sine waveforms. We shall use Fourier series as a
basis for developing the DTFT in the next section. We show that the integrals
defining the series coefficients correspond to the inverse discrete-time Fourier
transform (IDTFT).

This section simply recalls for the reader's convenience the definition of
Fourier series. We consider one- and two-dimensional series.

A One-Dimensional Fourier Series

Let X (a) have period P and be the function to be represented by a one-
dimensional (1-D) series. Let X(cc) be such that

'P/2

\X(a)\da = K0< oo (1.1)
'-P/2

Then X(ot) has the 1-D Fourier series representation
oo

X(a) = X x(n)e-J2nan/p (1.2)

At a point of discontinuity, «0, the series converges to [.X"(ao) + X(a0)~]/2, where
X(cto) and X(%o) are tne function's values at the left and right sides of the
discontinuity, respectively. The x(n), n = 0, ±1, ±2,..., are Fourier series
coefficients given by

p/2

X(a)eJ2nanlP da (1.3)
-P/2

We can easily derive Eq. (1.3) from Eq. (1.2) by using the orthogonality
property for exponential functions:

p/2

where

n •0, otherwise

is the Kronecker delta function. Multiplying both sides of Eq. (1.2) by
exp(/27tafc/P), integrating from -P/2 to P/2, and using Eq. (1.5) yield
Eq. (1.3).
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For most engineering applications the function X(a) is bounded and con-
tinuous, except, possibly, at a finite number of points. In this case the Fourier
series holds for very general integrability conditions. The orthogonality con-
dition, Eq. (1.4), makes the Fourier series useful by allowing a function to be
converted from one domain (frequency, etc.) to another (time, etc.). Other

-1

-P/4 o P/4 P/2 3P/4

(a)

3P/4

Fig. 1.1. A periodic waveform and its Fourier series representation, (a) One period of the
waveform; (b) One-term approximation, (c) Two term-approximation, (d) Three-term approxi-
mation, (e) Ten-term approximation.
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( e )
Fig. 1.1. (Continued)

ransforms (Walsh, etc.; see Chapter 6) also have orthogonality conditions and
may be considered for the analysis of periodic functions.

Figure l.l(a) shows one period of a square wave of period P. Figure l.l(b)-(e)
shows Fourier series representations using 1, 2, 3, or 10 terms of the series. The
reader may verify that the AT-term approximation, XN(OL), to the square wave
reduces to

(2m -
COS (1.6)

If we let x(n) = 2ajn, we note that a0 = 0, an = (— 1)(" 1)/2/n when the index n is
an odd integer, and an = 0 when n is even. The series coefficients an are plotted
versus both n and n/P in Fig. 1.2.

Figure 1.1 (e) illustrates an advantage and a disadvantage of the Fourier series
representation of the square wave. An advantage is that only 10 terms of the
series give a fairly accurate approximation to the waveform. A disadvantage is the
overshoot, or Gibbs phenomenon, at the points of discontinuity of the waveform.
Further discussion of this phenomenon and Fourier series in general is in [1].

We have illustrated the representation of a periodic continuous function
X(ct) by a sequence of coefficients x(n). Given the sequence x(n), we can find the
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1/2

/ao = 0 a 5 - 1/5

8 2 = 0 a 4 = 0

5 n

a o = -1/3

» n/P
0 1/P 2/P 3/P 4/P

Fig. 1.2. Scaled Fourier series coefficients for the waveform in Fig. 1.1.

function X(y,), and, indeed, the procedure of taking a data sequence and finding
the corresponding X(a) is that of the DTFT, discussed in Section III.

Two-Dimensional Fourier Series B

Let X((x, P) be an image with period Pt along the a axis and period P2 along the
/? axis (see Fig. 1.3). Note that the periodic image is generated by simply repeating
a single image in both the horizontal and vertical directions. Let

Pi/2 /*P2/2

Pi/2J-P2/2

Then X(a, f$) has the 2-D Fourier series representation
OO 00

m= — o o n = — oo

(1.7)

(1.8)

Fig. 1.3. Two-dimensional function with periods P, along the horizontal axis and PI along the
vertical axis.
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Paralleling the derivation of the Fourier coefficients for the 1-D series, we obtain
the Fourier coefficients for the 2-D series:

i fP,/2 f

"2 J-Pi/2 J
(1.9)

-P2/2

The coefficient x(m,«) scales the product of complex sinusoids exp(— j'zncan/
Pt)exp( —j2npn/P2) that have m cycles per P± units in the horizontal direction and
n cycles per P2 units in the vertical direction. Remarks concerning integrability
conditions, advantages, and disadvantages for the 1-D series apply equally to the
2-D series.

The reader will doubtless see a pattern emerging from the 1-D and 2-D series
development. This pattern leads to series representations for JV-D functions,
N = 3, 4, ____ We will not present these representations but will exploit a similar
pattern in a later section to develop JV-D discrete Fourier transforms.

Ill DISCRETE-TIME FOURIER TRANSFORM

The periodic waveforms, discussed in the previous section have Fourier series
representations determined, in general, by an infinite number of coefficients.
Given the waveform, we can determine the sequence of coefficients. Conversely,
given a sequence, we can find the continuous waveform. It is this latter procedure
that yields the DTFT.

The DTFT provides a frequency domain representation of a data sequence
that might result, for example, from sampling an analog waveform every T
seconds (s). The distinct difference between the frequency spectrum of the analog
signal and the discrete-time sequence derived from it is that the sampling process
causes the analog spectrum to repeat periodically at intervals of fs) where fs =
1/r is the sampling frequency. This section reviews the reason for the period-
icity of the discrete-time spectrum, derives the DTFT and IDTFT, and presents
a table of DTFT properties.

A Reason for Periodicity in Discrete-Time Spectra

Figure 1.4 shows cosine waveforms with frequencies of 1 and 9 Hz. There is no
chance of mistaking one of these analog waveforms for the other. However, when
they are sampled every ̂  s, the situation changes dramatically because the cosine
functions intersect at ^ s, f s,...

cos[27r(i)] = cos[2jr9(i)], cos[27r(f)] = cos[2w9(t)],...

respectively; the sampled data from one is exactly the same as the sampled data
from the other, and we say that sampled data from one "aliases" as sampled data
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f. = 8 SAMPLES/SECOND
9

. cos(2?rt) ^ cos (27T9t)

t (s)

Fig. 1.4. Cosine waveforms yielding the same data at sampling instants.

from the other. It is easy to verify cosines of frequencies 1 + kfs, fs = 1/T, k —
±1, ±2,.,,, go through the same points of intersection. Although Fig. 1.4
depicts cosine waveforms, aliasing will occur for any sinusoid.

We have shown that sampled sinusoids of frequency 1 Hz are indistinguishable
from those of 1 + kfs Hz, where k is any integer. Likewise, sampled sinusoids of
frequencies / and / -f kfs are indistinguishable:

cos[2nfnT = cos[2?r(/ + kfs)nT

where $ is an arbitrary phase angle. Consequently, a spectrum analyzer would get
the same value at / as at / + kfs. We conclude that if by some means we
determine the frequency spectrum of a discrete-time data sequence, the aliasing
feature causes the spectrum to repeat at intervals of fs, as shown in Fig. 1.5. In
general, the frequency spectrum X(f) is complex, so only the magnitude is
plotted in the figure. The nonsymmetry of the spectrum about 0 Hz is due to a
complex-valued data sequence that might result, for example, from frequency
shifting (i.e., complex demodulation), which is described later.

Fourier Series Representation of Periodic Spectra B

We have found that the spectrum of a data sequence is periodic. If the data
results from sampling a continuous-time signal every T s, then the period of the
spectrum is /s = 1/T Hz. Since periodic functions can be represented by Fourier

f (Hz)

-N
2

3N
2

Fig. 1.5. Magnitude spectrum for a complex data sequence.
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series under relatively mild conditions, we can use Eq. (1.2) to represent the
spectrum by the series

X 1 ( f ) = £ x(n)e~j2nfn/f« (1.10)

where the series coefficient x(n) is given by

x(n) = | I XM^w-df (1.11)
JsJ-fs/2

The series coefficient x(n) is the data sequence giving rise to the spectrum. We use
x(n) for samples of the continuous-time function x(t) sampled at t = nT and for
data sequences in general. We know that x(n) has a periodic spectrum.
Substituting / + kfs, where k is an integer, for fs in (1.10) shows that Xt(f)
is the same for / as for / + kfs. Thus, Xv(f) .has period / Hz, as required.

Note that in the Fourier series development we assumed a periodic function
was given, and we found the sequence of coefficients for the Fourier series
representation, using Eq. (1.11). If we are given a sequence of coefficients instead
of the spectrum, we can use the coefficients to find the spectrum by using
Eq. (1.10). When dealing with sequences, we are more likely to be given data
that corresponds to the coefficients. If the data is the sequence jc(n), we find
its spectrum using Eq. (1.10). We recover the data sequence from its spectrum
by using Eq. (1.11). In any case Eqs. (1.2) and (1.3) or Eqs. (1.10) and (1.11)
are a transform pair.

Another transform pair is the continuous-time Fourier transform and its
inverse defined, respectively, by

(1.12)

Xi(f)ej2*ft df (1.13)
;

We can gain additional intuition for Eq. (1.10) by noting that it is the Fourier
transform of

x(t)\ £ S(t-nT)
|_n = — oo

(1.14)

where for any continuous function y(t),

y(t)d(t-nT)dt = y(nT) (1.15)

The function d(t — nT) is a Dirac delta function that acts as a sampling function
in the sense that it derives y(nT) from y(t) through Eq. (1.15). If we let Eq. (1.14)
be the integrand of Eq. (1.12), then Eq. (1.15) yields

y(nT) = x(nT)e\p(—j2nfnT) = x(n)Qxp(—j2nfn/fs)
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which is a term in Eq. (1.10). Thus, Eq. (1.10) is the Fourier transform of Eq. (1.14).
Whereas Eq. (1.12) yields the same answer as Eq. (1.10) if x(t) is sampled with
delta functions, Eqs. (1.11) and (1.13) do not correspond directly because
Eq. (1.11) applies to a sequence and Eq. (1.13) applies to a continuous-time
function. Since the spectrum given by Eq. (1.10) is periodic, only one period is
required to obtain the sample x(«), as Eq. (1.11) shows. This is in contrast to
Eq. (1.13), where the entire spectrum is used to obtain x(t).

One-Dimensional DTFT and IDTFT C

We will now simplify the notation by using a normalized sampling interval of
T = 1 s and radian frequency CD = 2nf. Let X ^ f ) = X(ei<aT). Then rewriting
Eqs. (1.10) and (1.11) for T= 1 s gives

00

X(ej<a)= £ x(n)e'iton (1.16)

X(ejm)e*°n d<o (1.17)

Equations (1.16) and (1.17) are defined as the 1-D DTFT and 1-D IDTFT,
respectively. The DTFT yields a periodic spectrum X(eiia) for a given data
sequence x(n). The IDTFT recovers the data sequence from the spectrum. We will
also use the notation

X(eJ<0) = DTFT[x(n)] (1.18)

x(n) = IDTFTrxV")] (1.19)

for Eqs. (1.16) and (1.17), respectively. Let Q be the analog radian frequency. Then
conversion from the radian frequency co normalized for a sampling interval of 1 s
to analog radian frequency Q for an arbitrary sampling interval T requires only
the substitution co — QT. Figure 1.6 indicates corresponding points on the

0

0

0

0

1/2
_

TT

TT/T

V2

1

2ir

27T/T

1.

1

L)w/

n

F

Fig. 1.6. Corresponding points on frequency axes for normalized variables / and to and for analog
variables fl and F.
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frequency axes for the variables /, a> = 2nf, Q = 2nF, and F, where F is the analog
frequency in hertz.

D DTFT Properties

Table I summarizes properties of the 1-D DTFT. A property is described by a
transform pair consisting of a data sequence representation and a transform
sequence representation. For example, x(n) and X(ejf°) constitute a transform
pair. We will illustrate derivation of the pairs with several examples. For further
details see [2, 3].

1 Frequency Shifting

Let the sequence x(n) have the DTFT X(ejl°). Then the frequency-shifted
sequence is ei(a°nx(n), and its DTFT is

DTFT[eJtoo"x(n)] = £ ei<a°ttx(n)e~i(0tt

n = — oo

oo

= £ x(n)e~j(<°-coo}n = X(e*m-mo)) (1.20)
n— — oo

The transform of ejtoonx(n) is right-shifted by co0 rad s"1, and the DTFT of
e~j(a°nx(n) is left-shifted in frequency so that e±jto°"x(n) and X(ej(0)T'ao)) constitute
a pair.

2 Data Sequence Convolution

Convolution of the sequence x(n) with y(n) is represented by x(n) * y(n) and is
defined by

00 OO

x(n)*y(n)= £ x(m)y(n - m) = £ y(m)x(n - m) (1.21)
m= — QO

The transform of Eq. (1.21) is
oo

£ x(n) * y(n)e~j<on = £ £ x(m)y(n - m)e~j<an (1.22)
n = — o o n = — o o m = —oo

Interchanging summations on the right of Eq. (1.22) and letting i = n — m yield
oo oo

DTFT[x(n) * y(n)] = £ x(m)e~j<am X y(i)e~Jmi

m = — oo i = — oo

= ^(ej'<0)7(ej'<0) (1.23)

as stated in Table I.
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3 Frequency Domain Convolution

Frequency domain convolution is defined by

1 P*
X(ej<0) * Y(ejca) = — X(eje) Y(ei(m ~ 9)) dO ( 1 ,24}

Using the IDTFT definition, Eq. ( 1 . 1 7 ), interchanging integrations, and making a
change of variables yield

IDTFT lX(ej(a) * Y(ejm)'] = x(ri)y(n) (1 .25)

as stated in Table I.

4 Symmetry Properties

Several properties in Table I deal with conjugate symmetric sequences sat-
isfying JC(M) = x*( — n) and conjugate antisymmetric sequences satisfying x(n) =
— x*( — n). If a sequence is real, then conjugate symmetric or antisymmetric
correspond to even or odd, respectively.

5 Sampling Frequency Change

As an example of the utility of transform properties, consider the sampling
frequency change properties (the two entries before Parseval's theorem at the end
of Table I). Let the periodic repetitions of a spectrum of a sequence jc1(«) be
widely spaced so that the signal bandwidth (BW) satisfies BW < fs/M. Then the
sequence may be desampled by M : 1 ; that is, only 1 of every M samples is retained
[see Fig. 1.7(a), (b)]. This reduces the spectral amplitude by 1/M and causes the
spectrum to repeat at the new sampling frequency fJM [Fig. 1.7(c); the curve
for X$(ej2nf) applies to X2(e

j2nf) after frequency units are changed to Hz/3].
Desampling is used, for example, to more efficiently analyze a signal with a DFT.
Before going to the DFT, the signal is desampled as much as possible without
introducing aliasing, and, as a consequence of the desampling, the DFT can be
run at a lower rate.

A signal can be interpolated by a 1 : M upsampling that adds M — 1 zeros to
every sample (padding with zeros by 1 : M). Although the upsampling increases
the sampling frequency, it does not effect the spectrum, which still repeats at fJM
(Fig. 1.7(c)]. When we remove the spectral replicas at integer multiplies of fJM
by filtering, the zero values introduced by padding disappear and we obtain the
original sequence x^w). If we start with the signal x2(n) and wish to interpolate to
find intermediate sample values, we simply pad with zeros by 1 : M and use a
lowpass filter with a zero frequency gain of M to get a sequence x^n) such that
every Mth value matches x2(n). Another interesting application of upsampling is
to effect a sampling frequency change (see Chapter 3).
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SAMPLING
FREQUENCY:

x,(n)

1,/M

«">:'[L.r— M- 3 — — -*.

PAD WITH
ZEROS BY

r
0**3**6 * "

1,

DIGITAL
FILTER

IltTHt,r

*

I (Hi)

(b)

DIGITAL FILTER GAIN

f(Hz)

Fig. 1.7. For /s > M • BW desampling by M: 1 reduces computation rate while upsampling by
1: M interpolates the signal, (a) Block diagram showing desampling, upsampling, and filter to remove
replicas, (b) Spectral magnitude for Xj(n). (c) Spectral magnitude of x3(n) for M = 3.

Two-Dimensional DTFT E

Let an image x(r, s) be sampled at intervals of Tt and T2 along the r and s axes,
respectively, yielding the 2-D sequence x(m, n). The spectrum will be 2-D with
periods 1/Ti and 1/T2 along the ft and /2 axes, respectively, for the same reason
that a 1-D spectrum is periodic. Since the 2-D spectrum is periodic, we can
represent it by a 2-D Fourier series. Paralleling the steps for the 1-D DTF and
IDTFT leads to

1 \2

2n

(1.26)

}l dco2 (1.27)

We define Eqs. (1.26) and (1.27) as the 2-D DTFT and 2-D IDTFT, respec-
tively. Extension of Table I to the 2-D case using Eqs. (1.26) and (1.27) is
straightforward.
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IV z-TRANSFORM

The z-transform generalizes the DTFT and gives additional information on
system stability. This section discusses the z-transform, the inverse z-transform,
and a table of properties.

A One-Dimensional z-Transform

Equation (1.16) defines the 1-D DTFT:

X(eja) = £ x(n)e'j(an (1.16)

We can generalize this equation by replacing e jton by e an jmn, letting z — ea+jta,
and defining the resulting summation as the two-sided, 1-D z-transform of x(n)
or, simply, the z-transform of x(«), denoted by

00

.A \zj == =£|_x(w^J == y . x\n)z fl . .Zo)
n = — oo

For cr = 0, z = ejw, and Eq. (1.28) is the same as Eq. (1.16). In this case |z| =
\ej<a\ = |cos o> + jsma)\, which defines the unit circle (a circle with unity radius
centered at the origin). Evaluating the z-transform on the unit circle in the z-plane
corresponds to the DTFT.

B Region of Convergence

The infinite series in Eq. (1.28) is meaningful only if it converges. One test of
convergence is the ratio test: a series converges if the magnitude of the ratio of
term n 4- 1 to term n (term — n — 1 to term — n on the negative axis) is less than 1
as n -* oo. For n > 0 we require that

lim
x(n

x(n)z "

whereas for n < 0 we require that

x(-n- l)zn

< 1 or \z\ > lim
x(n + 1)

lim
x(-n)z*

< 1 or |z| < lim

x(n)

x(-n)
x(-n- 1)

(1.29)

(1.30)

The region where Eqs. (1.29) and (1.30) are satisfied is called the region of con-
vergence; /?! and R2 are called the radii of convergence. As an example, let

, v fa", n > 0x(n) =
b", n<0 (1.31)
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Applying the geometric series summation formula

+C + C

to the z-transform of Eq. (1.31) gives

l-C

X(z) = £ a"z-" - £ b"z~n

n = 0 n = -1

1 -az~v

2z[z

z-b (z — a)(z

where

]JT a"z " converges for |z| > a and

oo

V b~"z" converges for |z| < b

17

(1.32)

(1.33)

(1.34)

From Eq. (1.34) we conclude that the region of convergence for Eq. (1.33) is the
annulus defined by jz| > a and \z\ < b, as shown in Fig. 1.8. As is evident from
Eq. (1.33), the function X(z) diverges at z = a and z — b. Such points are called
poles of the function. Similarly, X'(z) = 0 at z = (a 4- b)/2 and z = 0. Such points
are called zeros of the function. If b < a, there is no region of convergence for
(1.33) because the z-transform diverges everywhere.

Fig. 1.8. Region of convergence for x(n) — (a", n > 0; —b~",n< 0).
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C One-Sided z-Transform

Many sequences considered in this book are zero for n < 0. Such a sequence is
right-sided, and the 1-D z-transform, given by Eq. (1.28), becomes

X(z) = £ x(n)z-" (1.35)
n = 0

Similarly, if x(n) = 0 for n > 0, the sequence is left-sided and its 1-D z-transform is

o
X(z) = £ x(n)z " (1.36)

Equations (1.35) and (1.36) define one-sided z-transforms. Section VI gives the z-
transform of a number of right-sided sequences along with the corresponding
continuous-time function x(t) from which the sampled version, the sequence x(n),
is derived and the Laplace transform of x(t).

D Inverse One-Dimensional z-transform

Given the function X(z), we derive the data sequence x(n) by taking the inverse
z-transform of X(z). Equation (1.28) defines the z-transform:

00

X(z)= £ x(n)z~' (1.28)

Multiplying both sides of Eq. (1.28) by zm 1 /2nj and integrating over a
counterclockwise (CCW) contour C, which is in the region of convergence of
X(z) and encircles the origin, yields

i f _ , £ r i r _ _, i
----w X(z)zm l dz = 2_, *(n)hr-r<j) z "zm dz \ (1.37)

• ' « / * " *" I— J tj ^- _J

where we have substituted the right side Eq. (1.28) for X(z) and have then inter-
changed summation and integration. We evaluate the integral in the brackets
by the Cauchy integral theorem:

— <j) z
m^"~ldz = 6(n - m) (1.38)

where

{
«
' n~m . (1.39)0 otherwise

is the discrete time impulse. Since £*= _aox(n)6(n — m) — x(ri), Eq. (1.37)
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reduces to the inverse z-transform:

1 f
x(n) - J^1 [*(z)] = ~-4> X(z)z*-*dz (1.40)

2n/ Jc

When C is the unit circle z = ejro, the preceding integral reduces to

I
X(eJto)eJotHdo} (1.17)

which is the IDTFT defined previously.
We can evaluate the integral on the right of Eq. (1.40) by Cauchy's residue

theorem:

x(n) = X [Residues of X(z)zn~1 at poles inside C] (1.41)

However, in practice it is often easier to use either long division or a partial-
fraction expansion rather than Eq. (1.40) or Eq. (1.41). As an example of long
division, consider the right-sided z-transform X(z) = 1/(1 — az~l). Dividing
numerator by denominator yields

X ( z ) = 1 +flz^ + a2z~2 + ••• + a"z~n + --- = £ x(n)z~n (1.42)
71 = 0

Comparing coefficients of z"" gives x(n) — a".
As an example of using a partial-fraction expansion, consider the right-sided

transform

We may evaluate each term in the summation on the right of Eq. (1.43) by using
Eq. (1.42) to get x(n) = (a"+1 — bn + l)/(a — 6), or we can use z-transform pairs.
Some z-transform pairs are stated for right- and left-sided sequences in Table II.
In the table aj and a are real numbers; right- and left-sided sequences converge
for |zj > p and |z| < q, respectively, where p is a right-sided sequence pole and q
is a left-sided sequence pole. More extensive right-sided z-transforms are in
Section VI.

z-Transform Properties E

Table III summarizes a number of 1-D z-transform properties, most of which
apply to either one- or two-sided data sequences. When the property applies only
to a one-sided sequence, this is stated. For example, the initial value theorem in
the table applies to right-sided sequences. Derivation of the properties is treated
in [3-13, 19]. Most of the properties are a straightforward application of the
z-transform definition, as the following examples illustrate.
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Data sequence, x(n)

TABLE ir

z-Transform Pairs

z-Transform, X(z)

Right-sided Left-sided

S(n) 1 1

Wa (\-az~1)2

, ,2 H fl2-'(l +«*- ' )
n a' ' ~n - I X T ~(1 — az )

i«i • i i T asin(o)T)z'1
a1 ' s inn to/ ; , — ~1 1 1 - 2acos(cuT)z-1 + aV2

1 - acos(toT)z~l

a |n| cos | n \ o) T : : — ;
1 - 2acos(fof)z^1 + aV2

(1 - az)2

az(l + az)

(1 - az)3

asin((»T)z

1 — 2acos(toT)z 4- a

1 — acos(cor)z

1 — 2acos(ty7")z + a

2.2

272

TABLE III
Summary of z-Transform Properties

Property

z-Transform

Equivalence of the DTFT and the
z-transform evaluated on the
unit circle

Linearity

Data sequence horizontal axis
sign change

Complex conjugation

Both of the above

Transform of real part of data
sequence

Transform of imaginary part of
data sequence

Sample shift

Left shift of right-sided sequence

z-plane complex scale change

Data sequence z-Transforrn
representation representation

x(n) X(z)

x(n) DTFT[x(H)] = X<z)|: ,,,,.,„

ax(n) + by(n) aX(z) + hY(z]

x(-n) X ( l / z )

x*(n) X * ( z * )

x*(-n) X * ( l / z * )

Re[x(n)] ij-[X(z) + X*(z*)]

Im[x(n)] K*(z) - X*(z*)]

x(n ± m) z~mX(z)

[ m- I ~~\
X(z) — £ x(n)z~"

w~"x(«) X(wz)

(continued)
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TABLE m (Continued)
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Property

Convolution of data sequences
(transform product)

Data sequence
representation

x(n) * y(n)

z-Transform
representation

X(z)Y(z)

Periodic convolution of transforms
(data sequence product)"

Data sequence multiplication by n

Right-sided data sequence*
division by n [12]

Initial value theorem for
right-sided sequence

Final value theorem for right-sided
sequence'

Right-sided data sequence x(n)
with period N

Increasing sampling frequency by
M—i.e., transforming a data
sequence xt(n) padded with
zeros by a factor of M

Reducing sampling frequency by
M—i.e., decimating a sequence
x, (n) by a factor of M

ParsevaFs theorem''

x(n)y(n)

nx(n)

x(n + 1)

M

where x(n) — 0 for n < 2

x(0)

2nj
X ( v ) Y ( - ] v ~ l d v

dX(z)

X(w)dw f o r | z | > R

lim X(z)

lim x(n)

x(n), 0 < n < N

0 otherwise

Xj(m) if n/M = m

0 otherwise

-*,(«) =

x(n) =

x(ri) = xt(
n = 0, ±1, ±2,...

I x(n)y*(n)

— I X,(zllMe-J2'"M)
M ,tt, ll

2n
X(ej'°)Y*(eJ'")d(a

" C is in the region of convergence of X(v) and Y(z/v).
b R is the radius of convergence of X(z).
c The poles of X(z) must lie within the unit circle except for possibly a first-order pole at z — 1.
** The poles of X(z) and Y(z) must lie within the unit circle.

Data Sequence Horizontal Axis Sign Change 1

Let x(n) be replaced by x( — «) — for example, by a time reversal in taking data.
The z-transform of the sequence x( — n) is, by definition,

(1.44)
m = — oo

The data sequence horizontal axis sign change yields x( — n), which has the
z-transform A"(l/z), whereas x(n) has the z-transform X(z).
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2 Convolution of Data Sequences

This property states that the z-transform of the convolution of data sequences
yields the product of the z-transforms of each sequence. Let x(n) and y(n) be the
sequences convolved, and let w(n) be the resulting sequence:

oo

w(n) = x(n) * y(n) = £ x(m)y(n — m) (1.45)

By definition the z-transform of w(n) is
oo

W(z)= X w(»)z--= £ £ x(m)y(n - m)z-" (1.46)
n = — oo n = — o o m = — o o

Interchanging the summations and letting k = n — m yield
OO 00 00 00

W(z) = £ x(m) £ y(n-m)z-" = £ x(m) £ X*)z~*~m = *(zW*)
m = - oo n = - oo m = — oo k = — oo

(1.47)

so the z-transform of x(n) * y(n) is Jf (z)y(z).

3 Periodic Convolution of Transforms

This property states that the z-transform of the sequence formed from the
term-by-term product of two data sequences is given by a contour integral. If the
region of convergence of the z-transform of each sequence includes the unit circle
in the z-plane, then the contour integral is a periodic convolution. Let w(«) —
x(n)y(n). Then the z-transform of w(n) is

. /»
00 00 1 I

W(z)= Y x(n)y(n)z-*= Y x(n)-— 4) Y(v)v*~l dvz~n (1.48)

where Eq. (1.40) was used to express y(n] and Cl is a CCW contour around the
origin in the region of convergence of Y(v). Interchanging the integration and
summation in Eq. (1.48) yields

i (* / \
= — J) x(-\Y(v)v-* d» (1.49)2»y Jc1 \u/

where now Q must lie in the region of convergence of X(z/v) as well as that of
Y(v). Interchanging the roles of x(ri) and y(n) yields another form of the integral:

/ \
X(v)Y(-]v-ldv (1.50)

c \vj
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where C is a CCW contour that encircles the origin and lies in the regions of
convergence of X(v) and Y(z/v). Combining Eqs. (1.48) and (1.50) gives the result
that the z-transform of the sequence x(ri)y(n) is a contour integration. Let C
include the circles with radii p and r/p. Let z = rej<t> and v = pejl°. Then Eq. (1.50)
gives

i f " r> i
W(rei4>) = —- X(pejm}Y\ _<?;<*-«» \da> (1.5la)

2*J-* LP J

which is called a periodic convolution because W(rej<t>) has period 2n. When the
circles of convergence include r = p = 1, we interchange the roles of 4> and co and
denote the periodic convolution by

W(eJ<0) = X(ejm) * Y(ej(a) ( l .Slb)

which is the same as frequency domain convolution for the DTFT [see
Eq.(1.24)].

Two-Dimensional z-Transform F

Just as we generalized the 1-D DTFT to obtain the 1-D z-transform, we shall
generalize the 2-D DTFT to obtain the 2-D z-transform. Let x(rn, n) be a 2-D
sequence representing, for example, a sampled image. We obtain the 2-D z-
transform of x(m, n), ̂ 2.DLx(m^")]> by generalizing Eq. (1.26), letting z; = eai+J(0\
i = 1,2, which gives

CO 00

X ( z l 9 z 2 ) = £2_D[x(m,n)-] = x(m,n)zrzl* (1-52)

The region of convergence of X(zl,z2) is that region in z t , z2 space for which
Eq. (1.52) is absolutely summable:

|x(m,n)zj"mz2
n| < oo (1.53)

Likewise, the 2-D inverse z-transform results from generalizing Eq. (1.27):

X(z z )zm" *z"" * dz dz (I 54)

where C, is a closed contour encircling the origin of the z,-plane, i — 1,2. The
contours Q are generally difficult to specify unless the 2-D z-transform is
separable: X(zl, z2) = X1(zl)X2(z2), which is true if and only if the data sequence
is separable.

The table of 1-D z-transform properties extends in a straightforward manner
to 2-D properties. For example, the z-transform of a 2-D convolution gives the
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product of transforms:
)] = X(zl,z2)Y(zl,z2) (1.55)

The 2-D z-transform is important in the development of 2-D digital filters used
in image processing. Thus, stability of the 2-D filter is an important con-
sideration, and the stability assessment requires us to determine the location of
the zeros of the denominator polynomial of the filter transfer function. The filter
is stable if the denominator polynomial is never zero for any values of z{ and z2

such that \zl\> 1 and |z2| > 1.

V LAPLACE TRANSFORM

Whereas the z-transform is the primary tool for analysis of discrete-time
systems, the Laplace transform is often the primary tool for analysis of
continuous-time systems. Laplace transforms were originally developed by
Oliver Heaviside to solve ordinary differential equations by algebraic means
without finding a general solution and evaluating arbitrary constants.

Laplace transforms have several applications in this book. We use them
principally to describe an analog filter transfer function. We can convert this
transfer function to a digital filter by the techniques described in Chapter 4.

A Definition of the One-Sided Laplace Transform

Let x(t) be a function such that

\x(t)\e~ot dt = K < oo (1.56)

for some finite, real-valued constant a. Then the one-sided Laplace transform of
x(t), jSf [x(0], is defined as X(s) and given by

foo

X(s) = JSP[x(r)] = x(t)e~stdt, s = <r + jQ (1.57)

To insure essential uniqueness of the function x(t), if we are given X(s), we require
that

x(0 = 0, t<0 (1.58)

Then the inverse Laplace transform of X(s) is
i /Vi+jco

x(f) = F(s)estds (1.59)

where a^> a and the latter is the a in Eq. (1.56).
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Laplace Transform Properties B

Table IV summarizes some Laplace transform properties. In the table al!
functions are zero for negative time; that is, if t < 0, then x(t) = x^t) = x2(t) = 0.
Other notational definitions include

dx(t)
dt • ™-™/ — 0

(1.60)

f l , f > 0
u(" = {o, t<o (1-61)

We illustrate derivation of the pairs with several examples.

Laplace Transform of e~at 1

For Re[s] > a the transform of e M is

s + a
1

s + a
(1.62)

Laplace Transform of ft X(T) dr 2

The Laplace transform of |'0 x(t) dr is

r°°rP 1 IVs' P 1
X(T)^T ^ stc/t = x(T)dr

Jo Uo J L-*Jo J
e-s'x(t)dt (1.63)

X(s)

where we used J u dv = uv — J v du, u = J'0 X(T) dx, and dv = e st dt, and where the
expression in brackets when evaluated at zero and infinity equals zero [14].

Let lim,^ [_e~*x(t)]\ = 0. Then

e-**g*dt = e-*x(t)
0 JO

x(t)e~stdt (1.64)

where again we integrated by parts, using u = e " and dv = dx(t).



TABLE IV
Summary of Laplace Transform Properties'7

Property

Laplace transform

Time domain first-order
derivative

Time domain second-order
derivative

Time domain nth-order

Time domain
representation

x(t)

dx(t)/dt

d2x(t)/dt2

d"x(t)/dt"

Laplace transform representation

X(s)

sX(s) - x(0)

szX(s) - .sx(O) - x'(0)

s"X(s)-sn~ix(Q)----x "" '(O)
derivative

Time domain integration x(t)dt

Right-shifted time function

Left-shifted time function

Function x(t) with period P

Attenuated time function

Horizontal time axis scaling

Time domain convolution
(frequency domain product)

Frequency domain
convolution (time domain
product)"

Time function partial
derivative with respect to
a parameter

Time function integration with
respect to a parameter

Product of time function
and /"

Division of time function by t

Decomposition of a complex
time function

Initial value theorem

Final value theorem b

x(t — a), a > 0 e asX(s)

x(f + a)u(t), a > 0 easy\_x(t)u(t - «)]

fx(f), 0 < r < P Xv(s)
*M = L tu • r S(0 otherwise 1 — e

e~atx(t), a > 0 X(s + a)

x(at), a > 0 X l 1 )
a \aj

x , ( f ) * x 2 ( t ) Xl(s)X2(s)

f t ( T V t T)dr- J ^ X , T A 2 t

xl(t)x2(t) Xl(s)*X2(s)

1 fc+jv>

~2tijt-ja, ' H) 2($~' W ) ' M

dx(t, a) 8X(s, a)

da da

r«2 r«i
x(t,a)da X(s,a)da

d"X(s)
t"x(t) (_i)«^J

ds

x(r) f'c
-^ X(s)ds

x(t) = Re[x(f)] + ;Im[x(f)] X(s) = Re[X(s)] + /Im[A'(.s)J

x(0) limsAr(s)

x(oo) lim sX(s)
s-*0

" Re[w] - c lies to the right of the poles of X} (w) and to the left of the poles of X2(s — w).
h The poles of sX(s) must be in the left half of the s-plane.
f Adapted from [14].
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TABLE OF z-TRANSFORMS AND LAPLACE TRANSFORMS VI

Table V states the Laplace transform for each listed function x(t), as well as the
^-transform of the right-sided sequence x(n), x(n) = x(t) evaluated at t = nT,
where T is the sampling interval. Note that the z-transforms have not been stated
for a normalized sampling frequency of 1 Hz, but the sampling interval is
contained explicitly in the transforms.

DISCRETE FOURIER TRANSFORM VII

The DTFT discussed in Section III yields a periodic, continuous spectrum for a
nonperiodic data sequence of infinite length. The DFT of this section also yields a
periodic spectrum characteristic of sampled data. In contrast to the DTFT, the
DFT has a line spectrum that represents a sequence of period N. The term
"discrete Fourier transform" is somewhat of a misnomer since the DFT provides
a Fourier series representation for a finite sequence, whereas the DTFT yields a
true Fourier transform of an infinite sequence incorporating Dirac delta
functions [see Eq. (1.14)].

Series Representation of an W-Point Sequence A

Let an JV-point sequence, x(n), be given for n = 0, 1 , 2, . . . , N — 1 . Then we form
the periodic sequence, xp(n), from x(n) by simply repeating x(ri) with period N:

Xp(n) = x(i), i = 0, 1, 2, . . . , N - 1, i = n mod N (1.65)

where for some integer m, n = i + Nm. Thus, / is the remainder of n/N, or, stated
another way, i is congruent to n (modulo N). These equivalent statements are
written as

i — n mod N or i = n (modulo N) (1.66)

As discussed in Section II, periodic functions can be represented by a Fourier
series. There is a periodic function xp(t) that yields the sequence x(n) when
sampled at t = «T, n = 0, 1, 2, . . . , N — 1, where P = NT is the period of the
function. The Fourier coefficients Xp(k) for the series represent a line spectrum
where the lines are at intervals of 1/P = f J N as illustrated in Fig. 1.2. Thus, the
lines in the spectrum are at the frequencies

(1.67)

where just N values are required for k because Xp(k) has the period N.
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B Inverse Discrete Fourier Transform

We just showed that the spectrum for xp(n) is a line spectrum with period N. In
Section III.B we showed that a sequence, xp(n) in this case, defines the Fourier
series for the periodic spectrum. Since the spectrum is now a line spectrum, we
find xp(n) from a summation over a period rather than an integration over a
period as in Eq. (1.11), which is repeated here for convenience:

X(n) = | I 'XiWeWf'df (1-68)
A Jo

where the limits have been shifted from —fJ2 and fs/2 to 0 and fs. This shift has
no effect on the value of the integral because we are integrating the product of a
periodic function and a complex sinusoid that completes an integer number of
cycles per period. Integration of the product gives the same answer if the limits
are shifted, provided the limits span the period. Let a <- b mean that b replaces a.
Then the integral yielding x(n) is approximated by an JV-point summation as
follows:

) l' <-)4 *,</) = A,(^) = JW*) (1.69)
/ s o Jak = o W \ /V /

These substitutions yield

*P(") = ̂  Xp(k)(e~^iNrk" (1.70)
JV fc = o

Defining

WN = e~j2n/N (1.71)

and dropping the subscript p in Eq. (1.70) yield the inverse discrete Fourier
transform (IDFT):

X(n) = — ̂  X(k)Wxk", w = 0, l,2,...,N- 1 (1.72)

Note that the sampling frequency does not appear in Eq. (1.70), and we can
assume a normalized value of /s = 1 Hz in accordance with Fig. 1.6.

The IDFT in Eq. (1.72) determines the data sequence x(n) given the transform
sequence X(k), k = 0, 1, 2, . . . , N — 1. The DFT obtains the transform sequence
X(k) from the data sequence x(n), which is described next.
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The DFT C

Suppose we want the coefficient X(l) in the summation in Eq. (1.72). We get it
by multiplying x(n) by Wl£ and summing over n:

x(n) W*5 = - X(k) WN
kn W1S ( 1 -73)

n = 0 n = 0 \_i V k = 0

1 N - 1 N - 1

where we interchanged the summations over n and k on the right side of the last
equals sign. We evaluate the summation over n on the right side of (1.73) with the
geometric summation formula Eq. (1.32) and get

WN
N

(l-k)l2 sin[7i(/-fc)]_

]

(1.74)

sinfTr^/ — k\ IN~\*>\u\n\i *;/•<> J

= k
[0, l^kandl, fc = 0, 1 ,2 , . . . , JV- 1

Thus,

(L75)

which is the DFT

X ( k ) = £ x(n)W% (1.76)

Role of N in the DFT and IDFT D

We could have started our development with the Fourier series for X(H), using

in which case we get

1 N- i

Since this switches the factor l/N from the IDFT to the DFT, we conclude that
the role of N in the DFT and IDFT is arbitrary. We will use Eq. (1.76) and (1.72)
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for the DFT and IDFT, respectively, in this book because these definitions are the
most common.

The DFT is usually implemented by a fast Fourier transform (FFT) algorithm,
as discussed in Chapter 7. If the mechanization involves fixed-point hardware,
then Eq. (1.78) is often more convenient than Eq. (1.76), because the 1/JV can be
used for scaling the outputs of FFT stages to prevent overflow. The \/N also
has the advantage of normalizing the peak DFT frequency response to unity
(see [2, Chapter 6]).

E DFT Properties

The notation

X(k) = DFTO(n)] and x(n) = IDFT[X(/c)] (1.79)

means that the DFT and its inverse are defined by the N-point sequences x(ri) and
X(k), respectively. When both X(k) and x(ri) exist, we say that they constitute a
DFT pair. Let x(n) and y(n) be two sequences with a period of N points. Then
Table VI lists some DFT pairs that are labeled by an identifying property. A brief
discussion of some of the DFT properties follows. More detailed discussions are
in the references at the end of this chapter.

1 Convolution

Circular convolution is defined for periodic sequences, whereas convolution is
defined for aperiodic sequences. The circular convolution of two N-point
periodic sequences x(n) and y(n) is the JV-point sequence a(m) = x(n) * y(n\
defined by

a(m) = x(m) * y(m) = £ x(n)y(m - n), m = 0, 1, 2,. . . , A/ - 1 (1.80)
n = 0

Since a(m + N) = a(m), the sequence a(m) is periodic with period N. Therefore
A(k) = DFT[fl(ro)] has period N and is determined by A(k) = X(k)Y(k).

The noncircular (i.e., aperiodic) convolution of two sequences x(n) and y(n) of
lengths P and Q, respectively, yields another sequence a(n) of length N = P +
6-1:

N-l
a(m) = £ x(n)y(m - n), m = 0, 1,..., P + Q - 2 (1.81)

n = 0

Note that the convolution property of the DFT [see Eq. (1.80)] implies circular
convolution. Noncircular convolution, as implied in Eq. (1.81), requires that the
sequences x(n) and y(n) be extended to length N > P + Q — 1 by appending
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SEQUENCE x(n)
OF LENGTH P ^

SEQUENCE y(n)
OF LENGTH Q

ADD ZEROS
AT THE END
OF THE
SEQUENCE

ADD ZEROS
AT THE END
OF THE
SEQUENCE

AUGMENTED
SEQUENCE 7c (n)

*

AUGMENTED
SEQUENCE y(n)w

N> P + Q- 1

V(n) - x (n) * y (n)
n - 0, 1 N - 1

N - POINT
DFT

N - POINT
DFT

N - POINT
IDFT

X(k»

A

I

A(k) -
^ X(k»y(k)

Y(k)

Fig. 1.9. Application of DFT to obtain the noncircular convolution of two sequences x(n) and y(n).

zeros to yield the augmented Af-point sequences

(x(n)} = {x(OX x(l),. . . , x(P - 1), 0, 0,..., 0}

{y(n}} = (j;(0), y(l),..., y(Q - 1), 0, 0,..., 0}

(1.82)

(1.83)

Then the circular convolution of x(n) and y(n) yields a periodic sequence a(n) with
period N. However, a(m) = a(m) for m = 0, 1,..., P + Q — 2. Hence

DFT[a(n)] = DFT[jc(n) * y(n)] = X(k)Y(k) (1.84)

where X(k) and Y(k) are the N-point DFTs of x(n) and y(n), respectively, and

(1.85)

These operations are illustrated in block diagram form in Fig. 1.9. Of course, an
FFT is applied to implement the DFT.

Overflow can be a problem when implementing convolution in a digital
computer. Therefore, a factor of I/A7 is often included before the summations in
Eqs. (1.80) and (1.81), and this scaling precludes overflow with floating-point as
well as properly scaled fixed-point sequences. Convolution is discussed in more
detail in Chapter 8, starting on page 666.

Periodicity of the Data Sequence 2

Data sequence periodicity follows from the IDFT:

~~ '" (1.86)
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ff we replace n by n + iN, where i is an integer, we have

W-k(n + iN) = (e-j2x/Nyk(n + iN) = W-kn ( |_8 7^

since Q*p[_(j2n/N)(iNk)] = 1. Thus,

X(n + iN) = --Y X(k)WHk(n + iN} = Y X(k)WN
k" = x(n) (1.88)

Since x(n) = x(n + iN), i = . . . , — 1 , 0, 1, . . . , the data sequence has period N, at
least when we use the IDFT to derive the data. Unfortunately, when we take N
samples of a time waveform at a sampling interval of T s, it is unusual that the
period P = NT of the time waveform is known, and indeed the waveform may
not be periodic. The implication of this is discussed next.

3 OFT Output in Response to an Arbitrary Input

The use of the DFT presumes a periodic input whose known period is spanned
by the N samples used in the DFT. Such an input has a line spectrum, and if it is
properly bandlimited the DFT measures it exactly. In general, either the period is
unknown or the signal may be nonperiodic or even a continuum of frequencies.
The result is that the DFT transform coefficient X(k) measures a windowed
spectrum from 0 to fs Hz. To determine the characteristics of the windowed
spectrum, note that the DFT is evaluating the DTFT at specific frequencies

/ = A fc = 0, 1, . . . ,N-1 (1.89)

for an input, x(n), that is truncated for n < 0 and n > N. This can be achieved by
multiplying x(n) by uN(n), where

l, n = 0 , l , 2 , . . . , N - l
. (1.90)

0 otherwise

The sequence uN(n)x(n) is that required by the DFT and

DFT[%(«)x(n)] = DTFT[Mjv(n)x(n)] (1.91)
= k/N

Let frequency domain convolution be defined by (1.24), let Xa(e
i<0) =

DTFT[x(n)], and let DTFTCw^n)] = UN(ej<0). Then using the entries in Table I
for frequency domain convolution (data sequence product) and for the trans-
form of the N sample step sequence, we get

X(k) = D¥J[_uN(n)x(n)] = UN(ej<°) *

'1/2 oi«r,r
e-J«(i

-1 /2 sm
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sin [tt(k - fN)]

' \J \ / k/N \ / \S x 1/2

NORMALIZED FREQUENCY (Hz)
Fig. 1.10. The DFT frequency response admits spectral leakage.

The DFT has a jsin(7r/7V)/sin(7i/)| frequency response magnitude that has nulls
every I/AT Hz. If the input has a spectrum of only N delta functions that are
spaced 1 /N Hz apart starting at / = 0 and that have strength X(k)/N, then the
DFT determines these lines exactly because only the line at / = k/N is not at a
null of sin[_n(k - fNJ]/sin[_n(k - fN)/N~]. Otherwise, Eq. (1.92) shows that the
DFT output is an integral of the product of the responses of UN(eJ<0) shifted to
a> = 2nk/N and Xa(e

jl°). Figure 1.10 shows the magnitude of Xa(e
jf°) and

UN(ej2n(k"fN}/N) (the complex exponential factor is not shown), and illustrates
how the sidelobes of UN(ejto) pick up energy (called spectral leakage) included in
X(k] by the integration in Eq. (1.92). Furthermore, Fig. 1.10 shows that the
mainlobe of the DFT frequency response includes a band of frequencies in the
input, Xa(e

ja>). This band, plus the spectral leakage, determines the output
coefficient X(k) and leads to the term DFT filter response with a rectangular
weighting on the input. Thus the DFT can be regarded as a bank of filters where
the magnitude response of adjacent DFT filters is given in Fig. 8.32.

DFT Output in Response to a Weighted Input 4

The sm(nfN)/sin(nf) frequency response of the DFT can be changed by data
sequence weighting (also called a data sequence window [2]). Let the weighting,
w(«), be nonzero only for 0 < n < N. Then w(n) truncates the data sequence in
the same manner as uN(n). Let DTFT[w(n)] = i^(ejta). Then

DFT[w(n).x(n)] = DTFT[w(n)x(n)] * Xa(e
j<°)

<a-2itk/N

(1.93)

On the other hand, if w(«) is nonzero for n<0 and n>N, the sequence x(n)must
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again be truncated by uN(n) with the result that

DFT[w(«K(«)x(n)] = iT(eJm) * UN(ej°) * Xa(e
jm) (1.94)

As in Eq. (1.92), the convolutions in Eqs. (1.93) and (1.94) are defined by Eq. (1.24).
Displaying Eqs. (1.93) and (1.94) as convolutions evaluated at / = 2iik/N shows
that the DFT output is the integral of the product of the data spectrum and a
frequency domain window determined by it/~(ej(a) * UN(ej(0) in Eq. (1.94). These
windows are selected to achieve desirable modifications to the basic DFT
window, UN(eJ<0). The modifications include the following: (1) reduce the peak
amplitude of the sidelobes; (2) change the width of the mainlobe of the frequency
(filter) response; (3) increase the rate at which successive sidelobes decay; (4) vary
the locations of the sidelobe nulls; and (5) simultaneously do (1)~(4). Similar to
Fig. 1.10, the frequency domain windows have the appearance of filter responses
and are referred to as DFT filters. Weighted, overlapping blocks of data plus a
frequency bin phase shift accomplish filtering operations such as multiplexing
and demultiplexing (see Chapter 8). The Appendix in Chapter 3 includes
windows, and its Table AI lists some of their properties.

5 Horizontal Axis Sign Change

Taking the DFT of the sequence x( — n) gives the horizontal axis sign change:
N- l -Af + 1

DFT[x(-n)]= X x(-n)W%= £ x(l)Wju (1.95)
n=0 1=0

where we let I— —n. The periodicity of W^kl and the sequence x(l) allow us to
shift the indices to between 0 and N — 1, giving

N£x(l)Wju = X(-k) (1.96)
1 = 0

soDFT[x(-n)] = X(-k).

6 DFT of Two Real N-Point Sequences

Let x(n) and y(n) be two real JV-point sequences and let a(n) = x(n) -f jy(n).
Let DFT,y|>(n)] = Xe(k) + jX0(k), where Xe(k) and X0(k) are the DFTs of
the even and odd parts, respectively, of x(n), and DFTN means an JV-point DFT.
Similarly, let DFTw[j;(»i)] = Ye(k) + jY0(k) and DFTN[a(n)] = A(k). Then we
can determine X(k) and Y(k) from A(k\ using the formulas in Table VI: Xe(k) =
|Re[v4(/c) + A(N — fc)], etc. This algorithm is for determining the DFTs of
two real N-point sequences by just one N-point DFT; see Fig. 8.30(a). Other
algorithms are available to take the DFT of a 2N-point real sequence by using
an JV-point DFT and the DFT of a 4N-point even or odd sequence by using an
JV-point DFT [15, 16].
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Multidimensional DFT 7

The multidimensional DFT is a direct extension of the 1-D DFT and is defined
by

Ni_-i NL-i~l Ni-l
X(kL,kL^l,...,kl)= £ I ' • • I x(nLtnL.l9...tni) (1.97)

ni_ - 0 HJL i = 0 n i = 0

where

The multidimensional DFT is the basis for developing several FFT algorithms in
Chapter 7.

DISCRETE-TIME RANDOM SEQUENCES VIII

So far we have discussed signals that are periodic in the frequency domain (for
the DFT, the data sequence is assumed to be periodic as well). If a signal is
deterministic, it has a definite value as a function of sample number and, unless
we admit Dirac delta functions, has finite energy over its duration or, in the case
of the DFT, over a period. If a signal is a discrete-time random sequence (DTRS),
it also has a periodic spectrum, like all data sequences. In contrast to the
deterministic signals the value of a DTRS at a given sample number can only be
specified by a probability distribution function, and, furthermore, a DTRS may
have infinite energy.

A DTRS is also referred to as a stochastic signal, stochastic process, random
function, random time series, or random process. At any sample number the data
is a random variable. Many of the properties of the DTRS are summarized in
terms of its correlation sequence and power spectrum. We shall briefly review
random variables and then discuss correlation sequences and power spectra.

Random Variables A

A DTRS is a sequence of random variables, x(n), where for a given n, x(n) is a
random variable described by a probability distribution function, Fx(n}(x, n); that
is, in general it is a function of the data sequence number and is given by

F (x, n) = Pr{x(«) < x} (1.99)

where Pr means the probability that the event in braces occurs, and x is a real
number. The random variables can assume either a continuous range of values or
a discrete set of values. If the partial derivative of F^(n)(x, n) with respect to x exists
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for all x, then x(n) is described by the probability density function

f (x n) = —-F (x n) f l 100)

On the other hand, if x(n) assumes only a countable set of values, it is described by
the discrete probability density function (also called a probability mass function)

30

f (x n\ = Ŝ"1 n (\~ ri\?>(\ x \ (1 101^
k = - oo ~

where px^)(xk,n) is the probability mass function, and the Dirac delta function
8(x — xk) is described in Eqs. (1.14) and (1.15). For the continuous and discrete-
valued random variables the distribution function is given by

fx(n)(oL,n)doL (1.102a)

= S PX(n)(xk,n) (discrete type only),
k= - oo

m = {m:xm<x <xm+l} (1.102b)

where Eq. (1.102a) holds for both and Eq. (1.102b) holds only for the discrete type.
The following examples illustrate the two types of random variables.

1 Gauss/an Distributed

The continuous random variable x is Gaussian distributed if the density
function is given by

2

(1.103)

where we have suppressed the data sequence index n, and r\ and <r2 are the mean
and variance, respectively, of x. Figure 1.11 shows the normalized density and
distribution functions fffx(x/a) and Fx(x/a), respectively.

2 Binomial Distributed

The discrete random variable x is binomial distributed if, for example, it
describes the probability of getting k heads in N tosses of a coin, 0 < k < N. Let p
be the probability of getting a head and q — 1 — p be the probability of getting a
tail. Then x takes discrete values according to the density
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afx(x/cr

0.399
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Fig. 1.11. Gaussian (a) density and (b) distribution functions. [From E. Parzen, Modern Proba-
bility Theory and Its Applications, Wiley, New York. Copyright ©I960, John Wiley and Sons, Inc.
Reprinted with permission.]
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where again we have suppressed the index n. For N = 3 the probability mass
function

(N - k)\k\
nkaN"k
P q

takes values only at k = 0, 1, 2, and 3, yielding p£(0) = i, p*(l) = p£(2) = |, and
px(3) = |. The distribution function is stair-step-like, steps up only at k — 0, 1, 2,
aid 3, yielding FJO) = |, F,(l) = i F,(2) = i and F,(3) = 1.

B Jointly Distributed Random Sequences

Two discrete-time sequences x(n) and y(m} are described by a joint probability
distribution function Fje(l(>t2(m)(x, n, y, m):

^n),y(«)fe«,y,m) = Pr{x(«) < x and y(m) < y} (1.105)

When x(n) and Xw) assume a continuous range of values and F^ »w(.x, w, yt m) is
difFerentiable with respect to x and y, the joint probability density function of x(n)
and y(m) is

(B)^m)(x, «, ̂ , Wl) (1.1 06)

Equations (1.105) and (1.106) extend to three, four, or more random variables
straightforwardly. Likewise, Eq. (1.101) extends to two, three, or more random
variables.

C Stationary Discrete-Time Random Sequences

A DTRS is stationary if its statistical characterization is not affected by a shift
in the data sequence origin. For example, the probability distribution function of
the stationary sequence x(n) satisfies

^(n)(x,n) - F£(n+fc)(x, n + k) = F£(x) (1.107)

for all integers k and n. In addition, the joint distribution function satisfies

Fx(«),2(m)(x, n, y, m) = F£(n+k)>J(m + t)(x, n + /c, y, m + k) (1.108)

for all integers /c, m, and n.

D Expectations

Let 0(x) be a function of the random variable x. (We are suppressing the index n
in x(n) for notational convenience.) Then we define the expected value of 0(x),
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> as

9(x)fx(x)dx (1.109)

£[gr(x)] is also called the average value or the mean value of g(x). For example, let
g(x) = x. Then the mean value, r\x, of the random variable x is

xfx(x)dx (1.110)
)

If x is Gaussian distributed, we obtain nx = r\ by using Eq. (1.103). The mean-
squared value of x is £[x2], while the variance of x, <r2, is defined by

<r2 = £[(x - >/x)2] (1.111)

The random variables x and _y are statistically independent (or simply
independent) if their joint probability density and distribution functions factor
into the product of two functions:

(1.112)
They are uncorrelated if

£[xy]=£[x]£[>;] (1.113)

It follows from Eq. (1.112) that independent random variables are uncorrelated;
the converse is not necessarily true.

Much useful information about DTRSs is available from their correlation and
covariance sequences. In this book we shall discuss wide-sense stationary (WSS)
sequences. These sequences have a mean value that is independent of the data
sequence index, and a correlation and covariance that are functions only of the
difference in the time indices of two random variables. To state this mathemat-
ically, let x(n) be a wide-sense stationary DTRS. Then

£[*(«)] = *k for all n (1.114)

where tjx is a constant. The autocorrelation sequence for x(n), rxx(m\ is defined for
all integers n and all shift indices m

rxx(m) = £[x(n)x*(n - m)] = £[x(n + m)x*(n)] (1.115)
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and is a function only of the difference in the indices. Conversely, sequences
satisfying Eqs. (1.1 14) and (1.115) for all n are WSS.

Similarly, if x(n) and y(n) are two WSS DTRSs, their cross-correlation sequence
is defined for all integers m and n by

rxy(m) = Etx(n)y*(n - m)] = £[x(n + m)y*(n)] (1.116)

Covariance sequences differ from correlation sequences only in that the mean
value of a DTRS is removed before taking an expected value. Thus, the
autocovariance and cross-covariance sequences of WSS DTRSs are defined,
respectively, by

cxx(m) = E{[_x(n} - ^][x(n - m) - ,/,]*} = rxx(m) - |y2 (1.117)

cxy(m) = £{[x(n) - f/J [ y(n - m) - .̂] * } = r^(m) - nxn* (1.118)

The variance of x(n) in Eq. (1.1 1 1) is also given by

<fl = cxM (1.119)

A Time Averages and Ergodicity

Time averages are often used to infer statistical properties for DTRSs. Let x(n)
be a WSS DTRS. Then the (IN + l)-point time average for the x(n) defined by

x(n) (1.120)

provides an estimate of the mean. If this estimate converges as N approaches
infinity, we define

<x(n)>= lim <x(n)>Ar (1.121)

as the average of the entire sequence. By comparison, £[x(n)] is an ensemble
average; that is, it is the mean of all possible values of x(n) at a specific value of n.

Similar to Eq. (1.120), an estimate of the autocorrelation sequence is

<x(n)x^n - m)>w = —i— £ x(n)x*(n - m) (1.122)
2/V + 1 n=-N

While similar to Eq. (1.121), if the estimate in Eq. (1.122) converges, we have

<x(n)x*(n - m)> = lim <x(n)x*(n - m)>N (1.123)
,V-*oo

If x(n) is not only WSS but also satisfies the ergodic theorems for the mean and
autocorrelation [17, 18], then

<x(n)> = £[x(n)] (1.124)

<x(n)x*(n - m)> = rxx(m) (1.125)
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Equation (1.124) says that an average of x(n) over all possible values of the index
n is equal to the expected value (average) of x(n) for a specific integer n. Thus,
engineers are apt to say that, if a sequence is ergodic, time averages are equivalent
to ensemble averages, where the ensemble is all possible values of the random
variable x(n), with n fixed. A similar interpretation applies to Eq. (1.125).
Likewise, if x(n) is WSS and satisfies the ergodic theorems for the mean and
autocorrelation, then

cxx(m) = <[x(w) - ik][x(Fi - m) - ^]*> (1.126)

If x(n) and y(n) are both ergodic sequences, then

rx» = (x(n)y*(n ~ m)> (1.127)

cx,(m) = <[x(n) - nJLy(n - m) - »/,]*> (1.128)

Ergodic sequences are important in engineering applications of digital signal
processing because we can determine their mean values and correlations by using
many samples from one sequence rather than specific samples from many
sequences.

Correlation and Covariance Properties B

Table VII gives some properties of the correlation and covariance sequences
for WSS sequences x(n) and v(n). The properties result mainly from applying
definitions already stated. Some examples and clarification follow.

Conjugate Symmetry 1

Conjugate symmetry results from taking the complex conjugate of a corre-
lation or covariance sequence. For example, since x(n)x*(n — m) — x*(n —
m)x(n), we have

rxx(m) = E[x*(n - m)x(n)] = E[x*(n)x(n + m)] (1.129)

where the indices can be shifted because the sequences are stationary. Taking the
complex conjugate in Eq. (1.129) outside the expection yields

rxx(m) = {E[_x(n)x*(n + m)]}* = r*x(-m) (1.130)

as stated in Table VII.

Autocorrelation is Maximum at the Origin 2

Let x(n) and y(n) be two real sequences. Then solving

n + m) + aX«)]2} (1.131)



TABLE VII

Properties of the Correlation and Covariance Sequences for Wide-Sense Stationary Sequences

Property

Autocorrelation

Autocovariance

Cross-correlation

Cross-covariance

Conjugate symmetry

Relation of autocovariance
and autocorrelation

Uncorrelated sequences

Orthogonal sequences

Sequence

rxx(m)

cxx(m)

rxy(m)

cxy(m)

rxx(m)
cxx(m)
rxy(m)
cxy(m)

cxx(m)
cxy(m)

rxy(m)

rxy(m)

Equivalent representation

£[x(n)x*(n - m)]

^[xW-^lMn-m)-^]*}

£[x(n)y*(n — m)]

£{[x(n) — rjx][y(n — m) — J^]*}

r*x(-m)
c*,(-m)
r*,(-m)
c*x(-m)

rxx(m) - \t\x\
2

r*y(m) - n,n*

r\J$

0

Sum of orthogonal rww(m) r
xx(

m) + r
vy(m)

sequences x(n) and y(n)
w(n) = x(n) + y(n)

Product of independent rWM,(m) rxx(m)ryy(m)
sequences w(n) — x(n)y(n)

Ergodicity rxx(m) f 1
hm ^rr-rrx(m) *\ «*(-»»)

lim -JL_
N^00[2N + 1

lim
JV-.ooL

f _ m > — w 1*i "U r/-\j
-t- 1

rxy(m) ,. f 1
x(m) *N y*( — m)

2AT + 1

t- (m) f 1

,lim42NTTWw)-'?J*
Output of a linear, stable, fxy(m) r

xx(m) * h*( — m)
shift-invariant system with ryx(m) r

xx(m) * h(m)
impulse response h(n), fyy(>n} rxx(m) *h(m)*h*( — m)
y(n) ~ h(n) * x(n)

The following properties apply only to sequences that become uncorrelated for large index shifts of
one sequence

Decorrelation of sequences lim rxx(m) t]xtj*
for large shifts of one m~* °°
sequence lim cxx(m) 0

lim ^(m) tixq*

lim cxy(m) 0

48
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TABLE VII (Continued)

Property Sequence Equivalent representation

The following properties apply only to real sequences

Autocorrelation is real rxx(
m) r*x(

n)

Autocorrelation is even rix(m) r
xx( — m)

Autocorrelation is r**(0) ^-\r
xx(

m)\
maximum at the origin rxjc(0) + ,̂,(0) ^ 2|r.rJ,(m)|

r«(0)rw(0) >rly(m)

Equivalence of ^(0) a*
autocovariance and
variance at the origin

Autocorrelation at the ^(0) <r2
x + q*

origin

for a and concluding that the discriminate is nonpositive give rxy(m) <
rxx(Q)ryy(ty- Noting that Eq. (1.131) is greater than or equal to zero for a = — 1
yields 2rxy(m) < rxx(G) + ryy(Q). In like manner we get the useful identity
|r«(m)| < rxx(0).I XX \ / f XX \ l

Ergodicity 3

Define the (2N + l)-point convolution of x(m) and y(m) as

x(n)*Ny(m)= f x(i)y(m - i) (1.132)
~ « = -jv ~

Comparing Eqs. (1.132) and (1.122) shows that the cross-correlation for ergodic
sequences x(n) and y(n) can be expressed in terms of the convolution

rxy(n) = lim — — x t m ) *N y*(-m) (1.133)
jV-.Qo|_2/V + 1 ~ J

with similar expressions holding for rxx(m), cxx(m), and cxy(m), as shown in
Table VII.

Output of a Linear System 4

Let h(n) be the impulse response of a linear, stable, shift-invariant discrete-time
system. In general, h(ri) can be complex. Let the system have input x(n) and output
y(n), as illustrated in Fig. 1.12, where the output is determined by

y(n) = x(n) * h(n) (1.134)
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Fig. 1.12. Linear system relationships.

The cross-correlation sequence ryx(m) relating a WSS input and system output is

r (m) = E[y(n)x*(n - m)] = E x(n — i)h(i)x*(n — m)

= Z r*x(m rxx(m) * h(m) (1.135)

as stated in Table VII. Similar computations yield the entries shown in the table
for rxy(m) and ryy(m).

X POWER SPECTRAL DENSITY

The DTFT of the covariance sequence yields a function of frequency variously
called the power spectral density (PSD), power density spectrum, power
spectrum, or spectrum. Let Sxx(co) denote the PSD for the sequence x(n). Then

Sxx(a>) = (1.136)

The cross-power spectral densities, Sxy(eo) and Syx((o), are similarly defined:

Sxy(co) = DTFT[cxy(n)] =

Syx(co) = DTFT[cy,(n)] =

(1.137)

(1.138)

A Convergence Conditions

The sequences cxx(n), cxy(n), and cyx(n) are defined for n = 0, ±1, ±2,. . . , so
the 2-transforms in Eq. (1.136)-(1.138) are two-sided and the usual convergence
conditions apply. From Table VII we get

rxx(n) = cxx(n) (1.139)

(1.140)

Comparing Eqs. (1.140) and (1.34), we see that the region of convergence for
]isl < \z\ < 1, which cannot be satisfied, so we require that rjx = 0. Thus,
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if we do not admit delta functions, the PSD of the autocorrelation sequence rxx(n)
exists only if the DTRS x(n) has a mean value of zero. Likewise, the PSD of rxy(n)
exists only if r]x — 0 and/or rjy = 0. We conclude that the PSD of an autocorre-
lation (or cross-correlation) function exists only if the mean value(s) of the
DTRS(s) is (are) zero, in which case the PSD of the correlation is the same as the
PSD of the covariance. Nevertheless, the PSD provides a very general approach
to the study of DTRS(s), since if a DTRS has a nonzero mean value the mean can
be subtracted, yielding a DTRS that has a zero mean and therefore has a PSD if
its z-transform converges on the unit circle in the complex plane.

Table of Properties B

Table VIII states some properties of the PSD of a WSS sequence. Most of the
properties follow directly from PSD definitions. An example and some discussion
follow.

PSD Relating System Input and Output 1

Table VIII shows that the cross-covariance relating the output of a linear,
stable, shift-invariant system is ryy(m) = rxx(m) * h(m) * h*( — m). Using the data
sequence convolution, horizontal axis sign change, and complex conjugation
properties in Table I, we get a relation between the PSD of the system output
and its input:

Syy(co) = DTFT[ryy(n)] - Sxx(o))\H(o))\2 (1.141)

PSD for Ergodic Sequences 2

Table VIII gives representations for these sequences in terms of the average
of a convolution. We apply the DTFT to the right entry in the table and define
the PSD in terms of averages of X(ej<0) and Y(ejta). When we do this, we must
consider convergence conditions that are a lengthy digression. We refer the
reader to several references [3, 18].

SUMMARY XI

In this chapter we presented a brief summary of transforms and transform
properties. We started our development by recalling the Fourier series represen-
tation of a periodic function. We showed that sampled data from cosine
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TABLE VIII
Power Spectral Density Properties for Wide-Sense-Stationary Sequences

Property Power spectral density Equivalent representation

Power spectral density (PSD) Sxx(o)

PSD of a zero mean sequence Sxx(ca)

Cross PSD Sxy((a)

Cross PSD of zero mean Sxy((o)
sequences

The covariance function Sxx(a>) or Sxy(a>)
is analytically defined

DTFT[c«(n)]

DTFT[rJCX(n)]

DTFT[c,,(fi)]

DTFT[rJcy(n)]

See Table 1 or Table V
with z = e'"°

(see, e.g., below)

(see Table I)

The PSD of a sequence is real

Conjugate symmetry of
cross PSD of WSS sequences

Orthogonal sequences,
x(n) and y(n)

PSD for w(n) = x(«) + y(n)
where x(n) and y(n) are
orthogonal sequences

The PSD of a real sequence,
x(n), is real, even, and
nonnegative

Output of a linear, a stable,
shift-invariant system:
y(n) = x(n) * h(n)

Ergodic sequence
cross-correlation"

Erodic sequence
autocorrelation "

sin[ey(N + 1/2)]
sin(o>/2)

Sxy(<»)

Sxx(o>)

>0

Sxx(co)H*((a)

lim[-
N->a>\_l

«„(«>)

waveforms separated in frequency by the sampling frequency, /s, went through
exactly the same points, so the spectrum of sampled data is periodic and can be
represented by a Fourier series called the discrete-time Fourier transform. We
generalized the DTFT to derive the z-transform, and we then stated the Laplace
transform. The discrete Fourier transform was derived from a Fourier series
representation of an JV-point sequence that was assumed to repeat with period N.
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To introduce correlation and covariance sequences, we reviewed discrete-time
random sequences. We concluded the chapter by stating some properties of the
power spectral density of the covariance sequence.

REFERENCES

1. R, W. Hamming, Digital Filters, Prentice-Hall, Englewood Cliffs, N.J., 1977.
2. D. F. Elliott and K. R. Rao, Fast Transforms—Algorithms, Analyses and Applications, Academic

Press, New York, 1982.
3. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Englewood Cliffs,

N.J., 1975.
4. N. Ahmed and T. Natarajan, Discrete-Time Signals and Systems, Reston, Reston, Va., 1983.
5. A. Antoniou, Digital Filters: Analysis and Design, McGraw-Hill, New York, 1979.
6. C. Chen, One-Dimensional Digital Signal Processing. Dekker, New York, 1979.
7. B. Gold and C. M. Rader, Digital Processing of Signals, McGraw-Hill, New York, 1969.
8. B. C. Kuo, Analysis and Synthesis of Sampled-Data Control Systems, Prentice-Hall, Englewood

Cliffs, N.J., 1963.
9. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice-Hall,

Englewood Cliffs, N.J., 1975.
10. S. D. Stearns, Digital Signal Analysis, Hayden Book, Rochelle Park, N.J., 1975.
I I . J. T. Tou, Digital and Sampled-Data Control Systems, McGraw-Hill, New York, 1959.
12. S. A. Tretter, Introduction to Discrete-Time Signal Processing, Wiley, New York, 1976.
13. J. Cadzow, Signal Processing and Time Series Analysis, MacMillan, New York, 1986.
!4. J. A. Aseltine, Transform Method in Linear System Analysis, McGraw-Hill, New York, 1958.
15. J. W. Cooley, P. A. Lewis, and P. D. Welch, The fast Fourier transform algorithm. Programming

considerations in the calculation of sine, cosine and Laplace transforms, J. Sound Vih. 12,
315-337(1970).

16. L. R. Rabiner, On the use of symmetry in FFT computation, IEEE Trans. Acoust. Speech Signal
Process. ASSP-27, 233-239 (1979).

17. A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York,
1965.

18. M. Schwartz and L. Shaw, Signal Processing—Discrete Spectral Analysis, Detection, and
Estimation, McGraw-Hill, New York, 1975.

19. J. Cadzow and H. Van Landingham, Signals, Systems, and Transforms, Prentice-Hall,
Englewood Cliffs, N.J., 1985.



This page intentionally left blank



Chapter 2

Design and Implementation
of Digital FIR Filters

P. P. VAIDYANATHAN
Department of Electrical Engineering

California Institute of Technology
Pasadena, California 91125

Digital filters [1,2] can be classified into two main types: finite impulse
response (FIR) filters, and infinite impulse response (IIR) filters. Finite impulse
response digital filters possess several desirable properties that make them
attractive for a wide range of applications. An exactly linear phase-response can
be achieved with FIR filters, with the result that they can be used in the faithful
reconstruction of signals without phase distortion. In addition, FIR filters are
inherently stable, and hence the question of stability does not arise either in the
design or in the implementation of these filters (unless they are implemented with
recursive building blocks [1]). This is very attractive in such applications as echo
cancelers, where an adaptive transversal filter is used, whose coefficients are time
varying. Moreover, even though FIR filter typically requires a large order, it can
usually be realized by implementing the convolution sum efficiently with fast
Fourier transform (FFT) algorithms [3]. Furthermore, recent publications show
that under most practical situations FIR filters of high orders can be im-
plemented efficiently by indirect design approaches. Another major advantage of
FIR filters is that near-optimal multidimensional FIR filters (in image processing
applications, for example) can be designed easily starting from one-dimensional
(1-D) prototypes and using spectral transformations. The resulting multidimen-
sional filters are guaranteed to be stable and can be implemented without
impairing this stability in spite of coefficient quantization. Finally, FIR filters
naturally lend themselves to efficient implementation of multirate signal
processing algorithms and can be used to achieve extremely efficient sampling
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rate conversions, as discussed in Chapter 3. The only possible disadvantage of
linear-phase FIR filters in certain applications is that the overall group delay
is equal to (JV - l)/2. This quantity is large for high filter orders, and in
communications applications where echos of transmitted signals cannot be
tolerated, this tends to be objectionable (unless echo cancelers are employed).
Moreover, in digital feedback control applications, a large delay in the feedback
loop is generally not acceptable.

In the past 20 years many techniques have been advanced for the design and
implementation of FIR filters. This chapter outlines the most important
techniques so that you can choose the appropriate design methodology for the
applications involved.

Section II reviews FIR filter preliminaries. Section III discusses the window-
ing technique for FIR design, with particular emphasis on Kaiser's window.
This method is one of the earliest but is surprisingly efficient for numerous
applications. Section IV discusses optimal FIR designs with equiripple weighted
error, emphasizing Remez exchange techniques developed for FIR filters by
McClellan and Parks. This class of filters is the most well known and widely used,
primarily because its flexibility enables the designer to realize a very wide range of
requirements. Section V deals with maximally flat FIR filters. An attractive
feature of this type of filter is that for low orders it can be implemented without
multipliers, and high-order multiplierless filters can be designed by combining
such low-order building blocks. Section VI discusses linear programming
techniques for FIR designs, originally introduced by Rabiner et al Even though
these designs have their own limitations (such as numerical difficulties, large
convergence time etc.), they are useful in certain applications where Remez
exchange techniques are not suitable. Examples include designs that require a
certain degree of flatness (or tangency) in the passband. Section VII deals with
frequency transformations in FIR filters, and Section VIII extends these concepts
so that a 1-D linear-phase FIR filter can be converted into a 2-D FIR filter.
Section IX describes recent unconventional design approaches that meet all
conventional design requirements but are more efficient from an implementation
point of view. The techniques of Sections IX are based primarily on suitable
modifications of those in Sections IV and V. Section X discusses designs of
useful types of FIR filters, such as minimum-phase, half-band, and power-
complementary filters.

II FIR DIGITAL FILTER PRELIMINARIES

A causal FIR filter [2] of length JV has transfer function

H(z) = h(Q) + h(i)z^1 +.-- + h(N- l ) z ~ ( N ~ i } (2.1)

where N — 1 is the filter order and h(ri) are the impulse response coefficients. In
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this chapter we assume that these coefficients are real numbers. Such a filter has
a linear phase-response if the impulse response is either symmetric [i.e., h(n) =
h(N — 1 — «)] or antisymmetric [i.e., h(n) = — h(N — I — «)]. Depending upon
whether the filter order is even or odd and whether h(n) is symmetric or
antisymmetric, four classes of linear-phase FIR filters can be distinguished. We
discuss these classes in greater detail in Section IV. For now we consider a filter
with a symmetric impulse response. The corresponding frequency response,
which is the discrete-time Fourier transform (DTFT) of the sequence h(ri), can be
written as (see Chapter 1)

H(ejm) = e~J(0(N ~ l}l2H0(e
Jto) (2.2)

£ bHcos((on) if (jv - 1) is even

N/2 ( A (2.3)

Y, bncosa)(n--I if (N - 1) is odd

where H0(e
jo>) is a real function of CD. The coefficients bn [see Table IV] for N — 1

even are given by

(2.4)

Thus the phase response of the filter is

'N
(2.5)

which shows that it is a linear-phase filter with a group delay equal to (N — l)/2.
For N — 1 even, this delay is an integral number of samples, whereas for N — 1
odd, the delay is nonintegral. If the order N — 1 is even, then a zero-phase filter
with the same magnitude response as that of H(z) can be obtained by con-
structing the noncausal transfer function

H /_\ _(JV — l)/2 H(~\ /••) /r\
Q\Z) — Z "\Z) \Z,.U)

where H0(z) has the frequency response in Eq. (2.3).

Filter Characteristics A

A FIR transfer function of the form in Eq. (2.1) can be implemented with N
multipliers and N — 1 adders, as shown in Fig. 2.1 (a). This structure is called the
direct form. For linear-phase filters, the symmetry of the coefficients h(n) permits
a more efficient implementation. Figure 2.1 (b) demonstrates this for a sixth-order



Fig. 2.1 (a). The direct-form implementation of a FIR filter of order N — I.

\/

\ /

h(0} \7 h(l)\7 h(2)\7

\/

h(3)W

Fig. 2.1 (b). Sixth-order linear-phase FIR filter implemented with four multipliers.

Fig. 2.1(c). Symmetry of zeros of a linear-phase FIR filter with real h(n).
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filter (i.e., N — 1 = 6). In general, a linear-phase FIR filter of order N — I can be
implemented with (N — l)/2 + 1 multipliers if N — 1 is even, and with N/2
multipliers if N — 1 is odd.

Note that the frequency response H(ej<a) is always periodic in co with period In.
If N- I is even, then' e-J^-i)/2 = e-v<» + 2*)<jv-i) /2 ; if N _ l is odd^ then

e -Jto(N l)/2 = - <T'(M + 2n)(N ~1)/2. Accordingly, H0(e
JW) has a period of 2n for N - 1

even and 4?r for AT — 1 odd. If the impulse response coefficients h(n) are real,
then H(ej'") is such that \H(ej<0)\ is symmetric and arg(H(e/t0)) is antisymmetric:

\H(eJm)\ = |H(*-*°)|, arg(H(O) = -arg(H(<r*"))

Accordingly, it is sufficient to plot \H(eja>)\ and arg H(ejia) in the range 0 < co < TL
If z0 is a zero of //(z) for any linear-phase FIR filter, then l/z0 is also a zero

[1]. Thus, zeros are restricted to be either on the unit circle or in reciprocal pairs
with respect to the unit circle in the 2-plane. Figure 2.1(c) shows the possible
types of zeros for such linear-phase filters.

It is sometimes of interest to design FIR filters that have a minimum-phase
(rather than a linear-phase) response. For such filters none of the zeros are
outside the unit circle, and the phase lag at any frequency is the smallest possible
among all FIR filters having the same magnitude response. These filters are
discussed in Section X.

Design Specifications B

The simplest type of design specification is the lowpass frequency response.
Other types will be taken up in later sections. Figure 2.2 shows an ideal lowpass
response, and Fig. 2.3 shows a typical tolerance requirement. Here <5A and <52

represent the peak permissible errors in the passband and stopband, respectively.
The transition bandwidth A/is

CO, CO,
(2.7a)

0

Fig. 2.2. An ideal lowpass filter specification.
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1-8,

-82

Fig. 2.3. Tolerance scheme for a practical lowpass filter specification.

where a)p and cor are the passband and stopband (rejection band) edges,
respectively. The cutoff frequency coc

arithmetic mean of the bandedges:
of a lowpass filter is defined to be the

(2,7b)

The variable /, defined as / = co/27r, is called the normalized frequency (see
Fig. 1.6). Thus, for real h(ri) we plot \H(ejf°)\ in the range 0 < / < 0.5. A typical
design problem is to find FIR filter transfer function H(z) such that the fre-
quency response magnitude lies within the tolerance region of Fig. 2.3.

The minimum stopband attenuation in dB is defined as

Ar = -20 log! 0^2

and the peak passband attenuation in dB is defined as

For small 6l ,

8.686<5i dB

(2.8)

(2.9)

(2.10)

The notation AmtLJL denotes the quantity 2AP. If the frequency response is
normalized so that its maximum magnitude (in the passband) is unity, /4max

essentially represents the maximum passband attenuation in dB for small 'dl.
In most of the numerical design examples we show the frequency response

plots, along with passband details (see, for example, Fig. 2.9). The response is
plotted in dB; that is, 2Qlogi0\H(eJ<0)\ is plotted. The passband details, however,
are not plotted in dB, but \H(ejat)\ is displayed. The passband edges (for example,
normalized frequencies 0.0 and 0.08) are always explicitly indicated in the
passband blowups.
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FIR FILTER DESIGN BASED ON WINDOWING HI

Windowing is one of the earliest design techniques for FIR filter design, is one
of the simplest [4, 5], and is further discussed in the Appendix to Chapter 3. The
technique is simple because the filter coefficients can be obtained in closed form
without elaborate optimization procedures. Thus, the design time is very small,
and most designs can be done on a calculator. This simplicity continues to make
the technique attractive today, in spite of more sophisticated FIR design
algorithms developed during the last 15 years. Moreover, FIR designs based on
Kaiser's windows [5] are quite flexible, and experience shows that they are close
to optimal.

To explain the windowing technique, first consider Fig. 2.2, which shows an
ideal (or desired) lowpass response Hd(e

j<a) with cutoff frequency coc radians.
The corresponding impulse response coefficients given by the inverse DTFT
(IDTFT) of Hd(e

j(a) are

, . . o>c /sina»cn\
h(n) = ~{ - — I , - o o < n < o o (2.11)

n \ cocn J

Clearly, Eq. (2.11) represents a noncausal IIR filter that, in addition, is unstable
(i.e., the impulse response hd(n) is not absolutely surnmable [1]). It is therefore
unrealizable. To obtain a FIR filter that approximates the response of Fig. 2.2, we
can truncate the above impulse response to a finite-length sequence as

(0 otherwise v '

The impulse response h(n) represents a FIR filter of order N — 1 (which turns out
to be even). A causal filter can be obtained simply by delaying the impulse
response by (N — l)/2 units of time. For the rest of this section we will assume for
notational convenience that the impulse response is noncausal [i.e., of the form of
Eq. (2.12)] so that H(z) is a zero-phase filter and H(ejto) is real valued for all co.

Now, the above process of obtaining h(n) from hd(n) can be viewed as
multiplying the sequence h(n) with the rectangular window function

(2,3)
otherwise

Equivalently, H(ej<a) is the convolution of Hd(e
i<a) with the transform of the

rectangular window (see Table I in Chapter 1)

(Z!4)

where N is the window length or span ( = filter length). Figure 2.4 is a plot of
KF(eJto) for N — 1 = 16. The peak sidelobe of the window transform is only a weak
function of N and corresponds to about — 13 dB, regardless of how large N is.
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1 sin(o>N/2)
N " s in (w/2)

J.608

1-1 = 16

100 0.200 8.308 0.188 0.500

N O R H R L I Z E D F R E Q U E N C Y

s1n(o)N/2)
sin(co/2)

in dB

-£4.000

-36.000

-48.000

-60.000

-1 = 16

0. 0.100 0.200 0.300 0.400 8.508

N O R H f l L I Z E O F R E Q U E N C Y
Fig. 2.4. The transform of a rectangular window.

The resulting response H(ejo)) = H0(e
j(a) has ripples, as shown in Fig. 2.5, with

ripple size increasing toward the bandedge. Increasing the filter order has the
effect of confining the ripples closer to the bandedge but does not decrease the
ripple magnitude. The first sidelobe of the stopband in the lowpass response has a
height of about —21 dB, regardless of how large N is, assuming a passband re-
sponse of about 0 dB. (For example, Fig. 2.5(b) shows the frequency response of
a lowpass filter of order N — 1 = 64 designed with a rectangular window.) The
explanation for this behavior is that hd(n\ given by Eq. (2.11), is the Fourier series
expansion of the periodic frequency domain response of Fig. 2.2, and this series
gives rise to the well-known Gibbs phenomenon [6].
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H n ( e JOJ

1.100

0.380

0.140

-0.100

-1 = 16

0.100 0.200 0.300 0.400

N O R M A L I Z E O F R E Q U E N C Y

0.500

in dB £

-12.

-24.

-36.

-48.

-60.000
0.100 0.200 0.300 0.400

N O R H f l L I Z E D F R E Q U E N C Y
Fig. 2.5(a). Lowpass filter with rectangular window.

0.500

Decreasing the Ripple Size A

We can decrease the ripple size by using windows w(n) that are less abrupt than
the rectangular window—the triangle window, for example. The (2M + l)-point
triangular window (also called the Bartlett window) is defined as

w(n) = 1

= 0
M

for - M < n < M

otherwise
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1.100

0.860

uj 0.620</>

0.380

0.140

-1 = 64

1.100 0.200 0.300 0.400

N O R M A L I Z E D F R E Q U E N C Y

in dB

-34.

-36.000

-48.000

N-l = 64

9.100 0.200 0.300 0.400 8.S00

N O R M A L I Z E D F R E O U E N C Y
Fig. 2.5(b). Lowpass filter with rectangular window.

For a given window length the mainlobe width (defined to be twice the first zero
crossing) of if(ej<0) for a triangular window is double that of the corresponding
rectangular window. Consequently, A/ of the resulting lowpass response
increases. We can compensate for this increase of A/ simply by increasing the
window span N, because A/ varies as 1/JV.

Figure 2.6 shows the transform of a 33-point triangular window (M = 16). The
mainlobe width is the same as that of the 17-point rectangular window (Fig. 2.4),
but the sidelobe level of the window transform is now about —26 dB. Thus a
lowpass filter design based on this triangular window has the same transition



2. Design and Implementation of Digital FIR Filters 65

[ W ( e J W ) l i.E

9.2m

N-l = 32

.100 0.200 0.300 0.400
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-20.

-40,

in dB

-100.000

1-1 = 32

0.100 0.200

N O R H f t L I Z E D F R E Q U E N C Y

Fig. 2.6. The transform of a triangular window.

bandwidth as in Fig. 2.5(a), but has a minimum stopband attenuation of about
— 25 dB. In general, depending on the required stopband attenuation, the
designer chooses an appropriate window and then, depending on the specifica-
tion for A/, chooses the filter length N.

For a given filter length JV the attainable stopband attenuation At is higher for
a window with smaller sidelobe level, and the transition bandwidth A/ of the
filter response is smaller for a window with narrower mainlobe. This gives an
overall guideline for choosing of the window. Historically, many window



TABLE I
Commonly Used Windows for FIR Design

Window

Rectangular 1

Triangular « ,
or Bartlett 1 - M < n < M
(N = 2M + 1 point)

1 / 271/1
Hann - I + cos

2\ N

2nn
Hamming 0-54+ 0-46 cos

N

2nn 4nn
Blackman 0-42 + 0-5 cos + 0-08 cos

N N

(a) Time Domain Representation

Window Transform it '"(ej(a)

sin(o>JV/2)
Rectangular S(to) = ---------& sin(w/2)

Triangular S2(co)

( 2n\ ( In
Hann 0-5 S(w) + 0-25 S[ w -- + 0-25 S( 01 + — -

V Nj \ N

( 2?r\ / 2n\
Hamming 0-54 S((o) + 0-23 S\ 01 ------- + 0-23 S w + --

\ Nj \ N J

Blackman 0-42 S(ca) + 0-25 S\ a> - — } + 0-25 Si aj + -
\ Nj \ P

lit

( 4;r\ / 4n
+ 0-04 S » --- + 0-04 S o> + —

V N) \ N

(b) Transform Domain Representation

Peak sidelobe Minimum stopband
Width of level of attenuation At

mainlobe [W(ei<a)\ of the resulting
Window of|^"(e-"°)| in dB lowpass filter

Rectangular
Triangular
Hann
Hamming
Blackman

4n/N
&n/N
%it/N
Sn/N

l2n/N

-13
-26
-31
-41
-57

-21
-25
_44
-53
-74

(c) Relevant Details
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functions are known, such as the Bartlett, Hann, Hamming, and Blackman
windows and many more [7,8]. Some of these windows are optimal in certain
respects. For example, consider windows of length N with the following form
for w(n):

, (2nn\ N-l N-l ,,, _
W(n) = « + (!- a)cos —- , — < n < ~—— (2.15)

\ N ) 2. L

Among all windows of this form, the Hamming window has the smallest first-
sidelobe level. Even the rectangular window is optimal in a certain sense—, it
leads to a frequency response that is the best least squares fit to the desired
frequency response. However, none of these windows leads to optimal filters—
filters with minimum length for a given set of specifications.

An extensive tabulation of windows functions is in the appendix to Chapter 3.
Table I shows some window functions along with their transforms. In Table II(c),
we list the mainlobe width and the peak sidelobe amplitude of H^(ejm) for each Ap-
point window, where i^(ej°) is normalized to unity. The mainlobe width is
defined as twice the first zero-crossing frequency of i^(ejl°). Table I(c) also shows
the attainable minimum stopband attenuation AT for the lowpass filter. The
transition bandwidths A/ of the lowpass filters, designed using some of these
windows, are as follows: 0.9375/N for rectangular-window-based designs;
3.3125/N for Hamming-window-based designs; and 5.06/N for Kaiser-window-
based designs (with /? = 7.865).

TABLE II

Minimum Stopband Attenuation
Versus Beta for Kaiser Window

Minimum
stopband attenuation

25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

100.0

1.333
2.117
2.783
3.395
3.975
4.551
5.102
5.653
6.204
6.755
7.306
7.857
8.408
8.959
9.510

10.061
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In 1974, Kaiser [5] advanced a new window, now known as the Kaiser
window, based on discrete-time approximations of the prolate spheroidal wave
functions. This window has a flexible parameter ft that can be chosen to meet a
given stopband attenuation, and then the window length N can be chosen to meet
the requirements on A/. Due to the parameter j3, the Kaiser window essentially
subsumes several other windows for FIR design.

Recall that a window is essentially a time-limited function with a lowpass type
of transform. One would like the transform ^(ejf0) to resemble an impulse
function so that the result of convolution of i^(ej<a) with Hd(e

j<0) resembles
Hd(e

jo>) as closely as possible. One possible approach for obtaining an optimal
window is therefore to minimize the energy in the sidelobes of W(eJ&). The
Kaiser window is a discrete-time approximation of such an optimal continuous-
time family of functions [9], and is

(N-l)/2/ J/ ov^' 2 - "-* 2 (2.16)
,0 otherwise

where I0(x) is the modified zeroth-order Bessel function, which can be computed
easily as

/Tk*~I2

Analytical expressions for i^(ej<0) are not available for the Kaiser window, but
they are not required for designing FIR filters based on this window. The
argument x in Eq. (2.17) is clearly in the range (0,/J). The parameter /?, to be
discussed next, is typically in the range 2 to 10, and for this range of arguments
about 20 terms in the summation of Eq. (2.17) are sufficient to yield accurate
values of w(n).

As the value of ft increases, the stopband attenuation of the lowpass filter
increases and the transition band widens. Proper choice of N then leads to the
final design. Accurate design formulas are available for choosing ft and N. Thus,
we can design a lowpass filter with equal passband and stopband peak ripples
(A = ^2) by choosing

'0.1102(4r-8.7) i f 4 r > 5 0
0.5842(4r - 21)°-4 + 0.07886(4, - 21) if 21 < At < 50 (2.18)
0 if AT < 21

Moreover Kaiser has found the following closed-form expression for estimating
the window length N (i.e., the filter length) in terms of the desired specifications
A/ and Ar [see Eq. (2.7(a)) and (2.8)]:

14.36 A/
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which is an elegant and quick design aid. Thus, given the specifications in terms of
Ar, (op, and cor, we compute A/ from Eq. (2.7a) and then estimate ft and N - 1
from Eqs. (2.18) and (2.19). We compute the window coefficients w(n) from
Eq, (2.16) and take the filter coefficients to be h(n) = hd(n)w(n), where hd(n) is as in
Eq. (2.11). If the resulting filter response is not satisfactory, we can increase ft and
N — I as required. Usually, a couple of trials of this kind bring about very
satisfactory results. Experience with lowpass designs shows that the required
order is close to the order of an optimal equiripple design (the topic of the next
section).

Table II shows a list of values of ft for various possible attenuation
requirements. Table III shows the required order N — 1 for various typical
combinations of Ar and A/.

Design Example 1. Consider a lowpass design with specifications

top = 0.167r, cor = 0.2471, ,4r = 39dB (2.20)

d. = $2 (2.21)

Recall that At is defined to be — 201og10<52. The frequency a>c in Eq. (2.11) is the
arithmetic mean of cop and <wr. For a Kaiser-window-based design, we estimate ft
and the filter order from Eqs. (2.18) and (2.19), respectively. Thus the parameters
for the window-based design are

N - 1 = order = 54, ft = 3.276, coc = Q.2n (2.22)

Figure 2.7 shows the relevant frequency response plots. Note that all the desired
specifications are satisfied, thus demonstrating the accuracy of the estimates of ft
andN.

TABLE III

Estimated Order of Kaiser-Window-Based Lowpass Filter

A/ 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.050
0.060
0.070
0.085
0.100
0.110
0.120

153
102
76
61
51
43
38
30
25
2!
18
15
13
12

223
148
111
89
74
63
55
44
37
31
26
22
20
18

292
195
146
117
97
83
73
58
48
41
34
29
26
24

362
241
181
144
120
103
90
72
60
51
42
36
32
30

432
288
216
172
144
123
108
86
72
61
50
43
39
36

501
334
250
200
167
143
125
100
83
71
59
50
45
41

571
380
285
228
190
163
142
114
95
81
67
57
51
47

641
427
320
256
213
183
160
128
106
91
75
64
58
53
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Limitations of Windowing Techniques C

One limitation of the windowing approach is that the designer has no
simultaneous control over the passband and stopband errors. The peak errors <5r

and 62
 are always equal. Secondly, filters with unconventional responses, such

as multiband filters with different attenuations in different bands, cannot be
designed. Also, the design of such filtering functions as optimal digital differen-
tiators and Hilbert transformers requires a completely different approach, which
is described in Section IV.

Perhaps the most well-known and widely used linear-phase FIR filters are
those that have an equiripple weighted approximation error [10]. The main
reason for this is that such equiripple filters (also called minimax designs,
Chebyshev designs, and sometimes simply optimal designs) are optimal in the
sense that, for a given set of specifications (such as for instance, cop, ct>r, di, and <52),
these filters have the lowest order N — 1. Thus a direct-form implementation
(Fig. 2.1) of the filter requires the smallest number of multiplications (equal to
(N — l)/2 + 1 for odd N and N/2 for even N). Moreover, McClellan and Parks
[11] have developed a general design algorithm (called the MP algorithm in this
chapter) that can be used to design optimal FIR filters, in the above sense, for a
wide variety of requirements. For example, filters with several passbands and
stopbands, with each band having its own error tolerance dk can be designed. In
addition, a nonuniform tolerance over a given passband also can be achieved.
Digital differentiators and Hilbert transformers [2] with exact linear phase can
be designed with this algorithm. Even IIR filters can be designed by carefully
adapting the principles involved here [12].

In view of its numerous merits, this entire section is dedicated to the principles
and applications of the MP algorithm. Section IX presents novel applications of
this algorithm that lead to surprisingly efficient FIR designs.

Four Basic Types of Linear-Phase FIR Filters A

Recall that an FIR transfer function has the form of Eq. (2.1) and that for a
linear phase-response, the coefficients must be symmetric [h(n] — h(N — 1 — n)]
or antisymmetric [h(n] = —h(N — 1 — n)]. The order N — 1 can be even or odd.
Thus four types of linear-phase FIR filters can be distinguished [10], and their
properties are summarized in Table IV. For each type, the frequency response can
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TABLE IV(a)

The Four Types of Linear-Phase FIR Filters

Type

1

2

N - I
( = order)

Even

Odd

h(n) H0(e
j<°) bn

(N-D/2 /JV _ A

Symm. ]£ *« cos(ncw) />0 — M • , )
n = o \ 2 /

(N - I \
b = 2h( nln^Q

" \ 2 /
N'2 ( 1\ iN \Symm. Y fcBcos<y( n — 1 fcn = 2h( — — n]
-= i V V V 2 /

3 Even Antisymm. ^ fen sin(nco)
» = i

N/2 / A /JV \
4 Odd Antisymm. 2., 6B sin col n — - I bn = 2h\ — — n \

»=i \ 2/ V 2 /

H(e-iu>) = frequency response = (j)le~J<tt(N~ l>'2H0(e
J<a), where / = 0 for types 1 and 2 and / = 1 for

types 3 and 4.

TABLE IV(b)

Equivalent Expressions for Ha{eJ<a) for the Four Types

Equivalent expression Relation between
Type for H0(e

i<a) bn and bn

< W - l ) / 2 _
1 Y, bncos(nca) bn — bn

sin < a b n cos(««u)
«=o

sin — 5] &„ cos(no>)
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TABLE IV(c)

Flatter Properties of the Four Types of Linear-Phase FIR Filters

Type

I
2

3

4

Value of H0(e
jm)

at ta = 0

Unconstrained
Unconstrained

Zero

Zero

Value of H0(e
jl°)

at co = rc

Unconstrained
Zero

Zero

Unconstrained

Typical application

Bandpass filter design
Bandpass filter design

(except high pass)
Differentiators and

Hilbert transformers
Differentiator and

Hilbert transformers

Note: "Bandpass" in general stands for lowpass, highpass, bandpass, and
multiband designs, with a constant attenuation requirement in a given band.

be written in the form

H(ej(0) = (jfe^0*" ~~ l}/2H0(e
J<0) (2.23)

where j = v — 1, and HQ(eJ<a) is the zero-phase part (i.e., H0(e
J<0) is real valued for

all values of c*>). The exponent k in Eq. (2.23) is equal to 0 for types 1 and 2 and is
equal to 1 for types 3 and 4. Tables IV(a) and IV(b) show two equivalent ways of
writing H0(e

J ), where the meaning of bn is explained in Table IV(b). Table IV(c)
lists the behaviors of the four types at ft> = 0 and to = n; these constraints are
useful when making judgments as to which type should be used.

We identify four different types because each type has a different application.
For example, bandpass filters with constant attenuation in each band can be
designed with types 1 and 2. Types 3 and 4 must not be used for designs that
require a nonzero response at o> — 0. To design differentiators and Hilbert
transformers, we must use only type 3 or type 4 because the constant factor j is
required in these designs. It is also clear from Table IV that if a filter with nonzero
response at o> = n is required, then it cannot be designed with a type 2 or type 3
transfer function. Type 4 transfer functions are more general than type 3 in this
sense. Similarly, type 1 transfer functions are more general than type 2. However,
there are some applications in multirate signal processing (the "QMF filter
banks") where only type 2 filters can be used for signal splitting and recon-
struction [13] (unless special structures with additional forward delays are
incorporated). Further implications of the properties of the various types will be
clarified in later subsections.

Most of the results on equiripple FIR filters are based on the alternation
theorem, suitably adapted for FIR transfer functions [11]. In Fig. 2.3, which
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shows a typical lowpass specification, it is intuitively clear that if the approxi-
mation error is uniformly distributed throughout the band of interest, then the
resulting transfer function will be optimal in the sense that the filter order is
minimized. The alternation theorem makes this intuition more precise,

A result from the Alternation Theorem. Let J^ be any closed subset of the
closed interval 0 < co < n. Let P(ejto) be a linear combination of cosines:

M
p(O = I a(w)cos(wn) (2.24)

u = 0

Let D(ejto) be any (desired) continuous function on 3F. Define a weighted error
function E(eJ<0) by

E(eJ<0) = W(eito)[D(eJto) - P(ejia)~] (2.25)

Then P(ej<a) is said to be the best weighted Chebyshev approximation to D(ei<a)
[with weight W(ejia}~] if the quantity

max|E(O| (2.26)
roe .̂

is the smallest over all possible sets of a(n) in Eq. (2.24). The alternation theorem
says that P(ejto) is the unique best weighted Chebyshev approximation to D(eJ<0)
if and only if there exist at least M + 2 points o>,- in 2F such that a>i < co, <
• • • < ojM + 2 and such that

E(es<0i) = - E(ejiai''), i = \, 2,..., M + 1 (2.27)

and

\E(ejf0i)\ = max \E(eJ<0)\, i = 1, 2,. . . , M + 2 (2.28)
cue.?"

Most of the optimal design techniques are essentially iterative schemes for
satisfying the above alternation conditions on the weighted approximation
error E(ejto).

Hermann [14] showed in 1970 how a set of nonlinear constraints on the
function H0(e

il°) can lead to an equiripple solution. To explain the method, we
consider type 1 filters, where, as in Table IV,

M AT — 1
H0(e

j<a) = £ />ncos(«n), M = —— (2.29)
n = 0 £

The function H0(e
j(a) is required to be equiripple as shown in Figure 2.8, where ̂ ,

<32, and N (and hence M) are assumed to be given. The quantities bn are then
computed so as to make H0(e

i<0) an equiripple function with peak errors 6l and
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HQ(ej a ) )

1 2 3

Fig. 2.8. Equiripple constraints for Herrmann's method.

S2. There is no direct control over the bandedges wp and <wr, but an indirect
control can be exercised by constraining the number of extrema Np in the
passband and the number of extrema Nr in the stopband. [In this section, the
term "extrema" stands for the zeros of the derivative //o(ejw).]f For a filter of a
given order N — 1, we therefore have only a finite number of choices for the
bandedges of the equiripple filter.

Let us now look into the actual details of Herrmann's method. The function
H0(e

jto) can have at most M — 1 extrema in the open interval 0 < to < n.
Moreover, it always has one extremum at CD = 0 and one at co = n, regardless of
the unknown coefficients bn. Let Np and Nr represent the total number of extrema
in the ranges 0 < co < cop and wt < co < n, respectively. Clearly Np + Nr <
M + 1. Hermann showed how to obtain the coefficients such that there are pre-
cisely M 4- 1 extrema of H0(e

jco) in the region 0 < co < n. For this, the
following constraints are imposed:

= 0,

fc= 1,2, . . . ,

k= 1,2,. . . ,

fc= 1,2,. . . ,
(2.30)

1

Note that t%p = 0 and 0Nr = n and the derivatives are automatically zero at these
frequencies, and, moreover, M + 1 = Np + Nr. We solve the above set of 2M
equations to obtain the 2M unknowns (ft>1,o>2,. . . , toA r p- i), (6l,92t'.',0Nr-1),
and (b0, b t , . . . , bM). The filter coefficients h(n) can then be calculated from bn. The
bandedges cop and cor are those frequencies in the range a)v < co < 0,, where

+ Here the superscript prime denotes derivative with respect to at.
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H0(e
J<a) is equal to 1 — <5j and 32, respectively. These points are automatically

determined in the process.
As a comment on Herrmann's method, first note that there are precisely M + 1

extrema; hence, if we count the bandedges, there are M + 3 distinct frequencies
where the approximation error E(ej(a) attains its maximum value. Moreover, the
error clearly alternates between positive and negative extrema. Thus, all the
conditions of the alternation theorem are satisfied, and the resulting design is
therefore optimal in the Chebyshev sense. However, according to the alternation
theorem it is sufficient to have M + 2 frequencies where the error attains its peak
magnitude. We thus have one more ripple than the minimum number required to
satisfy the theorem. For this reason, Herrmann's solutions are called extraripple
solutions.

The above equations that must be solved to obtain the filter coefficients are
highly nonlinear in terms of the unknowns coft and 9k. The method is therefore
limited to the solution of low-order extraripple filters only. Moreover, the
modification of the method for designing other filter shapes is generally
complicated.

Using an elegant technique of Hofstetter et al [15]; we can overcome the
disadvantage of solving a set of highly nonlinear equations. Hofstetter's method
has exactly the same formulation as Herrmann's method, and most of the
preceding discussion is valid. However, the solution for the 2M unknowns is now
based on a multiple-exchange procedure. Since this procedure is also basic to the
widely used McClellan-Parks algorithm, we now describe the latter.

D The McClellan-Parks (MP) Algorithm

Let us again begin with a lowpass specification, as in Fig. 2.3. Recall that in the
algorithms of Herrmann and Hofstetter et al. N, <5l5 and 62 were specified and
cop and tor were automatically constrained by the resulting design. In the MP
algorithm, however, the quantities specified are N, ojp, cor, and the ratio of
passband to stopband error, K = ̂ i/^2 • The peak errors <5j and <52 are determined
by the resulting optimal solution. If these errors are not small enough, we can
increase N and redesign the transfer function. Given the more common
specifications <5l5 <52, cop, and cor, we can estimate the desired order and use this
estimate as the input to the MP algorithm. The resulting design is usually very
close to being satisfactory and can always be improved by slightly increasing the
order N — 1. Kaiser has reported a simple and useful estimate for N — I, based
on experience with window-based designs that N — 1 is inversely proportional to
A/ and proportional to the arithmetic mean of the errors log^,^ and Iog10^2.
Based on this intuition and the design data for equiripple filters due to Herrmann
[14], the following estimate has been reported [5]:

-20108,0^-13
N 14.6 A/ UJI)
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This estimate of filter order for optimal filters is reasonably close to the es-
timate in Eq. (2.19) for window-based designs for the special case 6l = d2. Table V
shows the computed order estimates based on Eq. (2.31) for various com-
binations of A/ and AT (where At = — 201og10V<51<52). Herrmann obtained a
somewhat more accurate formula by measuring an extensive set of optimal
linear-phase lowpass filters; the formula is given by [16]

N - 1 =

where

A/

a2log10<$i + a3]log10<52

+ as Iog10^i +a6]

i -logio&zl

and

Fft,$2) = &i

The constants ak and bt are given by

a, = 0.005309, a2 = 0.07114, a3 = -0.4761,

a4 = -0.00266, t

and

a4 = -0.00266, a5 = -0.5941, a6 = -0.4278

5,-11.01217, 62 = 0.51244

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

TABLE V

Estimated Equiripple Filter Order, Kaiser's Formula

A/

0.010
0.015
0.020
0.025
0,030
0,035
0.040
0.050
0.060
0.070
0.085
0.100
0.1 10
0.120

30,0

116
77
58
46
38
33
29
23
19
16
13
11
10
9

40.0

184
123
92
73
61
52
46
36
30
26
21
18
16
15

50.0

253
168
126
101
84
72
63
50
42
36
29
25
23
21

60.0

321
214
160
128
107
91
80
64
53
45
37
32
29
26

70.0

390
260
195
156
130
111
97
78
65
55
45
39
35
32

80.0

458
305
229
183
152
131
114
91
76
65
53
45
41
38

90.0

527
351
263
210
175
150
131
105
87
75
62
52
47
43

100.0

595
397
297
238
198
170
148
119
99
85
70
59
54
49
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Table VI shows the value of the estimate N — 1, computed from (2.32), for
various typical combinations of A/ and AT = — 201og10VA^a- Based on (2.32),
we can estimate the value of any of the five parameters <yp, o>r, ̂ , <52, and JV, given
the remaining four. Rabiner [17] has presented useful algorithms, based on
simple iterative schemes, for obtaining such accurate estimates.

Note: Extensive design experience has shown that the order N — 1 does not
necessarily increase as A/decreases! For example, Rabiner demonstrates in [16]
that, with 61 = S2 — 0.1, A/ is smaller for a filter with N — 1 = 8 than for a filter
with N — I = 9, for certain values of o>p. However, if we compare N — I within
the subclass of filters with even N — 1 (or odd N — 1), then it is found that N — 1
is monotone increasing with decreasing A/.

To explain the MP algorithm, let us get back to the lowpass specifications in
Fig. 2.3. For lowpass designs, only type 1 or type 2 transfer functions are relevant.
Assume, for simplicity, that a type 1 function is used so that the order N — 1
is even. Given N — 1, cop, a>t, and the ratio of passband to stopband errors
K — 6^62, we should minimize the weighted error function of Eq. (2.25),
where P(ei<0) is as in Eq. (2.24), and

*' _ < w < «p (2J?)

and

0 < co < cop ^

0, (Or < CO < 7T

TABLE VI

Estimated Equiripple Filter Order, Herrmann's Formula

AT

A/ 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.050
0.060
0.070
0.085
0.100
0.110
0.120

131
87
65
52
43
37
32
25
21
17
14
12
10
9

194
129
96
77
64
55
48
38
31
27
21
18
16
14

259
172
129
103
86
73
64
51
42
36
29
24
22
20

325
216
162
129
108
92
80
64
53
45
37
31
28
25

392
261
196
156
130
111
97
78
64
55
45
38
34
31

460
307
230
184
153
131
114
91
76
65
53
44
40
37

528
352
264
211
176
150
131
105
87
74
61
51
46
42

597
397
298
238
198
170
148
118
98
84
69
58
53
48
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To find />„ = «(«) in Eq. (2.24) such that the maximum error of Eq. (2.26) is
minimized, we suitably adapt the Remez exchange procedure [10, 11], which is
described next.

Assume that we are given a set S of M + 2 trial extremal frequencies

and that we want to force the weighted error function to satisfy the alternation
condition at these frequencies:

p = E(ej(0k) = - E(ej<ak + ' ), k = 1 , 2, . . . , M + 1 (2.40)

where p is yet unknown. We can always solve for the M + 2 unknowns

a(0),a(l),...,a(M),p (2.41)

in Eq. (2.24) from the M -f 2 equations

-(_ l)*p = W(eJl°)[D(eJ<0) ~ P(ej<0)~] (2.42)

where ca takes on the M + 2 values given in Eq. (2.39). After we obtain the a(z),
j = 0, 1,..., M, in this manner, we calculate the actual error function E(ej0)) at
any frequency by using Eq. (2.25), because the right side of Eq. (2.25) is now
known. However, the set of frequencies in Eq. (2.39) may not turn out to be
extremal (i.e., points with zero derivatives). Thus, the quantity in Eq. (2.26) may
not be equal to p in Eq. (2.40). However, since E(ej(a) is now completely known, we
can compute a new set of frequencies where E(ejo>) is actually extremal [but not
necessarily satisfying Eq. (2.40)], and then again solve for a new set of oc(i) and p
such that Eq. (2.40) is again satisfied at these new frequencies. We repeat this
process until it converges. At convergence, the frequencies in Eq. (2.39) at which
Eq. (2.40) holds are also extremal frequencies— that is, Eq. (2.28) is also satisfied.

Thus we repeat two steps in the exchange procedure, until convergence occurs:

1. Given a set S of extremal frequencies as in Eq. (2.39), compute p and P(ejta)
from Eq. (2.42).

2. From this P(eia)), compute a new set S of extremal frequencies, where the
error E(ej<a) actually has maximum magnitude. If S and S are the same within a
certain tolerance, stop the iteration. Otherwise set S = S and go to step 1 .

In practice, we need not explicitly solve the M + 2 simultaneous equations
Eq. (2.42). We can compute p by using a closed-form expression [10,11] and
then obtain the values of P(ejea) at frequencies cak from Eq. (2.42); we then obtain
the entire function P(ej<0) by interpolation. We use this interpolation to evaluate
P(eito) at a dense set of frequencies, and we thereby obtain a new set § of trial
extremal frequencies cofc. Details of computations involved can be found in [10].

In step 2, the computation of the new set of extremal frequencies that maximize
E(ej{0) is generally time consuming. The usual procedure here is to compute
E(eJ(a) at a dense grid of equispaced frequencies in the range 0 < « < n such that
about 10M to 20M values are computed during each iteration. After computing
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these values, we find the set of extremal frequencies merely by locating M + 2
maxima among the computed values. Clearly M is large for large filter orders;
hence the number of evaluations is large, and the time required for each
evaluation goes up as M increases. Antoniou [18] has developed a procedure for
significantly reducing this computational overload; the procedure is based on the
fact that, as the iteration proceeds, the extremal frequencies take favored
locations closer and closer to the optimal locations, and hence an equispaced
search for extremal frequencies is not necessary. Antoniou shows how, based on
derivative information, the search can be dramatically speeded up (more than
80% saving in computational load has been reported in [18]!). The details of this
improved technique are, however, beyond the scope of this chapter.

If we want the filter order N - 1 to be odd, then H0(e
jl°) is no longer a sum of

cosines as required by the alternation theorem (see Table IV); instead, we can
modify the above formulation simply by suitably redefining W(ejfa) and D(eju>)
so that P(ejm) in Eq. (2.25) is still a sum of cosines. A wide range of filter
requirements can be met by a simple redefinition of the quantities on the right
side of Eq. (2.25) to suit the problem at hand. The next few subsections
demonstrate this flexibility. The software due to McClellan et al. (available in
[19] incorporates this flexibility and has many applications. We conclude this
subsection with a few design examples.

Design Example 2. Consider again the lowpass specifications of Design
Example 1 [Eqs. (2.20) and (2.21)]. We estimate the required filter order from

-14.000

-28.

-56.

-70.000

N O R H f l L I Z E D F R E Q U E N C Y
Fig. 2.9. Example 2: Lowpass filter, equiripple design.
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Eq. (2,32) to be 48. Then we complete the design, based on the program in [19],
and find that the resulting stopband attenuation At is about 38.7 dB. By
increasing the order to 50, we achieve an attenuation of 39.4 dB, which is just
about sufficient. It is, however, safest to slightly increase the order because the
inevitable coefficient quantization in an actual implementation usually leads to a
loss of stopband attenuation. An order of 52 offers an attenuation of 40.7 dB,
which is quite satisfactory. Figure 2.9 shows the frequency response plots, which
should be compared with the plots of Fig. 2.7.

As a comparison with the optimal IIR designs discussed in Chapter 4, the
above specifications can also be met with an IIR elliptic filter of order as low as 5.
The relevant frequency response plots in Fig. 2.10(a) show that (approximately)
the same specifications are met. The transfer function is

H5(z) = k I - 1.55442-' +0.6969
1 - 1.4304Z

1 - 1.65222"' +0.9053z 2

1 - 0.7541 z"1 (2.43)

where k = 0.0071171, so \H5(e
jto}\ has a maximum value of unity in the passband.

This IIR transfer function can be implemented with only seven multiplications
and a scaling multiplier k. In contrast, the optimal (minimum-order) FIR design
requires 27 multipliers! The price paid for the high efficiency of the IIR
implementation is that the group delay is not constant but has a large peak near
the bandedge. This is demonstrated in Fig. 2.10(b).

-28.

-42.

-56.

PASSBAND DETAILS

0.100 0.200
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Fig. 2.10(a). Example 2: Lowpass filter, elliptic IIR design.
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10. i
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Fig. 2.10(b). Example 2: Lowpass filter, elliptic IIR design, group-delay response.

Design Example 3. Assume that we want to design a filter that is essentially
lowpass, except that zero frequency should be suppressed. Let the bandedges be
wp — 0.647T, a>r = 0.771, and suppose we want a stopband attenuation exceeding
39 dB. Also assume that the stopband error should be twice as small as the
passband error. Let the required attenuation at zero frequency be greater than
20 dB. These requirements can be met by designing a bandpass filter with
specifications as indicated in Fig. 2.11, where

Sl = 0.112, <52 = 0.0224, <53 = 0.0112 (2.44)

Tolerance

Tolerance

Tolerance

0/271

0.004 0,02 0.32 0.35
Fig. 2.11. The bandpass specifications.

0.5
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Fig. 2.12. Example 3: Bandpass filter, equiripple design.

In other words, the weighting function W(ej(a) should be chosen as

f l , 0< ca < 0.00871
W(ej(a) = J <V(52 = 5, 0.047T < co < Q.64n

(<y(53 = 10, 0.771 < co < n
(2.45)

A filter of order N — 1 = 66 is found to meet the desired specifications
satisfactorily. Figure 2.12 shows the frequency response of such a filter designed
with the program in [19].

Design of Digital Differentiators E

Digital differentiators are characterized by a frequency response of the form

.e- jw(JV-l) /2^ 0 < W < W n

. ^ xr . ~* * * {*J • . / »r i » ii -»

H(ejm) = (2.46)

2n — co

Notice that the phase response is still linear in co, except for the additional
constant phase shift of 7r/2 rad at all frequencies due to the j factor. We can obtain
this j factor simply by using type 3 or type 4 linear-phase FIR filters. Thus, we
should always use an antisymmetric impulse response for designing differentiators.
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The fact that types 3 and 4 have H(ej°) — 0 is not a limitation, because this is
precisely what Eq. (2.46) requires. Note that the approximation is required only
in the range 0 < co < n. The symmetry properties of H(ej(i>) automatically insure
the rest.

To be specific, let us assume that type 3 filters are used. Then, referring to
Table IV, we can define a weighted error functionf

E(e
jm) = W(ej<a) sin co ]T ^cos(nco) (2,47)

Tt n = Q J

Now, in the region near co = 0, the magnitude response is very small, whereas it is
largest near co — n. Thus, we wish to have a smaller approximation error near
zero frequency. We can obtain that by defining the weight function W(e}(1>) as

W(ejm) = -, 0 < co < cov (2.48)
CO

This enables us to rewrite Eq. (2.47) as

£(«") = —
CO

CO (N-1)12-1

n sin co

l)/2 - t _ 1

£ 6ncos(nco) \. (2.49)
, = o J

This error function is of the form in Eq. (2.25) with D(ej(a), W(eJ<0), and P(ejto)
identified as

co sin co ^ ~ ^ ^'^ ~~ ^ ~
D(ej") = — — , W(ei<a}^ -- -, P(ejlo)= V

O) n = o

Simply by defining the function P(ejm) as the sum of cosines appearing in
Eq. (2.49), we can use the iteration described earlier to solve this approximation
problem. The result of approximation produces an equiripple behavior of the
weighted error E(eja>), and the actual error therefore grows as co increases.

Remarks on the Choice of N and cop for Differentiators

Table IV shows that filters with an antisymmetric impulse response have
zero response at co = n if the order N — 1 is even. Thus, odd orders (type 4)
should be used for differentiators with cop = n. Even if cop is less than TC, but very
close to 7t, it is preferable to use odd orders so that the approximation error near
the bandedge cop is not too large. The design charts included in [2] indeed show
that, for a given permissible peak relative error <5 and a given value of cop, the filter
length is much smaller for odd N — 1, compared to even N — 1. (Figure 2.A.I
includes "design charts" that aid in the choice of filter order N — 1 for
differentiators.)

1 This is also termed as the relative error.
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Next, for a given N, the designer, if he or she has aome flexibility about the
choice of <op, should make cop as small as possible to minimize the approximation
error.

Further Remarks on the Choice of <op

Let x(t) be a continuous-time waveform, bandlimited to the range (0, Qmax). Let
us assume that we wish to pass this signal through a differentiator Ha(s). Clearly
we require an approximation to the response

n' ° - n - n""" n(Z

To perform this filtering digitally, we would sample the waveform x(t) at a
frequency Or > 2Omax and then design a digital differentiator with

o
(2.51)V^-P **,*

12r

Thus, it is a simple matter to choose Qr to be large enough so that cop is sufficiently
smaller than n. This enables us to design very accurate linear-phase FIR
differentiators with reasonably low orders.

Design Example 4. Consider a differentiator whose cutoff frequency is re-
quired to be cop = n. Assume that the relative error of Eq. (2.47), which is
equiripple, is required to have a peak value 6 not exceeding 0.0065. Since cop is
equal to n, a type 4 filter should be used. From the design charts in Fig. 2.A. 1 we
can estimate the required order to be about 35. An order N — 1 = 31 is actually
found to be sufficient, and the relevant responses are plotted in Fig. 2.13.

Design of Digital Hilbert Transformers F

In the continuous-time domain an ideal Hilbert transformer is characterized
by a frequency response of the form

; for Q > 0
for Q < 0

Accordingly, we would expect a digital Hilbert transformer to have the response

0 ~:w ~: o (2-52)
Tt < CO < LTl

Clearly, there is an inconsistency (or discontinuity) at co = n and moreover, as
H(ej°) = H(e'2n), there is an inconsistency at co = 0. Moreover, from Table IV(a),
it is clear that an antisymmetric impulse response is required. For such an
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N-l = 31 , 0) = TT

0.0062

(0

Q5

-0.0062

0.0062

Ijj Ui
ft:

-0.0062
0 0.5

NORMALIZED FREQUENCY

Fig. 2.13. Example 4: Optimal differentiator with equiripple (relative) error
[58] (© 1973 IEEE).

impulse response the frequency response at to = 0 is always zero, as we see from
Table IV(c). Theoretically therefore, there does not exist a linear-phase FIR
Hilbert transformer. In practice, therefore, a FIR digital Hilbert transformer is
specified to have a response

H(en = if "T _7^w. IV2 ^ ~ C° ~™H (2.53)
(.("" 1) 7e » 271 — COH < co < 2;r — COL

where toL > 0 and COH < n. For antisymmetric impulse responses of even
order N — 1, COH is restricted to be strictly less than n, because of the constraint
H(eJ*) = 0.

We can now formulate the approximation problem by simply defining the
weighted error function

E(eja>) = W(ej(a)[\ - H0(e
Jf°J] (2.54)

where H0(e
j(0) is as in Table IV (type 3 or type 4). Equation (2.54) can be rewritten
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in the form of Eq. (2.25) by suitably defining W(ej<0) and D(eJ<0) so that P(ej<a) is a
sum of cosines.

Commenting on the choice of the order N — 1, once again, if we are interested
in COH = TC, only type 4 filters (odd order) should be employed. If, however, COH < rc,
then either a type 3 or a type 4 filter can be used. Detailed guidelines pertaining to
the choice of o>L, o>H, and N — I are in [2].

If the Hilbert transformer specifications are symmetric with respect to n/2 (i.e.,
if OJL + o»H = n) and if the order N — 1 is even (type 3), then it can be shown that
the resulting FIR filter has bn = 0 for even values of n. Only about half of the
impulse response coefficients are therefore nonzero. We thus require only about
(N — l)/4 4- 1 multiplications in the implementation of the filter. If the designer
has the freedom to choose symmetric specifications, it can be exploited in this
manner. Figure 2.A.2 aids in the choice of N — 1 for Hilbert transformers with
COL + O)H = n. (In the figure A/ = o)L/2n.) The quantity <5 represents the peak
value of the weighted equiripple error.

Design Example 5. We wish to design a Hilbert transformer with COL = 0.1 rc
and a)H ~ 0.97T. Let the peak equiripple error be required to be less than 0.006.
From the design charts in Fig. 2.A.2, we estimate that an order of about 30 is
sufficient. An order JV — 1 = 28 is actually found to be sufficient, and the relevant
responses are shown in Fig. 2.14. Only 14 of the 29 coefficients h(n) are nonzero,
so only seven multipliers are required.

0.200

N O R H R L I Z E D F R E Q U E N C Y

Fig. 2.14. Example 5: Hilbert transformer design.
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G Flexibility of the McClellan-Parks Algorithm

The most remarkable feature of the MP algorithm is the flexibility it offers for
the design of a wide range of filter responses, as seen from the examples earlier in
this section. This flexibility results from a suitable definition of the functions
D(ej(a) and W(ej'°) in Eq. (2.25) so that the weighted error function E(ej(a) of the
resulting design has the equiripple property. In the design program (Pro-
gram 5.1), which is available in the IEEE software package [19]-, two user-
definable functions (EFF and WATE) are included, which enable the designer to
choose D(ej<0) and W(ej<a) according to specific requirements. The design of
bandpass filters (i.e., filters with a piecewise constant attenuation requirement),
differentiators, and Hilbert transformers can be done without modifying the
functions EFF and WATE. However, if the designer has other unconventional
specifications, these functions should be appropriately redefined.

Design Example 6. As an example of the usefulness of these functions,
consider a lowpass design specification with

ojp = 0.287T, (Dr = 0.367E, Sl = 52 (2.55)

and

Af = -201og10<$2 > 35 dB (2.56)

The estimated filter order from Eq. (2.31) is equal to 38. Let us now assume that, in
addition to the above requirements, a transmission zero is required at o>0 =
0.7871. (This is a typical requirement when there are unwanted sinusoids of
known frequency in the input signal.) However, since we do not have direct
control over the location of transmission zeros, one possible way to deal with this
problem is to uniformly increase the stopband attenuation everywhere to a very
large value, say 60 dB. A conventional FIR filter with the same specifications as in
Eqs. (2.55) and (2.56) can now be designed, except that <52 is now much smaller
than <5j. Specifically, <52 is taken to be such that AT in Eq. (2.56) is about 60 dB. The
resulting filter order, as estimated from Eq. (2.31) is 59. The order N — I = 60 is
actually found to be sufficient, and Fig. 2.15 shows the response.

The preceding solution is highly inefficient because we require only about
35 dB in most of the stopband (which can be achieved with a filter of order 38),
and a filter with order 60 is therefore injudicious. One possible way to obtain
a more efficient solution is to design a multiband filter with one passband
and three stopbands, where the first and third stopbands provide an attenua-
tion exceeding 35 dB, whereas the second stopband has an attenuation exceeding
60 dB. An even more elegant solution is as outlined next. Let us first define a
transfer function

H2(z) = (1 - 2z~J cosco0 + z~~ 2 ) (2.57)
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-20,000
N-l = 60

0.
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Fig. 2.15. Example 6: Conventional method for increased attenuation around o»0 = 0.787T.

that has a transmission zero at co0 = 0.78?r. The overall transfer function H(z) is
obtained in the form of a cascade

H(z) = H,(z}H2(z] (2.58)

where H^z) is designed so that H(z) satisfies the tolerance requirements <5t and <52

and has equiripple passband behavior. This is accomplished by defining D(eito)
and W(ejm) in Eq. (2.25) as

0 < CD < (J)rF

cor < 0) < n

0 < 0} < Q>r

C0r < CO < 71

(2.59)

(2.60)

We get an approximate estimate of the order N^ — 1 of H^z) by using Eq. (2.31),
which gives Nl — 1 = 38, as mentioned earlier. The value A^ — 1. = 40 is actually
found to be sufficient. Figure 2.16 shows the relevant frequency responses. Notice
the effect of the transmission zero at co = 0.78n = 0.39(2?t). The total number of
multipliers in the final implementation is 22. This number is about the same as
that required for the conventional transfer function that meets the specifications
of Eqs. (2.55) and (2.56) without the additional transmission zero requirement!
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Fig. 2.16. Example 6: Efficient way to obtain transmission zero at a) = 0.78-r.

Section IX discusses research contributions that make further use of the
flexibility offered by the generalized error function of Eq. (2.25) in order to ob-
tain new efficient filter designs for conventional and unconventional design
requirements.

In Section III we described design techniques for FIR filters based on
windowing. The design procedures in that section do not involve computer-aided
optimizations but are based on closed-form expressions for the window
coefficients. The advantages of this simplicity were also discussed in Section III.
In this section we introduce another class of linear-phase FIR filters with closed-
form expressions for the transfer function. This class of filters has a maximally fiat
frequency response around co = 0 and co ~ n and was introduced by Herrmann
[20] in 1971.

These filters are useful in applications where a signal should be filtered with
considerable accuracy near zero frequency. Because the transfer function of this
class of filters has a closed-form expression, the design is extremely simple. The
frequency response of these filters is monotone in each frequency band, which is
required in certain applications. However, for a given set of tolerances, such as <5,
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Fig. 2.17. Specifications for a maximally flat lowpass response.

and 62, these filters do not have the smallest order, unlike the equiripple designs
of Section IV.

The frequency response of a maximally flat, linear-phase FIR filter H(z) is
H(ej(a) = e~Ja{rl-^2H0(e

Jto), where H0(e
jto) is given by [21]

H0(e
j<0) = cos 2K

d(n) =
(K - 1 + n)!

(K - l)!n!

The filter order is

1 = 2(K + L - 1)

(2.61)

(2.62)

(2.63)

Note that d(n) are positive integers. The integers K and L, which completely
characterize the transfer function, are determined from the specifications ft and d
indicated in Fig. 2.17. The significances of K and L are clear from Eq. (2.61). Thus,
the first 2K — 1 derivatives of the magnitude response are equal to zero at w = n,
and the first 2L — 1 derivatives are zero at CD = 0. For the rest of this chapter the
abbreviation IK,L(z) is used to denote a transfer function H(z) of the above form.

Design Procedure A

Given the specifications ft and d, the design procedure is simply to compute K
and L such that these specifications are satisfied. Kaiser has developed a method
for this computation. Once K and L are computed, the response of Eq. (2.61) is
then known, and an N-point IDFT is performed to obtain the filter coefficients. A
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FORTRAN code for the design of these filters, due to Kaiser, is included in the
IEEE software package [19, Program 5.3].

For given /? and d, the algorithm for finding K and L is as follows [21]: first
obtain an estimate of the filter order as

N -1=2

Note that the estimated order grows as l/<>2. Next, define

(2.64)

(2.65)

(2.66)

(2.67)

After determining the above rational approximation, we identify its numerator
with the quantity K. With K thus determined, we next find that L — Np~ K. We
then get the impulse response h(n) from Eq. (2.61) by performing an N-point
IDFT. That h(n) is real and symmetric considerably simplifies the IDFT com-

a = cos I —

and obtain the best rational approximation to a to be

^K_

Np

^-^ <Nn<N -I

-20,000
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Fig. 2.18. Example 7: Maximally flat lowpass filter.
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putation. After h(ri) is computed, we can obtain a direct-form implementation
with K + L multipliers.

Design Example 7. Let /? = 0.47T and 6 = 0.2n be the required specifications.
The values of K and L computed as described above are K = 17 and L = 9. This
corresponds to FIR filter of order N — 1 = 50. The computed impulse response
coefficients are as shown in Table VII, whereas the frequency response is shown in
Fig. 2.18. Note that the frequency response is monotone, and the stopband
attenuation is large (exceeding 100 dB) almost everywhere.

We see from Table VII that many of the filter coefficients are very small.
Depending upon the required stopband accuracy around co = n, some of these
coefficients can be set to zero, leading to more efficient implementations.

TABLE VII

Example 7: Impulse Response
Coefficients for Maximally Flat
FIR Filter with If = 17, L = 9

(order = 50) [21]

B(l)= .39847448
B(2)= .29650429
B(3) = .08785310
J3(4)= -.05124769
B(5)= -.05604429
B(6) = -.00136329
5(7) = .02472394
B(8) = .01120456
B(9) = -.00592278
B(10) = -.00709112
B(ll) = -.00061605
B(12) = .00232969
B(13) = .00113164
6(14) = -.00028640
B(15) = -.00043241
B(16)= -.00008700
B(17)= .00006961
B(18)= .00004320
B(19)= .00000222
B(20) = -.00000624
B(21)= -.00000241
B(22)= -.00000007
B(23) = .00000016
B(24)= .00000002
6(25) = -.00000002
B(26)= -.00000001

Note: B(26) stands for Ji(0) = /i(50).
In general, B(n + 1) stands for
/i(25 - 11) =/i(25 + «).
1979 IEEE).
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B Minimum-Multiplier Implementations

Sometimes we can obtain an implementation that is more convenient than the
direct form by noting that the actual causal transfer function corresponding to
Eq, (2.61) can be written as

- l \ 2 K l . - i - l \ 2 »

2
{168)

which can be implemented as shown in Fig. 2.19(a). The advantages of this
implementation are that it requires only L — 1 multipliers and, during the design
phase, there is no need to compute the actual impulse response coefficients. An
equivalent implementation can be obtained with only K — 1 multipliers. This is
useful when K is smaller than L. At the end of Section VII.C we shall explain how
this can be accomplished.

For large values of K and L the structure of Fig. 2.19(a) is inconvenient
because the coefficients d(n) grow very fast. Thus, with K = 1 7, the coefficients
derived from Eq. (2.62) are given by

d(0)= l , d ( l ) = 17,d(2) = 153,<*(3) = 969,d(4) = 4845,...,<f(7) = 24,5157,...
(2.69)

As a result, either a direct-form implementation or the modified implementation
of Fig. 2.19(b) as outlined in [22] is preferable. However, for small values of K

Fig. 2.19(a). (L — l)-Multiplier implementation of the maximally flat filter.

IN •*••-»

<+D/2

H>r>"-^

Fig. 2.19(b). Improved (L- 1) multiplier implementation.
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TABLE VIII

The (K, L) Pair for Maximally Flat FIR Filters (beta and delta are in multiples
of it)

0.1 0.2 0.3 0.4 0.5 0.6

0.1
0.2
0.3
0.4
0.5
0.6

159, 4
161, 17
104, 27
72,38
50,50
38,72

40, 1
38, 4
27, 7
17, 9
12, 12
9, 17

19, 2
15, 4
13, 7
6, 6
7, 13

9, 1
8,2
4,2
3,3
2,4

4, 1
4,2
2,2
2,4

3, 1
2, 1
1, 1
1,2

and L, the structures of Fig. 2.19(a) are very efficient and are essentially
multiplierless because the d(n) are very simple combinations of powers of 2. In
view of this we find it convenient to tabulate (Table VIII), for quick design
purposes, the values of K and L for various combinations of /? and <5. Note that if
6/2 exceeds f$ or n — /?, then the response of Fig. 2.17 is not meaningful. The
feasibility of the structures of Fig. 2.19 also depends the roundoff noise level (see
Chapter 5).

Further discussions concerning the usefulness of this class of filters are
included in Section IX, where several unconventional design methods and
implementation strategies are presented. Also, a new class of multiplierless digital
FIR filters with very sharp cutoff, based on maximally flat building blocks, is
reported in [23].

In several situations a linear-phase FIR filter is required to be optimal, subject
to certain other constraints. For example, in certain applications the transient
part of the step response is required to have as small a ripple size <53 as possible.
Thus, one has to optimize the frequency response under the constraint that this
transient be bounded in magnitude by a desired amount. Another application is
in the design of a frequency response with a given fixed passband error d±; the
filter coefficients are to be chosen so that the stopband error is as small as
possible, for fixed filter order N — 1, and fixed cop and COT. Furthermore, some
applications require a flatness constraint in the passband of the response. Linear
programming offers a considerable amount of flexibility for handling these
situations and always converges to a solution. In addition, many of the optimal
(equiripple) designs described in Section IV can also be handled by linear
programming. However, the design time in linear programming is rather large,
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compared to the techniques of Section IV. It is therefore preferred only in
situations that cannot be handled by conventional, faster techniques.

Rabiner [24] has studied the use of linear programming techniques for FIR
filter design. Steiglitz and Kaiser [25, 26] have also considered the application of
linear programming techiques for designing FIR filters with constraints on the
derivatives at certain frequencies. Rabiner, Graham, and Helms have also
shown how IIR filters with arbitrary magnitude response specifications can be
designed with linear programming techniques [27].

A The Basic Idea

Let us reconsider the lowpass specification as depicted in Fig. 2.3. Assume for
simplicity that the FIR filter order N — 1 is even. The response is then given by
Eq. (2.2), where

M N — I
Ho(ejo>) = X bncos((on), M = ̂ -— (2.70)

n = 0 2-

from Eq. (2.3). The frequency response requirement can be written in the form of a
set of inequalities:

H0(e
j(a) < I + 8i, Q<OJ<O)P (2.71)

H0(e
jco)> 1 -<5i, 0 < t o < c o p (2.72)

H0(e
J<0)<d2, coT<w<n (2.73)

H0(e
j<0) > -<52, cot < (-0 < n (2.74)

where cop, cor, and N — 1 are assumed to be given. The above constraints are
written at a dense grid of frequencies,

ft)1? o>2, . . . , corM (2.75)

where rM is a properly chosen integral multiple of M. Since H0(e
jco) is in the form

of Eq. (2.70), Eqs. (2.71)-(2.74) represent a set of linear inequalities. The objective
function <I> to be minimized is typically a linear combination of 6l and 62, but
there are other possible choices. For example, ̂  can be fixed at a predetermined
value, and <X> = 62 then minimized. In any case, since the inequalities and <D are
linear in the unknown variables bn we can minimize <1> by linear programming.

B Examples of Constraints

Let us consider the case where ̂  is fixed and <1> = 62 should be minimized.
There are a total of M + 2 variables, bQ,b^,...,bM, and t>2, in the problem. If a
linear programming problem of the above form has ATj, variables and N2
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inequalities, where N2 > Nl5 then the optimal solution is such that at least Nl of
the N2 inequalities are satisfied with equality [24]. Thus, in the above design
problem there are at least M + 2 frequencies in the region of interest where the
approximation error attains the peak value. In other words, the conditions of the
alternation theorem of Section IV are satisfied by the solution, which is therefore
optimal.

Constraints on the step response can be imposed simply by incorporating
additional inequalities of the form

- < 5 3 < 0 ( n ) < < 5 3 , ( ) < « < « ! (2.76)

where g(n) is the step response given by

g(n) = f h(m) (2.77)
m = 0

In Eq. (2.76), n± is the sample number up to which the step response is expected to
oscillate around zero. Note that the constraints are still linear in terms of the
coefficients h(n), which are linearly related to bn, as shown in Table IV. The
objective function now can be a linear combination of ̂ , 62, and <53. Or one could
fix <>3 to be a desired value and then optimize a linear combination of <5t and <52.
Clearly there are now several possible choices of the objective function.

Similarly, if one is interested in constraining the flatness of the response at a
given frequency, say at cofe, then the following constraints can be added:

dmH0(e
j(a

dcom

dmH0(e
j(a)

<0, m = 1 ,2 , . . . , AT, (2.78)

f, (2.79)
dcom

This is to insure that the first A^ derivatives of the response are zero at cok. The
constraints of Eqs. (2.78) and (2.79) are still linear in the coefficients hn. We can
design FIR filters with monotone passbands and equiripple stopbands by
incorporating flatness as described above; Steiglitz [25] has presented a
FORTRAN source code for this purpose. In applications where passband ripples
are objectionable [6], these monotone filters serve as the next best alternative.
For example, in a communication link with several repeater stations, the filters
in the stations form a long cascade, and, as a result, the passband error dl

accumulates. If, however, each of these filters has an extremely flat passband, then
the overall passband error of the entire link is within acceptable bounds.

The linear programming approach can be used for designing arbitrary shapes
of the frequency response., including multiband filters with arbitrary specifica-
tions and differentiators. In general, if D(eJ(a) is the response to be approximated
by the quantity H0(e

j(0), then the set of linear inequalities

)d < \H0(e
J(") - D(ejm)\ < W(ejto)6 (2.80)

is used at a dense grid of frequencies. Here W(eim) is the weighting function, which
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serves a purpose analogous to the weighting function in Eq. (2.25). In particular,
if W(ej<a) is chosen to be equal to l/D(ejal) (assuming that D(ejo)) is nonzero) then
the relative error of approximation has equiripple behavior.

A number of FIR filter design examples based on linear programming can be
found in [24]-[26]. We conclude this section with an example from [24],

Design Example 8. Consider an optimal FIR design with a constraint on the
step response as in Eq. (2.76). Assume that <53 is required to be 0.03, and that the
filter order is N — 1 = 24. Assume further that the constraint dt = 25$2 '

s

H(eju)|

in dB
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-100
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0
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, ! , , , , 1

9 12 15
SAMPLE NUMBER

18 2t 24

: 0.00582

0 1 0.2 0 3 0 4 0 5

Normalized Frequency -*
Fig. 2.20. Example 8: Lowpass FIR design based on linear programming (after Rabiner [24])
(© 1972 IEEE).
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included along with Eqs. (2.71)-(2.74). Then the solution to the linear program-
ming formulation yields the values dl =0.145 and <52 =0.00582 for the passband
and stopband errors. The resulting filter is not equiripple any more, as seen from
the frequency response plot of Fig. 2.20.

In the above example, if <53 is left unconstrained and the optimization
performed with linear programming, the result is an equiripple design, with the
response as shown in Fig, 2.21. The resulting values of the errors are dl = 0.06,
S2 = 0.00237, £3 = 0.12. Figures 2.20 and 2.21 also show the step responses.

STEP RESPONSE

0.8

0.4

A A

8 3 =0 .12

-

'

9 12 15
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18 21 24

H(eja))]

in dB
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-60

-80

-too

N - 2 5
S, = 0.06
S2 = 0.00237

0.2 0.3 04 05

Normalized Frequency -»•
Fig. 2.21. Repetition of Example 8 with the step-response ripple <53 unconstrained
[24] (© 1972 IEEE).
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VII FREQUENCY TRANSFORMATIONS IN FIR FILTERS

Let us assume that a digital filter, say lowpass, has been designed and im-
plemented as an interconnection of multipliers, delays, and adders. There are
applications in which it is desirable to change the cutoff frequency cop by
changing the multiplier values in the implementation, typically in real time. An
obvious way to change the cutoff frequency is to redesign the entire filter, but this
may be impractical for several reasons. With optimal FIR filters of a given length,
for example, redesigning involves rerunning the entire Remez exchange al-
gorithm. This may not be feasible within the time frame available for readjusting
the cutoff frequency. It is therefore of interest to design the filter circuit such that
the change of one or a few parameters results in the desired tuning over the
desired frequency range. In this section we discuss methods for achieving this.

A All-Pass-Based Transformations

Consider a linear-phase lowpass FIR filter with bandedges Qp and Or. Assume
that we wish to have a single parameter that controls the exact value of Op. This
can be accomplished by first designing a prototype filter with passband edge cop

(where cop is the nominal value of Op) and then replacing each delay unit z"l with
a stable all-pass function. For example,

z-i=^±^_L (2.81)

Letting Z = ejn and z = e}U\ the prototype frequency co is related to the actual
frequency Q by

I /v cin /-*"* 1

(2.82)
1 — acoscoj

For each real-valued Q there exists a unique real-valued ca, and the converse is
also true. The above is therefore a valid frequency transformation (or spectral
transformation). The tuning parameter a controls the actual passband edge.
Further details can be found in [28]. Since the substitution of Eq. (2.81) can
actually be incorporated into the structure, we therefore have a means of
adjusting the cutoff frequency by varying the physical multiplier-parameter a.

The obvious disadvantage of this all-pass-based spectral transformation is
that the resulting filter is not FIR and therefore does not have linear-phase
characteristics, even though the prototype filter may have linear phase. For FIR
filters, therefore, a different frequency transformation is required.
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Transformations Based on Trigonometric Building Blocks B

An elegant approach to this problem was outlined by Oppenheim et al in 1976
for type 1 FIR filters [29]. This method, however, is not based on replacement of
delay units but on replacement of another type of building block, to be described
shortly. The direct-form structure of Fig. 2.1, which has delays as the building
blocks, is not suitable for application of the proposed transformation technique;
we should first derive a new filter structure that contains the building blocks on
which the transformation operates. We now proceed to do this.

Recall that for type 1 filter the zero-phase part can be written as a sum of
cosines, as shown in Table IV. From this we get

1 (N-D/2

H0(z) = - X b.(z" + z~n] + b0 (2.83)
£ n= l

Now z" + z~" represents 2 cos nco on the unit circle. But cos nco can be written as

cosnco = ^[cosco] (2.84)

where $~n(X) represents the nth-order Chebyshev polynomial in the variable X.
Thus we can write H0(z) as

(JV-D/2 /7 i
" ' ~ / z + - ' * (2.85)

2

This can be rearranged as a polynomial in (z + z" *)/2:

H0(z)= I ** - - (2-86)

The frequency response corresponding to Eq. (2.86) is

(/v-D/2
H0(e

J<0)= £ akcoskco (2.87)
t = o

Thus, the response can be written entirely in terms of the variable cos co. Let us
now assume that a circuit with building blocks of the form (z + z~1)/2 has been
built in order to realize Eq. (2.86), as shown in Fig. 2.22(a). (We show later how to
overcome the noncausality of the building blocks, caused by the positive powers
of z.) If we now replace (z + z~l)/2 with functions F(Z), real valued on the unit
circle and satisfying

- 1 < F(ejfl) < 1 (2.88)

then for each frequency fi we can find a unique prototype frequency co from the
relation

co = cos~i(F(eja)) (2.89)
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Prototype
Response

Fig. 2.22(a). Implementation of H0(z).

COSO)

(Prototype)

Transformed
response, fi > w

Transformed
response, 0. < u

cosH

cos fi ->-
(Transformed)

Fig. 2.22(b). Graphical explanation of frequency transformation.

Thus we have a valid frequency transformation. For example, we can obtain
the transformation

cos<w = AcoskQ

F(Z) = 2^ /4fe

(2.90)

(2.91)
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•-> '•' -r '-•
Elaboration of

P(z)

Fig. 2.22(c). Implementation of transformed filter.

where Ak are such that Eq. (2.88) is satisfied. Note that, even though Eq. (2.88)
holds by construction of the right side of Eq. (2.90), cos Q in Eq. (2.90) may not
turn out to be of magnitude less than unity for an arbitrary prototype frequency
co. In other words, there may exist certain portions of the prototype frequency
response that do not map onto the unit circle of the transformed plane. This is not
generally harmful for frequency responses that are piecewise constant.

As a specific special case consider the transformation

cos co — A0 + (2.92)

In terms of the z variables,

z + z Z + Z

Essentially, given a prototype filter with attenuation ap at some frequency cop, the
transformed filter has the same attenuation at frequency £lp, where cop and Qp are
related by Eq. (2.92).

Figure 2.22(b) graphically explains how the transformation works. A major
requirement on a legal transformation is that, for every actual frequency O in the
range 0 < O < 2n, there should exist a unique frequency co in the range
0 <, co < 2n satisfying Eq. (2.92). In other words, a straight line representing
Eq. (2.92) in Fig. 2.22(b) should satisfy

>4tcosQ < (2.93)
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Let us assume that we wish to convert a lowpass prototype filter with cutoff
frequency cop into a lowpass filter with cutoff frequency Qp. Figure 2.22(b) shows
the cases Qp < cop and Qp > cop. In either case, once the passband edge has been
mapped as desired, we wish the stopband edge cor to map into a frequency Or such
that Or is as close to the mapped Qp as possible. This is desirable because the
transformed filter then has the narrowest possible transition bandwidth (for a
given order and for a given set of tolerances <5t and &2)- From Fig. 2.22(b) it is clear
how this can be accomplished: the straight line representing the mapping of
Eq, (2.92), which passes through the point (cosQp,cosa>p), must have the largest
possible slope, subject to the constraint of Eq. (2.93). Thus, when we want
Qp > ojp (i.e., when we want to expand the passband width), the point o> = 0
must map onto O = 0. Similarly, if we wish to shrink the passband width,
the best possible transformation is the one that maps o> = n to O = n.

When we attempt to expand the bandwidth (fip > cop), the requirement that
o> = 0 maps onto to fl = 0 gives the constraint A0 + At = 1. Thus, the mapping

cosw = A0 + (1 — ̂ 0)
cos^ (2.94)

leads to such a variable-cutoff filter provided 0 < A0 < 1. Similarly, to shrink the
passband with (Op < cop), we should use

cos co = A0 + (1 + A0)cosQ (2.95)

with - 1 < ,40 < 0.
By choosing A0 and A± properly, we can use the same transformation of

Eq. (2.92) for highpass filters as well.
If the transformation of Eq. (2.94) is applied to the transfer function Eq. (2.86),

the resulting transfer function is

rtn V ^G0(Z)= £ akz\ - " --- o -- — -) (2.96)
fc=0 \ 2 /

which represents a noncausal transfer function. The causal version is

(Z) = Wy"2a Z -.'"-""-
0V / ^ j K

(2.97)

which can be implemented as in Fig. 2.22(c). Thus, simply by changing the
parameter A0 in Fig. 2.22(c), we can obtain a wide range of transfer functions.

Design Example 9. For a numerical example of the first-order transfor-
mation of Eq. (2.92), consider again the FIR filter of Example 2, which is an
equiripple filter of order N — 1 . = 52, with passband cutoff frequency cop =
0.1 6ft. We wish to design a new lowpass filter with the same passband and
stopband errors <5X and d2 but with passband edge at Qp = Q.3n. Since Qp > cop,
we use Eq. (2.94), from which we can compute A0 = 0.7. The response of the
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transformed filter is shown in Fig. 2.23. Note that the entire passband region
(0, o>p) gets mapped into (0, fip), whereas only a portion of the stopband response
(«r, tomax) gets mapped onto (Or, TT), where

= cos (2.98)

In other words, only a portion of the unit circle of the prototype gets mapped
onto the unit circle of the resulting filter. Clearly, this is not harmful, because the
transformed response is a well-defined lowpass response with desired tolerances
dj and <S2.

The first-order transformation of Eq. (2.92) leaves the filter order unchanged.
Moreover, ^ and d2 remain unchanged for obvious reasons. Thus, if the
prototype is optimal, the resulting filter is usually not optimal, because the
transition bandwidth can only increase as a result of transformation.

Using Eq. (2.91), we can define higher-order transformations in order to get
lowpass to bandpass conversions, and so on. The concept of frequency
transformations in FIR filters is important not only for the design of variable-
cutoff filters but also for certain other applications: for example, [23] develops
a "hierarchical" procedure for designing multiplierless FIR filters based on the
frequency transformation concept. Details of these filters are beyond the scope
of this chapter.

-14.

-42.

-70.000

PASSBAND DETAILS
1.01

0.99
0.15

0.200

N O R H f l L I Z E D F R E O U E N C Y

Fig. 2.23. Example 9. The response of Example 2 (Fig. 2.9) frequency transformed.
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We next proceed to describe certain related transformation techniques that are
extremely useful in FIR design practice. Let H(z) represent the transfer function
of a linear-phase FIR filter, as given by Eq. (2.1). The frequency response H(eJ<0)
can be written in terms of the zero-phase response H0(e

jco), as in Eq. (2.2).
Assuming that H(z) is lowpass with N — I even, we can write

(w-n/2
H0(e

jto) = £ bn cos con (2.99)
n = 0

Note that H^e*") is an even function of o>. A typical plot of H0(e
jm) in Eq. (2.99) is

shown in Fig. 2.24(a). Let us now define a new transfer function

H^z) = z-<"- 1)/2 - H(z) = z-(JV~ 1)/2(1 - H0(z)) (2.100)

Clearly, the zero-phase response H10(z) of Ht(z) is

Hlo(e**) = I - H0(e
jm) (2.101)

Figure 2.24(b) shows the function HlQ(eJm), which is clearly highpass, with
passband edge equal to cor and stopband edge equal to a>p . Next define a transfer
function

G(z) = H,(-z) - (-z)-(JW-1)/2(l - H0(-z)) (2.102)

Note that on the unit circle H0( — z) becomes

HO(-Z) = Hd-e**} = Ho^*""10) = HO^*"^) (2-103)

where we used the fact that H0(e
j<") is an even function of co. Thus, letting

G(eJ<0) = e~Jf0{N~1)/2G0(e
j(l1), we obtain the zero-phase response G0(e

jm) of G(z):

(-iyN~v/2G0(e
jto) = 1 - H0(e

j(n~m}) = Hlo(e
J{n~&)) (2.104)

Thus, based on the plot of H10 in Fig. 2.24(b), we can plot the response G0(e
jta)

given by Eq. (2. 104). This is shown in Fig. 2.24(c).
It is thus clear that G(z) again represents a linear-phase lowpass FIR filter of

order N — 1 , but its passband edge is 9P — n — <ur, whereas the stopband edge is
0T — n — cop. Moreover, the passband tolerance for G(z) is 62, whereas the
stopband tolerance is d± . The above sequence of operations is therefore a simple
procedure to convert a linear-phase lowpass filter H(z) into a linear-phase
lowpass filter G(z) such that the passband parameters and stopband parameters
are merely interchanged. These ideas are summarized in Table IX. Figure 2.24(d)
shows a physical circuit for obtaining G(z) from H(z). Note that there are two
crucial requirements to be satisfied for this "trick" to work. The first is that the
transfer function H(z) must have linear phase so we can subtract the zero-phase
response from unity, as in Eq. (2.100). The second requirement is that the order
N — \ should be even so that the delay z~lfi~ 1)/2 in Fig. 2.24(d) is realizable.
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1+6

( a )

/wwvw
(b)

l+62—

l-6o—
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(c)

(d) G ( z ) = Jjf}

Fig. 2.24. A lowpass to lowpass transformation.
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TABLE IX

Interchanging the Passband and Stopband Characteristics

Transfer function

H(z) (lowpass)
H,(z)(highpass)
G(z) (lowpass)

Passband
edge

<op
(!)t

n — <or

Stopband
edge

<,>r

<»P
7T - 0>p

Passband Stopband
tolerance tolerance

-5, *2
^2 ^!

52 <5i

The above idea of interchanging passband characteristics with Stopband
characteristics has other important applications. For example, assume that we
wish to design a linear-phase FIR filter with a maximally flat passband and
an equiripple Stopband. A direct design procedure for such specifications is
complicated [25-26] and time consuming. However, as will be shown in
Section IX, it is much easier to first design a lowpass transfer function H(z)
having an equiripple passband and maximally flat Stopband. We can then
obtain the desired transfer function G(z) from H(z) prescisely as in Fig. 2.24(d).
Section IX outlines the detailed procedure for dealing with this problem; related
ideas and methods are in [30].

As another application of the above idea, recall that in Section V.B we
mentioned that maximally flat FIR filters can be built with only L - 1 multipliers
by implementing (2.68) directly. We also commented that it is possible to obtain
an implementation with K — 1 rather than L — 1 multipliers, which is suitable
when K < L. For example, let K = 3 and L = 5. Let us first design a maximally
flat lowpass filter H(z) with K and L interchanged (i.e., K = 5 and L = 3). Thus
H(z) can be built with only two multipliers. From the structure for H(z) if we
now obtain the structure of Fig. 2.24(d), the resulting transfer function G(z) is
maximally flat lowpass, with K and L restored (i.e., K = 3 and L = 5). Thus, we
have obtained an implementation of G(z) with only K — 1 = 2 multipliers.

D Multiple Use of a Given Filter For Response-Sharpening

Consider a lowpass linear-phase FIR transfer function H(z) of order N — 1
with response as shown in Fig. 2.24(a). Let us assume that this filter is available in
the form of a module (a software module, for example) and that we wish to use
this filter to obtain filters with smaller passband and/or stopband errors. If the
output sequence generated by H(z) is again passed through H(z), this produces
an overall transfer function

G,(z) = H2(z) = z-<N-l>Hl(z) = z-<N-»Glo(z) (2.105)

The response Glo(e
j<a) is shown in Fig. 2.25(a). The bandedges o>p and <>)r



(a)

X ( z ) ->

(d)
Fig. 2.25. Multiple use of a given filter module.
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are unchanged by the squaring operation. Clearly, the peak passband error for
Gi(z) is

~ d + - - 2
i/j — —

whereas the peak stopband error for Gt(z) is

(2-107)

Thus, multiple use of the same filter decreases the stopband error, but,
unfortunately, the passband error increases.

Note that the order of G^z) is 2(N — 1). Now assume that we want to obtain a
transfer function G2(z) of order 2(N — 1) by twice employing H (z) as above, but
we want to have a smaller passband error. We can do this by the following
sequence of operations: first define a transfer function H^z) as in Eq. (2.100). The
response of H^z) is as in Fig. 2.24(b). (This requires that N — 1 be even.) Next
form the transfer function H2(z) = H?(z) = z"(Ar~1)Hf0(z). Figure 2.25(b)
shows the response Hl0(e

jca), which is highpass with peak passband error

and peak stopband error

€2 = Si/2 (2.109)

Finally, define the transfer function

G2(z) = z-(N-l}-H2(z) (2.110)

Figure 2.25(c) shows the response of G2(z). The peak passband error for G2(z) is

£ = € 2 = y (2.111)

whereas the peak stopband error is

S2 = €i=2d2 (2.112)

Thus the passband error is reduced, but the stopband error increases. Fig-
ure 2.25(d) shows the physical structure for the implementation of G2(z).

Next suppose we want to devise a scheme so that using the filter H(z) several
times improves the passband and stopband errors. We can do this if we make
judicious use of H(z) three times rather than twice, which gives an overall filter
order of 3(N — 1). A general theory for accomplishing this kind of improvement,
based on the concept of amplitude change function, was introduced by Kaiser and
Hamming [31]. The details of this ingenious concept are beyond the scope of this
chapter, so we present the simplest result that is of immediate relevance to our
discussion.
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Basically, given a linear-phase FIR transfer function H(z) = z (]V 1)/2H0(z)
of order N - 1, we wish to construct the linear-phase FIR function G(z) =
z-3(/v-t)/2Go^j such that the real-valued function G0(e

jco) has smaller pass-
band and stopband errors than the function H0(e

jia). Let G0 = f(H0) denote the
functional dependency of G0 on H0. The quantity H0 is close to unity in the
passband and close to zero in the stopband. Accordingly, f(H0) should satisfy
/"(O) = 0, /(I) = 1. Furthermore, we would like small deviations of H0 around
zero and around unity to be reflected as even smaller deviations in G0. We do this
by forcing the derivative of f(H0) to be equal to zero for H0 = 0 and H0= 1. The
simplest function satisfying all these conditions is G0 = f(H0) — H%(3 - 2H0).
Figure 2.26(a) is a sketch of f(H0).

(a)

X(z) H(z) > H(z)

M = N-1

(b)

Fig. 2.26. Improving both the passband and the stopband.
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TABLE X
Improving the Passband and Stopband Characteristics by Multiple

Use of the Same Filter

Peak passband error Peak stopband error

H(z) <5, S2

G(z) 6<>? $d\

The relation in Fig. 2.26(a) can be realized in practice by implementing the
scheme in Fig. 2.26(b). Clearly,

G(z) = H2(z)(3z-(Ar-1)/2 - 2ff(z)) (2.113)

Thus, letting G(z) = z~3(N ~1)/2G0(z) and H(z) = z"(]V"1)/2H0(2), we have

GQ(z) = H2
0(z)(3 - 2H0(z)) (2.114)

as required. The effect of zero slope at (0, 0) and (1, 1) is that the error is reduced in
the passband and in the stopband. A Typical plot of H0(e

jta), shown in Fig.
2.26(c), leads to a corresponding plot of G0(e

jco), shown in the same figure. Notice
that G0(e

jo>) has equiripple behavior in the passband but not in the stopband.
However, for small <52 the stopband of G0(e

jto) is almost equiripple. It is easily
shown that G(z) has peak passband error of about 6<5f and peak stopband error
of about 1.562,. Table X summarizes these results. For small dl and <52 there is a
remarkable improvement in passband and stopband errors. However, if he
original filter H(z) has large 6l and 62 , then the resulting filter G(z) may be even
worse than H (z). To summarize in a qualitative way, the structure of Fig. 2.26(b)
makes good filters better and bad filters worse.

VIII TWO-DIMENSIONAL LINEAR-PHASE FIR FILTER DESIGN
AND IMPLEMENTATION

A two-dimensional (2-D) FIR filter with impulse response coefficients h(nl, n2),
0 < nt < ATt — 1, 0 < n2 < N2 — 1, has transfer function

H(zltz2) = r'^lN^i
lh(nltn2)zrtZ2112 (2.115)

nl =0 n2 = 0

The impulse response h(n1,n2) is causal—that is, it vanishes for n1 < 0 and for
«2 ^ 0- The above filter is said to be an (Ni x JV2)-point FIR filter. We obtain the
frequency response from Eq. (2.115) by setting zt = eia>1 and z2 = ej€°2. Such
filters are used in image processing problems, such as image enhancement and
compensation for linear optical degradations, and so on [32]. The input signal
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,x(nt, n2)
 and the output signal y(«i, «2)

 are related through the convolution sum

y(«i, n 2 )= X X x(Wi,m2)fc(ni ~ m i ' "2 ~ m 2) (2. 1 16)
mi = 0 m2 = 0

where h(nl,n2) and x(n1;«2) are assumed to be causal.

Two-Dimensional Filter Implementation A

The implementation of such filters can be accomplished by directly computing
the 2-D convolution sum of Eq. (2.116). For an N x N filter the number of
multiplications involved per computed output sample is proportional to N2. For
large N the implementation is therefore expensive, and fast convolution methods
(based on 2-D FFT techniques) must be adopted. For filters with impulse
response arrays larger than 10 x 10, FFT methods are more efficient than direct
convolution.

Many of the linear-phase FIR design methods for one-dimensional (1 -D) filters
can be extended to the 2-D case. Windowing techniques can be directly extended;
optimization methods based on the linear programming approach or the Remez
exchange techniques can all be extended as described in [2]. A major dis-
advantage of such a direct optimization is that the optimization time tends to
be very large for a filter of moderate size because the number of constraint
equations and problem variables tends to be large. As a result, direct optimiza-
tion techniques are limited to moderate-sized 2-D filters, such as 10 x 10 impulse
response filters. For filters of higher orders an elegant indirect approach
proposed by McClellan [33] is the most suitable technique; it is the topic of the
next subsection.

McClellan's Transformation Technique B

In 1973, McClellan [33] showed how 1-D linear-phase FIR filters can be
transformed to 2-D linear-phase FIR filters. The method is based on the idea of
frequency transformation discussed in Section VII. Mecklenbrauker, Mersereau,
and Quatieri have studied the design and implementation of such filters in
considerable detail [32, 34].

The advantage of such an indirect mapping-based method is clear: the design
time is much less because 1-D filters can be designed very efficiently by algorithms
described earlier in this chapter. As a result, higher-order filters (such as 40 x 40
or more) can be designed with very little computational effort (compared to a
direct 2-D method). The 2-D filters designed by mapping are often optimal.
Finally, the actual implementation of these filters is much more efficient (in terms
of number of multiplications) than a direct implementation of a directly designed
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2-D filter. The implementation of a mapping-based filter is more efficient than an
FFT-based implementation of a directly designed optimal filter [2], up to an
impulse response size of about 45 x 45. (Recall that an FFT-based method is
better than a direct convolution approach for orders exceeding only 10 x 10.)

To understand the basic idea, recall that a linear-phase FIR filter of • even order
can be written as in Eq. (2.2), where H0(O

 l& as m Eq. (2.87). Instead of replac-
ing cosw in Eq. (2.87) by F(ejn), suppose that we replace it as follows:

cos co = A cos c^i + B cos to2 + C cos o^ cos co2 + # (2.117)

where co1 and o>2 are the frequencies of the 2-D filter. The constants A, B, C, D are
such that the right side of Eq. (2.117) is in the range [—1,1] for 0 < col ,w2<Tt.
Thus, for each frequency pair (o^, co2), we get a unique prototype frequency o», so
Eq. (2.117) represents a meaningful transformation. The response of Eq. (2.87)
gets mapped into

Mi M2

H0(e
J<0l,eJl02) = £ £ 6(m,n)cos(m<w,)cos(n<o2) (2.118)

m=0n=0

so the filter design involves designing the parameters A, B, C, D and the
prototype. Since the former has been described in earlier sections, we deal only
with the design of the mapping parameters A, B, C, D.

From Eq. (2.117) we can write

, /cosco — D — ,4coso>A ,~.m
co, = cos'11 —-——— (2.1192 \ B + Ccosw, ) ;

Thus a given value of co is represented by a contour in the (colt co2)-plane, whose
exact shape is governed by the contour parameters A, B, C, D. From Eq. (2.119) it
can be shown that the conditions \ C\ < \A\ and \ C\ < \B\ insure, respectively, that
there are no horizontal or vertical contours (except at the boundaries of the
square [0,7i] x [0,7i] in the (co^co^-plane. Moreover, the contours are always
monotone [33], with the mapping as in Eq. (2.117). McClellan [33] considers two
examples: one with a monotone decreasing set of contours, and one with a
monotone increasing set. These contours can be used, respectively, to design 2-D
lowpass and 2-D fan filters, starting from a 1-D prototype. For lowpass designs,
we can choose the contour parameters such that

C = - £ > A = l-B (2.120)

so that the contours are monotone decreasing, as shown in Fig. 2.27. (In Fig. 2.27,
the labels on the contour represent the normalized 1-D frequency / = a)/2rt.)
Note that, for each 2-D frequency <%, o>2, there corresponds a unique frequency co
of the 1-D prototype, and hence the ripple sizes ̂  and <52 are preserved during the
transformation. For fan filters, a typical choice would be C = D and A = B + 1.

As a specific example, let A = 0.5 and C = 0.5 and assume that a lowpass 1-D
prototype should be transformed into a lowpass 2-D filter. Then B=\—A —
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Fig. 2.27. Contours of constant to, when A = B = C=-D = 0.5. [16J(© 1975 IEEE).
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0.5 and D = -C = -0.5. This leads to

cos co = 0.5(coscoi + cosco2) + 0.5 cos o^ cos co2 — 0.5 (2.121)

which shows that the point co = 0 maps into (o^ = a)2 = n\ Moreover, for small
values of co, <%, and co2 we get the approximate relation co2 = cof + cof, which
shows that the contours of constant co are circular for small frequencies
(Fig. 2.27). Note that for large co the contours flatten out and resemble rectangles.

Design Example 10. Assume that we wish to design a low-pass 2-D equiripple
filter with the passband edge and stopband edge represented by approximately
circular contours with radii 2n/6 and 2n/3, respectively^^e Fig. 2.28(a)].
Assume that the peak passband and stopband errors of me 2-D filters are
required to be ̂  < 0.08 and 62 < 0.008. The transformation of Eq. (2.121) gives
contours that are only approximately circular, so we adopt the following intui-
tive guideline to compute the bandedges of the prototype 1-D filter: the 2-D
frequency (0,27t/6) is a point on the contour representing the passband edge.
Substituting these values of co, and co2 in Eq. (2.121), we get co = 2n/6. Thus, the
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Fig. 2.28(a). Example 10: Circular contours representing the bandedges of the 2-D lowpass
specification.

Fig. 2.28(b). Example 10: The frequency response of the resulting 9 x 9 2-D FIR filter [59].
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we1 -D prototype can be designed to have cop = 2n/6, In an analogous manner
can find o>r = 271/3.

Now t>t and 62 of the 2-D filter are the same as those of the 1-D prototype. We
therefore have the complete specifications for the 1-D equiripple design:

1 O

cop = -?' o>r = y, ^=0.08, <52 = 0.008 (2.122)

These requirements are satisfied by a filter of order N — I — 8. The trans-
formation of Eq. (2.121) now gives rise to a 2-D filter of length 9 x 9 . Fig-
ure 2.28(b) shows the frequency response.

Generalization of McClellan's Transformation C

McClellan's transformation has been generalized by Mersereau et al. [32] to a
considerable extent, making it possible for the designer to have a wide variety of
choices for contour shaping and contour optimization. This generalization is
based on the observations that the mapping of Eq. (2.117) is a special case of the
transformation

costo = F(co1,o>2) (2.123)

where
P Q

F((Ql,co2) = £ ]T t(p,q)cos(p(o1)cos(qco2) (2.124)
p=0q=0

If the prototype 1-D filter has an impulse response of length N = 2M + 1, then
the 2-D filter has a (2MP + 1) x (2MQ + 1) impulse response. However, the
design process is made considerably simpler by designing the contour param-
eters t(p, q) first and then the prototype impulse response. This then involves
only (P + 1) x (Q + 1) + M + 1 parameters.

Mersereau et al. [32] actually show how t(p, q) can be chosen optimally. In
general, there are two known methods for designing the contour parameters
t(p, q). In the first method, called the contour matching approach, we formulate an
optimization problem that enables us to approximate certain contour shapes.
For instance, we can force the passband edge of the 2-D response to be as close as
possible to an ellipse. Or we can design a circularly symmetric lowpass filter
where the contour representing the passband edge is as close as possible to a
circle. At the other extreme, the method can also be used to design the types of
responses required in applications such as reconstruction of objects from their
projections [32]. Contour mapping problems can be solved by linear optimiza-
tion techniques, as elaborated in [32].

The second method, which works well only for frequency responses that are
piecewise constant, is based on the viewpoint that the design of t(p, q) is itself a
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filter design problem. The basic idea is to design the contour parameters such that
the transition bandwidth <or — OJP of the prototype 1-D filter is maximized.
Clearly, this minimizes the peak errors in the passband and stopband for a given
prototype filter length. This problem can also be formulated as a linear
programming design problem to solve for the coefficients t(p,q). Techniques
more efficient than linear programming are also known from works of Kamp and
Thiran [35]. All details are omitted here in the interests of brevity.

D implementation Considerations

The most efficient way to implement 2-D FIR filters using McClellan's
transformation is to recognize that a zero-phase 1-D FIR filter can be
implemented exactly as in (2.86), and hence the 2-D design is obtainable simply
by replacing the building blocks (z + z~~1)/2 with the z-domain equivalent of
F(a>i, a)2) in Eq. (2.124). Such an implementation is computationally much more
efficient than a direct implementation of the convolution sum, because the
number of multiplication operations in Eq. (2.86) per computed output sample is
proportional to N rather than N2. The above implementation is known to be
even more efficient than FFT-based 2-D convolution techniques for filters of
orders up to about 45 x 45. The only disadvantage of the implementations
based on Eq. (2.86) is that the coefficients % span a large dynamic range because
of the Chebyshev transformation involved in Eq. (2.85). For a detailed treat-
ment refer to [34], where the effects of finite word length in these implementa-
tions are also studied.

Newer techniques have been reported for the design and implementation of
FIR filters. Compared to equiripple designs, these techniques require less design
time and are computationally more efficient from an implementation viewpoint.
This section outlines some of these techniques.

An implementation of a filter is simply a scheme that computes the output
sequence y(n) in response to an arbitrary input sequence x(n). Let Nm and Na

represent, respectively, the number of multiplications and additions required to
compute each sample of the output sequence. Also, let Nz represent the number of
delay units (i.e., amount of memory required) in the implementation. The relative
importance of the three quantities Nm, Na, and Nz depends upon the exact
architecture of implementation (i.e., whether it is special-purpose hardware, or
programmable-chip based, or simply a mainframe computer program). However,
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in many cases of practical interest, the multipliers are the most time consuming
(or equivalently space consuming), and much more significance usually needs to
be attached to Nm than to Na and Nz. The methods discussed here are particularly
suited to such situations. In situations where high-speed parallel multipliers are
already available, so that multiplication time is not significantly higher than
addition time, there is little motivation to reduce Nm at the expense of increased
Naand Afz.

To see the basic philosophy behind some of the new methods, recall that
equiripple designs are optimal in the sense that the filter order N — 1 is the
smallest among all filters that have the same specifications (for example, the same
specified values of cop, cor, <5l5 and <52). As a result, a direct-form implementation
requires the fewest multiplications (approximately half the order). However,
there may be other implementations that require a higher overall order than the
equiripple designs (to meet the same set of specifications) but require fewer
multipliers. Such implementations can be very attractive when Nz is not as crucial
as JVm. Most designs discussed in this section are based on this viewpoint.

The Interpolated FIR (or IFIR) Approach A

The IFIR technique is valuable in situations where a FIR filter with a "narrow
passband" is desired. For notational simplicity let us confine our attention to the
lowpass design. Referring to the specification shown in Fig. 2.3, recall that a direct
optimal design requires an order as estimated by Eq. (2.31). Consequently, a
narrow transition bandwidth A/ implies a high order. The number of multipliers
in a direct implementation is therefore very large (about half the order N — I).
However, it is sometimes possible to design this filter indirectly so that the actual
number of multipliers is much less, even though the order is higher than for
optimal designs.

The approach can be described by referring to a lowpass design. Correspond-
ing to the lowpass specifications as in Fig. 2.29(a), consider a new set of stretched
specifications as in Fig. 2.29(b), where the bandedges have been stretched by a
factor of 2 but the tolerances 6i and <52 are unchanged. The new specifications are
meaningful, provided 2coT < n. The modified specifications can be met by a model
filter HM(z) of order given by

(2J25)14.6(2 A/)

which is half the value given by Eq. (2.31). Now consider the frequency response
corresponding to HM(z2), which is shown in Fig. 2.30(a). This is precisely as in
Fig. 2.29(a), except for the unwanted passband around (a = n. The unwanted
passband can be suppressed by cascading HM(z2) with a filter having a transfer
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Fig. 2.29. Pertaining to the IFIR method.

Fig. 2.30(a). Response of HM(z2).

Fig. 2.30(b). The interpolator G(z).

x(n) ,y(n)

Fig. 2.30(c). The overall IFIR implementation.
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function G(z) and frequency response as in Fig. 2.30(b). Thus the overall transfer
function is

H(z) = HM(z2)G(z) (2.126)

Figure 2.30(c) shows the overall implementation. The main point is that as long as
cor is not very close to n/2 the response of G(z) need not have a sharp transition,
although it needs to have a large attenuation in the region n — cor < co < n. Thus
G(z) is, in general, inexpensive, as we shall demonstrate by design examples. The
overall implementation requires only (NM — l)/2 + 1 multiplications (for even
NM — 1). This is half as many as that required by a direct design.

The choice of G(z) is governed by the fact that it should have large attenuation
in the range n — cor < co < n. This itself is easily accomplished, for example,
by taking

I +z
(2.127)

where the integer R is large enough to attenuate the unwanted passband around
co = TT. However, the obvious disadvantage of this is that, for large R, the filter
G(z) causes unacceptable deterioration of the passband of H(z), One way to avoid
this is to predistort the model filter HM(z) such that its passband compensates for
the deterioration. For example, if we are designing HM(z) by using the MP
algorithm, then we need only choose the desired response to be

)|, 0 < c o < to,, (2.m)
co > 2cor

and the weighting function to be

W(ej(0) = < ' — — P (2.129)
[constant, co > 2cor

Thus, the overall filter H(z) has equiripple passband response. Note, however,
that if the interpolator causes a large droop in the passband, then D(ejco) in
Eq. (2.128) has a large dynamic range in the passband region. As a result, the
impulse response coefficients of HM(z) tend to have large magnitudes, even
though they add up to approximately unity around co = 0. This implies that
the passband sensitivity of the resulting design can be large with respect to the
coefficients of HM(z). Thus, interpolators that cause a large droop should
be avoided.

A simple way to overcome the above sensitivity problem is to choose G(z) such
that it not only attenuates the signals around co = it but is also very flat in the
passband region 0 < co < cop. This can generally be done with inexpensive G(z)
because the transition bandwidth A/ of G(z) can still be quite large. An excellent
choice of G(z) based on this observation is the class of maximally flat FIR filters
discussed in Section V. Recall that these lowpass filters have a high degree of
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flatness around co = 0 and co — n. Design experience [23,36] shows that, because
of the flatness of this type of interpolator, the predistortion described by
Eq. (2.128) is not necessary in most situations. It is also found in practice that
small values of K and L are quite sufficient in most designs. Recall from Sec-
tion V that (for small K and L) G(z) can be implemented very efficiently in a
multiplierless manner.

We now make some comments. First, the impulse response corresponding to
//M(z2) has every odd-numbered coefficient equal to zero. The cascading of G(z)
with HM(z2) as in Eq. (2.126) is equivalent to filling in these zero-valued
coefficients with a weighted average of surrounding coefficients. For this reason
G(z) is termed the interpolator. If the interpolator happens to be a maximally flat
transfer function of the form of Eq. (2,68), then we call it a maximally flat
interpolator. Note, however, that no explicit signal interpolation is involved in the
structure of Fig. 2.30(c). In other words, the structure represents a single-rate,
rather than a multirate, implementation.

Second, if cor is sufficiently small, we can extend the above idea and stretch the
frequency axis by more than a factor of 2. Thus, we can define a model lowpass
filter Hu(z) with bandedges l<ap and /cor, where / is an integer such that /<yr < n.
The final design H(z) is then

H(z) = HM(zl)G(z) (2.130)

where G(z) is a suitably chosen interpolator that suppresses the / — 1 unwanted
passbands. The overall design now has about / times fewer multipliers than a
conventional equiripple design, provided that G(z) continues to be a simple
circuit. Note, however, that if /cor, which is less than n, is very close to TT, then the
interpolator G(z) is expensive to design because it now must have sharp transition
bands. Accordingly, it is a good design strategy not to make / too large. In any
case, a theoretical upper bound on / is the integer part of n/cot.

Design Example 11. Reconsider the specifications of Example 2. Since cor is
sufficiently small, we can employ the IFIR approach for the design. Note that
n/a)t — 1 /0.24, and, theoretically speaking, we can use / = 4. However, to keep the
design of the interpolator simple, let us pick / = 2. The model lowpass filter HM(z)
has bandedges

o3p = 0.3271, <wr = 0.4871 (2.131)

and requires an order NM — 1 of 26. A maximally flat interpolator with K —
L = 3 is found suitable for removing the unwanted passband of HM(z2) around
CD = n. Figure 2.31 shows the frequency response of the resulting design, which
meets all design specifications, even though it requires only 14 multipliers. Note
that no prewarping of the passband has been necessary.

Designing highpass and bandpass filters based on the IFIR technique can be
done in a similar manner. See [37] for further details. For lowpass filters with
cor > Ti/2, we can still use fewer multipliers by first designing the complementary
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Fig. 2.31. Example 11: Lowpass filter, IFIR design.

lowpass filter Hc(z) with passband edge n — cor, stopband edge n — o>p, passband
peak error 32, and stopband peak error <5j. After efficiently designing it using the
IFIR approach, we obtain the desired transfer function

Other choices of G(z) are possible. The choice

1 -z

(2.132)

(2.133)

called the recursive running sum (RRS), is particularly useful. (The use of the RRS
for efficient FIR filter design was recognized earlier in a different context by
Adams and Willson [38].) This building block can be implemented with only two
addition operations, and provides a minimum stopband attenuation of about
1.3 dB (see Fig. 2.32). The parameter S essentially determines the width of the
mainlobe of the RRS interpolator, A typical design rule is to choose S so that
A = 2n/S > a)r. If the difference A — cor is too small, then designing HM(z) is
difficult because its passband needs to have a large variation to compensate for
the droop in the passband caused by G(z). Such a large variation leads to noise
and sensitivity problems.

In Section V we mentioned that the design of maximally flat FIR filters with
small transition widths is extremely expensive because the order N — I grows as
the inverse square of this width. From the discussions of this section, it is clear
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Fig. 2.32(a). Implementation of the recursive running sum.
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Fig. 2.32(b). The magnitude response of the recursive running sum.

that the IFIR approach can be applied for the design of these filters as well. This is
demonstrated in the next example.

Design Example 12. Assume we want a monotone response as in Section V
with /? = 0.271 and 6 = 0.1 TI. A direct design requires K — 161 and L = 17, which
means that a direct-form implementation requires about 178 multipliers! How-
ever, we can design indirectly a monotone filter with the same bandedges by using
the IFIR approach as follows: first design HM(z) with ft = OAn and S = Q.2n,
requiring K = 17 and L = 9. This involves only 26 multipliers. We obtain the
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DIRECT METHOD: 178 MULTIPLIERS
IFIR METHOD: 26 MULTIPLIERS
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Fig. 2.33. Example 12: IFIR-based design of monotone response.

overall transfer function H(z) as in Eq. (2.126), where G(z) is itself a maximally flat
interpolator (or a cascade of such interpolators) characterized by small values of
K and L. In the example under consideration, the choice G(z) = 73>3 (z) is found
to suppress the unwanted passband satisfactorily. [Recall that, IKtL(z) is the
abbreviation for a maximally flat FIR transfer function as in Eq. (2.68).] Thus, the
overall implementation is dramatically simplified since it involves only 26
multipliers (compared to 178 in a direct design) and three multiplierless building
blocks. Figure 2.33 shows the frequency response plot. For further details and
examples of this nature, see [23, 36]. Note that the resulting indirect designs have
responses that are not maximally flat, even though they are very flat, and are
usually monotone.

The Prefliter-Equalizer Approach to FIR Designf B

Reconsider a typical lowpass response as shown in Fig. 2.3. The desired
transfer function has two important roles: it should provide a good stopband
attenuation, and it should keep the passband signals as undistorted as possible.
Instead of directly designing a transfer function H(z) satisfying these require-
ments, we can take an indirect approach as follows. First design a transfer

1 See reference [38].
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function H2(z) that provides considerable stopband attenuation but not neces-
sarily a good passband response. Then design a transfer function H{ (z) such that
in the passband H^z) compensates for the response of H2(z) so that the
cascaded transfer function Hl(z}H2(z) nas its passband response within the
required tolerance.

The advantage of such an approach is that H2(z) can usually be designed in an
efficient manner without multipliers. An example is the RRS of Eq. (2. 1 33), which
has all transmission zeros on the unit circle of the z-plane. As mentioned earlier,
this can be implemented with only two digital adders and no multipliers. The
RRS provides a minimum attenuation of about 13 dB. The filter //t(z), which
provides the additional attenuation in the stopband and also shapes the
passband, has an order that is considerably lower than the order of a directly
designed optimum filter. Since H2(z) is multiplierless, the overall implementation
of Hl(z)H2(z) is therefore computationally less expensive even though the
resulting filter order is higher than that of an optimal filter.

Adams and Willson [38, 39] have introduced several building blocks for the
transfer function H2(z), which is called~the prefilter. The prefilter H2(z) should be
chosen to have all zeros on the unit circle to provide a good stopband
attenuation. The prefilters proposed in [38] and [39] are based on the RRS of
Eq. (2.133). By suitably combining RRS building blocks, we can easily construct
prefilters with attenuation exceeding 13 dB. The function Ht(z) is designed such
that Hl(z)H2(z) has an equiripple passband. We can do this by designing Hj(z)
with the help of the MP algorithm. We choose the desired response D(ej<a) and
weighting function W(ejia) to be input to the MP algorithm in an obvious
manner:

and

Design Example 13. As a simple illustration of the prefilter -equalizer
approach, consider a lowpass specification with bandedges (op = 0.04271, tof =
0. 146ft, /lmax = maximum passband attenuation = 0.28 dB, and AT — minimum
stopband attenuation = 36 dB. A direct design based on the MP algorithm
leads to an equiripple design He(z) of order 33, requiring 17 multipliers. An RRS
of the form of Eq. (2.133) with S = 13 has mainlobe extending from a> = 0
to CD = 271/13 = 0.153871, and is a suitable prefilter for this problem. The opti-
mal equalizer designed using the MP algorithm has order 27, and the overall
design therefore requires 14 multipliers. Figure 2.34 shows the relevant fre-
quency responses.

">l. o *»*«,,
(0, a) > cor
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Fig. 2.34(a). Example 13: Lowpass filter equiripple design.
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Fig. 2.34(b). Example 13: Lowpass filter, RRS-based.
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C Prefilters Based on Dolph-Chebyshev Polynomials

A new class of prefilters, introduced in [40], is based on Dolph-Chebyshev
polynomials. A Dolph-Chebyshev function of order M and cutoff frequency o>c

is defined by

DM,O)C\

x = cos(co/2)
cos(coc/2)'

I
cos(ojc/2)

(2.136)

(2.137)

and ^M(X) is the Mth-order Chebyshev polynomial in X. Figure 2.35 is a typical
plot of this lowpass function. The minimum stopband attenuation is

,TM(XC) (2.138)

We can design a linear-phase FIR filter with frequency response as in Eq. (2.2),
where H0(e

jta) is of the form of Eq. (2.136), simply by recognizing that the
response cos(o>/2) is realizable (in causal form) as (1 + z~l)/2. As a result, FIR
filters with responses as in Eq. (2.136) can be built as in Fig. 2.36(a), where the tap
weights are the coefficients of the Chebyshev polynomial. Each box labeled X in
Fig. 2.36(a) corresponds to the X defined in Eq. (2.137). We can write

,1/2
x = - + z

2 cos(<wc/2)
./ 1+2- 1

\2 cos(wc/2)

Thus
M

(2.139)

(2.140)

Two difficulties are associated with a direct implementation of Eq. (2.140). The
first is the noncausality of the building blocks caused by positive powers of z; the
second is the presence of fractional powers of z, which do not correspond to

Fig. 2.35. A typical plot of the Dolph-Chebyshev magnitude [40]
(© 1985 IEEE).
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Fig. 2.36(a). Implementation of a Dolph- Chebyshev function [40]
(© 1985 IEEE).

Fig. 2.36(b). Causal implementation of TM(.X) for even M.

physical operators. Both of these difficulties are trivially overcome in practice, as
we outline next.

From the property of Chebyshev polynomials [1, 41], it is known that if M is
odd then $~M(X) has only odd powers of X, whereas if M is even it has only even
powers of X. Thus for even M,

2k

(2.141)

The noncausality in Eq. (2.141) is avoided by introducing M/2 units of delay:

M/2 / 1 i ,-1 \ 2 f t

ft = 0
(2.142)

Figure 2.36(b) shows the overall causal implementation of (2.136), which is free
from fractional powers of z. For odd M an analogous derivation leads to a
causal structure.

Note the Xl in Fig. 2.36(b). These multipliers imply additional computational
overhead, but they can often be judiciously avoided, as we demonstrate in a latter
example.

Prefilters with response of the form of Eq. (2.136) are attractive for several
reasons. First, even for small M the stopband attenuation is quite large for typical
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values of wc. Second, the tap coefficients ck in Fig. 2.36 are very simple
combinations of powers of 2 for small M, leading to an inexpensive im-
plementation of H2(z). By proper choice of coc, we can make the values of the
multipliers Xc in Fig. 2.36 equal to a simple power of 2.

From Fig. 2.35 it is clear that o>c should be chosen such that o>c > o>r.
Moreover, CDC should be as close to cor as possible so that the attenuating effect of
the prefilter is available throughout the stopband. However, the smaller the value
of coc, the smaller is the equiripple attenuation AT shown in Fig. 2.35. Clearly, a
compromise is necessary. For filters with a narrow passband, cor is typically small,
and it may not be desirable to reduce toc to a comparably small value. A simple
solution to this problem is to first construct an intermediate function H2(z) based
on the Dolph-Chebyshev function with coc > 2o»r, and then define the prefilter
H2(z) to be H2(z) — H2(z

2)H2(z). A number of other prefilters can be generated
based on the Dolph-Chebyshev prefilter. A three-parameter family of functions
for this purpose is reported in [40] and has magnitude response

\H2(e
Jm)\ = (2.143)

The prefilter H2(z) is then generated as

H2(z) = H2(z
2)H2(z) (2.144)

Guidelines for choice of the parameters /c, M, and coc are discussed in [40].

Design Example 14. Let us now reconsider Design Example 13. A prefilter
of the form Eq. (2.144), where H2(z) is given by Eq. (2.143) with M = 5 and
toc = 0.2951672?r, is most suited to obtain an efficient design.* An equalizer
H^z) corresponding to this prefilter requires an order of 13. Thus, the overall
implementation H^H^z) requires only 7 multipliers compared to 17 required
by the direct approach. Figure 2.37 shows all the relevant responses. Clearly the
new design meets all specifications met by the conventional equiripple design.

The above design can be further improved by combining the IFIR approach
with the Dolph-Chebyshev prefilter-equalizer approach. Thus, with the prefilter
as in Design Example 14, we can first design an equalizer H^z) with bandedges
a)p — 0.084/1 and o>r = 0.29271 and then obtain the overall transfer function H(z)
as H(z) = H1(z

2)H2(z). The required order of HI(Z) is now only 8. Figure 2.38
shows the frequency response of the resulting design, which clearly meets all
specifications and requires only five multipliers.

Table XI shows a comparison of computational complexity for the design
example. The quantities JVm and Na are shown for the direct equiripple approach,
the RRS prefilter approach, and the Chebyshev-function-based prefilter
approach (with and without incorporating the IFIR technique).

+ This choice of coc corresponds to Xl — 1.25 = 1 + 2 2: hence the multipliers in Fig. 2.36b are
simple.
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EQUALIZER Hj(z) HAS ORDER = 13
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-100.000
0.100 0.?00 0.: 0.500

z E D F R E Q U E N C Y
Fig. 2.37. Example 14: Lowpass filter, Chebyshev prefilter based.

-20.000

-100.000

IFIR-BASED EQUALIZER Hj(z) HAS ORDER = 8

PASSBAND DETAILS

0.100 0.300

M O R H n i l Z f O F R E Q U E N C Y

Fig. 2.38. Example 14: Lowpass filter, with Chebyshev prefilter and IFIR-based equalizer.
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TABLE XI

Complexity Comparison for the Examples

Example

Example 14 Dolph Chebyshev
prefilter

Example 1 3 RRS prefilter

Example 14 Dolph -Chebyshev
prefilter with IFIR-based
equalizer

Prefilter
(adders)

38

2 (RRS)

38

Equali/er"

13
7

27
14
8
5

Total for
H,(z)H2(z)a

51
7

29
14
46

5

Direct equiripple
design0

33
17
33
17
33
17

" The first number is the number of adders; the second, the number of multipliers.

D FIR Filters with Very Flat Passbands and Equiripple Stopbands

In certain applications it is required to design a lowpass transfer function G(z)
with cutoff frequency cop such that the response is very flat around co = 0 and the
peak passband error is less than a prescribed value, say <5l5 in the rest of the
passband. As mentioned in Section VI, such specifications can be handled by a
linear programming formulation, as shown by Steiglitz [25]. However, as
pointed out by Kaiser and Steiglitz [26], this might lead to numerical problems
during the design phase, in addition to requiring long convergence time. Such
specifications can also be met by using the MP algorithm, with the weighting
function properly chosen. However, a more efficient way to use the MP algorithm
to achieve the same purpose is outlined next [30].

Assume that we require a flatness of degree M — 1 at a> — 0 (i.e., M — I
derivatives of the response G(ej(a} are zero at to = 0); also assume that the peak
passband and stopband errors permitted are dt and <52. The stopband is required
to be equiripple so that 62 is minimized for a given filter order. Figure 2.39
represents these specifications.

|6(ejw)|

Fig. 2.39. The desired lowpass specifications.
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We can obtain such a response by first designing a transfer function H(z) to
meet the complementary specifications defined in Fig. 2.40{a). The complemen-
tary transfer function has a tangency of M — 1 at a) = n and can therefore be
decomposed as

H2(z) =
,-I\M

(2.146)

Next we can design H^z) by using the MP algorithm with the following
specifications for D(ejco) and W(ejf°):

and

\H2(e
jla)\,

0 < co < n — (Dr

n — co_ < co < np

0 < a> < n —

(2.147)

(2.148)

Fig. 2.40(a). The complementary specifications.

x ( n )

Fig. 2.40(b). The overall implementation of G(z).
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This insures an overall equiripple passband for the cascade H(z) in Eq. (2.145).
The desired transfer function G(z) is thenf

G(z) = (-z)-<* - i t / 2 __ H(-z) (2.149)

so that it has an equiripple stopband and a passband with degree of flatness of
M — 1 at zero frequency. The choice of W(ej<0) as in Eq. (2.148) also insures that
the peak passband to equiripple stopband error of G(z) is dl/62 as desired. The
choice of the order JVt — 1 of HI(Z) should be done to meet the actual require-
ment on <52 for a given dl/62. An approximate estimate can once again be ob-
tained from the right side of Eq. (2.31).

The overall implementation of G(z) is shown in Fig. 2.40(b). Note that the
overall order JV — 1 = JVt — 1 + M is required to be even so that the com-
plementation indicated in Eq. (2.149) can be performed. Even though the filter
order is N — 1, the number of multipliers is only about (N1 — l)/2. Thus, the
passband flatness of G(z) is achieved in a multiplierless manner by H2( — z), and
the stopband of G(z) is taken care of by Ht( — z). Finally note that only the MP
algorithm is required in the entire design process, and no other optimization
routines are involved.

The key point to be noticed in the above method is that the flatness
requirement at co = 0 has been exploited to extract the building block H2(z),
which can be implemented without multipliers. If a linear programming
approach [or a direct Remez exchange approach with a suitably chosen W(ej(0J]
were employed for this design problem, then such a building block extraction
would not be possible.

Design Example 15. Referring to Fig. 2.39, consider the following specifica-
tions: <$! = 0.016, 62 = 0.2^, a)p = 0.67t, a)T = Q.ln, M = 16. Note that d2 cor-
responds to about 50-dB attenuation in the stopband. The order IV, — 1 of
H,(z) can be estimated from the right side of Eq. (2.31) as

(14.6)(0.05)

With H2(z) as in Eq. (2.146) where M = 16, and with H±(z) designed as described
above, the overall transfer function G(z) has the frequency response as in
Fig. 2.41 (a). Figure 2.4 l(b) shows an equiripple FIR filter of order 44 with the
same stopband attenuation. Note that the equiripple design requires the same
number of multipliers (23) as the new design. Figure 2.4 l(b) also shows a com-
parison of passband details of the new design and the equiripple design. Note
that for the new design the stopband is equiripple, the passband is extremely
flat around a> = 0, and the remaining specifications are also met satisfactorily.

See also Section VII.C and Table IX.
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X OTHER USEFUL TYPES OF FIR FILTERS

This section discusses certain useful additional topics on FIR filter design.
These include minimum-phase filters, half-band filters, and power-complemen-
tary filters.

A Minimum-Phase FIR Filters

As outlined in Section I, FIR filters have several advantages in addition to the
(optional) linear-phase property. Thus, if an application does not particularly
require the linear-phase property, we still have motivations for using FIR rather
than OR filters. These motivations include guaranteed stability in spite of
parameter quantization and absence of limit cycles. In addition, in multirate
signal processing applications FIR filters are extremely efficient and, in general,
outperform their IIR counterparts even in terms of computational complexity
[42, 43].

A major price paid for the linear-phase nature of a FIR filter is that the overall
group delay, which is equal to (N — I)/2, is large. The reason is that for a given set
of frequency response specifications (such as <5X, <52, cop, and o>r), the required
order N — 1 of a FIR design is much higher than that of an IIR design. (Design
Example 2 in Section IV demonstrates this.) If linear phase is not a requirement,
then FIR filters can be designed to have acceptably small group delays in the
passband, even though N — I may continue to be large. In addition, a linear-
phase filter has a 50% redundancy in the coefficients, due to impulse response
symmetry. Thus, a nonlinear-phase FIR filter meeting a set of magnitude
response specifications is expected to have lower order (though not necessarily by
a factor of 2 [16]), compared to a linear-phase design.

Some authors have addressed the problem of optimal FIR design with
minimum phase [44-48]. A minimum-phase FIR transfer function G(z} has the
property that all the zeros zk of G(z) satisfy \zk\ < 1. Consequently, among all
transfer functions that have the same magnitude response | G(ejfa)\, the minimum-
phase function has the smallest phase lag. Thus, if $min(co) denotes the phase
response arg(G(eJt0)) of a minimum-phase transfer function G(z), then

- 0minM ^ ~ <£M for all to (2.151)

where (j>(co) is the phase response of any other transfer function having the same
magnitude response.

The simplest technique [44] for designing a minimum-phase lowpass FIR filter
with equiripple magnitude response is to first design a linear-phase transfer
function H(z) with a response as in Fig. 2.42 and then obtain a new transfer
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Fig. 2.42. Linear-phase function H(z

function HI(Z) as

(2.152)

assuming that-N — 1 is even. The frequency response of H^z) now has double
zeros at the frequencies (ok, as indicated in Fig. 2.43. Thus H1(e

/CJ) can be written
as

H^e*") = e~
j(a(N~ 1)/2Hlo(e

jto) (2.! 53)

where Hlo(e
j<a) is real and positive. We can therefore factorize Ht(z) to yield

HI(Z) = z-(N-'1)/2G(z)G(z^) (2.154)

where G(z) has real coefficients and has its zeros in the region \z\ < 1. Thus, G(z) is
a minimum-phase function and has an equiripple magnitude response as shown
in Fig. 2.44, where the peak errors are given approximately by

2 '
= J26, (2.155)

for small 6l and £>2.
The design procedure is therefore as follows: given the lowpass specifica-

tions o)p, COT, Jj, «52, compute ̂  and 52 using Eq. (2.155), and then design a linear-
phase transfer function H(z) with lowpass specifications a>p, o>r, <51? and 62.
Next compute Ht(z) as in Eq. (2.152). The spectral factor G(z), which is the de-
sired minimum-phase filter, is then computed.

Fig. 2.43. The function H{(z) with double zeros.
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Fig. 2.44. The minimum-phase function G(z).

One disadvantage of this approach is that the computation of the spectral
factor G(z) involves computation of the zeros of the polynomial H^z), which is
time consuming and leads to severe numerical inaccuracies for large values of IV.
A simple way to partially overcome this difficulty is as follows. When the
equiripple filter H(z) is designed using the MP algorithm, the values of the
extremal frequencies atk in Fig. 2.42 are automatically available. A subset of these
values is precisely the double zeros of Hi(ei<0) and their accuracy can be refined if
necessary by means of standard root-refining techniques [49]. Thus, the spectral
factorization is rendered easier because many of the roots have already been
located. Great care should still be exercised because deflation of a high-degree
polynomial H^z) with known roots on the unit circle is known to be a highly
inaccurate process [50].

If we are interested in designing optimal minimum-phase filters with arbitrary
magnitude response, such as nonequiripple stopbands or several stopbands with
different peak errors, a more general design procedure is called for. For example,
we could first obtain a weighted equiripple linear-phase FIR filter with the
constraint that the response H0(e

j(0) be positive for all co. The next step is to
perform the spectral factorization as described above. Detailed results on these
and related techniques are in [45, 46].

Mian and Nainer [47] have proposed a new technique to circumvent the
problem of having to locate the roots of H^z), The method is based on a useful
property of the complex cepstrum [1] and converts the factorization problem to
a computation of two FFTs. The basic idea is that the impulse response g(n)
corresponding to G(z) can be obtained from the cepstral sequence GG(n)
corresponding to G(z), which in turn can be obtained easily from the cepstral
sequence corresponding to HI(Z). For further related discussions, see [47, 48].

Design Example 16. As an example of minimum-phase FIR design, let us
assume that we wish to design a lowpass FIR filter G(z), having minimum phase,
to meet the following requirements: cop = 0.08(27t), tor = 0.12(27r), dt < 0.012,
— 20 logi 0 62 > 25 dB. We find (5t and 52 of the corresponding linear-phase FIR
filter H(z) from Eq. (2.155). Note that H(z) is required to have the same ct>p and car

as the minimum-phase filter G(z). We obtain the estimate for the order of H(z)
as usual from Eq. (2.31) or Eq. (2.32). An order of N — 1 = 60 is found to be
sufficient. Figure 2.45(a) shows the response of H(z) and also the response of
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N O R I t n L I Z E D F R E Q U E N C Y

Fig. 2.45(a). Example 16: The response of the linear-phase filter H(z).

-?0.000
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0.976
0.078

0.100 0.?00 0.300 0.600 8.5W

N O R H n t I Z E D E R E 01)1 N C V

Fig. 2.45(b). Example 16: Magnitude response of the resulting minimum-phase G(z).
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Hi(z) defined in Eq. (2.152). We arrive at the minimum-phase spectral factor G(z)
defined in Eq. (2.154) by using the method described in [47]. Figure 2.45(b) shows
the magnitude response of G(z). Note that all specifications requirements are
satisfied.

B Half-Band FIR Fitters

Certain applications [51-54] need a lowpass filter with cutoff frequency n/2.
Thus "half" of the frequency band is "passed," and the other half is attenuated.
Such half-band filters have interesting properties under certain additional
symmetry constraints, which make them attractive from an implementation
viewpoint. In this subsection we indicate some of these properties.

Let H(z) be a linear-phase FIR transfer function of even order JV — 1 and with
symmetric impulse response (i.e., type 1 filter, Table IV). Then the real-valued
quantity H0(e

jl°) is

H0(e
iM)= £>ncosno>,

n = 0

Since toc = n/2, we have, by Eq. (2.7b)

M =
N - 1

(2.156)

(2.157)

Moreover, assume that the passband ripple and the stopband ripple are the same
(i.e., <3j = <52 = $). Thus, the response exhibits symmetry around n/2. Figure 2.46
(solid curve) shows a representative plot of such a symmetric half-band response.
In view of the symmetry, we easily verify that

H0(e
 jca) = 1 - H0(e

 j

Equivalently, in terms of H(z),

(2. 1 58)

(2.159)

Fig. 2.46. Symmetric half-band response.
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that is,

H(z) + (-l)("~~1)/2H(-z) = z-
{N-l}'2 (2.160)

Substituting Eq. (2.156) in Eq. (2,158), we can verify that the coefficients bn are
constrained as follows:

62n = 0, n^O (2.161)

and 60 = h(M) = 0.5. As a result, the impulse response sequence (Table IV) has
every odd-numbered sample equal to zero for M odd and every even-numbered
sample equal to zero for M even (except the coefficient h(M) = b(Q) — 0.5). Thus,
for M even, h(Q) = h(N — 1) = 0; hence the filter order is actually not N — 1.
Since /j(0) is zero, we can shift the impulse response by one sample and redefine
h(l) to be the zeroth sample; this makes the filter order equal to JV — 3. In
summary, for half-band symmetric frequency responses, N — 1 can always be
taken to be of the form

JV - 1 = 4n0 + 2, «0 = integer (2.162)

In other words, M can be assumed to be odd without loss of generality.
Correspondingly, half-band symmetric linear-phase FIR filters can be assumed
to satisfy

O,
n. A/f (2.163)0.5, n = M

without loss of generality.
A direct-form implementation of half-band symmetric FIR filters as in

Fig. 2.1(b) requires only about (M + l)/2 rather than Af multipliers. In addition,
once we implement H(z) with about (M + l)/2 multipliers, we can get the com-
plementary half-band highpass function Hc(z), defined as

Hc(z) = Z~(N- 1)/2 - H(z) = Z~(N- 1)/2Hco(z) (2.164)

without using additional multipliers. Figure 2.46 (dashed curve) also shows the
response of the highpass linear-phase filter obtained in this manner. In summary,
at the expense of a total of only about (JV — l)/4 multipliers, we have obtained
two half-band filters, operating on the same input signal.

Efficient Use of the MP Algorithm for Half-Band Filter Design 1

We can design the half-band transfer function H(z), which has 6t = d2 and
which satisfies Eq. (2.157), using the MP algorithm by requesting a filter order as
in Eq. (2.162). However, because of computational inaccuracies, the odd-
numbered impulse response coefficients do not exactly satisfy Eq. (2.163) even
though in practice, at the end of the MP design, these coefficients come out to be
very close to that in (2.163). Since we know h(M] = 0.5 and the other odd values of
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h(n) are zero, as indicated in Eq. (2.163), it is judicious to eliminate these
coefficients from the approximation problem, and solve only for the unknown
coefficients (i.e., even-numbered coefficients of the impulse response), thus saving
considerable design time. We now show how this can be accomplished by
designing a linear-phase FIR filter V(z} of odd order (N — l)/2 = M, and then
manipulating the result.

Let V(z) be a linear-phase FIR filter of odd order M with symmetric impulse
response (i.e., type 2, Table IV). We know that V(ejn) is equal to zero. Let V(z) be
designed to be a lowpass filter such that its passband edge is 9P and its stopband
edge is Bt = n. Letting

V(eJ(0) = e ~Ja>M'2 (2.165)

we see that V0(e
jl°) has the typical form shown in Fig. 2.47(a) for 0 < co < 2n. (The

plot is antisymmetric with respect to n because of the factor cos(oj/2) in V0(e
jf"), as

indicated in Table IV.) Now consider a filter with transfer function V(z2). The
corresponding response V(e2jfa) is shown in Fig. 2.47(b). If this curve is now
shifted up by adding a constant equal to unity, the result is precisely the half-band

-1

V0(e2jw)

1+e

Fig. 2.47. Pertaining to half-band filter design.
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symmetric response1 H0(e
j<a), as shown in Fig. 2.46! Thus H(z) can be designed as

V(Z2} + 2 -<*-D/2
/f(z) = ]l5Li±± -------- (2.166)

After we find the coefficients v(n) of the filter V(z) of order (N — l)/2, we
determine the coefficients of H(z) to be

f0.5u(n/2), n
fe(n) = j O , n = o d d ^ M (2.167)

[0.5, n = M

In summary, given the specifications for the half-band filter H(z) in the form of top

and cor satisfying Eq. (2.157) and d, we find e = 26 and dp = 2o)p in Fig. 2.47(a),
and design V(z) using the MP algorithm. We obtain H(z) by using Eq. (2.167).

Applications 2

An interesting application of such half-band filter banks is in signal splitting
and reconstruction in the frequency domain (such as in subband coding [53, 54]).
An accurate discussion of this involves introducing multirate concepts to take
into account sampling-rate alterations, which is the subject of Chapter 3. We
therefore outline the concept of frequency-band splitting and reconstruction,
under the assumption that there is no sampling-rate change involved.

Referring to Fig. 2.46, which represents the symmetric half-band response, we
can see clearly that the function GQ(eJf°) = H0(e

jv>) + 8 is positive for all co, and
hence if we define

G(z) - H(z) + 6z'~(N~1}/2 = z~( A r~1 ) / 2G0(z) (2.168)

then G(z) can be factorized as

G(z) = Z-^-WG^Z-^G^Z) (2.169)

where Gt(z) has real-valued coefficients. Moreover, because of Eq. (2.160) G(z)
satisfies

G(z) + (-!)<"- 1)/2G(-z) = (1 + 2<5)z~< N~1 ) / 2 (2.170)

Substituting Eq. (2.169) into Eq. (2.170), we arrive at

G^z-^G^z) + G^-z^GJ-z) = (1 + 26) (2.171)

Note that the transfer function Gx(z) in Eq. (2.169) has order M = (N - l)/2. We
can simplify notation in Eq. (2.171) by defining

G2(z) = z-(JV-1)/2G1(-z~1) (2.172)

f Except for a scale factor of 2.
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Writing G^z) in terms of its impulse response
<JV-l ) /2

we then have
(w-n/2

(2.174)

Notice that G2(z) is causal. The zeros of G2(z) are obtained by replacing each zero
zr of Gj(z) with — l/zr. It is easily verified that if Gt(z) is lowpass, then G2(z) is
highpass, and vice versa. Moreover, if Gt(z) has minimum phase, then G2(z) has
maximum phase, and vice versa. On the unit circle, Eq. (2. 1 7 1 ) can be equi valently
rewritten now as

\G,(e^}\2 + \G2(e
j(0)\2 = I (2.175)

which shows that Gj(z) and G2(z) form a power-complementary pair.f For
example, if Gt(z) is lowpass, then G2(z) has a highpass response such that the sum
of magnitude squares adds up exactly to unity for all frequencies. This property is
extremely useful in reconstruction of a signal that has been split into lowpass and
highpass bands. Thus, see Fig. 2.48 in which the signal x(n) has been split into a
lowpass signal xt(n) and a highpass signal x2(n). Figure 2.48 also shows how the
components xt(n) and x2(n) can be recombined by using the reconstruction filters
(or synthesis filters)

F2(z) = Z-W-WG^Z-" (2.176)

By making use of Eq. (2.171), we can verify that the reconstructed signal x(n) is

(2.177)

Thus, the power-complementary property represented by Eq. (2.171) or,
equivalently, by Eq. (2.175) enables us to reconstruct x(n) with no error except for
an overall delay of (N — l)/2 samples!

Note that even though we started with a linear-phase transfer function H(z)
[see Eq. (2.156)1, the factorized transfer function Gt(z) does not necessarily have
linear phase. As a result, G2(z), which is obtained from Gj(z) by using Eq. (2.172),
does not have linear phase in general.1

t Equation (2.175) may itself be taken as the definition of a power-complementary pair of transfer
functions GI(Z), G2(z).

1 It can be shown [55] that if P(z) and Q(z) are two linear-phase FIR filters satisfying the power-
complementary property (i.e., \P(eJ<a)\2 + \Q(ejm)\2 = 1), then the magnitude responses \P(e'm)\ and
\Q{ei<a)\ are trivial; specifically, they are either constants or functions of the form |cos(Ka>)| and
|sin(Ko>)|.
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x(z)

analysis stage synthesis stage

Fig. 2.48. Signal splitting and reconstruction.

Design Example 17. We wish to design a lowpass filter Gt(z) and a cor-
responding highpass filter G2(z), defined as in Eq. (2.172), such that Eq. (2.175) is
satisfied. To do this, we first design the linear-phase symmetric, half-band trans-
fer function H(z). The specifications cop and o>r for H(z) are the same as those
of Gt(z), which in turn should satisfy the symmetry condition of Eq. (2.157).
Moreover, H(z) should have dt = <52, which we can find from the attenuation
requirements of Gt(z) by using Eq. (2.155). (Note that since dl = <52, then <5t, I2

in Eq. (2.155) cannot be independently specified.) Let the resulting specifications
of H(z) for certain given specifications of G^z) be

o»p = 0.2(2*), cor = 0.3(2?r), < 0.000352 (2.178)

-20.

-30.

N O R M A L I Z E D F R E Q U E N C Y

Fig. 2.49. Example 17: The power-complementary pair of FIR filters.
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An order N — 1 = 38 is found sufficient for H(z). The linear-phase, symmetric,
half-band FIR filter H(z) can be designed by the MP algorithm efficiently, as
described earlier. Since H(z) is thus known, Gx(z) in Eq. (2.169) can be computed.
The algorithm due to Mian and Nainer [47] can again be used, if G^z) is required
to be a minimum-phase function. Figure 2.49 shows the response of the resulting
power-complementary pair.

We conclude this section by noting that filter banks of the form described
above can also be used with slight modification to reconstruct x(n) after
undersampling the filtered versions x^n) and x2(n) in Fig. 2.48. Smith and
Barnwell [54] have shown how exact reconstruction can be done in this manner
with no distortion (except for an overall delay).

XI SUMMARY

In this chapter we presented several techniques for the design of FIR digital
filters, including recent procedures that lead to efficient implementations. The
window-based methods of Section III are the simplest to use, whereas the Remez
exchange methods of Section IV give rise to a much wider class of filter functions.
Almost any kind of design requirements (except tangency requirements in the
frequency domain and time domain constraints) encountered in practice can be
met with the methods of Section IV. Certain specific tangency requirements can
be met with the maximally flat filters of Section V, whereas more general
tangency requirements and time domain requirements can be met by the linear
programming approach of Section VI. The methods of Section V, however,
have the advantage of design simplicity, because no optimization programs
are required. In addition, the methods of Section V can be used to design
multiplierless filters.

Once a linear-phase FIR filter has been designed, its cutoff frequency (and the
entire response) can be changed and manipulated in other ways by invoking the
transformation tools and sharpening techniques described in Section VII. A
linear-phase FIR filter can easily be converted to a two-dimensional FIR filter
through the mapping procedures of Section VIII.

Even though many of the methods in Sections III to VIII are optimal or
suboptimal in certain theoretical ways, they do not necessarily lead to optimal
implementations in the sense of network complexity. Section IX describes filter
design techniques that lead to implementations that are better than direct
implementations of the methods of earlier sections. The methods of Section IX
are essentially variations and combinations of the methods of earlier sections,
so the importance of the methods of Sections III to VIII should not be
underestimated. Finally, Section X introduces the designer to useful types of FIR
filters that are of interest for specific applications.
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A question of prime importance that a digital filter designer encounters is
whether to design a FIR filter or an IIR filter for a given application. There is no
definite answer to this question because the decision depends on the design
specifications, requirements on the group delay, internal word length available,
choice of architecture, and so on. However, some guidelines are available to
partially help the designer in this regard; the excellent study by Rabiner et al. [56]
gives such guidelines for the specific case of equiripple direct-form FIR and
cascade-form IIR filters. Basically, for most combinations of specifications IIR
filters are more economical (in terms of multiplications per output sample), but
they introduce a phase distortion. FIR filters, on the other hand, can be designed
with exact linear phase. IIR filters with group-delay equalizers in cascade, which
have approximately linear phase in the overall passband, are generally more
expensive that direct-form FIR filters meeting the same specifications [56]. Thus
in applications requiring linear phase, FIR filters have a very important place;
in addition, nonrecursive FIR implementations are always stable in spite
of coefficient quantization. Moreover, instead of comparing IIR filters with
equiripple FIR designs, if a comparison is made with recent FIR designs
(Section IX), then FIR filters are even more efficient than IIR designs with no
group-delay equalization.

APPENDIX A. DESIGN CHARTS FOR DIGITAL FIR
DIFFERENTIATORS AND HUBERT TRANSFORMERS
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Fig. A2.1. Design chart for optimal FIR differentiators [60].
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OPTIMUM HILBERT TRANSFORMERS
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Fig. A2.2. Design charts for optimal FIR Hilbert transformers [61 ]
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APPENDIX B. PROGRAM LISTINGS FOR LINEAR-PHASE
FIR FILTER DESIGN

As mentioned in the text, references [19,21,25] contain useful design programs
for linear-phase FIR filters. The accompanying listing is based on the program
due to McClellan, Parks, and Rabiner, published in [19]. This program is
appropriately modified here in order to be able to obtain new and more efficient
designs. As an illustration, Design Examples 6 and 13 can be obtained by
selecting an appropriate set of input data.

The program in [19] is used here as a subroutine, invoked by the main program
MAIN.f. The following distinct program files should be compiled and linked
together before execution:

1. Main program: MAIN.f.
2. Subprograms: maclel.f, magres.f, effwl.f, extfun.f, rrs.f, zero.f and compe.f.

The program efffwl.f which invokes extfun.f, zero.f, and rrs.f is crucial when we
attempt to exploit the flexibility of the Remez exchange technique. Comments are
included in the listings which clarify some of these facts. The user should study
these comments carefully before attempting to use the programs for applications.

The listings are obtained from a FORTRAN 77 version running on the VAX
machine under the Berkeley Unix V4.2 operating system. The input and output
files are conveniently designated as FORT.n files. The program can be adapted to
other environments simply by changing the READ, WRITE, and FORMAT
statements.

To run the compiled executable code, one must prepare the following input file
(and keep it in the name FORT.9):

IMETH, NFILT, JTYPE, NBANDS, LGRID.
BAND EDGES.
DESIRED VALUES IN THE BANDS.
DESIRED WEIGHTS IN THE BANDS.

The meanings of each of the above lines are elaborated in the accompanying
listing of M ACLEL.f. By choosing the parameter IMETH appropriately, one can
use the programs for many applications. Note that the parameters specified in the
input file FORT.9 describe the filter designed by the MP algorithm, which is not
necessarily the final transfer function. Similarly, the file FORT.3, which contains
some of the results of the design, pertain to the filter designed by the MP
algorithm. As an illustration, in Design Example 6, the filter H^z) is the one
specified in FORT.9. Thus, H^z) in Eq. (2.58) is designed by creating FORT.9 as
follows:

3,43, 1,2,0
0, .14, .18, .5
1,0
1, 1
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The impulse response of H^z) and other details pertaining to H^z) are written in
FORT.3 by the program MACLEL.f.

The frequency response of the overall filter [for example, Hl(z)H2(z) in (2.58)]
is computed by the program COMPE.f automatically before the execution
terminates. This response is written in the output file FORT. 18. The file FORT.7
is used for an intermediate purpose, and the user is requested not to interfere with
the contents of FORT.7.
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c MAIN.f
c

c
c This main program demonstrates the use of the McClelIan-Parks
c program in [19], as a subroutine.
c The input and output statements and files are
c compatible with a Fortran 77 version running under the Berkeley
c Version 4.2 of the Unix operating system.
c With simple changes in the input-output details, this program
c can be run in other operating environments..

dimension h(lO25),hresp(514)
call ieee21
in=7
rewind(9)
read (9,*)imeth
iout=18
m=9
nfft=2**m
nout=nfft/2+1
rewind(in)
rewind(iout)
read(in. *)norder
nag=l +norder/2
do 1 i=l,nag
read(in,*)h(i)
h(norder+2-i)=h(i)

1 continue
do 5 i=norder+l,fft

5 h(i)=0.0
call magres(h,hresp,m)
noutl=nout-1
call compe(hresp,nout1)

c
c Normalize the maximum magnitude to unity:
c

do 3 i=l,nout
i f(hmax.11.abs(hresp(i)))hmax=abs(hresp(i))

3 continue
do 4 i=l,nout

4 hresp(i)=hresp(i)/hmax
rewind(iout)
write(iout,*)noutl
do 2 i=l,nout
x=(i-l.O)/(nout-1.0)
write(iout, * )x/2, hresp (i) ,hresp(i)

2 continue
stop
end
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c MACLEL.f
c

c This program is being used here as a subroutine.
c Calling sequence: call ieee21
c There are no arguments to be passed; all input is read by ieee21
c from the file FORT.9
c
c
c
c Original authors: james h. mcclellan
c department of electrical engineering and computer science
c massachusetts institute of technology
c Cambridge, mass. O2139
c.
c thomas w. parks
c department of electrical engineering
c rice university
c houston, texas 77OO1
(""'

c lawrence r. rabiner
c bell laboratories
c murray hill, new jersey O7974
c
c input:
c imeth-- Method of design
c l=Conventional equiripple design
c 2=Prefilter-equalizer based design, using the recursive
c running sum.
c 3=Design as in Eqn. (2.58), where (2.57) represents
c a transmission zero.
c nfilt-- filter length
c jtype-- type of filter
c 1 = multiple passband/stopband filter
c 2 = differentiator
c 3 = hilbert transform filter
c nbands-- number of bands
c Igrid-- grid density, will be set to 16 unless
c specified otherwise by a positive constant.
c
c edge(2*nbands)-- bandedge array, lower and upper edges for each band
c with a maximum of 1O bands.
c
c fx(nbands)-- desired function array (or desired slope if a
c differentiator) for each band.
c
c wtx(nbands)-- weight function array in each band, for a
c differentiator, the weight function is inversely
c proportional to f.
c
c sample input data setup:
c 3,41,1,2,0
c 0,.14,.18,.5
c 1,O
c 1,1
c this data specifies a length 41 lowpass filter with
c passband 0 to O.14 and stopband 0.18 to O.5.
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c The passband weight is equal to the stopband weight.
c Since imeth=3, the desired passband shape, and
c the detailed shape of the weighting function are
c governed by EXTFUN.f, in a manner detailed in the
c listing of this function.
c The grid density defaults to 16.
c
c the following input data specifies a length 32 fullband
c differentiator with slope 1 and weighting of 1/f.
c the grid density will be set to 2O.
c 1,32,2,1,20
c O,O.5
c l.O
c l.O
c Since imeth=l here, the design is a conventional
c weighted equiripple design.

subroutine ieee21
common pi2,ad,dev,x,y,grid,des,wt,alpha,iext,nfcns,ngrid
common /oops/niter,iout
dimension iext(252),ad(252),alpha(252),x(252),y(252)
dimension h(252)
dimension des(4O32),grid(4O32),wt(4O32)
dimension edge(20),fx(lO),wtx(lO),deviat(1O)
double precision pi2,pi
double precision ad,dev,x,y
double precision gee,d
integer bdl,bd2,bd3,bd4
data bdl,bd2,bd3,bd4/lhb,lha,Ihn,Ihd/
input=9

rewind(3)
iout=3
rewind(iout)

pi=4.O*datan(1.OdO)
pi2=2.OdOO*pi

iout2=7
rewind(iout2)

c
c the program is set up for a maximum length of 128, but
c this upper limit can be changed by redimensioning the
c arrays iext, ad, alpha, x, y, h to be nfmax/2 + 2.
c the arrays des, grid, and wt must dimensioned
c 16(nfmax/2 + 2).
c

n fmax=5OO
1OO continue

j type=O
c
c program input section
c

read(input,*)imeth, nfilt,jtype,nbands,Igrid
c replace stop by return

if(nfilt.eq.O)return
110 format(4i5)

if(nfilt.le.nfmax.or.nfilt.ge.3) go to 115
call error

c replace stop by return
return

115 if(nbands.le.O) nbands=l
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c
c grid density is assumed to be 16 unless specified
c otherwise
c

if(lgrid.le.0) lgrid=16
jb=2*nbands
read(input,*) (edge(j),j=l,jb)

freqs=edge(3)
120 format(4f15.9)

read(input,*) (fx(j),j=l,ribands)
read(input,*) (wtx( j),j=l,ribands)
rewind(input)

if (jtype.gt -O. and. jtype . le. 3) go to 125
call error

c replace stop by return
return

125 neg=l
if (jtype.eq. 1) neg=O
nodd=nfilt/2
nodd=nfilt-2*nodd
nfcns=nfilt/2
if(nodd.eq.1.and.neg.eq.O) nfcns=nfcns+l

c
c set up the dense grid, the number of points in the grid
c is (filter length + 1) *grid density/2
c

grid(l)=edge(l)
delf=lgrid*nfcns
delf=0.5/delf
if(neg.eq.O) go to 135
if (edge (1) .It. del f) grid(l)=delf

135 continue
j=l
1=1
lband=l

14O fup=edge(l+l)
145 temp=grid(j)

c
c calculate the desired magnitude response and the weight
c function on the grid
c

des(j)=eff(temp,fx, wtx,Iband,jtype)
wt(j)=wate(temp,f x,wtx,Iband,j type,freqs)
j=j+l
grid(j)=temp+delf
if (grid(j) .gt.fup) go to 15O
go to 145

ISO grid(j-l)=fup
des(j-1)=eff(fup,fx,wtx,Iband,jtype)
wt(j-l)=wate(fup,fx,wtx,Iband,jtype,freqs)
lband=lband+l
1=1+2
if(Iband.gt.nbands) go to 16O
grid (j)=edge (1)
go to 14O

16O ngrid=j-l
i f (neg.ne.nodd) go to 165
if(grid(ngrid).gt.(O.5-delf)) ngrid=ngrid-l

165 continue
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c
c set up a new approximation problem which is equivalent
c to the original problem
c

if(neg) 17O,170,180
17O if(nodd.eq.l) go to 2OO

do 175 j=l,ngrid
change=dcos(pi*grid(j))
des(j)=des(j)/change

175 wt(j)=wt(j)*change
go to 2OO

ISO if(nodd.eq.l) go to 190
do 185 j=l,ngrid
change=dsin(pi*grid(j))
des(j)=des(j)/change

185 wt(j)=wt(j)*change
go to 20O

190 do 195 j=l,ngrid
change=dsin(pi2*grid(j))
des(j)=des(j)/change

195 wt(j)=wt(j)*change
c
c initial guess for the extremal frequencies--equally
c spaced along the grid
c
ZOO temp=float(ngrid-1)/float(nfcns)

do 21O j=l,nfcns
xt=j-l

21O iext(j)=xt*temp+1.0
iext(nfcns+1)=ngrid
nml=nfcns-l
nz=nfcns-i"l

c
c call the remez exchange algorithm to do the approximation
c problem
c

call remez
c
c calculate the impulse response,
c

if(neg) 3OO,300,320
3OO if(nodd.eq.O) go to 31O

do 3O5 j=l,nml
nzmj=nz-j

3O5 h(j)=O.5*alpha(nzmj)
h(nfcns)=alpha(1)
go to 35O

31O h(l)=O.25*alpha(nfcns)
do 315 j=2,nml
nzmj=nz-j
nf2j=nfcns+2-j

315 h(j)=O.25*(alpha(nzmj)+alpha(nf2j))
h(nfcns)=O.5*alpha(l)+O.25*alpha(2)
go to 35O

32O if(nodd.eq.O) go to 33O
h (1) =0. 25*alpha (nfcns)
h (2) =0. 25*alpha (nml)
do 325 j=3,nml
nzmj=nz-j
nf3j=nfcns+3-j
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325 h (j)=O. 25* (alpha (nzmj) -alpha (nf3j) )
h(nfcns)=0.5*alpha(l)-0.25*alpha(3)
h(nz)=O.O
go to 350

330 h(l}=0.25*alpha(nfcns)
do 335 j=2,nml
nzmj=nz-j
nf2j=nfcns+2-j

335 h(j)=O.25*(alpha(nzmj)-alpha(nf2j))
h(nfcns)=0.5*alpha(1)-0.25*alpha(2)

c
c program output section.
c
350 write(iout,360)
360 format(Ihl, 70(lh*)//15x,29hfinite impulse response (fir)/

113x,34hlinear phase digital filter design/
217x,24hremez exchange algorithm/)
if(jtype.eq.l) write(iout,365)

365 format(22x,15hbandpass filter/)
if(jtype.eq.2) write(iout,370)

37O format(22x,14hdifferentiator/)
if(jtype.eq.3) write(iout,375)

375 format(2Ox,19hhilbert transformer/)
write (iout,378) nfilt

378 format(20x,16hfilter length = ,i3/)
write(iout,38O)

380 format(15x,28h***** impulse response *****)
norder=nfilt-l
write(iout2,*)norder

do 381 j=l,nfcns
write (iout2,*)h(j)

k=nfilt+l-j
if(neg.eq.O) write(iout,382) j,h(j).k
if(neg.eq.l) write (iout,383) j,h(j),k

381 continue
382 format(13x,2hh(,i2,4h) = ,e!5.8,5h = h(, i3, Ih))
383 format(13x,2hh(,i2,4h) = ,e!5.8,6h = -h(,i

if(neg.eq.1,and.nodd.eq.1) write(iout,384) nz
384 format(13x,2hh(,i2,8h) = 0.0)

do 45O k=l,nbands,4
kup=k+3
i f(kup.gt.nbands) kup=nbands
write(iout,385) (bdl,bd2,bd3,bd4,j,j=k,kup)

385 format (/24x, 4 (4al, i 3, 7x))
write(iout,390) (edge(2*j-l),j=k,kup)

390 format(2x,15hlower band edge,5f14.7)
write(iout,395) (edge(2*j),j=k,kup)

395 format(2x,15hupper band edge,5f14.7)
if(jtype.ne.2) write(iout,40O) (fx(j),j=k,kup)

4OO format(2x,13hdesired value,2x,5fl4.7)
if(jtype.eq.2) write(iout,4O5) (fx(j),j=k,kup)

4O5 format(2x,13hdesired slope,2x,5fl4.7)
write(iout,410) (wtx(j),j=k,kup)

410 format(2x,9hweighting,6x,5f14.7)
do 42O j=k,kup

42O deviat(j)=dev/wtx(j)
write(iout,425) (deviat(j),j=k,kup)

425 format(2x,9hdeviation,6x,5f14.7)
if(jtype.ne.1) go to 45O
do 43O i=k.kup
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43O deviat (j) =2O.O*aloglO(deviat (j)+fx(j))
write(iout,435) (deviat (j) , j=k,kup)

435 format(2x,15hdeviation in db,5fl4,7)
450 continue

do 452 j=l,nz
ix=iext(j)

452 grid(j)=grid(ix)
c the following writes the extremal frequencies
c in the output, please also copy them into fort.4

write(iout,455) (grid(j) , j=l,nz)
c ioutl=4
c write(ioutl,456) (grid(j),j=l,nz)
456 format(Ix,f14.9)
455 format(/2x,47hextremal frequencies--maxima of the error curve/

1 (2x,5fl2.7))
write(iout,46O)

46O format(/lx,7O(lh*)/lhl)
go to 10O
end

c

c subroutine: error
c this routine writes an error message if an
c error has been detected in the input data.

c
subroutine error
common /oops/niter,iout
write(iout,l)

1 format(44h ************ error in input data **********)
return
end

c
C '

c subroutine: remez
c this subroutine implements the remez exchange algorithm
c for the weighted chebyshev approximation of a continuous
c function with a sum of cosines, inputs to the subroutine
c are a dense grid which replaces the frequency axis, the
c desired function on this grid, the weight function on the
c grid, the number of cosines, and an initial guess of the
c extremal frequencies. the program minimizes the chebyshev
c error by determining the best location of the extremal
c frequencies (points of maximum error) and then calculates
c the coefficients of the best approximation.
C ~ ' — ~" — — — — — — — — — — — — — „_ — , _._

c
subroutine remez
common pi2,ad,dev,x,y,grid,des,wt,alpha,iext,nfcns,ngrid
common /oops/niter,iout
dimension iext(252),ad(252),alpha(252),x(252),y(252)
dimension des(4O32),grid(4032),wt(4O32)
dimension a (66) ,p(65) ,q(65)
double precision pi2,dnum,dden,dtemp,a,p,q
double precision dk,dak
double precision ad,dev,x,y
double precision gee,d
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c
c the program allows a maximum number of iterations of 25
c

itrmax=25
devl=~l.O
nz=nfcns+l
nzz=nfcns+2
niter=O

10O continue
iext(nzz)=ngrid+l
niter=niter+l
if(niter.gt.itrmax) go to 4OO
do 110 j=l,nz
jxt=iext(j)
dtemp=grid(jxt)
dtemp=dcos(dtemp*pi2)

110 x(j)=dtemp
jet=(nfcns-l)/15+l
do 120 j=l,nz

12O ad(j)=d(j,nz, jet)
dnum=O.O
dden=O,0
k=l
do 130 j=l,nz
l=iext(j)
dtemp=ad(j)* des(1)
dnum=dnum-»-dt emp
dtemp=float(k)*ad(j)/wt(1)
dden=dden-»-dtemp

130 k=-k
dev=dnum/dden
write(iout,131) dev

131 format(lx/12hdeviation = ,fl2.9)
nu=l
if(dev.gt.0.0) nu=~l
dev=-float(nu)*dev
k=nu
do 14O j=l,nz
l=iext(j)
dtemp=float(k)*dev/wt(1)
y (j) =des (1) -i-dtemp

14O k=-k
if(dev.gt.devl) go to ISO
call ouch
go to 4OO

ISO devl=dev
jchnge=O
kl=iext(l)
knz=iext(nz)
klow=0
nut=-nu
j=l

c
c search for the extremal frequencies of the best
c approximation
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20O if(j.eq.nzz) ynz=comp
if(j.ge.nzz) go to 300
kup=iext(j+l)
l=iext(j)+l
nut=-nut
if(j.eq.2) yl=comp.
comp=dev
if(l.ge.kup) go to 22O
err=gee(1,nz)
err=(err-des(1))*wt(1)
dtemp= float (nut) * err- 001153
if (dtemp. le.O.O) go to 22O
corop=float(nut)*err

210 1=1+1
if(l.ge.kup) go to 215
err=gee(l,nz)
err=(err-des(l))*wt(1)
dtemp=float(nut)*err-comp
if(dterap.le.O.O) go to 215
comp=float(nut)*err
go to 21O

215 iext(j)=l-l
j=j+l
klow=l-l
j chnge=jchnge+1
go to 2OO

220 1=1-1
225 1=1-1

if(l.le.klow) go to 250
err=gee(l,nz)
err=(err-des(1))*wt(l)
dt©np=float(nut)*err-comp
if(dtenp.gt.O.O) go to 23O
if(jchnge.le.O) go to 225
go to 26O

23O comp=float(nut)*err
235 1=1-1

if(l.le.klow) go to 24O
err=gee(l,nz)
err=(err-des(1))*wt(1)
dten5J=f loat (nut) *err-comp
if(dtemp.le.O.O) go to 24O
comp=float(nut)*err
go to 235

24O klow=iext(j)
iext(j)=l+l
J=j+l
j chnge=jchnge-t-1
go to 2OO

250 l=iext(j)+l
if(jchnge.gt.O) go to 215

255 1=1+1
if(l.ge.kup) go to 26O
err=gee(l,nz)
err=(err-des(1))*wt(1)
dtemp=float(nut)*err-comp
if(dtenp.le.O.O) go to 255
comp=float(nut)*err
go to 21O
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260 klow=iext(j)
j=j + l
go to 2OO

30O if(j.gt.nzz) go to 32O
if (kl.gt.iext(l)) kl=iext(l)
if(knz.It.iext(nz)) knz=iext(nz)
nutl=nut
nut=-nu
1=0
kup=kl
comp=ynz*(1.OOOOl)
luck=l

31O 1=1+1
if(l.ge.kup) go to 315
err=gee(l/nz)
err=(err-des(1))*wt(!)
dtemp=float(nut)*err-comp
if(dtemp.le.O.O) go to 31O
comp=float(nut)*err
j=nzz
go to 21O

315 luck=6
go to 325

32O if(luck.gt.9) go to 35O
if (comp.gt.yl) yl=comp
kl=iext(nzz)

325 l=ngrid+l
klow=knz
nut=-nutl
comp=yl*(1.00001)

330 1=1-1
if(l.le.klow) go to 34O
err=gee(l,nz)
err=(err-des(1))*wt(1)
dtemp=f loat (nut) *err-conrp
i f (dterap. le. 0.0) go to 330
j=nzz
comp=float(nut)*err
luck=luck+lO
go to 235

34O if(luck.eq.6) go to 370
do 345 j=l,nfcns
nzzmj=nzz-j
nzmj=nz-j

345 iext(nzzmj)=iext(nzmj)
iext(l)=kl
go to 10O

35O kn=iext(nzz)
do 36O j=l,nfcns

36O iext(j)=iext(j+l)
iext(nz)=kn
go to 100

37O if(jchnge.gt.0) go to 1OO
c
c calculation of the coefficients of the best approximation
c using the inverse discrete fourier transform
c
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4OO continue
nml=nfcns-l
fsh=l.Oe-O6
gtemp=grid(l)
x(nzz)=-2.O
cn=2*nfcns-l
delf=l.O/cn
1=1
kkk=O
if(grid(1).It.O.01.and.grid(ngrid).gt.0.49) kkk=l
if(nfcns.le.3) kkk=l
if(kkk.eq.l) go to 4O5
dtemp=dcos(pi2*grid(l))
dnum=dcos(pi2*grid(ngrid))
aa=2.O/(dtemp-dnum)
bb=-(dtemp+dnum)/(dtemp-dnum)

4O5 continue
do 430 j=l,nfcns
ft=j-l
ft=ft*delf
xt=dcos(pi2*ft)
if(kkk.eq.l) go to 41O
xt=(xt-bb)/aa
xtl=sqrt(1.O-xt*xt)
ft=atan2(xtl,xt)/pi2

41O xe=x(l)
if(xt.gt.xe) go to 42O
if((xe-xt).It.fsh) go to 415
1=1+1
go to 41O

415 a(j)=y(l)
go to 425

42O if((xt-xe).It.fsh) go to 415
grid(l)=ft
a(j)=gee(l,nz)

425 continue
if(l.gt.l) 1=1-1

430 continue
grid(1)=gtemp
dden=pi2/cn
do 510 j=l,nfcns
dtemp=O.0
dnum=j-1
dnum=dnum* dden
if(nml.lt.l) go to 505
do 5OO k=l,nml
dak=a (k-H)
dk=k

5OO dtemp=dtemp+dak*dcos(dnum*dk)
5O5 dtemp=2.0*dtemp+a(l)
51O alpha(j)=dtemp

do 55O j=2.nfcns
55O alpha(j)=2.0*alpha(j)/cn

alpha(1)=alpha(1)/en
if(kkk.eq,l) go to 545
p(1)=2.O*alpha(nfcns)*bb+alpha(nml)
p(2)=2.O*aa*alpha(nfcns)
q(l)=alpha(nfcns-2) -alpha (nfcns)
do 54O j=2,nml
if(j.lt.nml) go to 515
aa=O.5*aa
bb=O.5*bb
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515 continue
p(j+l)=0.0
do 520 k=l,j
a(k)=p(k)

520 p(k)=2.O*bb*a(k)
p(2)=p(2)+a(l)*2.O*aa
jml=j-l
do 525 k=l,jml

525 p(k)=p(k)+q(k)+aa*a(k+l)
jpl=j+l
do 53O k=3, jpl

530 p(k)=p(k)+aa*a(k-l)
if(j.eq.nml) go to 540
do 535 k=l,j

535 q(k)=-a(k)
nflj=nfcns-l-j
q(l)=q(l)+alpha(nflj)

54O continue
do 543 j=l,nfcns

543 alpha (j)=p(j)
545 continue

if (nfcns .gt . 3) return
a Ipha (n f cns+ 1) =O . O
alpha (nfcns+2) =O.O
return
end

c function : d
c function to calculate the lagrange interpolation
c coefficients for use in the function gee.

double precision function d(k,n,m)
common pi2,ad,dev, x,y, grid,des, wt, alpha, iext,nfcns,ngrid
dimension iext(252) , ad (252) .alpha (252) ,x(252) ,y (252)
dimension des (4032) , grid (4032) ,wt(4O32)
double precision ad^dev^x.y
double precision q
double precision pi2
d=l.O
cpx(k)
do 3 1=1, m
do 2 j=l/n,m
if (j-k)l,2,l

1 d=2.0*d*(q-x(j))
2 continue
3 continue
d=l . 0/d
return
end

c function: gee
c function to evaluate the frequency response using the
c lagrange interpolation formula in the barycentric form

double precision function gee(k,n)
common pi2, ad, dev,x,y, grid, des, wt, alpha, iext,nfcns,ngrid
dimension iext(252) , ad (252) , alpha (252) ,x(252) ,y(252)
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dimension des(4O32),grid(4O32),wt(4O32)
double precision p,c,d,xf
double precision pi2
double precision ad,dev,x,y
p=O.O
xf=grid(k)
xf=dcos(pi2*xf)
d=O.O
do 1 j=l,n
c=xf-x(j)
c=ad(j)/c
d=d+c

1 p=p+c*y(J)
gee=p/d
return
end

c
c ~ ~ ~ ~~
c subroutine: ouch
c writes an error message when the algorithm fails to
c converge, there seem to be two conditions under which
c the algorithm fails to converge: (1) the initial
c guess for the extremal frequencies is so poor that
c the exchange iteration cannot get started, or
c (2) near the termination of a correct design,
c the deviation decreases due to rounding errors
c and the program stops. in this latter case the
c filter design is probably acceptable, but should
c be checked by computing a frequency response.
<-* . _ — _ — — « ,
c

subroutine ouch
common /oops/niter,iout
write(iout,1)niter

1 format(44h ************ failure to converge **********/
141hQprobable cause is machine rounding error/
223hOnumber of iterations =,14/
339hOif the number of iterations exceeds 3,/
462hOthe design may be correct, but should be verified with an fft)
return
end
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c MAGRES.f
c
c
c
c ********************************************************************
c
c INPUTS: fr(l) .... fr(2'm): real valued data
c m: where 2~m is the number of points
c
c OUTPTS: fmag(l) .. fmag(2~m): The magnitude of DFT
c
c ********************************************************************
c

subroutine magres(fr,fmag,m)
dimension fr(1),frnw(1O25),finw(1O25),fmag(1)
pi=4*atan(l.dOO)
n=2**m
do 222 i=l,n

frnw(i)=fr(i)
finw(i)=O.O

222 continue

ll=n/2
do 1 k=l,m
tta=pi/ll
ti=sin(tta/2)
cs=-2*ti*ti
sd=sin (tta)
c=l
s=O
do 2 1=1, mm

a=frnw(i)-frnw(ii)
b=finw(i)-finw(ii)
frnw(i)= frnw(i)+frnw(ii)
f inw (i) =f inw (i) +f inw (ii)
frnw(ii)=a

2 finw(ii)=b
if (11-2)6,5,5

5 do 4 j=2,ll
3 cold=c

c=cs*c-sd*s+c
s=cs*s+sd*cold-t-s
do 4 1=1, mm

a=frnw(i) -frnw(ii)
b=finw(i)-finw(ii)
frnw (i) =frnw (i) +frnw (ii)
f inw (i) =f inw (i) +f inw (ii)
frnw(ii)=a*c+b*s

4 finw(ii)=b*c-a*s
11=11/2

X nnH'—TinD* 2
6 call fftbi(frnw,finw,m)

do 111 i=l,n
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111 fmag(i)=cabs (cmplx(frnw(i) , finw(i)))
return
end
subroutine f ftbi (fr, f i, m)
dimension fr(1),fi(1)
n=2**m
ib=O
nil=n-l
do 1 i=2,nil
do 2 j=l,m
nt=n/(2**j)
if (ib-nt)3,2,2

2 ib=ib-nt
go to 7

3 ib=ib+nt
if (ib+l-i)l,l,5

5 t=fr (i)
fr(i)=fr(ib-H)
fr(ib+l)=t
t=fi(i)
fi(i)=f
fi(ib+l)=t

1 continue
7 return

end
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c

c EFFWl.f
c
c This program now works in conjunction with the Fortran functions
c "EXTFUN.f", "RRS.f", and "ZERO.f".
c Modified by P. P.Vaidyanathan, Dept. EE, Caltech, Pasadena, CA 91125.

c
c EFF: Function to calculate the desired magnitude response
c as a function of frequency.
c An arbitrary function of frequency can be
c approximated if the user replaces this function
c with the appropriate code to evaluate the ideal
c magnitude . note that the parameter freq is the
c value of normalized frequency needed for evaluation.

function eff(freq,fx,wtx,Iband,jtype)
dimension fx(5),wtx(5)
if(jtype.eq.2) go to 1
if(fx(Iband).It.O.OOOl) go to 2
eff=fx(Iband)/extfun(freq*2)

return
2 eff=fx(Iband)
return

1 ef f=fx (Iband) * freq
return
end

c function: wate
c function to calculate the weight function as a function
c of frequency. Similar to the function eff, this function can
c be replaced by a user-written routine to calculate any
c desired weighting function.

function wate(freq,fx,wtx,Iband,jtype,freqs)
dimension fx(5),wtx(5)
if(jtype.eq.2) go to 1
if(fx(Iband).It.O.OOOl) go to 2
wate=wtx(Iband)*extfun(freq*2)
return

c
return

1 if(fx(Iband) .It.O.OOOl) go to 2
wate=wtx(Iband)/freq
return
end

c

c
c EXTFUN.f
c
c By appropriate choice of this function, a wide variety of
c linear-phase filters can be designed. This function essentially
c affects the function-subprograms EFF and WATE,
c Please look at the listings of EFF and WATE above, to see
c how "extfun" comes in.
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c EFF corresponds to the "desired response" to be approximated
c by the Remez algorithm, whereas the function WATE corresponds
c to the weighting function,
c
c As an illustration, consider design example 6, where we designed
c H(z) as in Eqn. (2.58). Here, H2(z) is fixed as in (2.57),
c whereas HI (z) is designed using the Remez-exchange algorithm
c in such a manner that H(z) has equiripple passband. The choice
c of "extfun" in this problem corresponds to "IMETH-3" below.
c As another illustration, consider Design Example 13. Here again
c the overall transfer function is H(z)=Hl(z)H2(z), where H2(z)
c is the RRS of Eqn. (2.133) with S=13. The linear-phase FIR
c transfer function Hl(z) is obtained such that H(z) has equiripple
c passband behavior as shown in Fig. 2.34(b).
c The choice of "extfun" in this problem corresponds
c to "imeth=2" below.
c
c The sixth item on line 1 of FORT.9 is the variable imeth;
c
c IMETH= 1 For usual equiripple design
c 2 Prefilter-equalizer method based on Running sum
c 3 To obtain transmission zero at freqO(mul of PI)
c where freqp should somehow be made known
c to the program; we have chosen to include
c the statement "freqO=O.78" in here, but
c this is only an example.
c
c Freq, freqO are in raul of PI
c

function extfun(freq)
rewind(9)
read(9,*)imeth
goto(1,2,3)imeth

1 extfun=l.O
return

2 ext fun=rrs(freq,N)
return

3 freqO=0.78
extfun=zero(freq,freqO)
return
end

c

c
c RRS.f
c
c Freq is in multiple of PI
c
c "N" here corresponds to "S" in Eqn. (2.133)
c The value of N (which is the length of the recursive running sum)
c must somehow be fed into the program. As an example,
c we have punched in "N=13" in here.
c

function rrs(freq,N)
N=13
i f(freq.eq.O)rrs=l.O
i f (freq.eq.O)return
pi=4*atan(1.0O)
omega=pi * freq
rrs=sin(omega*N*O.5)/sin(omega*O.5)
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rrs=rrs/N
return
end

c
c ZERO.f

function zero(freq,freqO)
pi=4*atan(l.OO)
omegaO=pi* freqO
oniega=pi* freq
zero=cos(omega)-cos(omegaO)
return
end

c
c COMPE.f
c
c The purpose of this program is to evaluate the magnitude
c response of H(z)=Hl(z)H2(z), where Hl(z) has magnitude
c response stored in the array hresp(i), and where the magnitude
c response of H2(z) is obtained by invoking "extfun". The
c. applications of this program are in design examples such as
c 6 and 13.
c
c INPUTS: hresp(l) hresp(nout+1)
c OUTPUT: hresp(1) hresp(nout+1)
c modified by multiplying with extfun(i).
c

subroutine compe(hresp.nout)
dimension hresp(1)

2 do 3 i=l , nout+1
freq=(i-1.OO)/nout
htemp=extfun(freq)

old=hresp(i)
hresp(i)=hresp(i)*abs(htemp)

htempl=abs(htemp)
3 continue

return
end
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Chapter 3

Muftirate FIR Filters
for Interpolating

and Desampling

FREDERIC J. HARRIS
Department of Electrical and Computer Engineering

San Diego State University
San Diego, California 92182

In many signal processing applications it is desirable to have the output sample
rate be different from the input sample rate. The process of altering the data rates
within a digital filter is known as resampling, and the algorithms that perform this
resampling are called multirate filters. By extension, a multirate filter may achieve
a desired change in sample rate by using a cascade of simple multirate subfilters.
Each subfilter performs a segment of the resampling process. The partition is
often selected to minimize the total computational burden.

If the output rate of a filter is less than the input rate, we say we have
downsampled (or decimated or desampled) the output. On the other hand, if the
output rate is greater than the input rate, we say we have upsampled (or
interpolated) the output. The ratio of output to input sample rates can be any
ratio of integers, F/M. Here either integer (F or M) can be unity. It is also possible
to make this ratio slowly time varying. Figure 3.1 presents examples of sample-
rate change filter configurations. To help us understand the constraints of the
resampling process, we will examine desamplings of 1/M and unsamplings of F/l.
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Fig. 3.1. Resampling filters.

A Examples of Systems with Multirate Filters

We will now identify a number of examples of systems that use multirate
processing [1], The list will certainly not be exhaustive. The value of this section
is to help the novice understand how system considerations lead to a multirate
design. It also gives us specific systems to which we can refer when we later
develop the design techniques for multirate filters.

1 Zoom Transform

For this example, we describe an application for desampling. In particular, let
us consider the spectral analysis scheme known as a zoom transform. A
conventional discrete Fourier transform (DFT) algorithm processes N points of
input data. The output of the algorithm is N points of the input data's spectrum.
These spectral points are analogous to those obtained from a bank of equally
spaced contiguous narrowband filters. The spectral resolution (i.e., filter spacing)
of this bank is the input sample rate divided by the transform size,/s//V.

To obtain a finer spectral resolution, we must either increase the transform size
N or decrease the sample rate/s. The zoom transform uses the multirate filter to
accomplish the latter. We preprocess the input data with a complex heterodyne
and a lowpass filter. The complex heterodyne first shifts a desired (but arbitrary)
center frequency to zero frequency. The lowpass filter then reduces the bandwidth
of this shifted signal by convolving (a weighted average) the filter impulse
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Fig. 3.2. Zoom transform with resampling prefilter.

response with the shifted input series. The output bandwidth of the lowpass is
approximately the inverse of the averaging time interval. The output of this
heterodyne and average process is a time series representing the complex
envelope of the narrowband signal centered at the heterodyne frequency and
with the bandwidth of the lowpass filter. Note we have independent control of
the center frequency and of the bandwidth for this series.

Since the bandwidth of this series has been reduced by, say, a factor of M: 1., we
can still satisfy the Nyquist criterion if we reduce the output sample rate by the
same factor. Thus we select the output sample rate/^ to be/s/M. Now if the time
series at this rate is presented to the DFT, the DFT output spectral resolution is
f'JN (orfJMN). An example of this process is shown in Fig. 3.2. Here the input
data, sampled at 2048 samples per second, is prefiltered to a 4-Hz bandwidth
prior to a 200:1 sample-rate reduction to 10.24 samples/s.

Fractional Octave Spectrum Analyzer 2

In this example we examine another application for desampling filters. The
DFT can be visualized as an algorithm to synthesize a bank of constant-
bandwidth, equally spaced contiguous filters. A variation of this filter bank is a
contiguous filter set characterized by constant bandwidth and equal spacing on a
logarithmic scale [1]. Filters defined by these specifications are called constant-Q
filters because the ratio of center frequency to bandwidth (classical definition of
filter quality factor) is a constant.
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Spectra of vibrating mechanical systems are normally described or analyzed
by equal increments on a logarithmic scale. Examples include the Western
world's tempered music scale, (in which the frequency ratio of adjacent notes is
2i/12), and fractional octave (third-octave and tenth-octave) filter banks used in
sound-level measurements.

Figure 3.3 is a block diagram of a third-octave spectrum analyzer. Here, the
sampled data is presented to two subprocessors. The upper processor is a bank of
three filters designed to perform the constant-Q decomposition at the top analysis
octave, say 10.0-20.0 kHz. The input sample rate (assume for our example this is
50.0 kHz) is chosen at least twice the highest analysis frequency. Thus the top
octave is located between 20% and 40% of the input sample rate. The next lower
analysis octave would be between 10% and 20% of the input sample rate. We
access this next octave by processing the series obtained from the lower
subprocessor.

The lower segment of the process is a baseband filter designed to reduce the
input bandwidth by a factor of 2. The output of this filter is then desampled by
the same factor. We note that the second octave band, which is located between
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10% and 20% of the input rate, is also located between 20% and 40% of the out-
put rate. The upper processor can now filter this data (at its lower rate) to access
the next lower octave. The lower subprocessor also prepares this data by again
filtering and desampling for the next lower octave. This combination of decom-
posing the data into its top octave (by the upper processor) while preparing the
data for decomposing the next lower octave (by the lower processor) is per-
formed by nested passes through the two subprocessors for as many octaves of
analysis as desired. (Figure 3.24, presented later, shows the equivalent sequence
of filter desample, filter desample, etc., as a cascade of identical filters.)

We note that with 2:1 resampling between processing successive octaves, a
particular octave is decomposed with the same computational burden as the next
higher octave, but at half the data rate. Thus each lower octave requires half the
previous computation rate. Since the total computation rate is proportional to
the sum 1 + i + i + i + i^ + '". The total workload to compute the outputs for
all the lower octaves is never greater than that required to decompose the top
octave. The overhead of the filtering performed in the lower subprocessor is less
than that of the upper processor but, as a first estimate, can be considered
comparable. The lower processor also operates on successive desampled series
with the total work for all lower bands not exceeding that of the top octave.

Interpolation for Complex-to-Real Data Conversion 3

In this example we examine the postprocessing task of converting a complex
time series at one sampling rate to a real series at a higher rate [3]. Many signal
processing algorithms process time series as the in-phase and quadrature-phase
(I-Q) components of a complex series. The advantage of this form of processing is
that the signal magnitude and phase are preserved at its minimum bandwidth;
hence the signal can be processed at the minimum sample rate. One example of
this form of processing is the demultiplexing of a single-sideband frequency-
division-multiplexed (SSB-FDM) signal, which we will examine closely in
Chapter 8, The result of the demultiplexing is a collection of separated channels
of complex data. In telephone traffic each channel is nominally 3.6 kHz wide, and
the demultiplexed complex data rate is typically 4.0-6.0 kHz. This complex data
must then be converted to real data at rates between 8.0 and 10.0 kHz.

The example in Fig. 3.4 demonstrates the process of converting a complex data
set at 6-kHz rate to a real data set of 8 kHz. A simplified description of the
process is that the real and imaginary series are separately interpolated up to a
new sample frequency of 24 kHz. The data at this new data rate is then desampled
by a factor of 3 to obtain the desired data rate of 8 kHz. A complex heterodyne is
then applied to the complex data, which is now at the proper sample rate, to move
the center frequency from 0 to 2 kHz. The real part of this spectrally shifted series
is the desired output. In actual fact the processing is altered slightly so that the
data discarded by the two desampling operations (after the interpolation and
after the complex heterodyne) is not computed. We will examine this example in
detail at the end of this chapter.
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Fig. 3.4. Complex-to-real resampling filter.

4 Interpolating For Time Domain Beamforming

In this example we describe a system that uses the resampling interpolator
filter, not to raise the sample rate, but to generate data samples shifted a small
increment in time from the original input data sample positions. This system is a
time domain beamformer. Beamforming, a spatial filtering operation, is used to
separate signals arriving from many simultaneous directions into distinct
subsignals that are ordered by direction of arrival. Beamforming entails delay
and addition of signals collected over a spatial aperture. In a time delay
beamformer, coarse delay is realized as transport delay in a tapped delay line.
Fine delay, a fraction of the interval between the available coarse delays, is
realized with a broadband time delay filter. Narrowband beamformers often
approximate the desired time delays by additive phase shift in the frequency
domain; in this case they are known as phased-array beamformers [4].

In an array beamformer the signals intercepted by the aperture are collected at
distinct (often equally spaced) element locations across that aperture. The beam is
steered by inserting time delays in the separate signal paths to compensate for the
delays associated with a specified wavefront crossing the array. Beam steering by
digital signal processing techniques is facilitated by uniformly sampling in time
the signals observed at each spatial location. Thus the raw data collected for an
array beamformer can be thought of as a two-dimensional data array, the
dimensions being distance and time.

A mapping of a memory containing the data collected from a uniformly spaced
array of hydrophones is suggested in Fig. 3.5. Indicated in Fig. 3.5 are three time-
space contours over which data points must be summed to form beams facing the
indicated directions. (The spatial direction is scaled by the propagation velocity
so that both directions are proportional to time). Note that along contour 2 some
of the time series do not have a time data point along the contour of summation
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Fig. 3.5. Time-space data memory contours for time domain beamforming.

(the missing points are denoted by an X). If the ratio of sample rate to bandwidth
is sufficiently high (to insure high intersample correlation), we could select the
nearest-neighbor data point as an acceptable approximation to the desired data
point. Alternatively, we can interpolate to the desired position from the data
points in the neighborhood, such as over the data spans in Fig. 3.5.

As in amplitude quantization, the time quantization (i.e., the deviation from the
line of summation) has an effect similar to additive noise and must be made
acceptably small. We could reduce the time quantization by simply increasing the
sample rate for each spatial element. For instance, rather than sample near the
Nyquist rate, say 2.5 times the highest frequency, we might choose to sample 30.0
times the highest frequency. This solution is not generally desirable for the
following reasons. Most of the extra data points would not be used in any of the
beam summations, but a higher speed and larger memory space would have to be
used to store them. (Partial-sum beamformers manage to get around this
objection by storing the desired sums rather than the raw data.) In addition, the
higher-speed analog-to-digital converter (ADC) is a hardware item with a
significantly higher cost that we may wish to avoid.

An alternative to the higher sample rate is the use of interpolating filters. The
filters can be used to upsample the data from each spatial element to synthesize
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the desired higher sample rate. But we do not really want a higher sample rate, but
one new data point at some location in the time interval between two collected
data points. We realize the two requirements by first upsampling, via the
interpolating filter, to the acceptable time quantization and then desampling
back to the original data rate with the selected time delay. Hence the in-
terpolating filter operates at an output rate that matches the input data rate and
outputs data only at the time position required for the given beam summation.
We will see later that by imbedding the desampling operation in the upsampling
filter, we obtain a filter architecture with a particularly simple structure. The filter
can be viewed as partitioned into a collection of subinterpolators known as
polyphase filters, and the resampling to the desired output time position is
performed by selecting the proper polyphase subfilter.

B Overview of Chapter

In this chapter we shall identify the parameters that describe FIR filter
characteristics, and we shall review how these parameters interact. The emphasis
will be on how the coupling between these parameters affects the design of
multirate filters. We start with classical frequency and time domain specifications
of lowpass FIR filters and present a number of quick, first-order approximations
to the ways they interact. We then show how data rate reduction is achieved with
lowpass FIR filters. Here we demonstrate, via the McClellan-Parks (MP) design
algorithm (see Section IV.D in Chapter 2), how the choice of filter parameters
controls filter characteristics and how these parameters can be traded for
desirable performance gains. We then examine data rate reduction techniques
that use carrier-centered FIR filters, and we also examine center frequencies with
interesting signal processing characteristics. We next investigate interpolating
filters used to obtain increases in the data rate by integer multiples and then
increases by multiples that are a ratio of integers. Finally we look at simple
architectural models of FIR filters. One strength of this chapter is the liberal use
of graphical presentations to demonstrate the important FIR filter relationships.

II CHARACTERISTICS OF BANDWIDTH-REDUCING FIR FILTERS

Finite duration impulse response (FIR) filters were introduced in the previous
chapter. They perform their filtering operation as a collection of finite inner
products. These inner products are implemented by a sequence of multiplications
and additions. For each output point computed during the filtering operation,
there is one addition per filter coefficient and (if symmetric) one multiplication
per pair of coefficients. Thus the computational burden to implement a FIR filter
is proportional to the number of its coefficients (or, equivalently, to its length).
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Since the number of multiplications and additions per output point is an
important consideration in implementing a filter, a major descriptor of a FIR
filter is its length N. We saw in the last chapter that the filter length is controlled
by a combination of frequency domain specifications, primarily transition
bandwidth and passband and stopband ripple [see (2.19) and (2.31)]. A secondary
descriptor is the filter impulse response or, equivalently, the particular set of
coefficients.

A major attraction of the FIR filter is the (usually exercised) option to have the
frequency response exhibit linear phase. Linear phase is so desirable that we
sometimes forget that it is only an option. Filters exhibiting linear-phase
characteristics are constrained to have either even or odd symmetry about their
midpoint. This constraint permits us to reduce the number of multiplications per
output point by precombining data points that will be multiplied by identical
coefficients.

Filters used in multirate processing are usually bandwidth-reducing filters,
which we will show are related to a simple lowpass filter. Most of these filters are
designed to be even frequency domain functions and will have an envelope
reminiscent of the sin(wt)/(wt) function.

Frequency Domain Characteristics A

We now examine the frequency domain characteristics of realizable lowpass
filters [5-7]. Since we are discussing sampled data filters, it will be convenient to
describe all frequencies as a fraction of the sample rate. This is equivalent to
dividing (normalizing) all frequencies by the sampling frequency. Thus the
sampling frequency becomes 1.0, the half-sampling frequency becomes 0.5, etc,
(See Fig. 1.4.)

The ideal lowpass filter has unity gain between the frequencies ±/p, and
zero gain elsewhere. The realizable filter can only approximate the ideal. The
approximation includes an acceptable deviation envelope about unity gain in
the passband region, an acceptable deviation envelope about zero gain in the
stopband region, and an interval over which the filter gain must make the
transition from unity gain to zero gain. The transition interval, A/, is normally
implied by (the difference between) the upper edge of the passband fp and the
lower edge of the stopband (rejection band) ft. These parameters are indicated in
Fig. 3.6. In the next section we will see how to convert a set of resampling
specifications into these filter parameters.

Typical Specifications for a Lowpass Filter 1

Chapter 2 introduced techniques for designing FIR filters. Here we will
concentrate on lowpass filters and will demonstrate a design philosophy. A
design proceeds iteratively from coarse boundaries to fine detail. Part of the
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Fig. 3.6. Typical frequency domain characteristics of sampled data lowpass filter.

procedure requires the designer to review a number of options for performance or
workload comparisons. The designer should have access to quick estimation
procedures early in the process. We will now develop some useful relationships
between filter parameters which are compact approximations to the relationships
presented in Chapter 2.

The transition bandwidth of a lowpass filter is the spectral interval for the
magnitude response to make the transition between the passband and the stop-
band tolerance bands. For a minimum bandwidth narrowband filter, the tran-
sition bandwidth is identically the filter bandwidth. We know the narrowest
bandwidth a filter can realize is fJN, where N is the filter length. This filter has
uniform (or equal) weights, with the spectral width of the Dirichlet kernel. The
length-N uniform weight set can be used as a window to truncate the impulse
response duration of any arbitrary filter. (This approach to FIR filter design was
discussed in Section III of Chapter 2, and is being discussed here to develop a
simple estimate of transition bandwidth.) The multiplication of the two
sequences in time is equivalent to a convolution of their spectra in frequency.
Abrupt spectral transitions of the filter are smoothed by the convolution with the
window spectrum, which results in a transition width equal to the spectral width
of the window's mainlobe. Hence we have the remarkable property that all filters
of the same length N exhibit a transition bandwidth that is essentially the same
(the truncating function's mainlobe width) and is independent of the original
(untruncated) filter bandwidth.

A filter designed with a rectangular window has sidelobes related to the — 13-
dB sidelobes of the sin^/AO/sinfa/) function resulting from the periodic ex-
tension of the sin(nfT)/(nf) kernel (see Section VILE of Chapter 1). The sidelobe
levels are slightly lower for wider bandwidths due to averaging of the sidelobes
during the spectral convolution of the ideal filter and the window. To design
filters with lower prescribed sidelobe levels, we have to allow for an increase in
transition bandwidth. From classical window design considerations we know the
transition bandwidth of a filter is of the form

A/ = K(A) (3.1)
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where A is the minimum stopband attenuation (e.g., A = 0.001) and K(A) is an
attenuation-related scale factor. From filter design experience we find the
parameter K(A) in Eq. (3.1) is bounded by

<:L» ,3.2)

In comparing Eq. (3.2) to the approximations of Eqs. (2.19) and (2.31), we see that
we now have access to a quick first-order estimate of filter length for a given
sidelobe level and transition bandwidth as follows:

n 3)(3.3)2Q

This relationship is demonstrated in Fig. 3.7, which is a collection of 21 -point
FIR filters. These filters were designed to have a transition bandwidth of 0.1 with
the — 50-dB stopband edges located at 0.1, 0.2, 0.3, and 0.4 Hz, respectively. The
parameters of attenuation value ( — 50 dB) and transition bandwidth used in
Eq. (3.3) result in an upper bound to the filter length of 25 points. This estimate
for N is 16% too high because a 21 -point filter meets the specifications for this
example. The narrowband filter response of Fig. 3.7(a) is superimposed at the
right side of the other filter's transition regions for ease of comparing the
transition bandwidths.

How the Filter Specification Parameters Interact 2

Since FIR filter design is iterative, the designer should have an idea of how the
parameters interact so that reasonable trades in the parameters can be made
during the design. We will now demonstrate how a change in a single parameter
alters the frequency and time description of a selected prototype filter. The filters
presented here were designed by the (MP) algorithm, which was altered to ob-
tain a sidelobe peak decay of — 15 dB/decade ( — 4.5 dB/octave).

We start with a 16-point impulse response filter with a passband ending at 0.1
Hz and a stopband starting at 0.2 Hz. Since the filter length N and the transition
bandwidth A/ are already fixed, the only parameters we can adjust are the
approximation tolerance bands in the passband and stopband. Since only three
of these four parameters are independent, the MP algorithm operates with a fixed
(but user-selected) ratio of the two tolerances and then minimizes the amplitude
of both tolerance bands. Using a ratio of passband ripple to stopband ripple of 1,
10, and 100, respectively, we obtain the time and frequency responses shown in
Fig. 3.8. Since the transition bandwidth is specified and the filter length is known,
we can use Eq. (3.3) to predict that the minimum stopband attenuation level will
be between — 32 and — 40 dB. We obtain minimum attenuation levels of — 29,
— 41, and —51 dB respectively, We note that the additional stopband at-
tenuation is achieved at the expense of greater passband ripple; peak ripples are
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Fig. 3.7(a). 21-Point FIR filter impulse and frequency responses, respectively, for (a) and (b) a
transition band of 0.0-0.1 Hz.
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Fig. 3.7(b). 21-Point FIR filter impulse and frequency responses, respectively, for (c) and (d) a
transition band of 0.1-0.2 Hz.
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FREQUENCY

Fig. 3.7(c). 21-Point FIR filter impulse and frequency responses, respectively, for (e) and (f) a
transition band of 0.2-0.3 Hz.
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Fig. 3.7(d). 21-Point FIR filter impulse and frequency responses, respectively, for (g) and (h) a
transition band of 0.3-0.4 Hz.
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Fig. 3.8(a). 16-Point FIR filter impulse and frequency responses, respectively, for (a) and (b) the
ratio 6l/62 = 1.0.
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Fig. 3.8(b). 16-Point FIR filter impulse and frequency responses, respectively, for (c) and (d) the
ratio <V<>2 = 10.0.
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Fig. 3.8(c). 16-Point FIR filter impulse and frequency responses, respectively, for (e) and ( f ) the
ratio (5,/(52 = 100.0.
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0.30,0.74, and 2.88 dB, respectively. Equation (3.3) works well when the ratio of
stopband ripple to passband ripple is between 10 and 100; I regularly use 40.

tn Figs. 3.9 and 3.10 we see the impulse and frequency responses for filters of
length 16, 32, and 64 points, respectively. Here, as in the previous example, the
passband ends at 0.1 Hz and the stopband starts at 0.2 Hz. In Fig. 3.9 the ratio of
passband ripple to stopband ripple is 1.0, and in Fig. 3.10 this ratio is 40.0. As
expected from Eq. (3.3), for fixed transition bandwidth, the sidelobe levels
decrease with increased filter length.

We continue with a 16-point filter but with an increase in transition band-
width obtained by modifying the location of the passband, stopband, or both.
Figure 3.11 presents the time and frequency responses obtained by modifying
the transition bandwidth. We first present, for comparison, the nominal 16-point
impulse response filter with passband set to 0.1 Hz and stopband set to 0.2 Hz.
The expected sidelobe level is between — 32 and — 48 dB, the actual level is seen
to be —49 dB. In each of the cases that follow, the transition bandwidth is
increased 50%, to 0.15 Hz. For the first modification we move the stopband edge
to 0.25 Hz and keep the same passband at 0.1 Hz. Note that the spectral side-
lobes are further down, and the impulse response mainlobe width is narrower.
We expect sidelobes between —48 dB and —60 dB and realize —59 dB. For
the second modification we move the passband edge to 0.05 Hz and keep the
stopband edge at 0.2 Hz. Here too the wider transition bandwidth has led to
increased peak stopband attenuation, but it is now — 54 dB, and, as expected,
the mainlobe time response has widened. For the final modification we split the
direction of the transition bandwidth increase by moving the passband edge
to 0.075 Hz and the stopband edge to 0.225 Hz. This yields sidelobe levels of
- 64 dB.

Time Domain Characteristics and Scaling Consideration B

We note by scanning Figs. 3.7 through 3.11 that the impulse responses of
these filters are essentially smoothly truncated versions of the sin(wt)/(wt)
function (see Section III in Chapter 2). The minimal filter response appears to
include the mainlobe and first sidelobes of the sm(wt)/(wt) envelope. The
mainlobe width (in time) varies inversely with passband width (in frequency). If
the (single-sided) — 6-dB passband width (slightly greater than fp) is a/s, the
impulse response mainlobe width, measured between the first nulls, is l/«/s or
I/a samples. Thus l/«, the ratio of sample rate to —6-dB bandwidth, is an
estimate of the number of coefficients in the mainlobe time response. For the
examples presented in Fig. 3.7 the one-sided — 6-dB bandwidths are 0.045,0.135,
0.240, and 0.340, respectively. The expected mainlobe widths are 22, 7, 4, and 3;
the actual mainlobe widths are 21, 7, 5, and 3, respectively. For Figs. 3.8 through
3.11, the —6-dB one-sided bandwidth is 0.15, so we expect the number of main-
lobe samples to be 7. The actual number of samples is either 6 or 8, depending
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Fig. 3.9(a). FIR filter for the ratio dl/S2 = 1.0. Impulse response and frequency response
magnitudes, respectively, are shown for a filter of length (a) and (b) 16 points.
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Fig. 3.9(b). FIR filter for the ratio d1/62 = 1-0. Impulse response and frequency response
magnitudes, respectively, are shown for a filter of length (c) and (d) 32 points.
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Fig. 3.9(c). FIR filter for the ratio Sl/62 — 1.0. Impulse response and frequency response
magnitudes, respectively, are shown for a filter of length (e) and (f) 64 points.
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Fig. 3.10(a). FIR filter for the ratio dl/d2 = 40.0. Impulse and frequency responses, respectively,
are shown for a filter of length (a) and (b) 16 points.
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Fig. 3.10(b). FIR filter for the ratio dJ62 = 40.0. Impulse and frequency responses, respectively,
are shown for a filter of length (c) and (d) 32 points.
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Fig, 3.10(c), FIR filter for the ratio <5t /62 = 40.0. Impulse and frequency responses, are shown for a
filter of length (e) and (f) 64 points.
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Fig. 3.11 (a). 16-Point FIR filter impulse and frequency responses, respectively, for a transition
band of (a) and (b) 0.1-0.2 Hz.
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Fig. 3,ll(b). 16-Point FIR filter impulse and frequency responses, respectively, for a transition
band of (c) and (d) 0.1-0.25 Hz.
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Fig, 3.1 l(c). 16-Point FIR filter impulse and frequency responses, respectively, for a transition
band of (e) and (f) 0.05-0.20 Hz.
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Fig. 3.1 l(d). 16-Point FIR filter impulse and frequency responses, respectively, for a transition
band of (g) and (h) 0.075-0.225 Hz.
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on the filter length. Note that the filter's spectral transition width controls the
length of the filter impulse response, and the filter's spectral bandwidth controls
the mainlobe width of the filter impulse response. We need to estimate the filter
mainlobe width because of a concern related to finite arithmetic realizations of
FIR filters.

The weighted summation of data to accomplish the filtering process is
performed by a sequence of multiplications and additions. The partial sum
formed by the sequence of additions resides in a finite word-length accumulator.
The number of bits required to represent the partial sum grows during the
accumulation. This growth is called numerical gain. A scaling procedure must be
employed to prevent the maximum width of the partial sum from exceeding the
bit width of the accumulator.

One option is to scale the filter coefficients for a peak steady-state gain of unity.
For the lowpass filters this entails scaling so that the sum of the coefficients is
unity. If there are a large number of samples in the mainlobe of the filter impulse
response, this form of scaling could force the samples with small magnitudes
below the quantization resolution of the finite registers used to represent the filter
coefficients.

To minimize the effect of finite word-length representation of the coefficients,
we normally scale them so that the maximum coefficient is between one and one
half of the largest number that can be held by the coefficient registers. Often this
scaling corresponds to setting the maximum filter coefficient to match the
register's largest number. For ease of discussion, let us consider the binary point
to be left justified so that this largest coefficient is unity. We now can see why an
estimate of the mainlobe impulse response width is important. Since the large
coefficients of the filter are located in the mainlobe of the impulse response, most
of the numerical gain in the filtering process occurs in the summation of the
mainlobe coefficients. We conclude that smaller bandwidth filters (with wider
mainlobe impulse responses) exhibit a greater numerical gain, which must be
managed in the finite-width accumulators. For example, if there are 10
coefficients in the mainlobe of the impulse response (with the maximum
coefficient scaled to unity) and we use a triangle approximation to the mainlobe
shape, we can expect a numerical gain of 5; if there are 100 coefficients, we can
expect a numerical gain of 50. We note that if the filter coefficients are scaled for
unity maximum value, the numerical gain is approximately l/2a, the ratio of
sample frequency to two-sided passband bandwidth. Thus filters with a very
narrow bandwidth relative to sample rate will exhibit large numerical gain.
Unless scaling is imbedded in the accumulation process, the finite accumulator
width will limit the range of possible desampling ratios.

We observed from Figs. 3.7 through 3.11 that the impulse response mainlobe
width is controlled by the spectral bandwidth of the filter. We now note that the
total filter length, in turn, controls the spectral sidelobes of the filter. Figures 3.9
and 3.10 show that an increased filter length permits additional sidelobes in the
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impulse response and results in decreased spectral sidelobes. The time domain
sidelobes introduced by lengthening the filter are successively smaller and smaller
valued. The low-level coefficients in these sidelobes can (and do) drop below the
quantizing noise of the finite-length coefficient words. As mentioned, careful
scaling is required during the sum of products process to prevent the finite
coefficient lengths from limiting the effective filter length and hence the achievable
low-amplitude spectral sidelobe levels. As an, example of this limiting effect,
Fig. 3.12 compares the response of a 32-point lowpass filter obtainable with
floating-point coefficients to one obtainable with fixed-point coefficients with
word lengths of 16,14,12,10, and 8 bits respectively. We see that the 16-bit coef-
ficient quantizing effects are down 75 dB relative to the peak response and that
shorter coefficient lengths result in poorer sidelobe behavior in the stopband.
Additional filter length realized with 16-bit accuracy will not result in lower
spectral sidelobes. Figure 3.13 compares the achievable sidelobe levels using
floating-point and 16-bit fixed-point coefficients for a 128-point narrowband
filter. We will address block floating-point coefficients sets when we examine
FIR filter architectures.

In the previous section we observed that the FIR filter time domain im-
pulse response closely resembles the envelope of a smoothly truncated
s\n(wt)/(wt) function. The response included the central mainlobe and
(usually, at least) a pair of sidelobes. The step responses of these filters exhibit
ringing precursors and postcursors due to the sidelobes of the impulse response.
These are most clearly seen as the ringing we call the Gibbs phenomenon, which
occurs in the neighborhood of a discontinuity. In some applications this ringing
is undesirable, for example video pulse processing. Here the ringing represents
spatial interpixel coupling, which results in reduced image quality.

We will now examine lowpass FIR filters with monotonic step response. The
impulse response of such a filter has no sidelobes. We still require the filter to have
a specified transition bandwidth and sidelobe level. The only filter parameter yet
to be specified is the passband bandwidth. We noted in Fig. 3.7 that for a selected
transition bandwidth and sidelobe levels, narrower bandwidth results in the
mainlobe portion of the impulse response occupying a larger fraction of the
impulse response width. A filter with a sufficiently narrow bandwidth has an
impulse response that consists entirely of mainlobe response. Thus filters with
monotonic impulse responses are narrowband filters, so narrow that their entire
spectral characteristic is described by the transition bandwidth and sidelobe
levels. Are such filters of any value? Yes! They are usually called time domain
windows or weightings and are used in spectral analysis to shape the spectral
characteristics of a DFT. We have used the classic filter design routines to design
windows with specified characteristics, such as sidelobe levels and sidelobe
slopes. Figure 3.13 presents the spectrum of a window designed by the Remez
multiple-exchange filter design routine to have peak sidelobe levels of — 70 dB
with — 15 dB/decade sidelobe falloff rate.
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Fig. 3.12(a). 32-Point FIR filter using (a) floating-point and (b) 16-bit coefficients.
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Fig. 3.12(b). 32-Point FIR filter using (c) 14-bit and (d) 12-bit coefficients.
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32-PNT FILTER: 10-BIT COEF
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32-PNT FILTER: 8-BIT COEF
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Fig. 3.12(c). 32-Point FIR filter using (e) 10-bit and (f) 8-bit coefficients.
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Fig. 3.13. 128-Point FIR filter using (a) floating-point and (b) 16-bit coefficients.
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Any of the classic time domain windows designed for spectral analysis can be
used as the impuse response of a minimum bandwidth filter with monotonic step
response. The windows are easy to generate and satisfy standard filter constraints
such as minimum stopband attenuation [23]. The Appendix presents time and
spectral descriptions of some of the better windows filters as well as the standard
rectangular and triangular weightings for comparison. The Hamming, the
Blackman, and the Blackman-Harris windows are regularly used as prototype
lowpass filters because they are simply formed as the weighted sum of two, three,
or four cosines. Table AI lists these windows along with standard figures of merit
that are useful for comparing their performance as lowpass filters. A computer
program to generate samples of classic window functions is included in this
handbook as an addendum to Chapter 3.

The filters that we have designed and described can be used in any application.
Examples include windows for spectral analysis and shadings for phased-array
beamformers. In Chapter 8 we will use these filters in conjunction with the DFT
to synthesize banks of narrowband filters with arbitrary spectral shapes.

We now examine techniques that permit us to reduce the sampling rate of a
time series [9-18]. The rate reduction will occur in conjunction with a filtering
operation that reduces the bandwidth of the data set. Thus the filter will be
characterized by two sampling rates: the input rate and the output rate. Until
now, we have found it convenient to describe filter bands in terms of frequencies
normalized by the filter sampling rate. Now that we have two sampling rates'
what do we do? We can interpret the resampling process as two distinct opera-
tions: (1) a bandwidth-reducing filtering operation followed by (2) an editing
operation. This perspective is reflected by the presence of the two sampling
switches at the input and at the output of the filter indicated in Fig. 3.14. Here
we see quite clearly that the filtering operation occurs at the input sampling rate,
and it is the input rate to which we must normalize the filter characteristics. We
will see shortly that the filter specifications are often presented in terms of the
output sampling rate. As part of the design process, we will be required to recast
those specifications to the input rate. If there is any possibility of confusion, we
will explicitly state that the input and output frequencies are /s and J'KP/M,

fs

*-
RESAMPLING

DIGITAL

FILTER

M:P

X B̂

P f
M fs

Fig. 3.14. Input and output rates of resampling digital filter.
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respectively; that is, for every M samples into the filter only P output samples
are used.

Baseband Filters A

The resampling process is most easily visualized as an extension of the lowpass
antialiasing filter applied to a signal before periodic sampling. We first select the
desired bandwidth required to adequately describe the input signal. We will refer
to the one-sided filter bandwidth as the analysis bandwidth and denote it by fp.
The analysis bandwidth defines the passband width of the antialiasing lowpass
filter. We must also select the required dynamic range (the ratio of the minimum
to maximum spectral levels) to be recognized in the analysis band. The dynamic
range, denoted by I/A, identifies the highest level (or minimum attenuation) of
sampling-related artifacts permitted in the analysis band. The dynamic range, in
turn, helps define the transition bandwidth of the antialiasing filter. The
transition bandwidth, denoted A/, is the interval between the passband edge
and the frequency for which the filter achieves the minimum attenuation I/A
Filter parameters are shown in Fig. 3.15. We see that the sampling rate, /s, re-
quired to obtain an alias-free passband down to the level I / A satisfies

/s = 2/p + A/ (3.4)

Equation (3.4) is the engineer's version of the Nyquist sampling theorem. We
note that the sampling rate exceeds the Nyquist rate by the transition bandwidth
of the antialiasing filter. For a given analysis bandwidth and dynamic range, we
can obtain a reduced sampling rate only by using a filter with a narrower
transition bandwidth.

REPLICATE

SPECTRUM

PRIMARY

SPECTRUM

-f

Fig. 3.15. Spectral description of resampling lowpass filter.



210 Frederic J. Harris

f Filter Length Versus Fractional Bandwidth and Desampling Rate

The discussion of the previous section described the relationship between
analysis bandwidth, transition bandwidth, and sampling rate for an antialiasing
filter. A desampling filter is also an antialiasing filter! A change in sampling
rate does not affect the relationship between desired analysis bandwidth,
transition bandwidth of the filter and the final sampling rate. The change in
sampling rate from /s to fJM affects the filter length through the selected
transition bandwidth and dynamic range.

The new sampling rate after M:l desampling is fJM. The new sampling rate
defines the total postdesampling bandwidth of the output signal. The integer M is
sometimes called the decimation rate. Within this bandwidth the (two-sided)
fraction a will be alias free [19]. The width of this alias-free band is determined by
the transition width of the antialiasing FIR filter. We now demonstrate the
relationship between filter length JV and the new analysis bandwidth (the alias-
free desampled bandwidth). The new (two-sided) analysis bandwidth is

7/' — „— /I *>}
~Jv a M (5'V

The transition bandwidth of the FIR antialiasing filter, from Eq. (3.3), is

Substituting Eqs. (3.5) and (3.6) into Eq. (3.4) gives

(3.7,

Rearranging Eq. (3.7), we obtain

M M f

Equation (3.8) is a good estimate of the required filter length for a given set of
specifications. Note that in Eq. (3.8) the term 1 — a is the transition bandwidth of
the filter relative to the filter final output rate fJM. Comparing Eq. (3.8) to
Eq. (3.1), we see that the filter length for M : 1 desampling is M times that of the
filter satisfying the same spectral description without including the desampling.
This reflects our awareness that the alias-free bandwidth is specified relative to
the output rate, but that the filtering is performed at the input rate, which is M
times greater.

For example, suppose we need an 8 : 1 desampling filter with a dynamic range
of 60 dB, and we require that 50% of the bandwidth be alias free after desampling.
Equation (3.8) tells us to use a filter length between 38 and 48. For this example we
selected an impulse response of length 40. These filter specifications were cast into
parameters required for the MP version of the Remez multiple-exchange
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TABLE I

Parameter List for McClellan-Parks
Algorithm

FL, FT, NB, SD = 40, 1,2, 16
FO, Fl, F2, F3 = 0.0, 0.03125, 0.09375, 0.50
G1,G2 =1.0,0.0
P1,P2 =1.0,100.0

TABLE II

Definition of Parameter List for Table I

FL: Filter length
FT: Filter type (1 = lowpass)
NB: Number of bands (one passband and one stopband)
SD: Sampling density (default is 16)
FO, Fl: Frequencies of beginning and end of band 1
F2, F3: Frequencies of beginning and end of band 2
Gl, G2: Gain desired in bands 1 and 2
PI, P2: (Penalty) weighs in bands 1 and 2

algorithm. This parameter list is shown in Table I for a lowpass filter. Table II
identifies the parameters of Table I. Figure 3.16 shows the relationship between
these parameters relative to the input and output sampling rates. When these
parameters were used with the algorithm, the filter design lead to a passband
ripple of 0.96 dB and a peak stopband ripple of — 64.0 dB. The impulse and
frequency response of this design are shown in Fig. 3.17. Figure 3.18 emphasizes
the aliasing regions associated with the resampling process by presenting the
frequency response of this filter after resampling at both the input and output
sample rates. This figure shows the individual aliased spectral levels that fold
back into the passband due to the resampling process. Note the advantage of the
sloping sidelobes in the filter design. Had the sidelobes been of equal amplitude,
the folded sidelobe power would add at 3 dB per doubling. On the other hand, the

Fig. 3.16. Spectral description of 8:1 resampling filter.
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(a)

12 32 36 40
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FREQUENCY

Fig. 3.17. 40-Point 8:1 desampling FIR filter (a) impulse and (b) frequency responses.



3. Multirate FIR Filters 213

FREQUENCY

-.5 - .4 -.3 -.2 -.1 0.0 .1 .2 .3 .4 .5
FREQUENCE

Fig. 3.18. Spectrum of 8:1 resampling filter after resampling with aliasing levels shown at (a) input
and (b) output rates.
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power sum of unequal level sidelobes is dominated by the largest, so there is no
significant increase in the summed sidelobes.

Continuing with the example of the last paragraph, we note that the 40-point
filter more than satisfied the — 60-dB sidelobe requirement and exhibited about a
1.0-dB passband ripple. The designer has several choices. If the design as realized
is acceptable, the extra stopband attenuation can be used to absorb unwanted
power due to spectral folding and the design is complete. Alternatively, the filter
length can be held fixed and a decreased penalty weight in the stopband, which
results in a slight increase in the stopband ripple, can be tried. This will result in a
slight decrease of passband ripple. A second choice is to decrease the filter length
by a small integer and retry the algorithm. An iterative combination of these
options converges rapidly to the specified design. One other option is to review
the design specifications. Often a slight relaxation of a parameter will simplify the
design. This was demonstrated in Fig. 3.11 where a reduction of bandwidth or an
increase of passband tolerance resulted in additional sidelobe attenuation. Yet
another option, which will be presented in Section III.A.3, is to realize the
desampling filter as a set of shorter multistage filters.

2 Processing Overlap

In the last section we showed how to determine the filter length N required to
realize an M: 1 desampling filter with specified fractional bandwidth and
specified sidelobe levels. The filter must perform an JV-point inner product for
each output data point. If we assume an even symmetric response, the JV-point
filter will require N/2 multiplications and N additions per output point. The
output data rate is 1/M of the input data rate, so the computational workload per
input point is

^ = 1̂ 1̂L (39a)
Input M 2 2(1 - a) l

Input M (1-a) *3'9b)

Notice that on the right sides of Eq. (3.9) the workload per input point is
independent of the filter length and desampling ratio, but is directly proportional
to the sidelobe level attenuation and inversely proportional to the fractional
transition bandwidth. For example, a filtering operation that specifies a — 60-dB
peak sidelobe level and 50% fractional bandwidth will require four multiplica-
tions and eight additions per input point. This workload per input point is the
same if the desampling ratio is 8:1 or 80:1. Thus, knowing the input data rate, we
can easily estimate the computational speed required to perform real-time signal
processing. Conversely, knowing multiplier speeds, we can infer a maximum
input sample rate for real-time processing.

The N/M ratio in Eq. (3.9) has an important interpretation. It tells us the
overlap (or shift) factor of the filter. The desampling filter is a sliding block
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operation. The JV-point inner product is applied to successive blocks of data
separated by intervals of M data points. Each data block of length M will
experience N/M shifts (and hence contribute to N/M outputs) as it passes
through the filter. For some architectures the number of output points to which a
data block contributes is an indicator of the network complexity. For instance, in
the partial-sum architecture (which we will examine in a later section) the N/M
ratio is the number of partial accumulators in the process. Alternatively, the
reciprocal ratio, M/N, is the fractional shift of the filter length between successive
application of the inner product.

Cascade Filters 3

In previous sections we determined the filter length required to obtain a desired
resampling ratio for a specified fractional bandwidth and sidelobe level. We then
determined the computational burden per input point for that filter. We found
that the multiplication and addition rates were defined only by the fractional
transition bandwidth and sidelobe levels. We now consider the option of
reducing the sampling rate in a succession of cascade filters [20,21]. Each filter in
the cascade must not exceed some sidelobe level to protect the final passband
from aliasing artifacts, and the analysis bandwidth of each section must also have
the same value. Then where is the advantage?—in the fact that fractional (not
actual) transition bandwidth of the spectral description affects the filter length
and computation rate.

To see how cascading affects the processing workload, we consider the two-
stage partition. The first-stage filter performs a coarse bandwidth reduction,
which accommodates most of the sample-rate reduction but leaves an overly
wide transition bandwidth. The second-stage filter finishes the resampling
process and forms the desired transition bandwidth. The workload performed by
the second filter proceeds at the reduced data rate established by the first filter. In
addition, the second filter length is considerably reduced due to the smaller ratio
of (new) sample rate to transition bandwidth.

As an example of the available gain due to cascading, let us consider a 20:1
resampling filter of the type described in the previous section. The useful partition
is a 10:1 filter followed by a 2:1 filter. Figure 3.19 presents the bandwidth
reduction and resampling that occurs in each stage. The corresponding filter
parameters are listed in Table III. The cycles-per-output parameter indicates how
often the filter is exercised per output point. For instance, in this example the
output filter operates with a 2:1 resampling rate, which means the previous filter
must operate twice to allow the next filter to operate once.

As seen from the last entry in Table III, for this example there is a 23% saving in
the number of multiplications due to the cascading. The saving becomes more
significant when the original resampling ratio is larger. Another factor in favor of
the cascade filter set is the reduced amount of data storage along with the reduced
number of filter coefficients that must be stored. In this example, a filter of length
120 is replaced with two filters of combined length 52. For small integer



216 Frederic J. Harris
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Fig. 3.19. 20:1 resampling as a single-stage filter and as a cascade of two-stage filters.

TABLE III

Parameters of Single-Stage and Two-Stage Filter for 20:1 Desampling

Two-stage filter

Parameter

Input sample rate
Output sample rate
Resampling ratio [M]
Analysis bandwidth [/„]
Fractional bandwidth [a]

(rel. output rate)
Filter length [KM/(1 - a)]

Cycles per output
Multiplication per output

Composite mult/output

Single
filter

L
/s/20
20

./s/40
0.5

120
1

60
60

Filter 1

/,
/,/10
10
,/s/40

0.25

40
2

40

Filter 2

X/io
/./20

2
./s/40

0.5

12
1
6

46

resampling the benefits of cascaded filters are small and the overhead of
operating separate subfilters may overcome the small gains.

Figures 3.20 present the impulse and frequency responses of the 20:1
resampling filters described in this example. Also shown is the aliasing, which
folds back into the (final) passband for the one-stage and two-stage realizations.
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Fig. 3.20(a). 120-Point 20:1 resampling filter (a) impulse and (b) frequency responses.
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Fig. 3.20(b). Spectrum of 20:1 resampling filter after resampling with aliasing levels shown at
(c) input and (d) output rates.
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Fig. 3.20(c). 40-Point 10:1 first-stage resampling filter (e) impulse and (f) frequency responses.
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Fig. 3.20(d). Spectrum of 10:1 resampling filter after resampling with aliasing levels shown at
(g) input and (h) output rates.
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Fig. 3.20(e). 12-Point 2:1 second-stage resampling filter (i) impulse and (j) frequency responses.
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Fig. 3.20(f). Spectrum of 2:1 resampling filter after resampling with aliasing levels shown at
(k) input and (1) output rates.
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HETERODYNE PROCESSING IV

In the previous section we addressed the task of resampling a baseband signal.
We have been assuming that the signal was real, so a single filter accomplished the
task. Had the signal been complex (i.e., an ordered pair), the filtering operation
would proceed separately on each of the ordered pairs using identical versions of
the designed baseband filter. We now consider the task of resampling carrier-
centered signals.

We may have an interest in the structure of a signal occupying a reduced
bandwidth at some center frequency other than zero [22,23]. An inital approach
would be to design a baseband filter to eliminate signal components that lie above
the desired bandwidth. The cutoff frequency of this filter output would then be
the sum of the center frequency and the one-sided bandwidth of the signal. The
bandwidth of the signal may be considerably smaller than the center frequency of
the signal, and it may not be necessary to select the sample rate based on the
highest frequency. It is possible to sample at a rate based only upon the signal
bandwidth by accounting for the known center frequency in some auxiliary
processing. We have a number of options that allow us to sample at the
bandwidth-related rate rather than at the highest frequency-related rate.

The first option is to move the center frequency of the spectral region of
interest to zero and proceed to filter and desample as we have in earlier sections.
The shifting of a spectrum is called frequency shifting or heterodyning from
the Greek hetero, which means "different," and dyne, which means "move."
The shift to zero frequency is called basebanding. If the spectrum does not ex-
hibit conjugate symmetry about the center frequency, the shift requires two
heterodynes: a complex heterodyne on an I-Q (in phase-quadrature) hetero-
dyne (also called complex demodulation). Signals that exhibit conjugate sym-
metry about a carrier can be shown to result from either amplitude or phase
modulation of the carrier. On the other hand, signals that do not exhibit conju-
gate symmetry about the carrier must be described by both amplitude and phase
modulation of the carrier (or equivalently by independent amplitude modula-
tion of the quadrature carrier components, cos and sin). The modulation of
the color subcarrier in the National Television System Committee NTSC:
American TV standard and quadraphase modulation of modems are examples
of this type of modulation. In the absence of a priori information about signal
structure, a basebanding operation must be performed by a complex heterodyne.

The second option is to form the narrowband filter at the carrier-centered
frequency of /0 Hz. If we resample this output by a factor of M: 1, the carrier-
centered frequency will alias to the new frequency of [/0] mod(/s/M) Hz where x
mod y means the remainder of x divided by y. The aliasing may or not result in
spectral folding with the negative frequency components, depending on the
center frequency and the bandwidth of the signal. To prevent the possibility of
spectral aliasing, we can perform complex narrowband filtering to eliminate the
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negative frequency components. If desired, the new center frequency can then be
shifted to zero frequency by a heterodyne at the output rate (as opposed to one at
the input rate). We will examine both options in the next section. Note that there
is no inherent coupling between the desired bandwidth, the selected center
frequency, and the resampling ratio (except for aliasing considerations). Later we
will also examine systems that realize computational efficiencies by requiring
coupling between these parameters.

A Complex Bandshifting of Input Data

Complex bandshifting, also referred to as frequency shifting or I-Q de-
modulation, is a direct application of the modulation theorem, which is stated
below for both continuous and sampled data.

Modulation Theorem. Given a transform pair

h(t) and H(f) h(nT) and H(2nfT)

a second transform pair is

Mt)exp(-;27t/0f)andH(/-/o)

h(nT)exp(-j2nf0Tn) and H(2nfT - 2nf0T)

2Oil8 Samples/S

!» F I L T E R E D SPECTRUM 5 OESAMPLEO SPECTRUM

Fig. 3.21. Heterodyning a desired spectrum to baseband.
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Hence to shift the spectral band of interest from the center frequency /0 to zero
frequency, we multiply the input data by the ordered pair Qxp(—j2nf0nT). Since
the sampled data spectrum is periodic, this represents a rotation of the spectrum
about the unit circle by the amount /0//s Hz. The lowpass filtering operation is
then performed on the two separate data sets presented by the ordered pair at the
output of the heterodyne operation. This operation and the spectral description
corresponding to points in that process are presented in Fig. 3.21. In the figure the
crosshatched region is the frequency band of interest.

We have already examined the computational workload of the separate
lowpass filters in the basebanding operation. For the complex heterodyne
processing we have to account for the presence of two lowpass filters and for the
complex heterodyne. In the heterodyning each real input data point is multiplied
by a cos and sin value, which represents an increase of two real multiplications
per input point. Therefore, if the input data is complex, there is an increase of four
real multiplications and two real additions per input point. Merging this
additional workload with that of the two /V-point FIR filters yields

Re mult/input = 1- 2 = — h 2 [real input data]
M 1 — a

N K(A)
= 1- 4 = + 4 [cmplx input data] (3.1 Oa)

M I — a

Re adds/input = — = [real input data]
M 1 — a

= — + 2 = —-^ + 2 [cmplx input data] (3.1 Ob)
M 1 — a

Complex Bandshifting of Filter B

In Section IV.A we alluded to the possibility of frequency shifting the LPF
(lowpass filter) response rather than demodulating the data spectrum. Let d(n)
and g(n) denote the system's input and output, respectively. Then the convolution
performed by the Af-point impulse response filter in the previous section is of the
form

flf(n) = [<*(n)exp( -j2nf0 Tn)~] * h(n) (3.11 a)
N~ I

(«- k)e*rt-j2nf0T(n - /c)]/i(/c) (3.1 Ib)

N- 1

= exp(-;27i/0Tn) £ d(n - k)h(k)exp(j2nf0Tk) (3. l ie)
k = 0

= exp( -J2nf0 Tn){d(n) * h(n)e\p(j2nf0 Tn)] (3. 1 Id)
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Equation (3.1 Id) shows that the heterodyne, which we had originally applied
to the data, can also be applied to the lowpass filter (forming a different set of
weights) off line. In this scheme the narrowband carrier-centered filtering is
performed first, and the heterodyne is applied at the output. If the filter input and
output rate were identical, there would be a slight disadvantage of the second
technique over the first. If the heterodyning is performed at the filter input (on
real data), we have a single real-complex multiplication (2 Re mult) per input
point. If it is performed at the filter output, we have a complex-complex
multiplication (4 Re mult and 2 Re adds) per output point. If the output sample
rate is sufficiently lower than the input rate, we may realize a saving in the
heterodyne by not having to heterodyne the data points we discard by the
resampling process. In sliding the complex exponential through the resampler, we
find that the frequency (in hertz) has aliased to [/0] mod(/s/M). The workload to
apply this new heterodyne at the output rate is given by

2N 4 K(A) 4
- + - = y— + -

2N 2 2K(A) 2
Re adds/input = — + - = T_ + -

(3.12a)

(3.12b)

I HETERODYNED FILTER
PASSBANO

DESAMPLED SPECTRUM

Fig. 3.22. Heterodyning a filter to desired spectrum.
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Comparing with Eq. (3.10), we see a saving accrues to heterodyning the filter
output if the resampling ratio is greater than 2:1.

Figure 3.22 presents the form of the filter in which the coefficient set has been
heterodyned and the heterodyne occurs at the output data rate. A second benefit
in heterodyning the narrowband desampled filter output results if the sin-cos
values used in the heterodyne are taken from a table. Since the table is finite, only
those frequencies commensurate with the table length can be heterodyned. This is
true at both the input rate and the output rate. To achieve a selected frequency
resolution at the output of the system would require a resolution at the input that
is M times as great. Hence for a fixed-length sin-cos table, the frequency
resolution of an output heterodyne is M times better than that of an input
heterodyne.

If the data from the filter is to be presented to a DFT routine for spectral
decomposition, we have access to one additional option—don't do the
heterodyning! The heterodyne only accomplishes a shifting of a specified
frequency to the zero frequency of the spectrum. As long as we know where in the
spectrum that frequency resides, we need only reassign the DFT bin to frequency
correspondence. The only concern here is that the desired center frequency might
not reside in the center of a DFT bin, but this residual offset can be avoided by
clever selection of the input sample frequency. If the residual frequency offset is
important, it can be removed by the output heterodyne.

Center Frequencies with Special Properties C

Earlier we mentioned that there is no coupling between the parameters of
bandwidth, center frequency, and resampling rate of the resampling filters. We
can, however, require that these parameters be constrained in particular ways to
obtain a desired simplification or improvement of the filtering process. One
simple example we have already seen is that symmetric filters can be implemented
with half of the multiplications of an arbitrary filter. We had easy access to an
implementation simplification through a simple constraint.

Four frequencies on the unit circle can be moved to zero frequency with no
special processing. They are zero (an easy one to miss), plus or minus a quarter of
the sampling frequency, and half the sampling frequency. A heterodyne can
rotate the spectrum from any arbitrary center frequency to zero frequency by a set
of complex multiplications. For the frequencies just identified, the complex
multiplications are free; they are achieved by sign changes or by interchanging the
real and imaginary parts of a number (data steering) and appropriate sign
changes.

The half sampling frequency is easily interchanged with zero frequency by sign
reversals on alternate data points. Alternatively, a lowpass filter can be rotated to
half the sampling frequency (thus becoming a highpass filter) by the same
procedure of alternating the sign of adjacent coefficients. If the lowpass filter is a
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half-bandwidth filtert, that is, has 3-dB points at a quarter of the sampling
frequency, then the reflected highpass filter will also be. Let the outputs of the two
filters be resampled by 2 : 1. Then at a quarter of the sampling input frequency, the
power gain sum of the two filters is precisely unity. In the regions where one of the
filters exhibits large attenuation, the other exhibits unity gain, so the power gain
sum is again very nearly unity. By using an optimization scheme, we can fine-tune
the filter so that the power gain sum in the transition bandwidth of the pair is
essentially unity (within fractions of a dB). The important property here is that
the sum of the two filter gains is unity even in their transition bands. Figure 3.23
shows the frequency response of a half-bandwidth lowpass and half-bandwidth
highpass filter as well as the power sum of the pair. The benefit of this property is
seen in the next paragraph.

If the filter is used with 2 : 1 resampling, the aliasing of the highpass filter will
yield a bandwidth coinciding precisely with the bandwidth of the mirror filter. It
does because the mirror is the same filter simply heterodyned to half the sampling
frequency by the coefficient sign changes. These filter pairs are called quadrature
mirror filters (QMF) [24-27]. They are used in speech analysis and synthesis of
half-bandwidth spectral regions by a chain of successive 2:1 desampling
operations. This form of processing is akin to the constant-Q spectral decom-
position discussed in this chapter's introduction. Figure 3.24 presents the
structure of a spectral decomposition by a cascade of resampling QMFs, Here
the upper path reduces the data rate by a sequence of filter and resampling stages
while the lower path(s) extracts the upper half-bandwidth from each successive
stage. Figure 3.25 presents the spectral response of a QMF and the spectral
resolution of the first six stages of a QMF decomposition.

The quarter sampling frequency is another spectral location that exhibits
particularly attractive properties. The complex heterodyne required to shift a
quarter of the sampling frequency to zero frequency is

exp( -j2nf0 Tn) = exp ( -j2n - Tn \ = exp ( -; n \ (3.1 3)

=*(-/)"

This is also a trivial sequence to apply either to data or to any baseband filter to
shift its spectral properties to the quarter sampling frequency. The heterodyned
coefficient sets are zero valued at alternate positions in the real set and are zero
valued at (single offset) alternate positions in the imaginary set. Thus there are
half as many multiplications and additions, all of which are trivial, as we would
expect for an arbitrary complex filter. The proportional bandwidth filter bank
described in the introduction to this chapter takes advantage of this reduced
workload filter heterodyned by a quarter of the sampling frequency.

f These filters are also called half-band filters.
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Fig. 3.23. (a) Half-band lowpass filter impulse response, (b) Frequency response of half-band
lowpass and highpass filters, i.e., quadrature mirror filters.
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2:1

Fig. 3.24. Structural form of quadrature mirror filter spectral decomposition.

We now examine a filter with an interesting coupling of bandwidth, center
frequency, and resampling rate. The filter is a half-bandwidth filter of the type
described in the discussion on QMFs. In particular, we can select the impulse
response to be samples of a Nyquist pulse. Figure 3.26 presents the time and
spectral domain descriptions of this impulse response. Note that the coefficients
of the half-bandwidth filter are samples of a smoothly truncated version of the
sin(wt)/(wt) envelope. After the samples of the mainlobe, alternate samples
coincide with the zeros of the envelope.

When we align the coefficients of this baseband filter with those of the quarter
sampling frequency sin heterodyne, we see that they have the same zero set
(except at the origin). Also we note that the nonzero sin coefficients have the same
sign as the filter impulse response coefficients in the negative time interval and
opposing signs in the positive time interval. Thus the nonzero product terms are
all negative valued in positive time and all positive valued in negative time.

When we align the coefficients of the baseband filter with those of the quarter
sampling frequency cos heterodyne, we have a surprise. The zeros of the cos
samples coincide with the nonzero values of the baseband filter (except at the
origin), and the zeros of the filter coincide with the nonzero values of the cos
samples. Thus the product of the two series is zero everywhere but at the origin.
The real part of our filter has almost disappeared; all that remains is a single path
of unity gain. What we have just designed is a filter that passes only the spectral
content of the positive frequency axis and, when desampled 2:1, exhibits the
constant power gain (as in the QMFs) even in the transition bands.

This filter forms a complex signal that has the property that its DFT is
(essentially) zero over the negative frequencies. For the continuous case such a
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Fig. 3.25. (a) Quadrature mirror filter and (b) 6-octave decomposition.
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Fig. 3.26. Half-bandwidth nyquist filter (a) impulse response and (b) frequency response.
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signal is called analytic. By extension, we denote these sequences as analytic
sequences. This signal is the minimum bandwidth representation of real signals
and is particularly useful in describing the properties of narrowband signals. The
filter supplying the imaginary output is a wideband 90° phase shifter. Hence the
filter performs a Hilbert transform on the input data d(n) and generates the signal
d(n) [28]. The ordered pair

a(n) = [d(n) (3.14)

from this process is the analytic signal, the signal with a single-sided spectrum.
We can easily see this in Fig. 3.27, which presents the complex impulse response
and the frequency response (prior to resampling) of the QMF set designed as a
Hilbert transform filter.

(a) ^1-

0 COMPONENT Of I28-P01NT HiLBfRI IRSNSFORM F l L f f R -|

.1 .2 .3 .14 .5
FREQUENCY

Fig. 3.27. (a) I-Q Components of Hilbert transform filter derived from Nyquist half-bandwidth
pulse and (b) filter frequency response before 2:1 resampling.
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V INTERPOLATING FILTERS

Interpolation is the process of computing sample values of a sequence in an
interval between existing data points. We note that before the advent of the
pocket calculator it was common practice to interpolate between entries in tables
of transcendental functions to improve the accuracy of computations. Interpo-
lation is performed by first computing the parameters of a function selected to
pass through (or fit) a chosen set of sample points and then sampling the resultant
curve at the desired locations. Classically the curve selected for the data fit is a
low-order polynomial. The most familiar of these are the zero-order, the first-
order, and the second-order polynomials. These are often called, respectively, the
boxcar or zero-order hold, the linear interpolator, and the quadratic interpolator.
The primary attraction of a polynomial interpolator is computational simplicity.
The primary disadvantages is that the user has no guideline for selecting the order
of the polynomial fit. Intuition leads us to select a polynomial of sufficient order
to match the order of the significant local derivatives of the underlying function
(from which the samples came). If we do not know the local derivatives, we can
estimate them (by successive differences), or we can try a different approach. This
section deals with the alternative approach.

In general, our data points correspond to samples of a bandlimited but
otherwise unknown function. Knowing this, we put aside the burden of
estimating local derivatives and choose instead to pass a simple bandlimited
interpolator through our data points. We will show shortly that the structure
of this bandlimited interpolator is intimately related to our ubiquitous
sin(nfN)/(nfN) lowpass filter function. The sm(nfN)/(nfN) function is often
called the cardinal (bandlimited) interpolator. The very practical problem
associated with this interpolator is its unbounded length. To have a useful
interpolator, we have to select finite-length approximations to this function. We
will demonstrate that the selection of such a finite-length approximation is akin
to the design of the impulse response of a lowpass FIR filter. The performance
measures of the approximation will be in terms of the spectral characteristics of
the equivalent filter.

A Increasing the Data Rate by a Factor of P

Given a set of equally spaced data points x(nT), we can perform bandlimited
interpolation to the arbitrary position T0 by

x(T0) = J>(nT)D(T0 - nT) (3.15)
n

One interpretation of (3.15) is the replacement of each sample value x(nT) by a
weighted copy of the interpolating function D(t) centered at the sample locations
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n'T followed by the summation of each contributor at the desired sample
position. This interpretation, the classic cardinal reconstruction, is shown in
Fig. 3.28. An alternative interpretation places the cardinal interpolator at the
desired sample position T0 and then forms the weighted summation of the data
values of each sample position that intersects that cardinal function. The data is
weighted by the value of the cardinal function at each intersection position.
Shown in Fig. 3.29 is a set of data points and the cardinal function located at
the desired interpolation position.

We now examine the task of interpolating an arbitrarily long sequence of data
at P equally spaced subintervals between the existing data [29,30]. These
subintervals are indicated in Fig. 3.30. We can slide the weighting function to each
of the desired positions and then form the appropriate weighted summation. This
sequence of operations looks amazingly like a convolution. With the inclusion of
one final detail, this weighted summation will be seen to be a FIR filtering
operation. We start with a naive, but still useful, initial approach to increase the
data rate by the factor P. We first identify positions for the P — 1 new data points
between each pair of existing data points by placing zero values at those desired
equally spaced positions. This is called zero-packing (as opposed to zero-
extending) the data, and we will soon develop design insight by examining this
operation in more detail. The interpolation task is now that of a simple moving
weighted average through this zero-packed data, which can be performed with a
FIR filter. The filtering process replaces the zero-packed data with the

INTERPOLATION W I T H CRRDINfll FUNCTION

2 3 4 5 6 7
T I M E

Fig. 3.28. Cardinal sum interpolation.
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Fig. 3.29. Convolution with cardinal function.

bandlimited interpolation values. If the lowpass filter coefficients were originally
scaled for unity gain at zero frequency, a final scale factor of value P must be
applied to the output data to maintain the unity again at 0 Hz.

We still have to address the problem of selecting the proper length filter and
examine processing schemes that take advantage of the zero-valued data points
of the input series. Speaking of zeros, we note that the cardinal weighting
sequence has its own set of equally spaced zeros and that by choosing the
bandwidth to be an integer fraction of the sample rate these zeros can be made to
coincide with sample positions. These approximations, called Nyquist pulses, are
obtained by windowing the cardinal function. Because the distance between these
zeros is the same as the distance between the input data points, we see that filter
weights based on the Nyquist pulse require no computation to form output
values at the output positions that match the input data positions. Thus only data

I x x x l x x x i x x

X - I N T E R P O L A T I O N P O I N T S
Fig. 3.30. 4:1 Interpolation: desired subintervals indicated.
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at the interpolated positions have to be computed. For a non-Nyquist pulse,
data has to be computed at all positions, even those that correspond to input
data positions.

Spectral Effects of Zero-Packing Input Data B

In the previous section we cast the interpolation process in terms of lowpass
filtering of zero-packed data. The zero-packing can be visualized as multiplexing
the input data with P — 1 additional zero-valued data points, as indicated in
Fig. 3.31. We note that the data rate out of the multiplexer is P times the input
data rate. Also, in spite of the new rate, the only nonzero data present is the
input data. Then what have we accomplished by multiplexing with the zeros?
We have changed the quantity we identify as the sample rate from 1/T samples/s
to P/T samples/s. Since the spectra associated with sampled data is periodic in
the sampling frequency, we have redefined a spectral period as P cycles of
spectra rather than one such cycle. The spectra is still periodic in 1/T since
it satisfies

(3.16)

for all frequencies /; but Eq. (3.16) must also be satisfied for all integers K and
particularly for the desired integer P. The task of the interpolating filter is to reject
the spectral copies that occur at the integer multiples (less than P) of the input
sampling frequency. This is the same task the lowpass filter had to perform as part
of the desampling process described in Section III. We call attention to the
similarity of the filtering functions of upsampling and downsampling so that we
have access to the design techniques presented earlier. The spectral description of
the data at the indicated points in Fig. 3.31 is shown in Fig. 3.32.

If we compare the spectral relationships for the upsampling filter (Fig. 3.32)
with those of the desampling filter (Fig. 3.16), we realize that the relationships are
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Fig. 3.31. P: 1 Zero-packing with input multiplexer.
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Fig. 3.32. Spectral description of filtering zero-packed data.

identical. In both of the filters the parameters M and P denote the ratio of the
higher sample rate to that of the lower sample rate. The difference in the two filter
cases is that for the desampling filter the higher sampler rate is the input rate, and
for the upsampling filter it is the output rate. Thus we find that Eq. (3.8)
establishes the length of the lowpass filter for both desampling and upsampling
operations (with the parameter P substituted for the parameter M if required).
For the upsampling filters the parameter K(A) no longer reflects control of
aliased spectral terms but control of replicated spectral terms.

C Partitioning Filters For Polyphase Structures

In the previous two sections we presented the technique of interpolation by
zero-packing and lowpass filtering. We further showed that the length of the
lowpass filter is chosen to satisfy the same spectral constraints required for a
desampling filter. This relationship, originally Eq. (3.8), is repeated here as

(3.17)
— a
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We now note that of every P samples of zero-packed data presented to the filter
only one point is nonzero. The contribution of the remaining P — 1 zero-valued
data points to the output weighted summation is identically zero. We may reduce
the computational burden of the JV-point filter by suppressing those multiplica-
tions (and additions) of the filter coefficients that operate on these known zero-
valued data points. Figure 3.33 indicates, by a set of indicator flags, the position
of the nonzero data values for a sequence of zero-packed data in a filter
performing a 4:1 upsampling interpolation. Since only one out of F samples is
nonzero, if we count the nonsuppressed arithmetic operations performed by the
length-jY filter, we find only N/P multiplications and additions per output point.
Comparing this to Eq. (3.9), we see that the number of operations per output
point is the same for the process of desampling and upsampling and that this
number depends only on sidelobe levels and fractional bandwidth of the filtered
data. The total workload may be greater for upsampling simply because more
output points are being computed.

I I I . t / T

' I ' IMPULSE R E S P O N S E

n-1

29

n-1

t/T

t/T

t/T

DATA POSITION ZERO-PACK POSITION

RESAMPLING SCHEDULE:

INPUT 1 POINT, OUTPUT

OUTPUT

OUTPUT

OUTPUT

Fig. 3.33. Partition of impulse response by indicator set from 4:1 zero-packed data set.
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We now partition the lowpass filter into a collection of subfilters known as
polyphase filters [31]. The subset of filter coefficients needed to compute a given
output point are those that intersect the nonzero data points in the span of the
filter's total impulse response. On successive shifts, the nonzero input data
samples intersect different subsets of the filter's impulse response needed to
compute a particular output sample. We use the indicator set of Fig. 3.33 to
identify the coefficient subset required for each particular output shift. These
subsets define the polyphase subfilters, of which there must be precisely P, the
upsampling ratio.

Shown in Fig. 3.33 is a partition of a 30-point filter into the four subfilters
required for a 4:1 upsampling operation. The four successive indicator time lines
correspond to successive time shifts of data through the filter. Note that only four
distinct subsets are defined by this partition because the next time shift time line
cycles back to the first such line. We also note that there may not be an equal
number of coefficients in each subset. The average length of the subsets is N/P,
and if this is not an integer, the actual lengths are either the next integer higher or
lower. If we count the indicator set in Fig. 3.33, we find two subfilters of length 8
and two of length 7. A consideration for identical architectural structure in the
subsets may lead us to require that N/P be an integer and this can be trivially
arranged by choosing a larger N in the filter specification or by zero-extending
the existing coefficient set.

The filter structure can now be modified to take advantage of this partition of
coefficients. Examining Fig. 3.33, we note a curious relationship between the
nonzero data locations and the filter coefficients. The data indicated on the first
time line is processed by the eight coefficients of the phase 1 filter. On the next
three time lines we note that the same data is successively processed by the next
successive phases of the filter. The important observation here is that it is the
same data! We might reason that the data could stay still while a succession of
four filter sets is applied between successive (nonzero) input samples. Rather than
visualize zero-packed data sliding through a single JV-point filter and intersecting
P distinct subsets, we can imagine the non-zero-packed data sliding simulta-
neously through P distinct filters of length N/P. Each filter receives a new data
point at the input sample rate, and we increase the output rate by multiplexing

4 - f ,

Fig. 3.34. 4:1 Polyphase filter structure.
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through the outputs of the P polyphase filters. Figure 3.34 shows this structure.
Note that the input commutator, which originally was used to zero-pack the
input data, is now used to sequentially address the outputs of the polyphase filter.

Arbitrary Change in Sample Rate by PIM D

In Section III we presented techniques to decrease the filter output rate by an
integer factor M, and in Section V we described techniques to increase the filter
output rate by the integer factor P. We now combine the two methods to realize
ratios of output to input sampling frequency equal to the ratio of arbitrary
integers P/M. The rational fraction P/M can be greater or less than unity. Often
the fraction is a ratio of small integers such as 5/2 or 3/4, but a ratio such as
1 8/6145 can also be managed. There are cases, such as in time delay interpolators,
for which the ratio is precisely unity but realized as P/P (such as 20/20). We
alluded to such an option in the introduction as the interpolators used in time
domain beamformers. We can even accommodate a ratio that is slowly time
varying about a nominal value by imbedding occasional input zero sample
padding and/or output sample skipping in the filtering process.

The philosophy of this technique is to upsample the data by the numerator
integer (F) but with a transition bandwidth on the interpolating filter to allow a
desampling by the denominator integer (M). Figure 3.35 shows the shifting
indicator set for a 3 : 1 desampling imbedded in a 1 : 4 upsampling filter. Fig-
ure 3.36 shows the polyphase structure of the filter; note that it operates on the
shift schedule listed in Fig. 3.35.

This method is best described with the aid of a specific example. For an
example of a resampling of arbitrary ratio, let us consider the task of inter-
polating complex data at an input rate of 6 kHz to a real output rate of 8 kHz.
For example, data could be a voice-grade telephone channel that has been
zero centered by a complex heterodyne and has a normal one-sided alias-free
bandwidth of 1.8 kHz. The first task is to upsample the data to the lowest
common factor of the input and output frequencies; this is 24 kHz, so we require
an initial 4 : 1 interpolating filter. If our only need was to upsample by a factor of
4, the required transition bandwidth of the filter, as shown in Fig. 3.37, would be
2.4 kHz (4.2 kHz — 1.8 kHz). The desampling and conversion to a real signal,
which follows the upsampling operation, reduces the bandwidth spacing between
the spectral replicates, thus necessitating a narrower transition bandwidth.
Hence we see that the upsampling and desampling operations are coupled
through the transition bandwidth specifications of the interpolating filter.
For our example the required transition bandwidth is seen to be 0.4 kHz
(2.2 kHz — 1.8 kHz), and since the LPF must operate at the equivalent input
data rate of 24.0 kHz, we find that the required filter length for 40-dB sidelobes is

N = K(A)~. = 2 = 120 (3.18)
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Fig. 3.35. Partition of impulse response by indicator set from 4:1 zero-packed data with imbedded
3:1 desampling for a total 4:3 resampling.

With this interpolator implemented in a polyphase structure, we can imbed the
desampling operation in the phasing of the input clock and output commutator
clock. Figure 3.35 presented a sequence of time lines showing the zero-packed
data sliding past the filter coefficients and pausing at each third input to compute
the desampled output. Comparing the input sequence to the polyphase filter taps,
we see the input-output phase relationships are indicated in Fig. 3.36. The final

Fig. 3.36. 3:4 Resampling filter with a 4:1 polyphase filter and imbedded 1:3 resampling.
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Fig. 3.37. Spectral descriptions of 6-kHz-complex-to-8-kHz-real resampling filter, (a) Input
spectrum; output spectrum after (b) 4:1 and (c) 3:4 resampling; and (d) output spectrum of real part
of heterodyned signal after 3:4 resampling.

operation applied to the output is the complex heterodyne to shift the data by one
quarter of the sampling frequency. Since we are only interested in the real part of
that heterodyne product, we will only form that part of the complex multiplica-
tion that contributes to the real part. This operation is

d(ri) = Re{[x(n) + ./>(«)] * [cos(6>«) + j sin(0n)]} (3.19)

= x(n) * cos(9n) — y(n) * sin(#n)

= x(n) * cosl ~n 1 — y(n) * sinl ~n ]
\ / \ /

We note that the sequence of cos and sin values needed for the complex
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multiplication are cyclically the values

cos (~n)H +1.0,0.0, -1.0,0.0

= 0.0, +1.0,0.0, -1.0

(3.20)

Since these products are trivial, the sequence d(n] of Eq. (3.18) can be formed as
cyclically multiplexed and sign-reversed filter outputs such as

(d(n)} = x(n), y(n + 1), -x(n + 2), - y(n + 3),... (3.21)

Figure 3.37 shows the spectral descriptions of the signal in the conversion of the
6-kHz complex signal to an 8-kHz real signal. Figure 3.38 shows the final
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Fig. 3.38. Complex-to-real polyphase filter structure.
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structure of the complex-to-real interpolator, in which the desampling is
performed with the polyphase output commutator, and the output heterodyne is
imbedded in the multiplexer along with appropriate sign changes. Note that the
workload for this filter is 30 multiplications and additions per real output point.
Also note that for this example the coefficients for phases 1 and 2 are the same set
but in reversed order; this is also true for phases 3 and 4.

ARCHITECTURAL MODELS FOR FIR FILTERS VI

The FIR filter directly implements the convolution process as a weighted
summation of data points. The various names by which the filter is known
include "tapped delay line," "moving average," "transversal," "all zero," "nonre-
cursive," and "linear phase" (As explained in Chapter 2, a FIR filter is not
necessarily linear phase.) These names reflect properties or structure of the filter.
The first three names are architectural descriptors and represent the signal flow
model that first comes to mind for most of us. Figure 3.39 presents a block
diagram of the classical tapped-delay-line model. The model describes the way
we would manipulate data stored in a sequence of memory cells. The first
observation is that the adder junction of the model is an (N — l)-input adder that
does not exist. Occasionally the model is redrawn to reflect the use of two-input
adders for the actual implementation. One such version is shown in Fig. 3.40.

Fig. 3.39. Classical tapped-delay-line FIR filter model.

Fig. 3.40. Two-input adders model of tapped-delay-line filter.
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Note that we are free to rearrange the order in which we perform the additions of
the product terms to obtain reduced computational noise. We will discuss this
option soon. This form also suggests various levels of parallelism in terms of
adder trees, as indicated in Fig. 3.41.

The simplest adder chains are implemented by successive additions in an
accumulator. This form of the adder chain is the digital version of an integrate
and dump recursive filter and model is shown in Fig. 3.42.

The JV multiplication operations distributed through the models in Figs. 3.39
through 3.41 could be performed by parallel multipliers. Most implementations
of the FIR filter use only one multiplier, which sequentially accesses the
coefficient and data pairs as suggested in the block diagrams. Signal processors
designed with four multipliers (an architecture optimized for complex com-
putations such as in an FFT) have options for some parallelism in the multiplier
chain or in the successive inner products of sequential (shifted) filter outputs.

The combination of a single multiplier and accumulator along with data and
coefficient memories leads to the minimal FIR filter processing architecture
shown in Fig. 3.43. We now leave this level of architectural detail and return to
the block diagram level. If the filter response exhibits symmetry about its
midpoint, the block diagram model is modified to reflect a sum-product-sum

Fig. 3.41. Parallel adder model of tapped-delay-line filter.

•0

M E M O R Y

C E L L

Fig. 3.42. Integrate and dump accumulator.
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C O E F F I C I E N T

SET

! NPUT

M E M O R Y

TRANSFER N-POINTS

EVERY M-INPUTS

Fig. 3.43. Minimal FIR filter architecture.

sequence of operations [32]. This is shown in Fig. 3.44 and again in Fig. 3.45. In
this form the coefficient memory is half of the filter.

While we are fine tuning the filter architecture to reflect our knowledge about
the coefficient set, we can modify that set to minimize computational noise. We
can do this by storing the coefficients as short blocks of successive weights that
share common binary exponents. This is called a block floating-point set. We
recall that the overall response of the lowpass filter is a smoothly truncated
version of the sin(wt)/(wt) function. The envelope of the time response mono-
tonically decreases as we leave the central peak. Moving away from the co-
efficient peak, we mark the coefficient boundary beyond which the magnitude
of the coefficients is alway less than half of the peak. We store the boundary
marker (as a count away from the peak) and simply double the coefficient values
that reside across that boundary on either side of the peak. We do this bound-
ary marking and coefficient doubling recursively till we reach the end of the set.
This process reduces the effects of coefficient quantization errors, which we
have observed limit the achievable stopband sidelobe attenuation.

The filtering process of multiplication and addition proceeds from the tail of
the filter toward the center point. On each call to the coefficient memory we
examine the exponent flag (to identify a crossing of an exponent boundary). If the
flag is set, while performing the multiplication we simultaneously align the

Fig. 3.44. Sum-product-sum FIR filter model.
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COEFFICIENTS

SCALED

I COEFFICIENTS

BLOCK

EXPONENTS i ! I I
_j L.LLLL

I N D E X NUMBER

Fig. 3.45(a). Block floating-point FIR filter coefficients.

EXPONENT FLAGS

Fig. 3.45(b). FIR filter with Block floating-point coefficients.

exponent of the partial sum with that of the coefficient (by a binary shift and sign
extension) prior to the recursive addition. This recursive exponent alignment
continues through the entire coefficient set and, when finished, results in the
properly aligned summation. Here we have the advantage that the partial
summations are performed with more accurate coefficients before the scaling.

The original filter coefficient set indicated in Fig. 3.45 has been modified by the
block floating-point operation to become the second set shown in the same figure.



i CTTTTTTTTTjT T""r""""l"""m!" T T | , . M M , M | M M , I M 1 | M M | . I I M I M

16-BIT FIXED-POINT COEFFICIENTS (d) E

.3 -.2 -.1 0.0 .1
FREQUENCY

16-BIT BLOCK FLOOTING-POINT COEFFICIENTS (e) \

Fig. 3.45(c). Spectra of 40-point FIR filter with (c) floating-point, (d) 16-bit fixed-point, and
(e) 16-bit block floating-point coefficients.
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Also shown in Fig. 3.45(c), (d), and (e) is the frequency response of the filter
realized, respectively, with floating-point, with 16-bit fixed-point, and with 16-bit
block floating-point coefficients, respectively. This technique requires the data to
be buffered in random access memory so that the partial sums can be performed
in the selected order. We cannot apply this scaling technique if the memory is
sequential access, such as in a shift register memory, nor can we apply it if the
architecture is not of the tapped delay form, such as in the partial-sum models.

A Partial-Sum FIR Filter Structure

The partial-sum model is a minimum data memory realization of the
resampling FIR filter [33]. In this architecture partial summations instead of raw
input data are stored. In the tapped-delay-line model each data point shifts
through the delay line with periodic pauses to compute the product and
summation required for its contribution to a given output point. In the partial-
sum model the set of products and summations, normally formed sequentially as
a data point moves in the tapped-delay-line model, are all formed simultaneously

- i i . i . . . i . . . i . . . i . . ...i i i 1 1 1 ] 1 1 1
INPUT D A T A L I N E

F I L T E R SET

S L I D I N G 3 P O I N T S

PER OUTPUT POINT

0 2 . s , Lu.LtJ^UJ^UJ

- PHASE

S - PARTIAL SUM 3'S2 *

S *S3 ''

Fig. 3.46. Partial-sum partition of polyphase filter set.
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upon the data point's arrival. The additions are made to partial-sum ac-
cumulators, which are cleared only upon completion of each summation. Since
the data's contribution to each filter output point is stored as a collection of
partial summations, there is no need to store the raw data. Storage consists
entirely of the partial summations. This consideration is important in very high-
speed applications where memory access times would limit processing speeds.

We now address the number of partial summations required for a given filter.
The number of partial summations required to form a resampling FIR filter
depends on filter length, number of polyphase segments (upsampling parameter),
and the imbedded desampling parameter (if any). The required number is most
easily seen by keeping track of the clearing rate for the accumulators. The
contents of a partial-sum accumulator are cleared upon the completion of the
polyphase inner product. Upon clearing, the accumulator becomes available to
form the next partial sum.

Fig. 3.47. Partial-sum polyphase filter realization.
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Let us follow a specific example, in particular the 30-point 4:1 upsampling
filter with the imbedded 1:3 desampling of Fig. 3.35. Assume the first three data
points have just contributed to a freshly cleared phase 1 segment. Since the
segment has not finished its run (of eight), it cannot clear. The next three input
points arrive and contribute to this first partial sum and to the start of a second
partial sum. The first sum has now accumulated six of its required eight points;
hence it has not completed its run and still cannot clear. The second accumulator,
holding a fresher sum, obviously has not finished its run of eight, and it too
cannot be cleared. The next three input points arrive; two of them contribute to
the first sum and finish its run of eight points, thus allowing an output and a
clearing. These same input points contribute to the second partial sum and to a
fresh third partial sum. When the next three input points arrive, they start a fresh
partial sum run in the original first accumulator. Thus we find that three partial
sums had to be in operation for the phase 1 segment. This accounting technique is
shown in Fig. 3.46 for all four phases. Shown in Fig. 3.47 is the partial sum
polyphase structure of this same filter.

VII SUMMARY

This chapter has examined the structure of resampling filters. We found that
the resampling filter is essentially a lowpass filter and a system of input and
output switches operating at two or more frequencies. These frequencies are
related by integer ratios M: 1,1: P, and M: P. In our review of lowpass filters we
found that the filter length is proportional to the ratio of sampling rate to
transition bandwidth. The proportionality coefficient was shown to be inversely
related to stopband attenuation. We formed a simple estimate of this
attenuation-related coefficient and demonstrated some designs using our
estimates.

An interesting result of our review of resampling filters is that the filter design is
the same for desampling and upsampling ratios of M: 1 and 1: F, respectively. We
showed that, as with nonresampling lowpass filters, the filter length is pro-
portional to the ratio of the sample rate to transition bandwidth, where the
sample rate is the larger of the pair of input and output sampling rates.

We introduced upsampling filters through the technique of lowpass filtering a
zero-packed input data stream. We then used the nonzero positions in the zero-
packed data to identify filter subsets that formed distinct subfilters. These
subfilters were used as the polyphase components of computationally efficient
interpolating filters.

We also introduced other architectural variations of the FIR filter that permit
enhanced performance options related to speed, finite accuracy coefficients, and
memory requirements. These included the add-multiply-add structure, block
floating-point coefficient structrue, and the partial-sim structures.
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Introduction A

Windows were discussed in Section III in conjunction with FIR filter design.
Windows are also used in conjunction with the DFT to perform spectral analysis
on data sets observed over finite intervals. In support of that task, the window
serves various functions, the most important of which is to shape the spectral
response of the equivalent filter set. For this reason, windows designed for
spectral analysis applications can also be used as the impulse response of
narrowband FIR filters. In this appendix we shall review the important
properties of windows from the classical viewpoint of spectral decomposition. As
part of this review, we shall cite how those properties that make windows useful
for spectral decomposition can be interpreted as desirable properties for
narrowband FIR filters.

The first function a data sequence window (also called a data sequence
weighting) serves in spectral analysis is to define the duration of the observation.
For sampled data systems the duration is the number of samples N, which along
with the known time interval between samples T defines the total time duration
of the observation NT. This in turn defines the analysis' minimum spectral
resolution, which is the inverse of the observation length 1 /NT, where the units
are inverse seconds or hertz. This minimum resolution can be factored to
emphasis that the minimum resolution is equal to the sample rate divided by the
number of data points: (1/N)(1/T). This minimum achievable bandwidth is
obtained with the rectangular weighted window, sometimes called the default
window. By analogy, a FIR lowpass filter defined by the rectangular weights will
exhibit this minimum bandwidth response for the given number of points. From
the inverse viewpoint a FIR filter designed to pass a band of frequencies that
represents 1 /N of the sample rate must span an input interval of at least N data
points. Data sequence shaping and additional filter length are required to obtain
filter sidelobe control for a given spectral bandwidth.

Figures of Merit B

We must share the same concern about the maximum levels of the out-of-band
spectral response of FIR filters and data sequence windows. Table AI lists
common figures of merit for windows that can aid in comparing the important
performance considerations. The first parameter listed in Table AI is the highest
sidelobe level—that is, the minimum stopband attenuation. Filters are normally
specified by a minimum required attenuation level, and windows are identified as
exhibiting particular sidelobe levels or are designed to realize a given sidelobe
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level. The sidelobe levels are specified to reflect dynamic range considerations,
such as the noise floor of an input ADC (at —6.0 dB/bit). Windows are also
characterized by asymptotic rates of decay for the out-of-band sidelobe levels.
This traditionally is not a specification for FIR filters. As explained in Chapter 3,
however, a FIR filter with rates of decay between —4.5 and —6.0 dB/octave
(or — 15 to — 20 dB/decade) exhibits reduced levels of sidelobe aliasing under
the resampling operation. This asymptotic sidelobe decay rate is the second
parameter listed for each window in Table AI.

The coherent gain (CG) of the window (or prototype lowpass FIR filter) is the
zero frequency gain (also referred to as the dc gain) of the window, which is found
as the summation of the window weights. The weights are normalized to a peak
value of unity, and the summation over the N points is bounded by N. The CG
parameter listed in Table A I is the summation scaled by the number of terms N:

This term is the numerical gain referred to in Chapter 3 and is required to
estimate the width of the accumulators needed when forming the weighted
summation of the FIR filter.

It is difficult to assess and compare the bandwidth-reducing abilities of filters
with different spectral shapes. One useful measure of this ability is the equivalent
noise bandwidth (ENBW). We can conduct test to measure the ENBW of a filter
by passing white noise with a known spectral density through the filter and then
measuring the output variance. The variance of the output noise is a measure of
the filter bandwidth. In particular, the ENBW of a window or filter is the width of
an equivalent ideal rectangular spectral response that will pass the same noise
power as the filter under test. The filter under test is first normalized for unity zero
frequency gain. If we assume unity sample rate and unity noise power spectral
density, the ENBW of a filter is given by

ENBW = (A3.2)

For a rectangular weighted summation of N terms, the ENBW is 1/W, which is
also the filter's spectral resolution. For other weightings the ENBW is larger. In
many cases we are willing to accept a larger ENBW in order to control the out-of-
band sidelobe levels. The ENBW parameter listed in Table AI has been
normalized relative to the ENBW of the rectangular weights of the same filter
length.

Another important set of parameters is related to the shape of the filter's
mainlobe spectral response. In particular, the spectral interval between the peak
gain and the — 3.0-dB and — 6.0-dB response levels is a convenient measure of
the filter mainlobe width. Normalized versions of these parameters are listed in
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Table AI for ]V-point weighting sequences. The normalization is in terms of bins,
where a bin is the frequency resolution using rectangular weightings (1/JV of
the input sample rate).

The scallop loss is the attenuation of the window at one-half a bin separation
from the mainlobe peak spectral position. It is an important consideration when
the window is used to form a bank of adjacent filters that are spaced at one-bin
intervals such as in a DFT. The scallop loss represents the apparent reduction in
signal level due to a sinusoid whose frequency is midway between two adjacent
filter center frequencies. An allied figure of merit is the worst-case processing loss.
This term is the sum of the scallop loss and the ENBW (converted to dB) of the
filter. This represents the apparent reduction in SNR for a sinusoid in additive
white noise and can be attributed to use of the window. It is due to the position
of the input sinusoid in the filter bandwidth and to increased noise variance
resulting from the increased mainlobe widths. This figure is useful for detection
considerations but is often replaced with an average loss over the bandwidth (as
opposed to the maximum loss).

The last figure of merit listed in Table AI is the percent overlap correlation for
filters used to reduce the bandwidth of the input series. In many applications the
sample rate is reduced commensurately with the bandwidth reduction. For a
white noise input, filter output samples separated by more than the filter length
are independent. Those taken from the filter that are closer than the filter length
are correlated, because some of the same input data has contributed to each
output. The correlation coefficients represent the degree of correlation of filter
output points that are separated by 25% and 50% of the filter length. These terms
are useful in quantifying the estimation uncertainty (or variance reduction)
related to incoherent averaging of filter data.

Window (Filter) Descriptions C

Rectangular Window 1

The rectangular window is unity over its entire interval. When this data
sequence window is represented by an even symmetric FIR filter impulse
response, it is defined as

h(n)= 1.0, n = -y,...,-l,0, l,...,y (A3.3)

The sequence is shifted N/2 locations to the right to make it realizable. The
spectral response of the realizable weights is given by

-N
(o) = exp — 7-r- - r/

2 sm[(l/2)co]
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The time response of this filter for N/2 = 25 is shown in Fig. A3.1 (a); the spectral
response is shown in Fig. A3.1 (b). The filter has the narrowest mainlobe width for
an N-point filter but exhibits high sidelobes. The first sidelobe is attenuated
approximately 13.0 dB relative to the mainlobe, and the remaining sidelobes fall
off at 6 dB/octave.

4-

1,25

1.00

! i ; i n
25 -20 -15 -10 -5 0 10 10 15 20 25

(a)

OdB

- 7T 0 1"

(b)

Fig. A3.1. (a) Rectangle window and (b) log-magnitude of window's frequency response.
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Triangular (Fejer, Bartlett) Window 2

The triangular window, when represented by an even symmetric FIR filter
impulse response, is defined by

n = - , . . . , - l , 0 , l , . . . , (A3.5)

This sequence is shifted N/2 — 1 positions to the right to make it realizable. The
spectral response of the realizable weighting is

H(o)) — exp
N 'sin[(7V/4)a>]

(A3.6)

The time and spectral responses of this filter are shown in Fig A3.2. This filter's
frequency response is seen to be the magnitude squared of the response of a
rectangular window of length N/2 + 1. The reason is that the triangle can be
obtained as the convolution of two (half- width) rectangles, so the resultant
transform is the product of the rectangle's spectrum with itself. Note that the
mainlobe width has been doubled and that the sidelobes start at —26 dB and
decay at 12 dB/octave. The spectrum is everywhere positive, which is a property
of a filter response obtained by self-correlation of an arbitrary sequence.

Cos*(x> Windows 3

The cos(x) windows are a family of windows defined on the parameter a. The
window used as a symmetric FIR filter is defined by

~ n=-y , . . . , - l ,0 , l , . . . , y (A3.7)

The window is formed by raising to the power a the samples of half a cycle of a
cosine, which extends over the N + 1 points of the impulse response. The zeros at
the end of the interval become repeated zeros as the power a increases. The
repeated zeros of the resultant function suggest that not only is the function zero
at the boundaries, but also a number of the function's derivatives are zero. This
has the effect of forcing the spectral sidelobe structure to decay more rapidly. This
also causes the time function (i.e., the impulse response) to the narrower so that its
spectral response widens. The time response and spectral responses for the filter
are presented in Fig. A3. 3 for a = 2.0. This is the Hann window, which is
sometimes referred to as a raised cosine window. The window is defined by

h(n) = C o s 2 N n = 0.5[1.0 + cosM n (A3.8)

N N
n — __ — 1 0 _n- , . - - , 1 ,U, . . . ,



260 Frederic J. Harris

1.25

1.00

-25 -20 -15 -10 -5 0 5 10 15 20 25

(a)

O d B

Fig. A3.2. (a) Triangle window and (b) log-magnitude of window's frequency response.

Since the time domain description of the Hann window is that of a two-term
cosine series, the spectral description is particularly simple, being a summation of
Dirichlet kernels of the form

H(a>) = 0.5D(o>) + 0.25
o
— (A3.9)
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where

D(co) =
sin[(JV/2)co]
sin [(l/2)a/]

The spectrum of the Hann window has a mainlobe width twice that of the
rectangular window (as does the triangular window), a highest sidelobe
attenuated relative to the mainlobe by 32 dB, and an asymptotic rate of sidelobe

•f
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1.00

-25 -20 -15 -10 -5 0 5 10 15 20 25

(a)

O d B

Fig. A3.3. (a) Cos2(nn/N) window and (b) log-magnitude of window's frequency response.
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decay of 18 dB/octave. The reduced sidelobe levels can be visualized as resulting
from the destructive cancellation of sidelobes from the offset Dirichlet kernels of
Eq. (A3.9).

4 Hamming Window

The Hamming window is an extension of the Hann window in the sense that it
is a raised cosine window of the form

h(n) = a + (1. 0-a)cos (— )« (A3.10)
L\NJ J

with a corresponding spectrum of the form

The parameter a permits the optimization of the destructive sidelobe cancellation
mentioned in the description of the Hann window. In particular, when a is
adjusted to 25/46 (0.543478261 . . .), the first sidelobe (see the Hann window) is
canceled. The common approximation to this value of a is 0.54, for which the
window is called the Hamming window and is of the form

H(6) = 0.54 + 0.46 cos ( — )« (A3. 12)

The time and spectral responses of this filter are shown in Fig. A3.4. Note that
the mainlobe width matches that of the Hann, that the highest sidelobe is attenu-
ated with respect to the mainlobe by 43 dB, and that the asymptotic rate of
attenuation is 6 dB/octave.

5 Short Cosine Series Windows

The Hamming and the Hann windows are examples of windows constructed
by the summation of shifted Dirichlet kernels. The general time domain de-
scription of such a window is of the form

K/2 V/2n\ ~ \ N N" '" i ' Z 7 r * - i n _ _ f i _ i n i mmn — ,..., i, u, i , . . . ,— ^nj.ijj

which has a spectral description of the form

H(a>) = fl(0)D(o>) + I ^\D(CO - k + DO> + k~ (A3.14)
k = i 2
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subject to the constraint
K/2

£«(*)= 1.0 (A3.15)

We see that the Hamming and the Hann windows are of this form with only two
nonzero coefficients. Constructing a window with a small number of nonzero
coefficients is one way to control the mainlobe width of the spectral response.

1.25

1.00

25 -20 -15 -10 -5 0

(a)

5 10 15 20 25

OdB

l i l t I I i I I i

(b)

Fig. A3.4. (a) Hamming window and (b) log-magnitude of window's frequency response.
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a. Blackmail Window. Blackman examined windows with three terms and
found the values that placed zeros at the nominal position of the first two
sidelobes outside the mainlobe interval. These exact values and their two-place
approximations are

793
a = = °'426 59° 71 ~ °'42

= 0-496 560 62 « 0.50

= °-076 848 67 ~ °-08

The window defined by the two-place approximations is known as the Blackman
window and is of the form

+ 0.08 cos — 2 « . (A3.16)
2n

h(n) = 0.42 + 0.50 cos —

n = -^...,-i.ai,..42 2

The time and spectral responses of this filter are presented in Fig. A3.5. Note that
the first sidelobe is attenuated 59 dB relative to the mainlobe and that the
sidelobes fall off at 18 dB/octave. The time and spectral responses for the exact
Blackman weights are presented in Fig. A3.6. Note that the highest sidelobe is
attenuated by 69 dB relative to the mainlobe response and that the sidelobes
decay at 6 dB/octave.

b. Blackman-Harris Window. Using a gradient search technique, Harris
found three-term and four-term windows that achieve minimum sidelobe level
responses. Nutall subsequently published corrected coefficients for the same
windows. These three- and four-term windows are called Blackman-Harris
or Harris-Nutall windows. These windows achieve sidelobe levels of —74 and
— 94 dB, respectively. The coefficients for these windows are listed in Table All.
The three-term (— 74-dB) window formed by this short cosine series and its spec-
trum are given in Fig. A3.7.

c. Sampled Kaiser-Bessel Window. Any good window with acceptable
sidelobe levels can be the prototype of a small number of term cosine series. We
simply sample the mainlobe spectral response of the prototype filter and use
scaled versions of those samples as the coefficients of the cosine series terms in
(A3.13). For instance, the spectral description of the Kaiser-Bessel window is of
the form

H(co) = •= , 0 < a < 4 (A3.17)
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Fig. A3.5. (a) Blackman window and (b) log-magnitude of window's frequency response.

TABLE All

Coefficients of Three- and Four-Term Blackman-Harris (Harris- Nutall) Windows

3 Term
>61 dB)

3 Term
(-67dB)

4 Term
(-74dB)

4 Term
(-94dB)

a(2)

0.449 59
0.493 64
0.056 77

0.423 23
0.497 55
0.079 22

0.40217
0.497 03
0.098 92
0.001 83

0.358 75
0.488 29
0.141 28
0.011 68
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Fig. A3.6. (a) Exact Biackman window and (b) log-magnitude of window's frequency response.
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Fig. A3.7. (a) Three-Blackman- Harris window and (b) log-magnitude of window's frequency
response.

In Eq. (A3.17) let a> = m(2n/N), the equally spaced spectral points of a DFT; then
we have

sinh (n Va2 — m2)
(A3.18)
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TABLE AIII

Coefficients of Four-Term Sampled
Kaiser-Bessel Window

a(0) = 0.402 43
a(l) = 0.498 04
a(2) = 0.098 31
fl(3) = 0.001 22

Now scaling the sampled results of Eq. (A3.17) gives

c = ̂  (0) + 2H, (1) + 2H, (2) + [2 tf, (3)] (A3.19)

,™ #i(°) , 2Hl(m) , „ ,„,a(0) = —^, a(m) = ——, m = 1, 2, (3)
c c '

The four coefficients for the sampled Kaiser-Bessel window corresponding to the
parameter a = 3 (for — 70-dB sidelobes) are listed in Table AIII. The window
formed by this four-term cosine series and its spectrum are presented in Fig. A3.8.
Note that the four-term approximating window maintains essentially the same
sidelobe performance of the original prototype.

6 Constructed Windows

Numerous windows have been constructed as the product, as the sum, as
sections, and as convolutions of simple functions and of other simple windows. In
general, these constructed windows do not exhibit the good spectral properties of
narrow mainlobe width and low sidelobe levels. We include them here to help the
user avoid taking well-trod pathways that have not led to useful results. For these
windows we simply describe the function and give their time and frequency
responses with no other comments.

a. Parabolic (Riesz, Bochner, Parzen) window. The parabolic window is a
simple polynomial function (quadratic) of the form

h(n) = 1.0
N/2

N
0 < \n\ < — (A3.20)

The time and frequency responses of this window are given in Fig. A3.9.

b. Riemann Window. The Riemann window is a set of samples of the central
(main) lobe of the sin(jc)/(.x) function and is of the form

. 2nn

h(n)=—^-, 0 < N < ~ (A3.21)
2nn 2
N

The time and frequency responses of this window are given in Fig. A3.10.
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Fig. A3.8. (a) Four sample Kaiser-Bessel window and (b) log-magnitude of window's frequency
response.

e. De La Valle-Poussin (Jackson, Parzen) window. This window is a
piecewise cubic curve obtained by self-convolving two triangles of half extent or
four rectangles of one-fourth extent. It is defined by

h(n) =
2 1.0-

N/2
N N

(A3.22)

The time and frequency responses are given in Fig. A3.11.
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Fig. A3.9. (a) Riesz window and (b) log-magnitude of window's frequency response.

d. Cosine Taper (Tukey) Window. The Tukcy window is unity amplitude
over (1 — ct/2)N points, with the remaining (a/2)N points forming a cosine taper
from unity to zero at its boundaries. The window is equivalent to convolving a
rectangle of width (t — a/2)N with a raised cosine (the Hann window) of width
(a/2)JV, The resultant window is of the form

h(n) =
1.0, 0 < \n\ < a

N

N N
(A3.23)

<
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Fig. A3. 10. (a) Riemann window and (b) log-magnitude of window's frequency response.

The time and frequency responses of this window are given for a = 0.75 in
Fig. A3. 12.

e. Bohman Window. The Bohman window is obtained by the convolution of
two half-duration cosine functions (Eq. (A3. 7) with a = 1.0); thus its transform is
the square of the corresponding cosine function's transform. The window is of the
form

(A124)
The time and frequency responses of this window are given in Fig. A3. 13.
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Fig, A3.11. (a) De La Vallee-Poussin window and (b) log-magnitude of window's frequency
response.

f. Poisson Window. The Poisson is a family of truncated two-sided expo-
nentials defined by

0< |n |<^ (A3.25)

The parameter a in this family corresponds to the reciprocal time constant of
an exponential sequence. The time and frequency responses of this window for
a = 3.0 are given in Fig. A3.14.
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Fig. A3.12. (a) 75% cosine taper (Tukey) window and (b) log-magnitude of window's frequency
response.

g. Hann-Poisson Window. The Hann-Poisson family of windows is ob-
tained as the product of the Hann and the Poisson windows and is of the form

M = as|u> + co.(«^j«p^-«- (A3.26)

The time and frequency responses of this window are given for a = 0.5 in
Fig. A3.15.
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Fig. A3.13. (a) Bohman window and (b) log-magnitude of window's frequency response.

h. Cauchy (Abel, Poisson) Window. The Cauchy is a family of windows
obtained from samples of a truncated Cauchy function. This function is the
power spectrum of a first-order analog filter and is the form

h(n) =
1.0

0< |«|
N
~2

(A3.27)
[an/(N/2)]2'

The time and frequency responses of this window are given for 4.0 in Fig. A3.16.



3. Multirate FIR Filters 275

1.25

1.00

T

-25 -20 -15 -10 -5 0 5 10 15 20 25

(a)

OdB

(b)

Fig. A3.14. (a) Poisson window and (b) log-magnitude of window's frequency response (a = 3.0).

Gauss/an (Weierstrass) Window 7

Windows are smooth (usually positive) functions with tall, thin (i.e., concen-
trated) frequency responses. From the uncertainty principle we know that the
mean-square time duration T and the mean-square bandwidth W (in hertz)
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Fig. A3.15. (a) Harming-Poisson window and (b) log-magnitude of window's frequency response
(a - 0.5).

satisfies

TW>-
2 (A3.28)

The Gaussian function is the minimum time-bandwidth function because it alone
satisfies Eq. (A3.28) with equality. The Gaussian window obtained as samples of a
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Fig. A3.16. Cauchy window and (b) log-magnitude of window's frequency response (a = 4.0).

truncated Gaussian function is no longer minimum time-bandwidth and is of the
form

(A3.29)exp _

The time and frequency responses of the window for a = 3.0 are given in
Fig. A3. 17.
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Fig. A3.17. (a) Gaussian window and (b) log-magnitude of window's frequency response (x = 3.0).

8 Dolph-Chebyshev Window

The Dolph-Chebyshev window is an optimum window in the sense that it
exhibits the narrowest mainlobe width for a given maximum sidelobe level. The
peak sidelobe levels are all of the same size and are selectable. The window is most
easily described by its DFT in the frequency domain and then the inverse DFT
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determines the time domain samples. The DFT description is of the form

(A3,30a
cosh(Afcosh 1

where

*(X) = In [X + ^JX2 - 1.0], \X\ > 1.0

r r / ; \ COS (/V COS (p COS(7lK//V jjj -mu\
/f(fe) = — — ' t,-i (AJ.JUD)

where
/ Y \

cos""1^) = tan"11 - I I X I < 1 02 VVx^Toy' '
where ^ satisfies

( — cosh' -1 10" )£ = cosh — cosh' -1 10" (A3.30c)

and

h(n) = H(k)^vjnk (A3.31)
fc = o \ /V /

The parameter a has the interpretation of sidelobe level in decades of atten-
uation. The time and frequency responses of this window are presented for a =
3.0 in Fig. A3. 18. Note that the constant-level sidelobes in the spectrum imply
that the filter impulse response exhibits an impulse that resides at the boundary
of the time response. (In Fig. A3.18(a) the impulse amplitude is so small that the
impulse is not noticeable.)

Taylor Window 9

The Taylor window is an approximation to the Chebyshev window, which
holds a subset of the sidelobes at a constant level and permits the remaining
sidelobes to fall off at 6 dB/octave. This avoids the impulse in the time response
description of the window. The number of sidelobes held at the designated fixed
level depends on the chosen attenuation level. The spectral description of the
window is a short cosine transform exhibiting nonzero coefficients only over the
bandwidth of the constant-level sidelobes.

The Taylor weightings can also be described by the coefficients of the short
cosine series. Table AI V lists the nonzero coefficients of the short cosine series for
Taylor weights with sidelobe levels of —40, —50, —60, and —70 dB. The time
and frequency responses of a 51-point Taylor window for a maximum sidelobe
level of — 60 dB are shown in Fig. A3.19.
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Fig, A3.18. (a) Dolph-Chebyshev window and (b) log-magnitude of window's frequency response
(a = 3.0).

10 Kaiser-Bessel Window

The Kaiser-Bessel window (see also Section III.B in Chapter 2) is an optimum
window in the sense that it achieves the smallest time-bandwidth product for
functions of finite duration. In a manner similar to the Gaussian function, which
is its own transform (in the absence of truncation), this window is its own
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(a) 51-Point Taylor window and (b) log-magnitude of window's frequency response.
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TABLE AIV

Coefficients for Short Cos Expansion of Taylor Window

a(0)
a(l)
«(2)
a(3)
a(4)
a(5)
a(6)
a(l)
a(8)
fl(9)
a(10)
a(li)

fl(12)
a(13)
a(14)
a(15)

-40dB

0.566071
0.440 535

-0.010702
0.005 527

-0.001 824
0.000 393

__
_
__
—
_
_

—
—
—
—

-50dB

0.511 488
0.473 578
0.013046
0.003 098

-0.001 837
0.000919

-0.000410
0.000 146

-0.000028
—
_.
__
_._
__
_

—

-60dB

0.469 792
0.489 709
0.040 543
0.000 465

-0.000893
0.000631

-0.000 397
0.000 237

-0.000 132
0.000 066

-0.000027
0.000 007
—
^

—
—

-70dB

0.464 840
0.528 340
0.007 174

-0.000292
-0.000 225
0.000 285

-0.000 228
0.000 166

-0.000 116
0.000 078

-0.000051
0.000 032

-0.000018
0.000 009

-0.000004
0.000001

transform when we include the truncation operation. As such, we can define the
window either by samples of its spectrum or by samples of its time description. In
the sample domain description the window is defined in terms of the zero-order
Bessel function (of the first kind) by

h(n} = 70(Wl.O-(n/(Ar/2)2) N

y
where

k\
An alternative description in terms of its spectra is

h(n)
sinh((7r/a/1.0 -

sinh(7t/a)

(A3.32)

(A3.33)

(A3.34)

The time and frequency responses for the Kaiser-Bessel window for a = 2.5 are
given in Fig. A3.20.

11 Barcilon-Temes Window

Whereas the Kaiser-Bessel window achieved its performance by maximizing
the energy contained in the mainlobe, the Barcilon-Temes window achieves its
performance by minimizing the weighted energy outside the mainlobe. This
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Fig. A3.20. (a) Kaiser-Bessel window and (b) log-magnitude of window's frequency response

(a = 2.5).

window, like the Dolph-Chebyshev, is described by equally spaced samples in
the frequency domain, and then an inverse DFT transforms the window to the
time domain. The frequency domain samples are defined by

(A3.35)
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where A = sinhC = V I 0 — 1.0

C-coslr1 10"

P = cosh(C/AO

'nk
y(k) = NCOS' M /fcos

N
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Fig. A3.21. (a) Barcilon-Temes window and (b) log-magnitude of window's frequency response
= 3.5).
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Fig. A3.22. Highest sidelobe level versus worst-case processing loss. Shaped DFT filters in the
lower left tend to perform well.
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The time and frequency descriptions of the window are presented for a = 3.5 in
Fig. A3.21.

D Closing Comments

We have described some classic windows that may be used as the impulse
response of narrowband FIR filters. We have also presented a table of important
figures of merit with which different windows/filters can be compared. A quick
comparison of important figures of merit is possible with Fig. A3.22. Here the
highest sidelobe level is plotted against worst-case processing loss for the different
windows described in this appendix. These parameters are important for
detecting sinusoids of unknown frequency in additive white noise. Robust filters
should exhibit low sidelobes and low processing loss—should be located in this
figure toward the lower left corner. By this criterion we see that the better filters
are the Dolph-Chebyshev, the Taylor, the Blackman-Harris, and the Kaiser -
Bessel weightings. If we include the consideration that the out-of-band sidelobes
should not be of constant amplitude, the Blackman-Harris and the Kaiser-
Bessel weightings are the most desirable.

Some of the windows identified here are particularly useful because of their
simplicity of form. For example, the short cosine series expansions for the
Blackman-Harris windows make it possible to compute the filter coefficients
for very large filters when standard filter design algorithms (e.g., the Remez
algorithm described in Appendix 2A) fail to converge.
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Chapter 4

IIP Digital-Biters

NAZfRA. PASHTOON
Electrical Engineering Department
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Stony Brook, New York 11794

INTRODUCTION I

The unit sample response (impulse response) of discrete-time linear time-
invariant digital filters is either of infinite duration or of finite duration. Thus,
from the point of view of the impulse response duration, filters can be classified as
infinite-duration impulse response (IIR), or finite-duration impulse response
(FIR) digital filters. IIR digital filters are commonly realized recursively by
feeding back a weighted sum of past output values and adding these values to a
weighted sum of present and past input values. In principle, IIR digital filters
have infinite memory. In contrast, the nonrecursive realization of FIR digital
filters has finite memory, where an output sample is generated as a weighted sum
of present and past input values.

The major advantage of IIR digital filters, compared to FIR digital filters, is
that, for a given order N, highly selective recursive digital filters can be designed.
In other words, the recursive realizations of IIR digital filters are computation-
ally efficient. The disadvantage of the recursive realization is that the designer
must pay attention to stability, parasitic phenomena, and (when a design
consideration) phase nonlinearity [1-4].

The title of this chapter covers numerous classes of digital filters. Indeed, the
topic of IIR digital filters will, deservedly, require a whole book. Some important
and interesting low-noise and low-coefficient-sensitivity IIR digital filters [5-8]
appear in Chapter 5. Special design requirements may dictate an investigation of
these structures and others.

Our purpose is to present standard techniques for designing IIR digital filters,
We emphasize indirect approach of designing digital filters from analog filter
prototypes [1-4] meeting given magnitude response specifications.
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Sections I and II contain an introduction and some definitions. Section III
discusses the stability of IIR digital filters. Standard digital filter realizations are
discussed in Section IV. Section V describes filter specifications in the frequency
domain, as well as the use of analog filters as prototypes. Various analog filter
types and their design are discussed in Section VI. Section VII discusses analog
transformations for converting the lowpass prototypes of Section VI to lowpass,
highpass bandpass, and bandstop filters. Section VIII discusses various trans-
formations necessary for the "digitalization" of analog prototype filters. Section
IX examines spectral transformations, which are used for transforming a
prototype lowpass digital filter to bandpass, highpass, etc.

These techniques require precise knowledge of the transfer functions of analog
and digital filters at some stage of the design process. Section X presents two
types of IIR digital filters [9,10] that start with a doubly terminated analog
lossless ladder network as a prototype, thus obviating the need for exact
knowledge of transfer functions. These filters have low sensitivity to coefficient
quantization errors and are well suited for narrowband designs.

II PRELIMINARIES

The output sequence y(n) of a causal, linear, and time-invariant digital filter in
response to an input sequence x(n) is given by the convolution sum

oo , oo

h(m)x(n ~ m) (4.1)

where h(m) is the unit-sample (impulse) response of the digital filter. The digital
filter is called a FIR digital filter if h(m) is identically zero outside a range
m2 < m < ml. Otherwise, it is called an IIR digital filter. Assuming a causal
input sequence, we can write the convolution sum representation of digital
filters as

y(n)= £ h(n-m)x(m)= £ h(m)x(n - m) (4.2)

We obtain the frequency domain characterization of the digital filter by taking
the 2-transform of Eq. (4.2), assuming the initial conditions are zero, which yields
the filter transfer function

H« = ||> ,4.3,

We obtain the steady-state frequency domain response of the digital filter by
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evaluating H(z) on the unit circle of the z-plane:

H(z) H(ej0}T) = \H(eJtoT)\ Arg H(ejcoT) (4.4)

where T is the sampling period.
The transfer function H(z) can be expressed as a ratio of two polynomials

(4.5)

For causal filters, considered in this chapter, N > M. If the denominator and
numerator do not have common factors, there will be N poles and zeros, with
N — M zeros at z = 0.

A time domain characterization of Eq. (4.5) as a recursive difference equation,
provided not all bk are zero, is given by

N M

y(n) = - £ bky(n - fc) + £ akx(n - k) (4.6)
fe=l fc=0

In Eq. (4.6) the output of the filter is a weighted sum of past outputs and inputs
and the present input. If all bk are zero, then the output is a weighted sum of
present and past inputs. The resulting difference equation is nonrecursive.

STABILITY HI

In the design of IIR digital filters stability is an important consideration. A
paper design might indicate a perfectly stable filter, whereas the actual filter
implemented may be unstable. An illustrative example will be the design of highly
selective filters, with poles inside but close to the unit circle of the z-plane (high-<2
poles). In the actual implementation of the digital filter, the finite precision
representation of coefficients could cause the poles in the proximity of the unit
circle to wander out and produce an unstable digital filter.

A discrete-time linear time-invariant causal digital filter is considered stable if a
bounded input creates a bounded output. In a stable system the impulse response
h(n] vanishes after a sufficiently long time. In an unstable system h(n)
grows without bound after a sufficiently long time. The impulse response h(n)
approaches a constant (nonzero) or a bounded oscillation for a marginally stable
system.
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Mathematically, a necessary and sufficient condition for the stability of the
digital filters under consideration is that the impulse response be absolutely
summable:

OO

£ \h(n)\ < oo (4.7)
n = 0

The implication of Eq. (4.7) is that the stability of digital filters can be ascertained
by restricting the location of the poles of the transfer function H(z) of the digital
filter. In general, the stability requirements for the pole-zero location of H(z) can
be summarized as follows:

a. For a stable system the poles of H(z) can lie anywhere inside the unit circle
of the z-plane, regardless of their order (multiplicity).

b. If H(z) has poles outside the unit circle of the z-plane, regardless of the
order, the system is unstable.

c. If H(z) has first-order poles on the unit circle, the system is marginally stable.
Multiple-order poles on the unit circle make the system unstable.

d. In general, zeros of H(z) are allowed to lie anywhere in the z-plane.

In the previous section we summarized the stability requirements for digital
filters. Given a transfer function

the stability testing of H(z) requires that the location of the roots in the z-plane of
D(z) (characteristic polynomial) be investigated.

1 Direct Approach

A direct approach for ascertaining that the poles of H(z) lie inside the unit circle
is through root-finding routines, which are part of the standard repertoire of
computer libraries. However, for narrowband filters the roots of D(z) clump
together very close to the unit circle in a small region of the z-plane. Some root-
finding routines might require proper initial guesses, or might even provide
inaccurate results. Therefore, it is a good idea to verify that the roots found do
satisfy the characteristic equation.
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Jury's Stability Test*

Jury's stability test is similar to the Routh-Hurwitz test for stability testing of
continuous-time systems. The coefficients of the characteristic polynomial D(z)
are used to construct an array of numbers, known as Jury's array, as illustrated
in Table I. The procedure for constructing the array is as follows:

a. Form the first two rows of the array by writing the coefficients of D(z) as
shown.

b. Form the third and fourth rows of the array by evaluating the determinants

C; =

b0
j = 0, 1,2, . . . ,7V- 1 (4.9)

c. Form th« fifth and sixth rows of the array from the third and fourth rows by
calculating its elements from

A. —
UJ

CQ

C

; = 0, 1 , 2 , . . . , T V - 2 (4.10)

d. Continue this procedure until you obtain 2N — 3 rows, with the last row
having three elements y0, yl, y2.

Jury's stability criterion states that a digital filter with a transfer function H(z) and
a characteristic polynomial D(z) is stable if it passes the following tests:

a. D(2) | z = 1>0
b. (-IfD^
c. \b0\ >\bN\,\c0\ \V2\-

TABLE I

Jury's Array for Stability Testing

Row

2 N - 3

Coefficients

1
2
3
4
5
6

bo

bN

t'o
CN-1

d0

AN--

fri '
fyv-i '
c\
CN~2 "

dv '

, dv-3 •

••b,
"bo
' -CN-I
" co

N ~~ 2

"do

See references [4,11].
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TABLE II

Jury's Array for Example 4.1

Row

1
2
3
4
5

8
-1
63
-4

3953

4
-1
31
18

2025

Coefficient

2
2

18
31

1258

-1
4

—4
63

-1
8

Example 4.1. To check the transfer function

z4 + 2z3 + z2

H(z} =
8z4 + 4z3 + 2z2 - z -

for stability, we form Jury's array as shown in Table II. Performing the various
tests gives the following results:

a. D(z)jz=1 = 12 >0
b. (-l) J VD(z)| I =_1=(-l)4D(-l) = 6>0
c. |8| > |-1|, |63| > |-4|, |3953| > |1258|

Therefore the roots of D(z) are all within the unit circle of the z-plane, so the given
digital filter is stable.

B Stabilization

During computer-aided design (CAD) of digital filters, we may, while
optimizing, meet the magnitude response specification, but the transfer function
may be unstable. Also, using spectral transformations to derive from a given
lowpass prototype a digital filter with different passband specifications may
produce an unstable transfer function. In situations like the above, it is possible to
stabilize the digital filters [12] and still meet the magnitude response specifica-
tions. To illustrate, let us assume that a pole of H(z) is outside the unit circle of the
z-plane. Thus D(z) has a factor

/(z) = (z - reje) r>\ (4.11)

For stabilization purposes let us replace /(z) by the factor

/'(z) = r(z - r~ V) = (rz - eje) (4.12)

Clearly, replacing the pole reje by r~1eje stabilizes the filter. The substitution
leaves the overall magnitude response unaffected because both factors have
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similar magnitude responses. To see this, consider

295

\f(ejtar}\ =

Now

f'(eJo>T)\ = r(z-r~leje)

= [(cpscoT- rcosO)2 + (sin<oT- rsinfl)2]2-11/2

(4.13)

= \eja)Teje(re~j<> - e~Ja>T)\ = \e~Ja>T - re~~je\

= |(cos coT — r cos 6)2 + (sin u>T — r sin $)2]1/* (4.14)

(4.15)

DIGITAL FILTER REALIZATIONS IV

For a given transfer function H(z) or the difference equations of a digital filter
meeting given specifications, we can implement the digital filter using special-
purpose hardware or as a software algorithm. A realization will consist of
converting the input-output relation of the digital filter into an algorithm of basic
operations, which are described next.

Realization Building Blocks A

The basic operations involved in realizing digital filters require the following
building blocks:

a. Summer (adder). We assume that the summer can perform subtraction as
well.

b. Multiplier or sealer.
c. Delay units, which can be registers or memory references for storage and

recall of past values of signals.

Figure 4.1 shows the basic building blocks used in realizing digital filters.

x, (n)

x2 (n)
~s
(a) summer

y(n) = x,(n) +x2(n) m y(n) = mx(n)

(b) multiplier

Fig. 4.1. Basic building blocks.

y (n )=x (n -1 )

(c) delay
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Using the basic building blocks, we can realize a digital filter in many different
forms. From a practical standpoint, different realizations will exhibit different
noise characteristics, and the responses will show different sensitivities to
coefficient quantization, as discussed in the next chapter. In the following
subsections some standard realizations are shown.

The transfer function of a digital filter expressed as a ratio of two polynomials

(4.16)

We will let b0 = 1, without loss of generality. The difference equation corre-
sponding to Eq. (4.16) is

JV JV

J* \ / /Lm/ I V / f_L±sf \,J \ / \ * f

A realization of Eq. (4.17) known as direct-form 1 is shown in Fig. 4.2.
We will derive an alternative realization known as direct-form 2 by introducing

an intermediate variable G(z):

x(n)

G(z) X(z)

Fig. 4.2. Direct-form I realization.
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Let Y(z)/G(z) be the numerator polynomial

and let G(z)/X(z) be the denominator polynomial

G(z) = 1_

™~1+5V'"
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(4.19)

(4.20)

The difference equations corresponding to Eq. (4.19) and Eq. (4.20), respectively,
are

and

y(n) = X «•»(« - 0
/ = o

g(n) = x(n) - £ bfg(n - j)

(4.21)

(4.22)

Equation (4.21) can be viewed as the nonrecursive part of the algorithm of the
digital filter, shown at the right of the realization diagram in Fig. 4.3. Equation
(4.22) is the recursive part, as illustrated on the left of Fig. 4.3.

Figure 4.3 shows two sets of delays. Since a single set of delays is sufficient, the
delays are combined in Fig. 4.4, which results in what is called a direct-form 2

x(n)
Recursive Non-recursive

a0
y(n)

Fig. 4.3. Direct-form 2 realization.
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y(n)

Fig. 4.4. Direct-form 2 canonic realization.

canonic realization. This realization is canonic in the sense that, for the given
transfer function, the structure has the fewest adders, multipliers, and delays.
The maximum number of adders, multipliers, and delays is 2N, 2N + 1, and
N, respectively.

The direct realizations, though simple in appearance, have severe response
sensitivity problems because of coefficient quantization effects, especially as the
order of the filter increases. To reduce these effects, we can decompose the
transfer function into quadratic blocks, realized either as parallel or cascade
sections. These realizations, called nondirect realizations, are described next.

C Parallel Realization

A given transfer function H(z) can be expressed as a sum of quadratic sections:

H(z) =V ' X(z
= I Ht(z)ll '

where
0l-

b2iz'

(4.23)

(4.24)

To obtain the Ht(z), we use a partial-fraction expansion (see Section IV.D in
Chapter 1) to get the various sections. Figure 4.5 shows the parallel realization,
and Fig. 4.6 illustrates a typical section.
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Fig. 4.5. Parallel realization.

x(n)

Fig. 4.6. A typical section in parallel realization.

Cascade Realization D

A transfer function H(z) can also be decomposed as a cascade of quadratic
sections:

H(z) =
G2(z) Y(z)YW = G1

X(z) X(z) ' G,(z) GK(z)
K

where the G,-(z), i = 1,2,..., K, are intermediate variables and

rr^ aOi + OuZ"1 + d2iZ~2

+bliz~t

(4.25)

(4.26)

A typical cascade realization is shown in Fig. 4.7, and the realization of Eq. (4.26)
is shown in Fig. 4.8.
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X(z)
H^z)

G^z)
^ H2(z)

(Go(z) Y(z)

Fig. 4.7. Typical cascade realization.

Fig. 4.8. A typical quadratic section.

Using the transposition theorem from signal flow graph (SFG) theory, we can
derive alternative realizations, which may have different noise performance
characteristics. The theorem states that if the direction of each and every branch
in an SFG is reversed, the transfer function is unchanged [4,13].

As stated in the introduction, this chapter deals with the design of frequency
selective IIR digital filters. More specifically, these filters meet prescribed
magnitude response specifications for the band of frequencies the filters will pass
or reject. We can approximate the given magnitude response specifications by
direct methods, such as computer-aided design, or indirect methods, such as
digitalizing an analog filter. The characterization of magnitude response of
filters and the notation used is explained next.

The magnitude response of filters can be characterized in terms of the
frequency bands the filter will pass or reject. In Fig. 4.9 the ideal magnitude
responses of the four most frequently used filter types are illustrated as a function
of co in radians per second. Note that the periodicity of frequency response with
respect to the sampling frequency is not shown.
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! H , ( u,) |1

passband stophand

(a ) Lowpass

(b ) HIghpass

-s topband- • pa ssband-

u£

(c) Bandpass

passband- -s topband passband

301

to, r p s

1

u

Hlfid)

-

« — stopband — v passband v

r p s

(d ) B d n d s t o p or n o t c h

Fig. 4.9. Ideal magnitude response characterization or brick-wall characteristics.
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In Fig. 4.9(a) the ideal magnitude response of a lowpass filter is illustrated. The
range of frequencies from 0 to coc is the passband of the filter, and coc is known as
the cutoff frequency. The stopband of the filter starts from coc. Figure 4.9(b)
shows the response of an ideal highpass filter. The stopband of the filter is from 0
to coc. The passband of the filter starts from coc. The magnitude response of an
ideal bandpass filter is shown in Fig. 4.9(c). Frequencies in the passband between
co, and oju are passed. Frequencies above and below cou and co, are in the stopband
of the filter and are rejected. Figure 4.9(d) is the response of an ideal bandstop
filter that behaves in a complementary fashion to the bandpass filter.

The response characteristics in Fig. 4.9 are also known as "brick wall"' filter
specifications because of their shape. Although we cannot realize a brick-wall
characteristic by using a finite number of building blocks or elements, their use
does allow us to approximate the ideal responses closely.

To facilitate the approximation, we illustrate more realistic magnitude
response specifications in Fig. 4.10. In addition to passbands and stopbands, the
figures show a transition band for each type of filter. Furthermore, the passband
and stopband specifications also provide for response tolerances, indicated by the
crosshatched horizontal zones. The magnitude function is designated with the
nondescript notation IH^co)!. The reason is that the steady-state frequency
domain magnitude specifications for analog and digital filters are basically
similar, except for the periodicity of the digital filter response with respect to cos ,
the sampling radian frequency:

' (4.27)

Later when we need to distinguish between the transfer functions of analog and
digital filters, we use Ha(jco) and H(ej(aT), respectively. The maximum value of
(H^co)) is assumed to be 1. The passband tolerance makes allowance for IH^co)]
to fluctuate from 1 to \l\l\ + e2, where e, the ripple factor, is related to passband
ripple. Frequency a>p designates the passband edge frequency. Frequency tor

designates the rejection frequency or stopband edge frequency, where i//i(co)l
should deviate from 0 by no more than I/a. The symbol coc will be used to
designate the cutoff frequency (half-power point) of the filter magnitude
response. Furthermore we let

HI(CO) = \Hl(to)\eje{a» (4.28)

where

o) (4.29)

is the phase angle. The group delay of the filter is defined as

dO(co) . ,mr(co)= -- -^ (4.30)
dw
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Fig. 4.10. Practical magnitude response specifications with allowance for tolerances.
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Fig. 4.11. Filter specifications in terms of attenuation in dB.
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The steady-state frequency domain response of filters is frequently specified in
terms of the attenuation or loss characteristics in the bands of interest. The
attenuation in dB is defined as

A(a))= -lOloglH^eo)!2 dB (4.31)

Figure 4.11 shows filter characterizations based on attenuation specifications.
The passband tolerance (maximum allowed ripple in dB) is designated by Ap,
and the minimum acceptable stopband attenuation is designated by AT.

Specifications to Realization B

Filter design, in general, deals with the problem of finding an approximation to
given response specifications. The magnitude response specifications allow for
tolerances on in-band ripple as well as out-of-band rejection. For a given
realization the designer's task is to find the unknown coefficients in the digital
filter transfer function in order to approximate the desired magnitude response
meeting or exceeding the specifications. Direct methods such as pole-zero
placement in the z-plane, error minimization, and optimization techniques
[14-17,3] can be used. Indirect methods, such as the transformation of proto-
type analog filters to digital filters, a standard design technique [1-4], will
be presented later.

CAD Technique1 C

The direct approach of computer-aided design (CAD) of IIR digital filters
deals with approximating an arbitrary set of magnitude response specifications.
It is useful in finding digital filter coefficients for filters with multiple passbands
and stopbands. In this approach the arbitrary magnitude response specifications
are represented by a set of values aw at frequencies con. For a given realization the
transfer function H(z), whose coefficients are unknown, is also evaluated at con.
An error criterion, which can be minimized, is defined. Optimization techniques
[15-17,3] can be used to good effect. The application of the techniques may give
unstable poles, which can be stabilized by the method outlined in Section III.B.

The design of digital filters, namely, finding the coefficients of the transfer
function H(z) in order to meet a given response specification can be achieved

f See references [3,15-17].



306 Nazir A. Pashtoon

without reference to analog (continuous-time) filters. However, the use of analog
filters as prototypes has been popular [1] because of the preponderence of design
aids and information available about these filters.

VI ANALOG FILTER DESIGN AND FILTER TYPES1

The design task at hand constitutes designing first an analog filter that meets
the desired specifications and then utilizing simple transformations to map the
analog filter to the desired digital filter. The next section discusses the design of
some widely used analog lowpass filters, are the basis for many OR filters,
because, by using frequency transformations, we can convert them to highpass,
bandpass, or bandstop filters.

A Butterworth Filters

Butterworth filters have a monotonically decreasing response with respect to
frequency. The magnitude-squared Butterworth function of order n is

= T-TT^-^ (4-32)

where coc is the frequency for which \Ha(jo)c)\
2 = 1/2. Alternatively, since

201og|H.Ofl>)| - 3 dB (4.33)

coc is also known as the — 3dB cutoff frequency. Plots of Butterworth filters are
shown in Fig. 4.12. The Butterworth type of response is also known as a
maximally flat response because it is the response that is the flattest at co = 0 in
the sense that

/7*i H ( if,t\\
= 0, i = 0, l ,2 , . . . ,m (4.34)

where Eq. (4.34) holds for the largest m among all transfer functions with constant
numerators (all-pole transfer functions) and denominators of the same order.

To obtain a transfer function in the s-domain, we use analytic continuation:

1 (4.35)
j(a I + (0)/COC)

f See references [4, 18-22].
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
w, rps

Fig. 4,12. Magnitude-squared characteristic of the normalized Butterworth lowpass filter.

or

Ha(s)Ha(-s) =

The 2n poles of Ha(s)Ha( — s) are the roots of

1 +(-!)"

which are given by
CO,

= 0

X = 0, 1, 2,.... 2n - 1

(4.36)

(4.37)

(4.38)

Thus the poles are all on a circle of radius ct>c and are n/n rad apart. Figure 4.13(a)
and (b) shows the distribution of the poles for n = 5 and n = 6, respectively,
for coc = 1.

To obtain a stable transfer function, all the left-half-plane poles in Eq. (4.38) are
assigned to Ha(s), The left-half s-plane poles are

. (2K + l)7t (2K + \}n
sin h j cos

2n 2n
K = 0, !,...,«- 1 (4.39)
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1m s 1m s

t s-plane s-plane

1 Res Res

n = 5 n = 6

(a) (b)

Fig. 4.13. Pole locations of H(s)H( — s) for Butterworth filters for (a) n = 5 and (b) n — 6.

The transfer function of Butterworth filters is given by

=o s - SK
(4.40)

In Table III the denominator polynomials in Eq. (4.40), known as Butterworth
polynomials, are tabulated in factored form for normalized (coc = 1) niters.

Practical filter specifications are usually provided in the form of Fig. 4.11. In
other words, given the maximum passband attenuation Ap, the passband edge
frequency /p, the minimum allowable attenuation in the stopband, and the
stopband edge frequency /r, we are required to find the order and transfer
function of the Butterworth filter. Applying the definition of attenuation,
Eq. (4.31), to Eq. (4.35) yields

10 log 1 +
0),

a)f
(4.41)

TABLE III

Factored Butterworth Polynomials for Normalized Lowpass Filters

Butterworth polynomial

1
2
3
4
5
6
7
8
9

10

s+ 1
s2 + 1.41421s + 1
(s + l)(s2 + s + 1)
(s2 + 0.76537s + l)(s2 + 1.84776s + 1)
(5 + l)(s2 + 0.61803s + l)(s2 + 1.61803s + 1)
(s2 + 0.51764s + l)(s2 + 1.41421s + l)(s2 + 1.93185s + 1)
(s + l)(s2 + 0.44504s + l)(s2 + 1.24798s + l)(s2 + 1.80194s + 1)
(s2 + 0.39018s + l)(s2 + 1.11114s + l)(s2 + 1.66294s + l){s2 + 1.96157s + 1)
(s + l)(s2 + 0.34730s + l)(s2 + s + 1)(s2 + 1.53209s + l)(s2 + 1.87939s + 1)
(s2 + 0.31287s + l)(s2 + 0.90798s + l)(s2 + 1.41421s + l)(s2 + 1.78201s + l)(s2 + 1.97538s +
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and

f /co \2"1
10 log 1 + -M =^ (4-42)

L V^c/ J
where

o>p = 27r/p (4.43)

and

cot = 27r/r (4.44)

Dividing Eq. (4.41) by Eq. (4.42) and solving for n gives

|log[(10°-M* - l)/(10°-1Xr - 1)]|
"" ^IKK* (445)

Equation (4.45) can be written in more compact form by defining a selectivity
parameter

k = A ^P = i < j (4 46)

®r /r

and a discrimination factor

|0-l^p _ 1 \ l / 2

for the filter. Larger k values imply narrower transition width A/—that is,
steeper rolloff. Smaller d values of the discrimination factor imply a greater
difference between Ap and Ar. Substituting Eqs. (4.46) and (4.47) in Eq. (4.45)
gives a design equation

|logrf| =.,,„.,,,
- |logfe| log(l/fc) l ' ;

From Eq. (4.48), n will almost always be a noninteger value. To meet or exceed
specifications, select the next higher integer value for n. The cutoff frequency coc

can be calculated from Eq. (4.41) or Eq. (4.42). Thus to meet the passband
attenuation requirement exactly and exceed the stopband specification, we need

^o^-r^r (4-49)

To meet the stopband attenuation requirement exactly and exceed the require-
ment of passband specification, we need
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Example 4.2. Find the transfer function of a lowpass filter with Butterworth
magnitude response. The filter is to have no more than 1-dB deviation from ideal
magnitude response up to a frequency of 1000 Hz. The filter must reject
frequencies above 5000 Hz by at least 30 dB.

From the information supplied the specifications of the filter are

Ap = 1 dB, o>p = 2n x 1000 rads'1

Ar = 30 dB, cor = 2n x 5000 rads" 'l

The selectivity parameter of the filter is

~ ./; 5000
The discrimination factor of the filter is

d = V = = = 1.6099 x 10~2

vio°-1 X r - i >/To3 -1
The order of the filter is

|logd| _ jlog 1.6099 x IP'2| _
n~ (logfcl ~ |log0.2| " -^

Selecting the next higher integer, we use n = 3. The poles for the normalized filter
can be obtained from a table (Table III) or calculated as

. (2K + l)7t (2K + l)7i
SK = — sin h j cos , K = 0, 1,..., n — 1

Therefore

s0 = — s i n — + j cos- = — 1/2 + j\/3/2
6 6

. 3;r 3rc
Sj = — sin— + 7 cos— = — 1

5ft 5ft y -

s2 = -sin-— + ./cos— = - 1/2 - 7V 3/2 = s0,

The normalized transfer function is given as

n - I

o

To find the denormalized transfer function, we need to calculate the actual cutoff
frequency coc :

coc = cop(10°-1Xp - 1)~1/2B = 2ft x 1000(10°'1 - 1)~1/6

= 1253 x 2ft = 7870 rads"1
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Denormalization is achieved by replacing every s in the transfer function by s/a)c:

s \ 1
(s/7870 + l)((s/7870)2 + s/7870 + 1)

Chebyshev Filters B

A filter's magnitude response specification can be approximated in a band of
frequencies (the passband) by minimizing the peak error of the approximating
function in the band. Using this strategy, we get the Chebyshev magnitude
response filters. The magnitude response is characterized by an equiripple
passband and a much sharper transition band rolloff than in Butterworth filters.

The squared magnitude transfer function of the normalized (cop = 1) lowpass
Chebyshev prototype filter is

where Cn(co) is the nth-order Chebyshev polynomial :

Cn(a)) = cosOtcos"1 co), 0 < CD < 1

= cosh(n cosh" 1 o>), <u > 1 (4.52)

and e (called the ripple factor) is a free variable that determines the amplitude of
the ripple. To establish that Cn(co) are polynomials in co, let

M = C O S ~ I W (4.53)

Then

Cn(co) = cos nu (4.54)

Using trigonometric identities, we get

C:(ca) = cosw = cosfcos^1 co) = co (4.55)

C2(co) = cos2« = 2cos2w - 1 = 2(D2 - 1 (4.56)

C3(o>) = cos3w = 4cos3w — 3cosw = 4co3 — 3co (4.57)

The preceding relations are called Chebyshev polynomials. Table IV lists them
for n — 1, . . . , 10. Utilizing the trigonometric identity

cos[(n + l)u] = 2 cos(nw)cos(«) — cos[(n — l)w] (4.58)

we get a recursive formula for Chebyshev polynomials:

CH+l(a>) = 2coCn(co) - C,_ ^w); n = 0, 1, 2, . . . (4.59)
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TABLE IV

Chebyshev Polynomials CB(co)

Chebyshev polynomial Cn(o>)

0 1
1 co
2 2ft)2 - 1
3 4o)3 - 3&)
4 8to4 - 8co2 + 1
5 16ft)5 - 20co3 + 5ft)
6 32«)6 - 48w4 + 18ft)2 - 1
7 64to7 - 112ft)5 + 56ft)3 - 7o)
8 128ft)8 - 256ct)6 + 160(o4 - 32ft)2 + 1
9 256w9 - 576ft)7 -f- 432<o5 - 12{ko3 + 9w

10 512ft)10 - 1280ft)8 + 1120ft)6-400ft)4 + 50ft)2-1

CnM

n = 5

Fig. 4.14. Chebyshev polynomials.
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with C0(co) = I and C^co) = a>. We can obtain the higher-order Chebyshev
polynomials by using Eq. (4.59).

Figure 4.14 contains plots of the Chebyshev functions. Using Fig. 4.14 and
Eqs. (4.52) and (4.59) we can deduce the following properties of CB(eo):

1. For any order n

0 < |CB(a>)| < 1 f o r O < M < l

> 1 f o r o > | > 1

Also, Cn(l) = 1 for any n.
2. \Cn(co)\ increases monotonically for CD > 1.
3. Cn(cu) is an even (odd) polynomial if n is even (odd).
4. |Cn(0)| = 0 for odd n. \Cn(Q)\ = 1 for even n.

In light of the above, the Chebyshev magnitude response is characterized by
the following properties.

when n is odd
when is even

2. Since CB(1) = 1 for any n, then |Ha( jl)| = l/>/l + e2 for any n.
3. \Ha(ja))\ decreases monotonically for |co| > 1.

In Fig. 4.15 typical response for odd and even n are shown.

Pole Location of Chebyshev Filters 1

Consider

1 1
1+€2C» 1+62C2(-/S)

The poles are obtained by finding the roots of the denominator

(4.60)

1 + e2C2(-/5) = 0 -> Cn(-js) = ± J- (4.61)

Letting

s = a + jco -» — js = —ja + co (4.62)

yields

cos [n cos^co — jffj] — + - (4.63)
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iHa(jw)!:

n = 6 /—- n = 5

1 oj
1 + e2 <=>

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
w, rps

Fig. 4.15. Magnitude-squared response of an even-order and an odd-order normalized lowpass
Chebyshev filter.

Let

COS"I(CO-;<T) = X + jy

Substituting Eq. (4.64) in Eq. (4.63) gives

cos(nx + jny) — ± -

cos(nx) • cos( jny) — sin(nx) • sin( jny) = ± -
€

Since cos(jx) = cosh(x) and sin(/y) =jsinh(>'), we get

cos(«x)cosh(/ry) — 7'sin(nx)sinh(n3;) = + -

Equation (4.67) is satisfied if

cos(nx) • cosh(ny) = 0

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)
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and

sin(njc) • sinh(ny) = +

Since cosh(»>>) =£ 0, in Eq. (4.68), cos(nx) = 0 so

n
= (2K + 1)

2n
= 0, l ,2 , . . . ,2n- 1

y = ± - sinh l -
n e

315

(4.69)

(4.70)

(4.71)

From Eqs. (4.70) and (4.71) we obtain the real and imaginary parts of the roots,
which specify the pole locations:

sinh I - sinh i -
2n

a>K = cos (2K + 1)—- -cosh -sinh 1-
2n n e

where K =0, 1, 2,..., 2n — 1. From this we have

0V COi-

sinh y cosh'
v = -sinh !-

n €

(4.72)

(4.73)

(4.74)

This is the equation of an ellipse with foci at co = +1, and with minor and major
axes on the a- and y'co-axes of the s-plane, respectively. A typical pole distribution
of Chebyshev filters is shown in Fig. 4.16.

We now give design relations when maximum passband attenuation (Ap),
minimum stopband attenuation (Ar), passband edge frequency (wp = 2nfp), and
stopband edge frequency (a>T = 2nfr) are given. The denormalized magnitude-
squared function is

1

so that

1
1 + e2C2(co/cop)

Ap= 101og(l +e 2 )

From Eq. (4.77) we obtain

Now

At= 10 log 1 +e2C2

\ \^P

cor

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)



316 Nazir A. Pashtoon

1m s

Res

Fig. 4.16. Pole locations of H(s)H( — s) for a Chebyshev filter of order n = 6.

Using Eq. (4.52) gives us

( / / f
1 +e2cosh2(ncosrT1(-1

V \WP
from which

n>cosh cosh

(4.80)

(4.81)

Using the discrimination factor (d), Eq. (4.47) and the selectivity factor k,
Eq. (4.46), we can write the order n of a Chebyshev filter very compactly:

<482)
Note that

cosrT J (x) = ln(jc + Vx^^T) (4.83)

Knowing e and n from the design equations, Eq. (4.78) and Eq. (4.82), we can
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calculate the LHP poles of the transfer function from (4.72) and (4.73):

% = sin (2K + l)£- -sinh -sinh"1-
L 2»J L" e

+ ;cos (2K + \)£- cosh -sinh"1- (4.84)
L 2"J L» eJ

Note that
sinlT1^) = ln(jc + <Jx~2 + 1) (4.85)

The transfer function is

Ha(s) = - "fl —1^-> w odd (4-86)

and

Ha(s) = __ I I —^-, n even (4.87)

The poles obtained by using Eq. (4.84) are the poles of the normalized filter (i.e.,
o>p = 1). To denormalize to an edge frequency <yp = 2nfp, replace every s in the
transfer function with s/cop.

Finally, we can obtain the 3-dB cutoff frequency coc by observing that

Using Eq. (4.52), we get

1 + e^osh^ncostr1 eoc) - 2 (4.89)

Solving Eq. (4.89) for coc, we obtain

coc = cosh ( - cosh ~ l - } (4.90)
\n €J

Example 4.3. A lowpass filter is to be designed with the passband ripple not
exceeding 2 dB up to a frequency of (op. The filter is to reject out-of-band signals
by at least 50 dB in the frequency range above 5o»p.

The filter specifications based on the description are

Ap < 2 dB at <D = cop

AT > 50 dB at co = cor = 5cop

The ripple factor is

e = VlO0-1^- 1 = VlO0'2 - 1 = 0.76478

The selectivity parameter is

cor 5eop
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The discrimination factor is
e 0.764783 „ nd = —r — — — ̂  = -—== = 2.4185 x 10~3

Using d and fc, we may now solve for the filter order:

fc + V i / f c 2 + l )

6J177 = 2.905!
2.3124

Selecting the next higher integer yields n = 3. The poles can be obtained from
(Table V). To calculate SK for a normalized filter, we have

1 - , 1 1 1, Ay = -smh - = -In -
n € n \€

= -ln(1.3076 + V2-7097) = 0.3610

Now

ey _ e~y ey j_ g-^
sinh y = = 0.3689, cosh y = = 1.0659

SK = sin \(2K + 1)- sinhy + /cos (2X + 1)— -cosh v
L

Thus

s0 = -sinj | )(0.3689) + 7cos(~) 1.0659 = -0.1844 + /0.9231
V6/ \6/

Sl = sin(|)(0.3689) + jcos/y) 1.0659 = -0.3689

s2 = -sinj — ) (0.3689) + jcosf — ) 1.0659 = -0.1844 - jO.9231 = s0
\ 6 / \ 6 /

The normalized transfer function is

0.3269
^ ' (s + 0.3689)(s2 + 0.3688s + 0.8861)

To denormalize to any other frequency a>p — 2nfp, replace every s in the transfer
function by s/cop.
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Inverse Chebyshev Filters C

Inverse, or type 2, Chebyshev filters have a flat magnitude in the passband and
equiripple in the stopband. Standard Chebyshev filters of type 1, discussed in
Section VLB, were all-pole filters. In contrast, inverse Chebyshev filters have
transmission zeros in the stopband. For a given filter order n, the magnitude
response is flatter in the passband for an inverse Chebyshev filter than for a
comparable Butterworth filter. The magnitude-squared transfer function is

2 _ e2C2K/to)
1 + e2C2(cor/co)

where Cn(o>) is the Chebyshev polynomial and cor is the stopband edge frequency
where the ripple starts. The attenuation in dB is

\
dB. (4.92)

€ a ) r a )

The ripple factor € can be calculated by noting that at the stopband edge, where
(o = wr, the specified attenuation requirement must be satisfied as follows:

(4.93)
\ ^-^-{i)/

Since CB(1) = 1,

e = -7- * (4.94)

To meet the attenuation requirements in the passband, the maximum allowable
attenuation Ap cannot be exceeded at co = cop:

Ap = l O l o g l + __L— _) (4.95)
\ €2C2

n((Dr/COp)J

Using Eqs. (4.94) and (4.95), we obtain the order of the filter as

which is the same as for Chebyshev filters [see Eq. (4.82)].
Analytic continuation is used in Eq. (4.91) to find the poles and zeros

€2C2'

1+€2CB
2(M/S)

We obtain the zeros by setting.

Cm\T) = ° (498)
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Using Eq. (4.52), we write (4.98) as

( ~- 1 I J^^T \ \ f\ t A f\{\\n cos I J I = 0 (4.99)

which is satisfied if

cos^f^H^, modd (4.100)
\ s J 2n

The zeros, designated as sm, are

mr\
m = 1, 3, . . . ,2n-1 (4.101)

The poles of the inverse Chebyshev filters are the roots of

l+€2C2
a(

j^} = Q (4.102)
V s J

which is the same as Eq. (4.60) except that — s is replaced by 1/s. Note that for
standard Chebyshev filters the denormalization of the transfer function is with
respect to cwp [see Eq. (4.75)], whereas for inverse Chebyshev filters the
denormalization is with respect to the stopband edge frequency a)r. Therefore, we
determine the poles of a standard Chebyshev filter and then perform a pole
reciprocation to obtain the poles for the inverse Chebyshev filter. Pole
reciprocation consists of replacing each and every pole sp of the standard
Chebyshev filter by l/sp. Note that the poles of the inverse Chebyshev filter lie
on an almost elliptical contour in the s-plane.

D Elliptic Filters'

The requirements of a given magnitude response specification can be met by
spreading the approximation error in the passband and the stopband. A strategy
of minimizing the peak error of the approximating function results in a filter
magnitude response characteristic that is equiripple in the passband and the
stopband. Filters having such a response are known as elliptic or Cauer filters.
Elliptic filters have transmission zeros (loss poles) in the stopband. The
magnitude response of elliptic filters is optimum in the sense that for a given order
n the rolloff in the transition band is the steepest, and for this reason elliptic filters
are used very widely.

The square magnitude response function for elliptic filters is

(4103)

See references [4,18,21-26].
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where jRB(o>) is known as the Chebyshev rational function and e is the ripple
factor. The roots of Rn(co) are related to the Jacobi elliptic sine function. The
calculation of the pole-zero locations of the transfer function requires elabora-
tion of elliptic function theory and its properties [23,27,22,4,3]. An extensive
tabulation of lowpass elliptic filter pole-zero locations is available [28]. For
design purposes the pole-zero locations can also be calculated by using series
approximation for the elliptic functions. The design procedure presented herein
was proposed in [23], with full discussion of elliptic functions and a computer
program of the design equations in [4]. Also see [24] for a FORTRAN program
of these equations.

The following is a summary of the properties of Chebyshev rational functions.
Note the similarities with the properties of Chebyshev polynomials.

1. Rn(co) is an even function of co when n is even. It is an odd function of o> when
n is odd.

2. The zeros of /?„(«) are in the range \co\ < 1, and the poles of Rn(co) are in the
range \o)\ > 1.

3. The function Rn((o) oscillates between the values ± 1 in the passband.
4. Rn((a) = 1 at w = 1.
5. Rn(a>) oscillates between + 1/d and infinity in the stopband, where d is the

discrimination factor defined (Eq. 4.47).

The Chebyshev rational function, normalized to a "center frequency" co0 = 1,
has the form

and

W _ ,̂

Rn(co) = (D V] -r^—T-2 for n odd (4.104)
M 1 - cofco2

n/2 W2 _ ^2
Rn(w) = n ' for n even (4. 105)2

The poles and zeros of Rn(ca) are reciprocals of each other and exhibit geometric
symmetry with respect to the center frequency o>0 . Furthermore,

F71 {4106)
Rn(a})

that is, the Chebyshev rational function Rn(co) exhibits a symmetry with respect to
the center frequency co0 = 1 such that its value at a frequency ojj in the range
0 < «o < COQ is the reciprocal of a value at the geometrically symmetric frequency
l/a)j (or generally <%/«,-).

A typical magnitude-squared response is shown in Fig. 4.17. The transition
region is exaggerated to show clearly some frequencies of interest. The figure
shows the equiripple passband and stopband characteristic. In the passband

oscillates between 1 and 1/(1 + e2) up to the passband edge frequency
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Fig. 4.17. Magnitude-squared response of a normalized lowpass elliptic filter,

at co = <up. The passband specification requirement is that the attenuation
(ripple) be at most Ap dB.

-e 2 ) (4.107)

^7 (4.108)

The figure also shows the stopband response oscillating between zero and
1/(1 + €2/d2). The specification requires that the filter reject (attenuate) un-
wanted frequencies in the stopband by at least AT dB. Thus at the stopband edge,
to = cor, we can write

or

Ar= lOlog 1 +

d =•

d =
100,1 A, iV/2

(4.109)

(4.110)

(4.111)

which is the same as Eq. (4.47); that is, d is the discrimination factor. The
normalization frequency o)0, which for simplicity, has a value of 1 in the figure is
easily calculated from the passband and stopband edge frequencies:

0>0 = (4.112)
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The selectivity factor k can be calculated from its definition:

/c=^ (4.113)
ft)r

The transfer function of an nth-order lowpass, normalized (o>0 = 1), elliptic
filter is

".M = g « > - "even (4.114)

s + a i=\ s2 + bfs + Ci

To calculate the pole-zero locations of the filter and the quadratic factors in the
transfer function from the given specifications, Ap, cop, AT, cwr, use the following
formulas [23,4,24]. The computation sequence shown can be readily pro-
grammed on a programmable calculator or computer.

1. Calculate k from Eq. (4.113).
2. Let

q°=\ (r+1} I fc2Ji/v <4- l 1 6)
3. Calculate

g = q0 + 2ql + \5ql + \5Qql3 (4.117)

4. Calculate d from Eq. (4.111).
5. The order of the filter is

6. Calculate e from Eq. (4.108).
7. Let

1 (1 + €2)1/2 + 1

8. Calculate

+ 2 £
« = i

9. Let

1.120)

+ka2){ 1 + — ) (4.121)
rC
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10. Then

2<?1/4 £ (-l)Vl(m+1)sm[(2m + l)nl/n~]

1 +2 £ (-I)ragm2cos(27tm//n)
m = l

(4-122)

where I = i — 1/2, i = 1,2,..., n/2, n even, and I = i, i = 1, 2, . . . , (n — l)/2, n odd.

11.

(4.123)
V \ * /

12. Then

«i = Jl (4-124)

13.

2a^

14.

15. Finally

H0 = a"n - for n odd (4.127)

n/2 c
FT— for n even (4.128)

Replacing each s by s/co0 in the transfer function, where co0 is the center frequency
given by Eq. (4.112), denormalizes the transfer function to the desired frequency
range.

Example 4.4. The transfer function of a lowpass analog filter is to be found.
The filter is to have no more than 2-dB ripple in the passband up to an edge
frequency of 3000 Hz. The filter is to attenuate the out-of-band signals beyond
4000 Hz by at least 60 dB.

The filter specifications are summarized as

Ap < 2 dB, <wp = 2nfp = 2n x 3000 rad s^1

AT > 60 dB, wr = 2nfr = 2n x 4000 rad s^1
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The selectivity factor is k — 0.75. The discrimination factor is d = 7.6478 x
10 4. The filter order, from Eqs. (4.116) and (4.117), is n > 5.7. Selecting the next
higher integer in order to meet or exceed the given specifications, we get n = 6.
Carrying out the computation sequence according to Eqs. (4.119)-(4.128) and
using Eq. (4.114), we obtain the normalized transfer function

x 10
, (s2 + 13.8451)(s2 + 2.2153)(s2 + 1.3955)
(s2 + 0.35518s + 0.10903)(s2 + 0.194425s + 0.48045)
x (s2 + 0.053863s + 0.73417)

3 3 . 7

r

-0 .2 -0.1

s-p1ane

J i . o

J O . 8

-t
J 0 . 6

J O . *

J 0 . 2

0.1 0 .2

- J O . 2

- J O . *

-0.6

- J O . 8

- J I . O

- J 1 . 2

+ poles
& zeros (double)

J 3. 7

Fig. 4.18. Pole zero distribution for Ha(s)/fa( - .s) for an elliptic lowpass filter with n - 6.
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Note that transmission zeros are all on the jco-axis above the normalized
stopband edge frequency, cor = 1/Vfc = 1.155 rad s"1. The pole-zero distribu-
tion for the normalized transfer function is shown in Fig. 4.18, which is typical of
elliptic filters. The specified filter's center frequency, which is the geometric mean
of the passband and stopband edge frequencies, is w0 = 2n x 3464 rad s ' . The
transfer function of the specified filter is obtained by replacing each s in the
normalized transfer function by s/o>0.

The series in Eqs. (4.120) and (4.122) are fast converging. In many filter design
calculations, up to four or five terms in the series will provide sufficient accuracy.
In Example 4.4 the computation was stopped when the difference between the
mth and (m — l)st term was less than 1G~6. The required value of m was at
most m = 3.

E Bessel Filters1

The group delay of the filters in the previous sections is a nonlinear function of
frequency. The group delay becomes progressively more nonlinear as filters with
steeper skirt rolloff characteristics are developed. The nonlinearity is more
pronounced as one goes from Butterworth to elliptic filters, especially in the
vicinity of the passband edge frequency [19]. Bessel filters, on the other hand, are
characterized by maximally flat group delay. The transfer function of Bessel
filters has the form

(4.129)

I V
i = 0

where

«-2^

As can be seen, Bessel filters are of the all-pole type. The roots of the
characteristic polynomial can be found by computer methods. A table of the
quadratic factors for up to n — 10 and a filter design procedure are available in
references [29,30]. To meet given magnitude response specifications, Bessel
filters require substantially higher orders than some of the filters in the previous
sections, which makes them undesirable. Also, a digital filter designer has the
choice of designing perfectly linear-phase (constant group-delay) filters, using the
techniques of Chapter 2.

f See references [8, 21, 29, 30].
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Analog Filters in Retrospect F

Section VI discussed design methods for some popular normalized analog
filters. The magnitude responses of all-pole filters such as Bessel, Butterworth,
and Chebyshev (type 1) are monotonically decreasing functions of frequency in
the stopband. Bessel filters are characterized by a maximally flat group-delay
characteristic. Butterworth filters have a maximally flat magnitude response
characteristic. Chebyshev filters, on the other hand, have an equiripple mag-
nitude response characteristic in the passband. For a given order n a Butterworth
filter has a higher attenuation in the stopband and steeper rolloff in the transition
band than does a Bessel filter. We can make similar observation between
Chebyshev and Butterworth filters. The design tradeoff is between achieving
magnitude response specifications with the lowest filter order n and the increased
group-delay nonlinearity for the sharper rolloff filter types.

The inverse Chebyshev (Chebyshev type 2) filters have a maximally flat
magnitude response in the passband and an equiripple characteristic in the
stopband. Inverse Chebyshev filters exhibit a flatter passband magnitude
response than does a Butterworth filter of the same order. Flatness is achieved by
including the stopband zeros (loss poles) in the transfer function. Inverse
Chebyshev filters have sharper rolloffs than standard Chebyshev filters [21] and
have group-delay characteristics more nonlinear than Butterworth filters but less
so than standard Chebyshev filters.

The magnitude response of elliptic filters is equiripple in the passband and the
stopband and is characterized by the steepest rolloff for a given order n. For
example, for k — 0.75, Ap = 2 dB, and AT = 60 dB, a sixth-order elliptic filter
is required. In contrast, a Chebyshev filter of order 10 and a 25th-order
Butterworth filter would have to be specified to meet or exceed the given
specifications. The group delay of elliptic filters is the most nonlinear, especially
near the passband edge. When such sharp rolloffs are desirable and group-delay
linearity is a concern, the designer can alleviate the problem by cascading the
filter with delay equalizers.

The filters mentioned here are the most frequently used. A broad overview of
other filters along with a good selection of nomographs and design curves is
available in [31].

FREQUENCY TRANSFORMATIONS VII

The normalized lowpass analog filters described in Section VI can be easily
transformed to a lowpass filter with different edge frequency or to a highpass.
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bandpass, or bandstop filter. The transformations are as follows:

1. Lowpass to lowpass: This is the frequency scaling transformation illus-
trated in the examples of Section VI and is given by

(4.131)

In words, every s in the normalized filter is replaced by s/wp, where cop is the new
edge frequency in radians per second.

2. Lowpass to highpass: The transformation is

(4.132)

where cop is the new edge frequency for the highpass filter.
3. Lowpass to bandpass: The transformation is

(4J33)

where com is the geometric mean of the upper bandedge frequency o>u and the
lower bandedge frequency «,:

)l (4.134)

and B is the bandwidth of the filter:

B = Q > U - C U , (4.135)

4. Lowpass to bandstop: The transformation is

Bs
T (4.136)

+ ft>m

where a)m and B are defined as above.

A widely used technique for the design of digital filters is the transformation or
mapping of an analog filter that meets given specifications. In other words, we
first calculate the transfer function Ha(s) of an analog filter that meets the design
requirements. Then, using a suitable transformation from the s-plane to the
z-plane, we obtain the transfer function H(z) of the desired digital filter. From
z-transform theory the transformation relating the Laplace transform variable
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s to the z-transform variable z is

z = esr (4.137)

or

s = -^lnz (4.138)

The mapping of points from the s-plane to the z-plane indicated by (4.137) is such
that all points in the right-half s-plane are mapped outside of the unit circle in the
z~plane; the left-half s-plane is mapped inside the unit circle of the z-plane. The
steady-state frequency domain in the s-plane (i.e., the /co-axis) is mapped onto the
unit circle in a periodic manner such that every circuit on the unit circle
corresponds to a period of cos = 2n/T. The transformation maps stable analog
filters to stable digital filters.

Using Eq. (4.138) to map an analog filter with transfer function Ha(s) to a dig-
ital filter H(z) causes a realization problem because the substitution called for in
Eq. (4.138) gives an irrational H(z), which is not realizable. To obtain a ratio-
nal digital filter transfer function H(z), we need a rational function of z for the
transformation from the s-plane to the z-plane. To preserve the steady-state
frequency domain characteristic of the analog filter and map it to a stable digital
filter, the transformation should have the following properties:

1. The transformation maps the steady-state frequency domain of the s-plane
onto the unit circle of the z-plane.

2. The transformation maps the left-half s-plane (Re s < 0) inside the unit
circle of the z-plane.

For example, consider the digitalization of an analog filter using numerical
integration techniques [3,20]. In this method the derivative of a continuous-time
function is approximated by finite differences:

dy
dt

1 <

T >

Euler's approximation is a special case of Eq. (4.139):

dy
dt T

(4.139)

(4.140)

The transformation between the s-plane and the z-plane corresponding to Euler's
approximation is

1 -z-1

s = —— (4.141)

A study of the mapping properties of Eq. (4.141) reveals [20] that property 1 of
the mapping requirements is not satisfied, the consequence of which is that the



334 Nazir A, Pashtoon

transformation in Eq. (4.141) can be adequately used only for the design of very
narrowband lowpass filters.

In the following subsections we describe digital filter design techniques based
on other transformations.

A The Impulse-Invariant Transformationf

The concept underlying the impulse-invariant transformation technique is to
match the impulse response of the prototype analog filter to the impulse response
of the digital filter at the sampling instants:

= h(nT) (4.142)

The impulse response of the analog prototype can be obtained from its transfer
function:

The inverse Laplace transform of Eq. (4.143) gives

ha(t)= fX-r"' (4.144)
1 = 1

Using Eq. (4.142) in Eq. (4.144) and taking the z-transform give the transfer
function of the digital filter as

(4.145)
••= i z ~ Pi

where the relation between the poles of the digital and analog filters is

Pi = eStT (4.146)

The frequency responses of the digital filter and the analog prototype filter are
related by

1 °°
H(ei'»T} = -~ £ Ha(jo)+jncos) (4.147)

* n = — oe

Equation (4.147) shows that the digital filter frequency response is a periodic
version of the analog filter frequency response, where the period is cos, the
sampling radian frequency. Thus if the analog filter frequency response is not
bandlimited to the folding frequency (<ws/2), aliasing errors, which could be
severe, will occur. Thus the design technique is useful in digitalizing bandlimiting

f See references [1,3].
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filters, such as lowpass and bandpass, and should not be used for highpass and
bandstop filter designs. In lowpass and bandpass designs select a sampling rate
that is high enough to maintain tolerable aliasing errors. Equation (4.147)
indicates that as T is decreased the digital filter exhibits higher gains. To achieve
comparable gains for the digital and analog prototype filters, multiply H(z) by T
in Eq. (4.145)

Example 4,5. Use the impulse-invariant design procedure to transform a
lowpass analog filter whose specifications are

Ap = 1 dB, cop = 2n x 1000 rad s-1

Ar = 25 dB, cor = 2nx 4000 rad s~l

The sampling rate for the digital filter is fs = 10,000 Hz. The analog prototype
Butterworth filter is the same filter as in Example 4.2, except for the stopband
specifications. From Example 4.2 the transfer function of the analog filter is

H — - — .. -1-1 — — 4-~ +

LV870 \\7m 7870

with a»c = 7870 rad s^1. Expanding the transfer funcction using partial fractions
and making the substitution as called for in Eqs. (4.145) and (4.146), with a gain
adjustment such that the analog and digital filter magnitudes match at zero
frequency, we obtain the transfer function of the digital filter, fs — 10,000

(4-148'
In order to see the effect of the aliasing error due to a reduced sampling rate, we
redesigned the filter a sampling rate /s = 6000 Hz. The transfer function is then

H(z)= 1.3223 -
z(z - 0.4904)

0.2694 z2 - 0.4373z + 0.2694
(4.149)

The steady-state frequency domain magnitude response of the digital filters in
Eqs. (4.148) and (4.149) is plotted in Fig. 4.19(a), (b). When ft = 10,000 Hz, the
digital filter meets the design requirements. When /s = 6000 Hz, the aliasing error
is severe enough that the design requirements are not met.

Matched z-Transform B

In the impulse-invariant transformation the poles of the continuous-time
domain transfer function Ha(s) are mapped into poles of H(z) via Eq. (4.146). In
the matched z-transform the poles and zeros of Ha(s) are mapped by using
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nalog prototype

f i l t e r

5000.0
f (Hz)

Fig. 4.19. Magnitude response of a third-order digital filter using the impulse-invariant trans-
formation with (a) /s = 10,000 Hz and (b)/5 = 6000 Hz.

Eq. (4.146) to create the digital filter transfer function H(z). Thus given
M

n /\ -« >11 I* *oi)

n /,, „ \(* — *pl)

the corresponding digital filter transfer function is
M

Ud-e^z-'

(4.150)

Od-
(4.151)

The method can be used for designing highpass and bandstop filters, but it will
not preserve the equiripple magnitude response characteristic of Chebyshev and
elliptic filters. Because the transformation does not preserve any time or
frequency domain properties of the prototype analog filter, it is not widely used.
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Fig. 4.19. (Continued)

f ( H z )

Bilinear z-Transformation C

The aliasing phenomenon inherent in the impulse-invariant and matched z-
transformations are caused by the one-to-many mapping from the s-plane to the
z-plane. The bilinear transformation, on the other hand, is a one-to-one mapping
from the s-plane to the z-plane defined by

where

z =

T z

2/T+s
2/T-s

(4.152)

(4.153)

The bilinear z-transformation is bandlimiting in its action, eliminating the
aliasing effect observed with previous designs. It is widely used for transforming
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analog filter designs, which approximate piecewise constant-magnitude spec-
ifications, to digital filters with similar characteristics. The mapping preserves the
equiripple magnitude characteristic of the prototype filter.

Using Eqs. (4.152) and (4.153), we can study the mapping properties of the
bilinear z-transformation. Consider the mapping of a point z = reje in the z-plane
to a point s — a + ja> in the s-plane. Using Eq. (4.153) we can write

^—_LJL_ (4.154)

which yields

and

_ . / CO \ . _, / CO

From Eq. (4.155), if we let a > 0 (right-half s-plane), then r > 1; that is, the right-
half s-plane is mapped to the exterior of the unit circle of the z-plane. When
ff < 0, then r < 1; that is, the left-half s-plane is mapped to the interior of the
unit circle of the z-plane. If a = 0, then r = 1; that is, the steady-state fre-
quency domain in the s-plane (jco-axis) is mapped onto the unit circle of the z-
plane. Thus the bilinear z-transformation meets the mapping requirements
mentioned in the beginning of Section VIII.

The bilinear z-transform maps the entire jco-axis of the s-plane onto the unit
circle of the z-plane; that is, the jco-axis is compressed (or warped) into the unit
circle. The implication of the warping phenomenon is that the scales of the
analog filter frequencies and the digital filter frequencies are different. For
example, consider the relationship between the frequencies of the analog filter
and the derived digital filter. To reduce confusion in notaion, let the analog filter
frequency variable be fi, and let the corresponding digital filter frequency
variable be co. To study the effect of warping, substitute s = ;Q and z = e-l<oT in
Eq.(4.152):

2 [ej(aT - 1
jfl-T[e^ )T

9 r(t>Jo>T/2 — ff-J<aT/2
&* I ^C t-

TI{e]^r+~e=J^^yj2

= j-tan^ (4.157)

Thus the relationship between the frequency scales of the analog and digital
filters is

9 f,\T

(4.158)
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which is nonlinear. Figure 4.20 is a plot of Eq. (4.158). It illustrates the nonlinear
warping of the frequency scale as well as the effect of the warping on mapping the
analog filter magnitude response to that of a digital filter. When coT/2 « 1, the
relationship between the two scales is approximately linear because

2 T—w— (4.159)

We can correct the warping error by using Eq. (4.158). Given the critical
frequencies of the digital filter per specifications, we can calculate a set of critical
frequencies of the analog filter by using Eq. (4.158). For example, if the specified
passband edge frequency for the digital filter is o)p, then the passband edge
frequency for the analog prototype filter is

Qp = ̂ tar

Similarly for the stopband edge frequency

2

(4.160)

(4.161)

Fig. 4.20. The effect of a bilinear z-transformation on |Ha(/Q)| to \H(ej<oT)\.
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The design steps are outlined below:

1. Given a set of critical frequencies as part of the digital filter specification,
calculate the critical frequencies for the analog filter. The analog prototype filter
obtained in this way is said to be prewarped.

2. Find the transfer function of the prewarped filter Ha(s) meeting the
magnitude response specifications.

3. Substitute the bilinear z-transformation for every s in Ha(s) of step 2 and
obtain the desired digital filter transfer function H(z).

The calculation of H(z) from Ha(s) is easier if we apply the bilinear z-
transformation to the poles and zeros. Thus if

M

Z (s - sol)
//a(s) = //ao-^1 -------- (4162)

When the bilinear z-transform is used, then by [2],
M
Z d

H(z) = H0(\ + z- Y~~M1^
E di = i

The poles pl are given by

Pi=\^^ (4.164)
1 - Tspi/2

and the zeros z( are given by

z. = --t-J°iL (4.165)
1 — Ts0i/2

The gain factor H0 is adjusted so that //(I) = #a(0).
We can also use the following relationships to simplify the calculation of the

linear and quadratic factors in the transfer function:

T~-^ (4.166)
Z + 1

(s + a + jb)(s + a- jb) - s2 + 2as + (a2 + b2}

(z + I)2

(4.167)

Example 4.6. Design a digital lowpass filter so that the passband ripple does
not exceed 2 dB for up to eop = 7870 rad s"1 and the stopband attenuation is
greater than 50 dB for frequencies above 5o>p. The sampling rate is /s — 8000 Hz.
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If we choose a Chebyshev filter for the design, the normalized analog filter is
exactly the same third-order Chebyshev lowpass filter obtained in Example 4.3,
The normalized analog lowpass filter has a transfer function

0.3269
Ha® ~ (s + OJ689)(lIT63688sT6]J86^

To illustrate the effect of warping, we find the denormalized transfer function
with an edge frequency Qp = 7870 rad s *:

HA-.
0,3269

1 \7870y (s/7870 + 0.3689)((s/7870)2 + 0.3688(s/7870) + 0.8861)

Substituting the bilinear z-transformation for every s, we get the transfer function

0.0236(z + I)3

H(z) = (4.168)
(z - 0.6929)(z2 - 1.12572 + 0.7401)

We calculate the magnitude spectrum of the digital filter by evaluating \H(ei<aT}\
from Eq. (4.168). A plot of the magnitude spectrum is shown in Fig. 4.21 (a). Note

A n a l o g p r o t o t y p e

f i l t e r

500.0 1000.0 1500.0 2500.0 3000.0 3500.0 4000.02000.0

(a) f (HZ)
Fig. 4.21. Magnitude response of third-order digital filter based on a third-order Chebyshev

analog prototype, (a) Bilinear z-transform with warping; (b) with prewarping correction.
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,Analog prototype

filter

0.0 500.0 1000.0 1500.0 2000.0 2500.0 3000.0 3500.0 4000.0

( b )
Fig. 4.21. (Continued)

that the passband edge frequency of the digital filter is incorrect. Further note the
bandlimiting action of the bilinear z-transform, which causes the digital filter
to have "better" magnitude response in the stopband than does the analog
prototype.

To incorporate the prewarping correction, let us calculate the passband edge
frequency for the prewarped analog filter:

Qp = -tancopT =
7870

= 8572.8 rad s

The transfer function of the prewarped denormalized analog filter is

5 \ 0.3269
Ha (s/O, + 0.3689)((s/0p)

2 + 0.3688(s/Qp) + 0.8861)

The transfer function of the desired digital filter is

0.02892(2 + I)3

H(z) =
(z - 0.6699)(z2 - 1.0270z + 0.7278)

(4.169)
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A plot of the magnitude response corresponding to Eq. (4.169) is shown in
Fig. 4.2 l(b). The passband edge frequency meets the specifications. Note also
that at times it is possible to meet the given specifications, especially in the stop-
band, by a lower-order digital filter than the analog prototype filter indicates.

SPECTRAL TRANSFORMATIONS IX

In the design of digital filters a prototype lowpass digital filter can be
transformed to a lowpass, highpass, bandpass, or bandstop digital filter. The
spectral transformations are as follows:

1, Lowpass to lowpass: The transformation is

(4.170)
1-Jfe

si
0 =

sin[(copT -
sin[(«pT + o>'pT)/2]

where top is the passband edge frequency of the existing prototype lowpass filter,
and o)'p is the specified passband edge frequency.

2. Lowpass to highpass: The transformation is

cos[(a,pT-<r)/23
P cos[(a>pT + fl/pT)/2] l ' ;

cop is the passband edge frequency for the specified highpass filter.
3. Lowpass to bandpass: The transformation is

' j

cos[(G>uT-ct),T)/2]

(4.177)

f See references [32-34].
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where cou and ca, are the upper and lower bandedge frequencies and o»p is the
passband edge frequency of the prototype lowpass digital filter.

4. Lowpass to bandstop: The transformation is

z 2 + p \ z + /?22 —> _—. — |4.1 /g j

h — 1 — 28a — R — (A. 17Q\Pa ~ 7 T~T' Pi — , , , (H. i / y ;

(4,80,

* =

where o>u and co, are the upper and lower edge frequencies and top is the prototype
filter's edge frequency.

The digital filter design procedures discussed in the previous sections require
the computation of pole-zero locations in the s-domain, z-domain, or both.
Digital filters can also be designed that capitalize on the wealth of design tables
and charts developed for analog lossless ladder networks composed of inductors
and capacitors (LC ladder networks). The doubly terminated lossless LC ladder
is especially interesting as a model because of the low sensitivity of the frequency
response to perturbations in the element values [35,36]. The basic idea behind
the synthesis procedures is to design a doubly terminated analog ladder network
that meets the specifications and then digitalize the network by a suitable
transformation from the s-domain to the z-domain.

Consider the doubly terminated nth-order lowpass LC ladder prototype in
Fig. 4.22(a). An SFG description of the network in the voltage-current (V-I)
domain, known as the leapfrog [37] SFG structure, is shown in Fig. 4.22(b). Note
that the LC elements of the original ladder are represented as integrators with
gain constants that bear a one-to-one correspondence to the element values of
the original ladder network. Also, the identity of each and every state variable of
the original ladder is preserved in the SFG. Indeed, the original motivation for the
development of this structure was the simulation of passive LC filters with ac-
tive networks using operational amplifiers. In Section VIII the bilinear z-
transforrnation, because of its excellent mapping properties, was judged to be the
best transformation for digitalizing analog transfer functions, which approximate
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Fig. 4.22. (a) A doubly terminated analog LC ladder, (b) its leapfrog SFG representation, and
(c) the substitution of the bilinear z-transformation for integrators.

brick-wall magnitude response specifications. If we attempt to digitalize the
leapfrog SFG by substituting the bilinear z-transformation for each integrator
[Fig. 4.22(c)], that is,

1 1_
s 2 B

where

/

(4.182)

(4.183)

then we encounter the problem that each transmittance in Fig. 4.22(c) that
represents an impedance or admittance (immittance) of the capacitors and
inductors has no delay in its forward path. Therefore delay-free loops occur in the
digital network of Fig. 4.22(c), which makes the digital network variables
incomputable. In other words, the digital filter obtained is nonrealizable because
of the incomputability problem.
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We can circumvent the problem of nonrealizability associated with the
leapfrog SFG [8] by using an incident-reflected wave description of transmission
line filters modeled after LC filters. Interconnecting elements through the use of
"adaptors" so that proper boundary conditions for incident and reflected waves
are met and incorporating delays for breaking delay-free loops are described in
Chapter 5. The digital filters obtained are known as wave digital filters (WDF).
These filters faithfully "imitate" the response of classical ladders. They perform
especially well in narrowband designs, where the magnitude response deteriora-
tion of a cascade design with coefficients quantized to 12-bit accuracy is no better
than a WDF with coefficients quantized to 5-bit accuracy [38].

To digitalize the V-l domain leap-frog structure, we have to use a trans-
formation with delays in the forward path of its transmittance. In [39, 40] it is
proven that meeting the mapping requirements of Section VIII and the
requirement in the leapfrog simulation of maintaining a one-to-one corre-
spondence between element values and the coefficients in the digital filter makes
delay-free loops inevitable. We will describe two methods of digitalizing the
leapfrog SFG that are especially useful for narrowband filter designs. In both
methods we use transformations from the s-domain to the z-domain that relax
the mapping requirements.

1 Method 1

The transformation known as the lossless discrete integrator (LDI) was
originally proposed for digitalizing the leapfrog SFG of doubly terminated LC
ladders [9]. The original approach that we describe has an intuitive appeal, even
though [39-41] the synthesis procedure was later extended so that LDI digital
filters could be designed directly in the z-domain without reference to analog
filters. Note that LDI digital filters have become the basis of synthesizing
switched capacitor filters with large-scale integration (LSI) implementations.

Consider the leapfrog SFG of the prototype low pass LC prototype of
Fig, 4.22(b). The substitution of the LDI transformation

1 7"1/2

-->T-^ ...... — (4.184)
S 1 — 2

for every continuous-time integrator is shown in Fig. 4.23 (a). Since the
transmittances in the forward paths have half-delays, the delay-free loop problem
is resolved, but we face a nonrealizability problem in a full synchronic system of
another sort; namely, the existence of half-delays. Using SFG manipulation or,
equivalently, transform immittance scaling of the original network immit-
tances by z'"1/2, we can move the-half delays so that they appear only at the
network terminations, as shown in Fig. 4.23 (b). For the network to be realizable,

f See references [39-41 J.
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Fig. 4.23. (a) The application of the LDI transformation to the leapfrog SFG, and (b), (c) the
various steps in removing half-delays.

the half-delays appearing at the terminations can be eliminated or replaced by full
delays of z~l. Eliminating the half-delays, as shown in Fig. 4.23(c), is equivalent to
having parasitic elements across the source and load conductances and has little
effect on the specified magnitude response, especially for narrowband operation.
The digital network of Fig. 4.23(c) is the required digital filter. Note that the LDI
transformation in Eq. (4.184) gives absolutely unstable digital filters [42],
Eliminating the half-delays [Fig. 4.23(c)] stabilizes the filter.

The passband response of LDI digital filters is excellent. But since the
transformation lacks transmission zeros at the folding frequency (i.e., the z + I
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factors) in its transfer function, the stopband and transition band response may
suffer at lower sampling rates [39,43]. Improved response is possible by
incorporating these factors in the design.

Consider the bilinear z-transformation [see Eq. (4.182)]

(4.185)

Our objective in digital filter design is to achieve desirable filter characteristics in
the steady-state frequency domain. The transformation in Eq. (4.185) has the
predictor z. We propose to approximate z on the unit circle of the z-plane by a
causal approximant designated by /^(z"1). The simultaneous maximally flat
approximation of the predictor z in the steady-state frequency domain is [10]

1 = 0 +
= F— J (4.186)

where (*) is the number of combinations of k objects taken n at a time. Note
that m is the order of the approximant. Substituting Eq. (4.186), the causal
approximant to predictor z in Eq. (4.185) gives

-^z-*Fm(z-*)I*(z)±I(z) (4,187)
ij Z*

and the above substitution results in a realizable digital filter network. The
existence of the delay z-1 in the forward path of the transmittances breaks the
delay-free loops in Fig. 4.24(a). Higher values of m in the transformation in
Eq. (4.187) provide more accurate responses with more complex networks. From
an implementation point of view the case m — \ is of special interest. When

1,m

and

= 7 O . S z

(4.188)

(4.189)

The building block corresponding to Eq. (4.189) is shown in Fig. 4.24(b).
In general, the coefficients in methods 1 and 2 are related to the LC element

values of the denormalized analog ladder. Using the element numbering scheme

f See reference [10].
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Fig. 4.24. (a) The generalized form of the digital filter of method 2 and (b) the building block
representing z~lFm(z~1)IB(z)/2 when m — 1.

for the LC elements as shown in Fig. 4.23(a), we get the coefficients of the digital
filters

.T
«, = (-!)'-

x,-
(4.190)

where xt = Ct or L,, depending on the branch of the original network.
Note: If the transformations in Section IX are used, the resulting networks

will have delay-free loops. The following transformations are useful for replac-
ing delays in situ without creating delay-free loops:

1. Lowpass to highpass

2. Lowpass to bandpass

where

cos(co0 T)

cos(tt>p772)

(4.191)

(4.192)

(4.193)

and where co0 is the desired center frequency and cop is the edge frequency of the
lowpass digital filter obtained by methods 1 or 2. The transformation in
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Eq. (4.192) preserves the bandwidth of the lowpass digital filter. The factor /?
thus controls the center frequency of the bandpass filter.

Example 4.7. In this example we apply the digitalization technique of the
previous two methods to the leapfrog representation of a fifth-order lowpass
analog LC filter. The element values of the normalized (-3-dB gain at o»c = 1)
analog filter, with a 0.5-dB equiripple (Chebyshev) characteristic in the passband,
are [19]

Gs = Gt = 1.0, C3 = 1.8068 = C5, L2 = 1.3025 = L4, C3 = 2.6914

The sampling rate is fs = 9759 Hz. Narrowband lowpass digital filters are to be
designed such that the ratio of the cutoff frequency to the sampling rate is 1:25.

From the preceding description, the cutoff frequency specification is
/c = /s/25 = 390.4 Hz. The LC element values have to be denormalized by ojc,
where

a)c = 2nfc = 2425.8 rads *

Dividing the element values by coc and using Eq. (4.190), we obtain the coefficients
for the digital filters:

Gs = Gt=1.0, «! =-0.1391 = «5, a2 = 0.1930 = a4, oc3 = -0.09338

In Fig. 4.25 the schematic diagrams of the digital filters corresponding to

v

•V

V'-

Fig. 4.25. (a) LDI digital filter and (b) the digital filter of method 2 based on a fifth-order all-pole
analog ladder.



4. 1IR Digital Filters 351

Fig. 4.25. (Continued)

methods 1 and 2, respectively, are shown. The magnitude spectra of the filters are
shown in Figs. 4.26 and 4.27. In Fig. 4.28 the magnitude spectrum for the wave
digital filter is also shown.

The digital filters were implemented on a Texas Instruments TMS 32010
system. The data word length for the TMS 32010 is 16 bits. Multiplier coefficient
accuracy was 13 bits, with the result of each multiplication truncated to 16 bits.
The analog-to-digital and digital-to-analog conversions on the system have 12-
bit accuracy. The sinusoidal sweep input to the filters was supplied from a
tracking sinusoidal sweep generator from the spectrum analyzer. The input level
was adjusted just below the threshold of overflow occurrence. The analog
prefilter and the smoothing postfilter were removed. Removing the postfilter
produces a higher noise floor than would normally be observed.

The magnitude spectra in the figures show good passband responses for the
LDI and WDF. The filter of method 2 has a peaky response in the passband,
which is due to the approximation error (1.5-dB ripple in the passband). The
transition band and stopband responses of all three filters are good, with the filter
of method 2 having slightly better response. With the noise floor as an indicator
of signal-to-noise performance, the three filters have a noise floor that is down by
at least 40 dB, with the filter of method 2 showing the lowest noise floor. For the
filters of this example the WDF, when once driven into overflow, exhibited a
high-level (7 dB below passband level) limit-cycle oscillation at / = /s/4,
and this oscillation could not be eliminated even when the input was set to



Fig. 4,26. Magnitude spectrum of LDI (method 1) lowpass digital filter based on fifth-order analog
lowpass prototype with 0.5-dB ripple in the passband, /s//c = 25. Vertical: 10 dB/div. Horizontal:
250 Hz/div.

Fig. 4.27. Magnitude spectrum of a lowpass digital filter using a predictor z (method 2), fjfc = 25.
The same analog prototype as in Fig. 4.26 was used. Vertical: 10 dB/div. Horizontal: 250 H/./div.
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Fig. 4,28. Magnitude spectrum of wave digital filter modeled after the same analog filter as in
Fig. 4.26, fjfe = 25. Vertical: 10 dB/div. Horizontal: 250 Hz/div.

zero. The oscillation was suppressed by using "front chopping" [45,46]. The
LDI (method 1) and predictor z (method 2) filters recovered rapidly from
overflow without degradation of response or limit-cycle oscillations.

In Fig. 4.29 the magnitude spectrum of a very narrowband (fjfc = 50)
implementation of the digital filter of the predictor z synthesis method is shown.
As expected, a rise in the noise floor is observed. The filter meets the passband
specifications of 0.5 dB. The magnitude spectra in Figs. 4.26-4.29 show small
deviations from the specified cutoff frequency. The small error can be corrected
by prewarping correction of the coefficients.

This chapter dealt with IIR digital filter designs based on the transfer functions
of continuous time domain (analog) filters as well as digital filters modeled after
classical doubly terminated lossless ladders. The design procedures for calculat-
ing the transfer functions of some popular normalized analog lowpass filters were
presented. The type of filters discussed were the maximally flat magnitude
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Fig. 4.29. Magnitude spectrum of the digital filter modeled after the same analog filter as in
Fig. 4,26 using method 2, fjfc = 50. Vertical: 10 dB/div. Horizontal: 125 Hz/div.

response (Butterworth), equiripple magnitude in the passband (Chebyshev),
equiripple magnitude in the stopband (inverse Chebyshev), and equiripple
magnitude in the passband and the stopband (elliptic). The choice of filter type
from Butterworth to elliptic filters is dictated by the design tradeoff between
lower complexity of the filter (lower order) and the increasing nonlinerarity of
the group-delay function. The normalized analog lowpass filter can be denormai-
ized and frequency transformed to generate lowpass, highpass, bandpass, and
bandstop prototype filters meeting the design requirements. The prototype
analog filters were transformed to digital filters by the impulse-invariant,
modified z-transform, and bilinear z-transform approaches. The bilinear z-
transform approach was judged the best, as far as its mapping properties are
concerned, for the design of digital filters meeting piecewise constant specifica-
tion requirements. The group-delay nonlinearity can be tackled by cascading
the digital filter meeting given magnitude specifications with delay equalizer
networks [12,4]. Lastly, two methods of designing narrowband digital filters,
modeled after classical doubly terminated lossless ladders, were presented. These
digital filters, capitalize on the low magnitude response sensitivity of the
prototype analog ladder to perturbation of its element values, exhibit low
sensitivity to coefficient quantization and low noise.



4. MR Digital Filters 355

APPENDIX: IIR DIGITAL FILTER CAD PROGRAMS

This appendix summarizes some readily available computer programs for
designing IIR digital filters.

IIR Filter Design Programs Described in trie Open Literature A

1. Listings of five IIR digital filter design programs are given in [40]. A tape is
available from IEEE.

2. Listings of IIR digital filter design programs are available in [4,24,14].

IIR Filter Design Programs Available in Commercial Packages B

1. FILSYN is a filter design package that has evolved through many years.
The package, besides IIR and FIR digital filter design and optimization features,
also has design and optimization routines for passive, active, switched capacitor,
and microwave filters. Available from DGS Associates, 1353 Sarita Way, Santa
Clara, California 95051.

2. DIG-FIL- is a program package used for designing digital filters in cascade
form. The Peled-Liu (See Chapter 5) heuristic optimization technique is used for
scaling a signal between filter sections to achieve the best signal to round off noise
ratio. The program was written by the author, utilizing the techniques presented
in this chapter. Versions of the program for Commodore's Amiga and IBM PC
are available.

3. The ILS package from STI is an extensive digital signal processing package
that, in addition to digital filter design capabilities, has routines for parameter
estimation, cepstral analysis, speech processing (analysis, synthesis, pitch ex-
tracting, and format tracking), and pattern analysis/recognition. The package is
written in ANSI FORTRAN, and versions are available for different computers.
The package is available from STI, 5951 Encina Road, Goleta, California 93117.

4. DFDP is a digital filter design package for the TI and IBM PCs and is
available from ASPI. The package is used for designing standard IIR digital
filters using the bilinear z-transform, as well as for FIR digital filters optimized by
the McClellan-Parks procedure. The package is interactive and makes extensive
use of TI/IBM PC color graphics capabilities. The package can produce
assembly language code for the TMS 32010 processor and is available from ASPI,
770 Spring St., N.W., Atlanta, Georgia 30308.
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Chapter 5

Low-Noise and
Low-Sensitivity Digital Filters

P. P. VAIDYANATHAN
Department of Electrical Engineering

California Institute of Technology
Pasadena, California 91125

When one implements a digital filter transfer function using a digital machine,
it invariably involves quantization of signals and coefficients in the system. As
a result, the overall input-output behavior is not ideal. Two basic types of
quantization effects should be distinguished in any implementation [1,2]. The
first is due to parameter quantization, where the term "parameter" refers to the
fixed digital-filter coefficients (or multipliers). The result of parameter quantiza-
tion is that the actual implemented transfer function Hq(z) is different from H(z}.
Once the quantization has been done, this error is a fixed, well-determined
quantity.

The second type of quantization is due to signal rounding; the internal signals
in a digital filter, which take part in the filtering process, are invariably subject to
quantization, causing an error in the computed output. Such quantization is a
nonlinear phenomenon and can be further subdivided into two types of effects,
called limit-cycle oscillations [3] and roundoff noise. Limit-cycle oscillations,
which contribute to undesirable periodic components at the filter output, are due
to the fact that quantization is a nonlinear operation (when such nonlinearities
exist in feedback paths, they can lead to oscillations). Roundoff noise, on the
other hand, affects the filter output in the form of a random disturbance, and can
be analyzed by suitable noise modeling and by the use of linear system theory.

Given a digital filter transfer function H(z), there exist an infinite number of
structures* to implement it. Of these, some structures are less sensitive to

* A structure is any interconnection of digital multipliers, delays, and adders.
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coefficient quantization than others, and some structures generate less roundoff"
noise than others. Moreover, certain structures can be designed to be indepen-
dent of limit cycles. A "low-sensitivity" structure is one for which the transfer
function Hq(z) after coefficient quantization does not differ substantially from the
ideal H(z). A low-noise structure is one for which the variance of the noise at the
filter output is "low" in comparison to the signal level

The simplest form of digital filter structures is the direct form structure [4,5]
shown in Fig. 5.1. The transfer function implemented by Fig. 5.1 is

H(z) =
P(z)

For large JV, the locations of the poles and zeros of H(z) [which are roots of
the polynomials P(z) and Q(z)] are very sensitive [4-6] with respect to the
coefficients pn and qn. In addition, the direct form structure generates large
roundoff noise for transfer functions having sharp frequency response behaviors
and often supports limit cycles. In view of these considerations, the direct-form
structure is not employed for N > 2. Several other structures have much better
behavior in a quantized environment, and the purpose of this chapter is to
present the most important of these structures.

Section II is a brief introduction to binary arithmetic and quantization of
binary sequences, along with statistical properties. Section III is an introduction
to noise propagation in digital filters. Scaling and dynamic range considerations
are introduced in Section IV, and Section V deals with signal-to-noise ratio
(SNR) performance in simple structures. A class of low-noise second-order
structures based on error-spectrum shaping (ESS) is described in Section VI.
Section VII generalizes the concept of SNR to arbitrary structures. Sections VIII
and IX deal with cascade-form implementations and noise-reduction strategies in

Inpu t
u ( n )

Output
y(n)

Fig. 5.1. The direct-form structure.
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such implementations. State-space structures for low-noise design are considered
in Section X; closed-form expressions for certain minimum-noise state-space
structures are included. Sections XI and XII deal with low-sensitivity digital filter
realizations, with emphasis on second-order sections, whereas Section XIII
introduces wave digital filters (WDFs), which are well known for low sensitivity
(and often low noise). Sections XIV-XVI deal with various low-sensitivity digital
filter z-domain design procedures based on passivity concepts. Section XVII
briefly summarizes digital all-pass structures, which form a crucial building block
in many low-sensitivity realizations. Section XVIII deals with orthogonal digital
filters. Sections XIX and XX present results concerning low-sensitivity finite
impulse response (FIR) design. The design of limit-cycle free digital filters is
described in Section XXI.

A Word on Notation. To distinguish input sequences from unit-step se-
quences, we use u(n) for the input and l(n) for the unit step. The notation S(n)
stands for the unit-pulse (or "impulse") function. Boldface letters denote matrices
and vectors. Superscript T stands for matrix transpose; tilde is defined to be such
that A(z) = A r (z 1 ) . A dagger ( f ) indicates transposition followed by complex
conjugation. Thus, on the unit circle of the z-plane, ~and f imply the same
operation. The symbols I and 0 stand for the identity matrix and the null matrix
(or null vector), respectively. A real symmetric matrix P is said to be positive
definite if the scalar y *Py is positive for all y ^ 0. We call P positive semidefinite
(nonnegative definite) if yfPy is nonnegative for all y ̂  0. We abbreviate
the positive definite property as P > 0, and the positive semidefinite property
as P > 0.

BINARY NUMBERS—REPRESENTATION AND QUANTIZATION II

We briefly summarize various binary number systems used in digital filtering
and outline the statistical characterization of quantization properties of different
number systems. We then establish the noise propagation properties in a digital
filter implementation.

Binary Number Systems A

A binary representation of a number [4,5,7,8] is a means of writing the
number in terms of powers of 2. For example, the decimal number 6.375 can be
represented as 110.011, an abbreviation for 22 + 21 + 0 • 2° + 0 • 2 l + 2 2

+ 2~~3. Thus, a binary number in this form comes with a "binary point." The
portion to the left represents an integer (e.g., 110 = 6), and the part to the right
(0.011) represents fractions less than unity.
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In fixed-point binary arithmetic, the binary point is held fixed. The addition of
two fixed-point numbers does not depend on the location of the binary point.
When we multiply two fixed-point numbers, it is convenient to assume both to be
integers or both to be fractions, because the product is also accordingly an integer
or fraction. When two fixed-point integers with b bit representations are
multiplied, the result is a 25-bit integer; hence, if we use integer arithmetic in
feedback loops, the required number of bits accumulates with every cycle of
operation and produces overflow. Accordingly, for digital filtering applications,
it is most convenient to consider all arithmetic to be fixed-point fraction
arithmetic. In such arithmetic, if two 5-bit numbers are multiplied, we still have a
25-bit result, but we can reduce it to a 6-bit number simply by rounding or trun-
cating the least significant b bits. For example, (0.101) x (0.110) = (0.011110) =*
(0.100), which in decimal language translates to f x f = ^f ~ \. This kind of
rounding operation after a multiplication is the root cause of "roundoff error" in
digital filter implementation. A substantial part of this chapter is dedicated to
methods that minimize the effect of such error on the filtered output signal.
Notice, in this context, that if two fixed-point 5-bit binary fractions are added,
then the result usually has b bits in the fractional part and a possible nonzero bit
to the left of the binary point. This extra nonzero bit is called the overflow bit.
Under certain conditions, this extra bit can be discarded (i.e., simply thrown
away) without affecting the ultimate filter output. This point will be elaborated on
in Section IV. In any case, unlike multiplication,* adding two fixed-point
numbers does not produce roundoff error.

In contrast to fixed-point arithmetic, a digital filter can also be implemented
in floating-point arithmetic. Here, each number x is represented as x — 2C • M,
where M is the binary 5-bit mantissa and is always in the range j < M < I ,
The exponent or characteristic c is an integer (of either sign). Two floating-
point numbers Xi = 2Cl • Ml and x2 — 2C2 • M2 are multiplied as follows: .x =
xlx2 = 2CI+C2M1M2. The new mantissa MjM2 is then renormalized to be in
the range ^ < M1M2 < 1, and the exponent ct + c2 is adjusted accordingly.
Adding two floating-point numbers is more involved, because the mantissa of
the smaller number must be right-shifted until its characteristic matches that
of the larger number. From this discussion it is clear that in floating-point
arithmetic roundoff error is generated during addition and multiplication.
Moreover, unlike fixed-point arithmetic, which is inherently simple to imple-
ment, floating-point operations are more involved and usually require longer
execution times [7]. However, a major advantage of floating-point arithmetic is
that it covers a much wider signal dynamic range. For example, if we permit 8 bits
for the characteristic c, then the dynamic range (i.e., the range of representabie
numbers) is approximately 2^128 < x < 2127 (the exact range actually depends
on the convention for representing negative numbers, see Section II.B). In view of

f Remember that roundoff errors are small, noiselike errors, whereas overflow errors are huge and
cause severe distortion of the output signal.
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TABLE 1
Features of Various Arithmetic Schemes

Features

Overflow under
multiplication

Overflow under
addition

Roundoff noise due
to addition

Roundoff noise due
to multiplication

Dynamic range
available

Ease of
implementation

Fixed-point
fractions

Not possible

Possible" but not
harmful in most
occasions

Does not occur

Occurs

Moderate

Simple

Fixed-point
integers

Possible

Possible

Does not occur

Does not occur

Moderate

Simple

Floating-point

Possible but unlikely

Possible but unlikely

Occurs

Occurs

Enormous

Involved; more
hardware and/or
execution time
required

" To be elaborated in Section IV, which deals with scaling and dynamic range.

this, signal overflow during floating-point implementation of a digital filter is far
less likely, compared to a fixed-point implementation.

Table I summarizes the main features of the three types of number rep-
resentations. Each type has its own advantages and disadvantages. Note that
integer arithmetic is entirely free from roundoff noise, but is very likely to
generate overflow errors; it also offers very limited dynamic range. In view of its
simplicity and freedom from overflow (during multiplication), the fixed-point
fraction representation has been the most frequently used scheme. Therefore, in
this chapter, we primarily deal with this representation.

Oppenheim [9] has advanced an arithmetic system called the block floating-
point system, which sometimes forms an excellent compromise between fixed-
point and floating-point systems. We do not deal with this system here, even
though it offers certain attractions for certain implementations.

Handling Negative Numbers B

In Section II.A we gave an overall view of the three kinds of number
representations, but we did not carefully distinguish between negative and
positive numbers. Now that we have decided to narrow down most of our
discussions to the fixed-point fraction representations, we make use of this
representation to state and clarify our conventions for negative numbers.
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When we say "fe-bit fixed-point fraction" we mean a binary number as shown in
Fig. 5,2. There are b bits after the decimal point, and there is a separate bit s, called
the sign bit. The quantities ak and s can take on only the values 0 and 1. If s — 0,
thenx = Ek=i«k2~k (a nonnegative quantity); if s = l,x < 0 and its precise value
depends on the "convention." Three conventions are common: the sign
magnitude, 2's complement, and 1's complement. In the sign-magnitude repre-
sentation, £Jt=ifl*2~* always represents the magnitude. Thus, addition and
multiplication are performed on the magnitudes and the signs are kept track of
separately.

The 2's complement representation of a positive number is the same as that of
the sign-magnitude representation (e.g., | = 0.01). The representation of a
negative number results from computing it mod 2 (e.g., — % — 10,00 — 0.01 =
1.11). In 2's complement representation the value of a number x is always
given by

= -s • 2° + £ ak2
 k = -5 • 21 + s • 2° + £ (5.1)

In other words, s is looked upon as a weight for
negative number is

1. Thus the magnitude of a

= 1 - £ ak2~k = 2 - s + £ ak2 (5.2)

The name "2's complement" comes from Eq. (5.2). For example, the magnitude of
1.101 is 2 — [1 4-f] =|, so 1.101 represents — f . Given a 2's complement
number x as in Eq. (5.1), we have

Since 1 = £JL l 2~k + 2~b, (5.3) is equivalent to

-jc = -(1 + £ (1 - ak}Tk + 2~
b

(5.3)

(5.4)

By comparing Eq. (5.1) and Eq. (5.4), we see that we can negate (i.e., complement)
a 2's complement number simply by replacing each 1 with a 0 (and each 0 with
a 1), including the sign bit s, and then adding the least significant bit 2~b. For
example, if x = 1.101, then -x = 0.011 (here 6 = 3) whereas if y = 0.0101 then
~j = 1.1011 (here b = 4). Rules for addition and multiplication are simple and
can be found in [7,8]. Clearly multiplication cannot cause overflow, and the

,-b

al a2 . . . ab

Fig. 5.2. Fixed-point fr-bit fraction representation.
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result is always correct.* On the other hand, if ̂  and x2 have the same sign, it is
possible to have an overflow error due to addition. We emphasize that the rules
for basic arithmetic operations of negation (complementation), addition, and
multiplication of 2's complement fractions are independent of the signs of the
operands, and this is a significant advantage over other representations. (Sub-
traction is not a "basic" operation because it can be performed by preceding
addition with a 2's complement negation.)

The 1 's complement representation of a positive number is the same as that of
the sign-magnitude representation (e.g., | = 0.01). The representation of a neg-
ative number results from computing it mod (2 — 2~b) (e.g., for b — 2, — | =
1.11 — 0.0.1 = 1.10. In Fs complement representation, the value of a number x
is given by

b

X ~~' " S\ i j- / ~r / j Cl^Z. (3,31
k"-1

In other words,

x = s+ t ak2~k -2s+ 2 ~b - s (5.6)

Thus 1.010 stands for (^ - 2 + 2 ~ 3 ) = (10 - 15)/8 = -f, whereas the repre-
sentation of — If is obtained by noting that — {f = (if — T§ + TS ) =
(xf — 2 + 2 4); hence the representation is 1.0010. It is easy to verify that a 1's
complement number can be "complemented" (i.e., negated) simply by comple-
menting each bit. Thus — 1.0110 is 0.1001, and so on. Detailed rules for addition
and multiplication can be found in several standard texts [7,8] and are omitted
here, because they are not needed to understand the rest of the chapter. Note,
however, that 2's complement arithmetic is easy to implement (for adding and
multiplying numbers) and elegantly handles negative numbers. Thus it is
unnecessary to keep track of signs of operands and results. (For this reason,
2's complement arithmetic has been found most suitable for serial arithmetic
also [10].)

Accordingly, our primary emphasis is on 2's complement fixed-point fraction
arithmetic. Note that the range of numbers represented is — 1 < x < 1 — 2~b for
2's complement representation, and —(1 — 2~b) < x < 1 — 2~b for 1's comple-
ment and sign-magnitude representations. Table II gives a quick review of the
three representations, and Table III summarizes the main features. We abbre-
viate the dynamic range spanned by the 1's complement and sign-magnitude
representations by ( — 1,1), and the corresponding range for 2's complement by
[—1,1) , to emphasize that — 1 is represented in the 2's complement case. When
the number representation is not explicitly specified, we denote the dynamic
range by ( — 1,1) for simplicity.

f Multiplication of two numbers x, and x2 could produce a nonzero bit to the left of s (i.e.,
corresponding to the 2' location), but this "physical overflow" does not mean that the product is
incorrect. The product is always correct, once the overflow is ignored. Thus 21 can be treated as
"zero;" hence, 2's complement arithmetic is essentially modulo 2 arithmetic [4,5].
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TABLE II

The Three Numbering Systems, Demonstrated for 3-Bit Binary Fractions (i.e., 6 = 3)

Binary number

0A111
0A110

0*101
0A100
0A011
0A010
0A001
0A000
1A000
1A001
1A010

A011
A 100
A 101
A I10

Ai 11

Sign and magnitude

7/8
6/8
5/8
4/8
3/8
2/8
1/8

0
-0

-1/8
-2/8
-3/8
-4/8
-5/8
-6/8
-7/8

TABLE

Interpretation

2's complement

7/8
6/8
5/8
4/8
3/8
2/8
1/8

0
-1

-7/8
-6/8
-5/8
-4/8
-3/8
-2/8
-1/8

III

1's complement

7/8
6/8
5/8
4/8
3/8
2/8
1/8

0
~ 7/8
-6/8
-5/8
-4/8
-3/8
- 2/8
- 1 /8

_ 1

Main Features of the Three Representation

Features

Range

Representation of zero

Arithmetic rules

Suitability
for serial
arithmetic [10]

Sign and magnitude

(1 2. ) <• x
< (1 - 2~b)

0.000 and 1.000

Signs must be kept
track of, separately

Not so good

2's complement

-1 < x
<(1 - 2~f t)

0.000

Simple;
negative numbers
elegantly handled

Excellent

1's complement

(\ ? ~ * j <- Y
1,1 £• } 5s A

< (1 - 2~b)
0.000 and 1.111

Simple, but "end
around carry" should
be carefully
handled [8]

Good

C Quantization of Binary Numbers

In digital implementations it is often necessary to quantize a binary fixed-point
frj-bit number to a 6-bit number, as shown in Fig. 5.3. The quantization error is
denoted by

<2W (5.7)
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QCx] 31
a2 . . . ab

Fig. 5.3. Quantizing a fixed-point fraction.

-b.
2'1 2~D 2
\b "<^r \[/

al a2 . . . ab ^//x-^X
X" X'

The properties of e and its statistical behavior (when x is a random variable
belonging to a sequence) depend, in general, on the choice of representation we
use for negative numbers. Regardless of the representation of negative numbers,
the quantization itself could be one of several types, such as truncation, magni-
tude truncation, rounding, and so on. This section carefully distinguishes these
cases and outlines the quantization properties for each case.

Truncation Arithmetic 1

Truncation is a process in which the least significant b± — b bits (shown
shaded in Fig. 5.3) are simply dropped, regardless of the sign of the number
and the convention for representing negative numbers. If x > 0, then clearly
—(2~* — 2~"bi) <e<Q, where e is defined in Eq. (5.7). If x < 0, we can then
verify that e depends upon the representation as follows:

a. sign-magnitude: 0 < e < 2~~b - Tbl and \Q[x]\ < |x|;
b. 1's complement: 0 < e < 2~b ~ Tbl and \Q[x]\ < |x|;
c. 2's complement: ~(2~b - 2'*1) < e < 0 and |Q[x]| > jx|.

Certain important features now emerge. First, for both sign-magnitude and 1's
complement representations, the sign of e is the opposite of the sign of x. Thus, e
is correlated with x. In contrast, the error e is always nonpositive for the 2*s
complement case, regardless of the sign of x. Second, for both sign-magnitude
and 1's complement representations, truncation decreases the magnitude,
whereas for 2's complement numbers, \Q(x)\ > \x\ for negative x. Thus, trun-
cation does not imply "magnitude truncation" for 2's complement negative
numbers. This fact has far-reaching consequences when we attempt to suppress
limit-cycle oscillations in digital filters, based on passivity concepts. We elaborate
on this fact in Section XXI.

If we think of x as a uniformly distributed random variable, and if b and 6X — b
are sufficiently "large," then the quantization error e can be modeled as a random
variable with uniform probability density. Based on the above discussion of the
behavior of e, we can draw the probability density function p(e) as shown in
Fig. 5.4(a),(b) for the three subcases of truncation arithmetic. Strictly speaking,
e is a discrete variable, and the continuous plots of Fig. 5.4 hold only when
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^
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Fig. 5.4. Probability density functions for quantization errors; A = 2

hi — b is large. In practice, this is generally true, and we rely on Fig. 5.4 for
additional guidelines on noise analysis. Note that A in Fig. 5.4 represents
2~b — 2~b\ but with b1 — b large we can take

r-fc (5.8)

for all practical purposes. Figure 5.4 also shows the statistical mean me and
variance al of the roundoff error e. Note that 2's complement truncation leads to
lower noise variance (by a factor of 4) compared to the other two representations.
As a tradeoff, 2's complement truncation gives rise to a nonzero mean value,
which causes a mean value in the output roundoff noise of the digital filter.

2 Magnitude-Truncation Arithmetic

Magnitude-truncation arithmetic is defined to be any type of arithmetic for
which \Q{x)\ < \x\. Thus, conventional truncation arithmetic is also magnitude-
truncation arithmetic for sign-magnitude and 1's complement representations.
For 2's complement representations, we can convert truncation arithmetic to
magnitude truncation simply by adding 2~fc to Q[x] whenever x < 0 (i.e., s = 1)
and e / 0. The price we pay is that the resultant error e = <2[x] + s • 2~h has a
sign correlated with x.

3 Rounding Arithmetic

Let x be as in Fig. 5.3. In rounding arithmetic we take
&-bit number; that is,

A A

to be the nearest

(5.9)

where A is as in Eq. (5.8) and e is as in Eq. (5.7). Thus, regardless of the
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TABLE IV

Number Systems and Quantization Effects

Truncation arithmetic

Features

Sign of error

Mean of error, me

Variance of error, ol
\Q(x)\

Same as magnitude
truncation?

Ease of
implementation

I's complement and
sign magnitude

Opposite the sign of x

0
A2/3
<|x|

Yes

Easy

2's complement

Uncorrelated with x;
always nonpositive

-A/2
A2/12
<|x|, x > 0
>|x|, x < 0

No

Easy

Rounding arithmetic
(features are

independent of number
representation)

Uncorrelated with x

0
A2/12
Could be < or >jx|,

Uncorrelated with the
sign of x

No

Not particularly easy

e = @[x] — x where Q[x] = quantized number; A ~ 2 b.

representation of negative numbers (i.e., sign magnitude or I's or 2's comple-
ment), the sign of e is Uncorrelated with that of x, and Fig. 5.4(c) can be used to
represent the probability density p(e). Therefore, rounding arithmetic has several
desirable features: the variance is only A2/12, and me is 0 regardless of how
negative numbers are represented; in addition, the sign of e is independent of the
sign of x. However, the magnitude \Q(x)\ is not restricted to be less than |(x)|,
and it might create problems when we attempt to suppress limit cycles in digital
filters.

A summary of quantization effects in fixed-point fraction representations
appears in Table IV. Be aware that even though there exist several quantization
schemes (rounding, truncation, and so on), the quantization noise is generally
referred to as roundoff noise. This does not necessarily mean that roundoff
quantization is being employed. For simplicity we adopt this loose language.

Consider the first-order infinite impulse response (IIR) digital filter structure f

of Fig. 5.5, which corresponds to the all-pole transfer function

H(z) = (l - (5.10)

* In this chapter u(n) and U(ejto) denote the input sequence and its transform. The symbol xk(n) will
be reserved for state variables.
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w(n)

r

^\

> f
-1z

— 7»y(n;

Fig. 5.5. A first-order digital filter.

where — 1 < a < 1 for stability. This structure involves one multiplier, a, one
two-input adder, and a delay (storage register). Assume that u(n) and y(n) are b-bit
fixed-point fractions as in Fig. 5.2 (w(n) and y(n) denote the same signal). The
quantity

v(n) = zy(n — 1) (5.11)

is the output of the multiplier a. If we use b' bits to represent a, then v(n] actually
has b H- b' bits. Thus, y(n), which is given by u(n) + v(n), has b + b' bits during the
succeeding cycle. In this manner, the number of bits required to represent v(n) and
y(n) accumulates indefinitely because of the feedback loop. To avoid such
accumulation, we must insert a quantizer Q that converts a (b + 6')-bit num-
ber to a b-bit number. Figure 5.6 shows two ways of doing this.

In Fig. 5.6(a) the signal v(n) is added to u(n) and the result w(n) is quantized; in
Fig. 5.6(b) the signal v(n) is quantized to b bits and added to u(n). The scheme of

w(n)

>y(n) u(n)

Fig. 5.6. Signal quantization in the first-order structure.

Y(n)

Fig. 5.7. Quantization noise models for the first-order structure.

(b)
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Fig. 5.6(a) requires a (b + b')-bit adder, whereas that of Fig. 5.6(b) requires a b-bit
adder. The tradeoff is that Fig. 5.6(b) represents a noisier circuit than Fig. 5.6(a).

The result of such quantization is to introduce the quantization error e(n),
defined according to Eq. (5.7). Thus, equivalent models [1,4,5] for the schemes in
Fig. 5.6 can be drawn as shown in Fig. 5.7. The noise source e(ri) can thus be
considered as a second input to the filter. Its effect can then be analyzed using
linear-system theory (even though quantization itself is a nonlinear effect). Such
analysis is generally done with the following assumptions about e(n):

Assumptions about the Noise Source e(n) 1

a. <?(«) is a wide-sense stationary (WSS) random process [11]; that is, the
statistical quantities

E[e(ri)\ = statistical expected value = me

E[e(n] — me][e(n + ra) — me] = covariance sequence = cee(m)

are independent of the time index n.
b. e(n) is "white"; i.e.,f cee(m) = al • <5(m). Thus the autocorrelation sequence is

ree(m) — E[e(ri)e(n + m)] = al d(m] + ml

c. e(n) is uncorrelated to all other signals such as x(n), w(ri), and v(n).
d. e(n] is uniformly distributed, as shown in the typical plots of Fig. 5.4.

These assumptions are generally valid when b and b± (Fig. 5.3) are sufficiently
large and when x(n) is "sufficiently random." A quantitative analysis concerning
validity of these assumptions can be found in [12] and references thereof.

In Fig. 5.7, the signals e(n) "pass through" the filter just like the signals u(n}. The
transfer functions from the noise sources to the outputs w(n) and y(n) are

az"1

for Fig. 5.7(a)
W" ' - (5.,2,

^ for Fig. 5.7(b)

and

y(z
cl. , _! for both Fig. 5.7(a),(b) (5.13)E(z) i — i

The quantization noise gets "amplified" through the "noise transfer functions" of

f Recall that 6(m) is the unit pulse defined as d(m) = 0 for m ^ 0 and <)(0) = 1.
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Eqs. (5. 1 2) and (5. 1 3). Thus, even though e(n) may be "small," its effect on w(n) and
y(n) can be large. Note that since |a| < I for stability, the scheme of Fig. 5.7(a) is
less noisy than that of Fig. 5.7(b) as far as w(n) is concerned. In practice, however,
it is more natural to take y(ri) as the output, because it is typically cascaded to a
succeeding stage.

For the rest of the section, only the schemes of Figs. 5.6(a) and 5.7(a) with y(n)
defined to be the filter output will be considered. Thus the noise transfer function
is

(5.14a)

which results in an impulse response given by

(5.14b)

where 1 («) stands for the unit step. The noise contribution at the filter output due
to e(n) is

ye(n)= £ g(m)e(n-m) (5.15)
m = 0

From the aforementioned assumptions concerning the noise source e(n\ we easily
verify [4, 5] that ye(ri) is a WSS random process with the following mean and
variance:

mf ± £[»)] = me £ g(n) (5.16)
n = 0

a} £ E[_ye(n) - mrf = a2
e £ g2(n) (5.17)

n = 0

where me and a\ are the mean and variance of e(n) as tabulated in Table IV for
various kinds of quantization and number representations. Notice that for 2's
complement truncation arithmetic, there is a nonzero mean value for the output
error ye(n).

In view of the expression for g(n) in Eq. (5.14), it is clear that Eqs. (5.16) and
(5. 17) imply

m/ = me(l -a)'1 (5.18)

ff2
f = ff*(l-*2rl (5.19)
/

For narrowband filters, |a| is/typically very close to 1. For such filters
the noise variance al gets amplified enormously. For example, with oe = 0.997
(which is not uncommon), aj- = I61a^, which corresponds to a noise gain of
101og10167 = 22dB.

Before proceeding further: note that the noise level ffj- itself is not as meaningful
as the SNR at the filter output. As a simple example, if the input signal u(n) is itself
a white WSS random process with variance $1, then the output signal y(n) has
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variance

and hence the noise-to-signal ratio is

N

(5.20)

(5.21)

Thus, the noise gain (1 — a2) J cancels with the signal gain. In other words, x
does not enter Eq. (5.21) at all, and the S/N ratio is apparently independent of
pole location. This, however, is a false conclusion for the following fundamental
reason: in fixed-point arithmetic, since we wish to confine y(n) to the dynamic
range (—1,1) , it is necessary to scale down u(n) accordingly. Otherwise the
computed signal y(n) suffers from possible overflow. The scaling of u(n] required
depends on the signal gain (hence on a). Thus for a ~»1, the gain (1 — a2)"1 is
large and al in (5.21) is small, thus deteriorating the SNR,

In view of these considerations, we now proceed to the topic of scaling and
dynamic range in digital filters. After this, we shall return to Fig. 5.7 and obtain a
more useful and practical expression for the SNR.

In general, a digital filter structure is more complicated than that of Fig. 5.5
and is an elaborate interconnection of multipliers, adders, and delays (Fig. 5.8).
Let us assume that all the signals involved (including u(n), y(n\ and the internal
signals) are represented by b-bit fixed-point fractions (Fig. 5.2). It is thus desirable
that, during the computation process, none of the signals exceeds the dynamic
range (—1,1) . Let us now assume that the transfer function H(z) and input u(n) are

—*

>y(n)

Fig. 5.8. Components of a general digital filter structure are multipliers, adders, and delays.



374 P. p. Vaidyanathan

rt(n)

Fig. 5.9. Internal signals in a filter structure.

such that the output y(n) stays in the range (— 1,1) for all n. Thus, if there is no
overflow of internal signals [i.e., if all internal signals are in the range ( — 1,1)],
then the computed y(n) is the correct result. "Scaling" is a process of readjusting
certain internal gain parameters in order to accomplish this goal.

An "internal signal" is a signal that is neither u(n) nor y(n). The set of all internal
signals that participate in computations can be divided into two classes (Fig. 5.9):

1. Signals rk(n) that are inputs to (nonintegral)t multipliers. (These signals
could simultaneously be inputs to adders as well.)

2. Signals sk(n) that are not inputs to multipliers. Such signals are inputs to
adders.

For a number of standard arithmetic systems (such as I's and 2's complement
systems), it is necessary only to scale the rk(n). In other words, given an infinite
precision, infinite dynamic range theoretical circuit, if rk(n) remains in the range
(— 1,1) for all k and n, then in a practical circuit with dynamic range (— 1,1) the
signals rk(n) will continue to be the correct values (and y(n) will continue to be
correct) even if the signals sk(n) undergo several overflows. The reasoning for this
is outlined in [4,10,13] and a mathematically rigorous proof can be given, but we
ornit details here.

If a digital filter structure is such that |rk(n)| < 1 for a certain class of inputs
under ideal conditions, then it is said to be scaled for this particular class of inputs.
In his original work [13] Jackson shows how scaling should be performed,
depending on the class of inputs. Let fk(ri) denote the impulse response from the
input u(n) to the node of rk(n). The transform Fk(z) = Z^°=o/fc(n)z " *s called the
scaling transfer function. It can be shown that \rk(n)\ is bounded for all indices n as
follows:

\rk(n)\<\\Fk\U\U\L (5.22)

T Note that the integer portion of any multiplier can be looked upon as a set of adders. Thus,
without loss of generality, for analysis purposes, a "multiplier" can be assumed to be a fraction in the
range ( — 1 , 1 ) .
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where p and q are constrained by

- + - = 1 (5.23)
p q

and where the symbol ||-||p denotes the Lp norm:

2n -11 /p

\S(eJC°)\pdco\ (5.24)
o J

Note that p — oo corresponds to taking the maximum value; that is,

(^")| (5.25)

Based on the inequality Eq. (5.22) it is easy to derive conditions on Fk(z) to sat-
isfy \rk(n)\ < 1. For example, let the input be such that I t/(ej£0)|max < 1; that is,
||C/||X < 1; then from Eqs. (5.22) and (5.23) it is clear that if we scale the filter
such that i|Ffc||j < 1, then overflow of rk(n) can be avoided. This corresponds
to p — 1, q = oo in (5.23).

On the other hand, let the input be a pure cosine wave, cosco0«, of arbitrary
(unknown) frequency co0. In this case

U(ejo>) = n £ [<S(co - o>0 - 2nk) + d(w + OJG - 2nkJ]

where in this context <5(-) is the impulse function with a continuous argument.
Note that \\U\\q is well defined only when q = 1. In fact, \\U\\ l = 1, and thus the
scaling policy is obtained by setting q = 1, p = oo in (5.22). In other words, if the
structure is scaled such that HF^I^ < 1, then overflow of rk(n) can be avoided.
This represents the most "stringent" of all Lp scaling policies because it can be
shown that the norm in Eq. (5.24) satisfies

II%£||S|L for all p (5.26)

Thus, if \\Fk\\x < 1 for all k, then it implies that the filter is scaled for all possible
input signals (not only sinusoids) satisfying \\U\\l < 1. Next, the case p = 2, q — 2
is useful when U(eJ<a) is known to have bounded energy; that is,

I l l / I l l = ( O I 2 < l (5.27)
Jo 27i

Under this condition, it is sufficient to scale ||Fkj|2 such that ||Fk||2 < 1.
Finally, suppose that we do not have any a priori knowledge on the input,

except, of course, that \u(n)\ < 1 because of the natural input register dynamic
range. Under this condition,

fk(m)u(n - m) < I l/k(m)| (5.28)
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TABLE V

Various Useful Types of Scaling
(In each row, at least one of the two inequalities must be strict)

Condition on input,
i.e., available

knowledge about
input

Requirement on fk(n)
to avoid overflow of

rk(n) for all n

Terminology
used for the

scaling policy Comments

None,except |u(n)\ <\ L = £ \fk(n)\ < 1
n=-0

(example: sinusoids)

Sum-scaling Most stringent scaling
policy; entirely
overflow-proof

L2 = \\Fk(e*°)\\2

(finite-energy inputs)

m a x \ U ( e j f " ) \ < 1 Lt = ||^(?-/0>)||i

Peak-scaling or Most stringent among all
LiX-scaling Lp-scaling policies

L2-scaling Commonly used;
mathematically
tractable

Lj-scaling Most stringent knowledge
requirement on U(eJ'°)

n p
|>Jo

\S\\f stands for — \S(eJ<a)\"d(o
i7t J

Note that max \S(ejl")\

Thus, the only way to ensure freedom from overflow is to make T,m=o \fk(m)\ < ' •
This then represents the most stringent scaling requirement. Table V summarizes
some of the main points concerning scaling and includes standard names for
scaling policies. In view of the well-known inequality Eq. (5.26), L^-scaling is
more stringent than Lp-scaling, p < GO. Sum-scaling on the other hand is the most
stringent and hence provides complete freedom from overflow. Finally, Lr

scaling is the least stringent, but in view of Eq. (5.26) puts the maximum
constraint on the nature of input.

f Stochastic Input Sequences

When the input sequence u(n) is a sample of a random process, U(eJ(0) does not,
in general, exist, and we should formulate more meaningful guidelines for scaling.
Assuming that u(n) represents a WSS random process, let Suu(e

i(0) be the power
spectral density of u(n}; that is,

Suu(e
jl!))= (5.29)

where ruu(m} is the autocorrelation sequence; that is, ruu(m) = E\u(n)u(n + w)].
Assuming for notational simplicity that u(n) has zero mean, we obtain the
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variance of rk(n):

< = T- {2n\Fk(e
j(»)\2Suu(e

j<°)daj (5.30)
2^ Jo

It can be shown [13] that Eq. (5.30) implies

<<\\F2M\Suu\\q (5.31)

where p and q are related as in Eq. (5.23).
We have thus found an upper bound on the variance of the random variable

rk(n). The usefulness of this can be seen as follows: rk(n) is the output of a causal
linear system Fk(z) in response to u(ri). Hence rk(n) is a linear combination of
u(n), u(n — 1), u(n — 2),..., and so on. So, by the central limit theorem [11]
rk(n) is expected to be Gaussian (particularly if Fk(z) is IIR). Thus, any bound
on the standard deviation ark reveals an upper bound on the overflow prob-
ability of rk(n). For example, if <rrfc < |, then the probability of overflow is not
greater than about 0.003 (i.e., 0.3%). For quick reference, Table VI lists the
probability of overflow for various bounds on afk. We constructed the table
from standard data [14] on Gaussian distributions.

It is clear from Table VI that we can achieve arbitrarily small probability of
overflow by decreasing \\Suu\\q [see (5.31)], which in turn can be accomplished by
scaling down u(n). The obvious tradeoff is that the signal level a^k accordingly
decreases, eventually deteriorating the output SNR. (We will soon elaborate on
the SNR behavior under scaled conditions.)

Summarizing this section, given a digital filter structure as in Fig. 5.8 to be
implemented in fixed-point fractional arithmetic, the circuit is said to be "scaled"
if none of the signals rk(n) (inputs to nonintegral multipliers) overflow. This can
be accomplished if each of the impulse response sequences fk(n) satisfies
Z l/k(«)l ^ 1- !£ however, we have some a priori knowledge on the input M(K), then

TABLE VI

Bounds on Overflow Probability

Upper bound Upper bound on
on ark probability of overflow

1 0.318
0.80 0.212
0.60 0.096
0.40 0.012
0.333 0.0028
0.30 0.00092
0.25 6.4 x 10~5

0.22 6.0 x 10"6

0.20 6.0 x 10~7



378 P. P. Vaidyanathan

it is sufficient to scale fk(n) such that a suitable norm \\Fk\\p is bounded above by 1,
Guidelines for this are given in Table V. Finally, if u(n) is a stochastic input, useful
bounds can be obtained for the variance of internal signals, thiis giving us the
necessary scaling information.

An unsealed digital filter structure (i.e., one for which fk(n) do not satisfy the
necessary bounds) can be scaled by restructuring the internal details. These are
best explained with practical examples, and so we defer the details to later
sections.

A normalized digital filter is a scaled digital filter for which the quantities fk(n]
are scaled such that the upper bound is actually attained. For example, based on
available knowledge on w(n), assume that we know \\U\\2 < 1- Then a scaled
structure has ||/fc||2 < 1 for all fc, whereas a normalized structure has ||/fc[|2 = I
for all k. Clearly, for a normalized structure, the internal signals span the maxi-
mum permissible dynamic range without, at the same time, undergoing overflow.
The SNR accordingly, is expected to be maximized.

SIGNAL-TO-ROUNDOFF NOISE RATIO IN SIMPLE IIP
FILTER STRUCTURES

In this section, first- and second-order IIR sections are considered and
expressions for noise-to-signal ratios are obtained.

A First-Order IIR Sections

In Section III we derived an expression [see Eq. (5.19)] for the quantization
noise variance az

f at the output of the filter shown in Fig. 5.5:

a* — quantization noise variance = al(\ — «2)~ l (5.32)

where aj is as in Table IV and where |a| < 1. It is clear from Fig. 5.5 that the only
type of signal rk(n) that "enters a multiplier" is y(n) itself. Thus, in order to scale
the circuit we should force a bound on the transfer function H(z) = (1 — az"1)"',
which is analogous to the quantity Fk(z) in Section IV. Thus

Fk(2) = H(z) = ( l -az-1)-1 (5.33)

fk(n) = h(n) = <xHl(n) (5.34)

The parameter L (Table V) depends on the scaling policy. Thus

I !/*(*)!= 7 - r r (5-35)
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u(n) y(n)

Fig. 5.10. The scaled structure.

\\F*\\2 =

1 - l a l

(5.36)

(5.37)

and so on.f Let us assume that the quantity L has been computed from Table V.
In order to scale the circuit, we introduce the scaling multiplier 1/L as shown in
Fig. 5.10. Note that this is equivalent to simply scaling down the input signal.
(Such equivalence does not generally hold, as we shall see in Section X on state-
space structures.) In practice, to avoid the use of an expensive multiplier 1/L, we
can replace it with the nearest power of 2 or merge it with a multiplier of the
preceding filter stage. We now examine typical cases.

Let us assume that complete freedom from overflow is desired. Then we
should take

1

1 - la l
(5.38)

If u(n) is a WSS random process with a uniform probability density function,
then, since — 1 < u(n) < 1, we have

0-2 = variance of u(n) = |

Thus in Fig. 5.10 the output signal variance is

With quantization noise given by (5.19), the output noise-to-signal ratio is

(5.39)

(5.40)

s

(5.41)

For poles close to the unit circle (|<x| -> 1), the noise-to-signal ratio is large. For a
given a, the only way to decrease this ratio is to decrease $1 by increasing the
number of bits b (see Table IV).

* In this chapter, filter coefficients are always assumed to be real. Equivalently, all impulse response
sequences are real valued.
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Next assume that u(n) is again a WSS random process that is Gaussian (this is
typically so if u(n) itself is the output of a digital filter, which occurs in cascade-
form implementations). We would then like to "fit in" the values of u(n) into the
register dynamic range (— 1,1) for most of the time. Referring to Fig. 5.11, this is
facilitated by using a small au. Thus ou = % ensures that for about 99.72%, of the
time, u(n) is faithfully represented by the input register. With this choice, we have
for the output signal variance,

whence

= ,

(5.42)

(5.43)

Comparing Eq. (5.43) with Eq. (5.41) reveals that with a Gaussian input the
structure is three times as noisy.

Next assume that u(n) is a sinusoid with known frequency c%. (This assumption
is useful when studying narrowband bandpass filters.) Then L should be chosen
such that the output sinusoid has amplitude close to unity. Thus

S = output signal power

whence the noise-to-signal ratio is

N aj- 2<72

_ = __ = ^-—^2

(5.44)

(5.45)

Note in this example that the scale factor L does not explicitly enter Eq. (5.45).
Consequently in Eq. (5.45), 1 — or appears in the denominator, whereas in
Eqs. (5.41) and (5.43) (1 — |a|)2 appears in the denominator. Thus, for poles close
to the unit circle, the noise-to-signal level is much higher in Eqs. (5.41) and (5.43)
than in Eq. (5.45). Note that, even though L does not appear in Eq. (5.45), an ap-
propriate scale factor 1/L does need to be inserted in Fig. 5.10 in order to per-
form the scaling.

-1 0

Fig. 5.11. Pertaining to input statistics.
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As a final example, assume again that we have a white WSS input u(n), but let us
change our scaling policy. Instead of making the circuit entirely free of overflow,
let us assume we wish to reduce the overflow probability of y(n) to less than 0.003.
From Table VI it is clear that ay should be | or less. Assuming ay = %, we have the
signal power S — £. The noise variance is given by Eq. (5.19) and hence the noise-
to-signal ratio is

N 9
•at (5.46)

S 1 ,2

Once again, as for sinusoidal inputs of known frequency, the noise-to-signal ratio
does not contain L explicitly. Thus, N/S has only 1 — a2 in the denominator,
rather than 1 — |a|.

In practice, it is often convenient to compute and tabulate noise-to-signal
ratios in dB. For example, Eq. (5.46) can be expressed as

N
,- = -101og10(l - a2) + 201ogloae + 9.542 (5.47)

To be specific, let us assume roundoff arithmetic. Then from Table IV

A2 2~2b

whence

N
~S

= - 101og10(l - a2) - 6.026 - 1.25 (5.49)
dB

Equation (5.49) reveals that the SNR can be improved (i.e., N/S decreased) by
6.02 dB by increasing b by 1. Thus, every additional bit of internal word length
improves the SNR by about 6 dB. Even though we derived this condition for a
specific example, it is true in general.

Table VII summarizes some of the instructive results derived above. It is
clearly seen that as |a| moves closer to 1, the SNR deteriorates in all cases. The
deterioration is severe for entries 1 and 2 compared to entries 3 and 4, because of
the (I — |a|)2 rather than 1 — a2 dependence. Figure 5.12 is a plot of N/S that
clearly places this in evidence. For a given a and a given desired N/S, the required
number of bits b can be readily computed from Table VII. Figure 5.13 shows such
a plot for typical a.

Let <5 = 1 - |a|. Thus d represents the shortest distance of the pole from the
unit circle. For small S we have 1 — a2 ~ 2(5, and Table VII also includes the N/S
expressions in terms of S. Clearly, as d —> 0, entries 1 and 2 show more severe noise
amplification than do entries 3 and 4.

For the case of 16-bit fixed-point implementation with roundoff arithmetic,
Table VII includes the N/S ratios for |a| = 0.99. Notice that the difference
between entry 4 and entries 1 and 2 is significant. Thus, it is a better strategy to



TABLE VH

Noise-to-Signal Ratio in First-Order IIR Sections

Entry N/S in dB for rounding arithmetic
No. Type of input Scaling policy N/S ratio <r2 = 2~2t/12

WSS, uniform
density, white

WSS, Gaussian
density, white

Sinusoid,

Completely ^ M
avoid overflow

-101og,0(l - |a|)2 - 6-()2ft - 6-02

(= -62.34 dB for b = 16, |a| = 0-99)

^f _ 10loglo( 1 - |«l)2 - 6-026 - I -25
Completely (J ~ I«D

avoid overflow
(= - 57-6 dB for b = 16, |a| = 0.99)

Completely 1 -a2

known frequency avoid overflow

WSS unknown
density, white

Reduce overflow
probability to
< 0.003

1 -a2

10(1 - a2) - 6-026 - 7-78

(= -87-1 dB for 6 = 16, |a| = 0-99)

- 101og,0(l - a2) - 6-026 - 1.25

(= -80-6dBfor6= 16, |a| = 0.99)

Here a represents pole location. In column 3, <5 represents (1 — |a|), and the expressions in parentheses hold
when <5 « 1.

N/S RATIO, TABLE VII

No.OF BITS = 16

ENTRY 1

V/

fl t P H fl

Fig. 5.12. Plot of N/S vs. a for first-order filter.
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N/S RATIO, TABLE VII

383

ENTRY 1

f
ENTRY

13.200 16,800 20.400 24.000

NO. OF BITS, b

Fig. 5.13. Plot of N/S vs. b for first-order section (only integer values of abscissa have physical
meaning).

scale the filter to reduce the probability of overflow than to scale the filter to
completely suppress overflow. For entries 1 and 2 the quantity [— 101og(l —
jaj)2]/6.02 can be considered to be the "number of bits of noise deterioration"
due to noise gain from the quantizer output to the filter output. We can similarly
interpret [- 101og(l - a2)J/6.02 in entries 3 and 4 of Table VII.

From our discussion in this section, it is clear that there is an inherent tradeoff
involved between roundoff noise and dynamic range. Thus, if we try to decrease
the probability of overflow, it increases the N/S ratio. Such an interaction
between noise and dynamic range [13] exists in all implementations of digital
filters, particularly with those that employ a fixed-point arithmetic scheme.

Another point that should be reemphasized is that, for a fixed-point
implementation, the quantization noise ffj- at the filter output alone does not
form a meaningful measure. The SNR under scaled conditions is the only
meaningful parameter of interest.

Second-Order IIR Sections B

Let us now turn our attention to second-order IIR transfer functions. These
play a centrol role in the implementation of several practical digital filter circuits,
such as the parallel form and cascade form. Accordingly, careful attention must
be paid to the behavior of such sections under signal quantization.
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Fig. 5.14. Direct-form implementation for complex pole pair.

Consider the structure of Fig. 5.14, which shows a direct-form implementation
of the transfer function

H(z) =
1

1 - 2r(cos0)z * + r2z2, -2 (5.50)

This is an all-pole function with a pair of complex conjugate poles at zp — re±j°.
(If the poles were real, we could have implemented H(z) as a cascade of two
sections as in Fig. 5.5.) Assume once again that fixed-point fractions are used to
represent all numbers, and that the dynamic range is (— 1,1). The only signal that
enters "multipliers" is y(n), and the structure can be scaled by ensuring that
\y(n)\ < 1 for all inputs u(n) of interest.

The impulse response corresponding to Eq. (5.50) is [4]

h(n) =
r"sin(n + 1)6
- — -

sin u
1 (n) (5.51)

where l(n) represents the unit step. To keep y(n) from overflowing for inputs in
( — 1 , 1 ) , we must insert a scale factor 1/L as in Fig. 5.15, where

= I \h(n)\ (5.52)

Once again, in practice, the scale factor 1 /L is either merged with the preced-
ing section (if it exists) or replaced with a power of 2 to avoid expensive

> y ( n )

Fig. 5.15. The scaled circuit with quantizer.
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multiplication overhead. Because the computation of Eq. (5.52) is difficult,
particularly for r close to 1, it is avoided in practice. Instead certain bounds on L
have been established [4,5] that enable us to obtain an estimate of the extent of
scaling necessary. Thus, it can be shown that

1
2rcos2fl

^ < L2 < -
1

r)2sin*0
(5.53a)

An improved (i.e., smaller) upper bound has been proposed in [15]. We omit the
details here, but the bound is

I
n2 (I - r 2 ) 2s in2#

(5.53b)

The bound in Eq. (5.53b) is smaller than that in Eq. (5.53a) for r > 0.273. These
bounds are easily computed, giving us the desired estimate on L. Now consider
the circuit of Fig. 5.15, which shows the scale factor l/L and the quantizer Q. Note
that even though there are two multipliers, it is sufficient to insert only one
quantizer in a branch that is common to both feedback loops. The quantization
noise model is shown in Fig. 5.16. The noise transfer function (i.e., Y(z)/E(z) with
17(2) = 0) is clearly H(z) itself, and hence the noise variance at the filter output is

a} = a2
e h2(n)

With h(n) given as in Eq. (5.51) Eq. (5.54) simplifies to

(5.54)

(5.55)

Now assume that u(n) is a WSS white process with a uniform density function.
Since the dynamic range of u(n) is ( — 1 , 1 ) , we have a2 = }. Hence the signal
power at the output is

(5.56)

e(n)

y(n)

Fig. 5.16. The noise model for Fig. 5.15.
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whence the noise-to-signal ratio is

N a2

. = -L=3L2 2 (15?)

S a2

where L is bounded as in Eq. (5.53). Thus, with rounding arithmetic where
(T; = 2 2V12, we have

1 2b N 4 T2b

< ——- (5.58)
4(1 - r)2(l - 2rcos20 + r2) ~ S ~ ?r2 (1 - r2)2sin20

If w(/t) is Gaussian rather than uniform, then we can take au — |, using the
same reasoning as in the case of the first-order structure. Then the output signal
power is

S = ^=5-/2 Z*2(«) (5-59)
y L n = o

whence the N/S ratio is as in (5.58) except for an increase by a factor of 3,
If we assume that u(n) is a sine wave of known frequency co0, it can be verified

that the noise-to-signal ratio becomes

(560)( *S a - r 2 6(r4 - 2r 2 cos 20 + )

for rounding arithmetic. The scale factor 1/L does not enter Eq. (5.60) even
though an appropriate value of 1/L appears in Fig. 5.15 in order to obtain an
output sine wave that has a peak amplitude equal to unity.

Finally, consider the case of white WSS input with unknown probability den-
sity function for u(n). Let us assume that we wish to reduce the probability of
overflow of y(n) to about 0.0030. Thus ay should be chosen as |, as explained
for the corresponding situation in the case of first-order sections. Thus S —
erf, = i, N is still given by Eq. (5.55), and

S af. 1 - r2 4(r4 -~ 2r2 cos 20 + 1)

for rounding arithmetic.
Much better insight into the above relations can be gained by using the

notation 6 = 1 — r (which is the radical distance of the pole from the unit circle)
and simplifying the above expressions for <5 -* 0. Table VIII shows the N/S
ratio for the preceding four cases, with roundoff arithmetic and <5 very small.
A commonly encountered situation is to have small 9 and <5 such that 0 » 6.
Table VIII also shows the corresponding simplification. The quantity c> appears
in the denominators of N/S in entries 3 and 4, where as d2 appears in entries 1
and 2. Thus, for small d the effect of noise is much more severe in entries 1 and
2 of the table, as seen from the example in the fifth column of Table VIII. The
reason for this is that in entry 3 of the table, we once again have considerable
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TABLE VIII

Summary of JV/S for Second-Order All-Pole Direct-Form Structures, for Various Types of Inputs

Entry
No.

!

Type of input

WSS, uniform
density, white

Scaling policy

Completely
avoid overflow

N/S ratio

2" 26

N I 2~2b

Example: N/S in dB for
r = 0.995, 6 = 0.0771

and b — 16

-49 < N/S< -47.1

~ S ~ n2 6202

3-2*

WSS, Gaussian
density, white

Sinusoid,
known frequency

WSS, unknown
density, white

Completely 4f> ^ + 4e )
avoid overflow yy 3 2" 2 f c

S ~ n2

Completely
avoid overflow

Reduce overflow
probability to
< 0.003

-44.23 < N/S < -42.33

-74

-67.42

~l660r

The quantization rule is fc-bit rounding. Here S = 1 — r, and we assume 6 is "very small."

knowledge of the input. In entry 4 we perform the scaling to attain a certain
degree of freedom from overflow, rather than complete freedom; thus a judi-
cious choice of the scaling policy has considerable effect on the SNR attainable.

LOW-NOISE IIR FILTER SECTIONS BASED ON VI
ERROR-SPECTRUM SHAPING

From our discussions in Section V it is clear that for first- and second-order IIR
filters, the SNR deteriorates as the poles move close to the unit circle. Thus, for
the second-order section when r-* 1, 6 -»0, from Table VIII we see that the
noise-to-signal ratio increases. The same is true as 9 -> 0—that is, as the pole
moves close to the real axis. For digital filters having a narrowband lowpass
response, the conditions 0 -> 0 and 6 -> 0 tend to be true. Accordingly, an
implementation based on interconnection of (first- and) second-order sections
tends to be noisy.
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An obvious way to obtain a satisfactorily low N/S is to increase b to the
required extent. This, however, increases the cost of the implementation and is
impractical when 5 and 0 are very small.

An elegant and powerful alternative is to use the concept of error-spectrum
shaping (ESS) in the digital filter structure [16-19]. Analogous ideas have been
known in the areas of communications and coding [20], but the adaptation and
application of such techniques for digital filters is novel and rewarding; a
dramatic amount of noise reduction can be achieved with little additional cost, f n
this section we present some design guidelines and results on this. We consider
only first- and second-order sections since any higher-order section can always be
built based on a cascade or parallel connection of these sections.

A ESS in First-Order Sections

Let us again consider Fig. 5.10, which represents the scaled first-order
structure. For 6-bit fixed-point fractional arithmetic (Fig. 5.2), the appearance of
the signals in binary format is shown in Fig. 5.17, where the quantizer is also
included. The multiplier a is assumed to be a b-bit fraction. Notice that when we
say 5-bit arithmetic, we mean that the output of the quantizer is a 6-bit fraction as
in Fig. 5.2. Thus, z^1 represents a 6-bit (or single-precision) storage, a represents a
single-precision multiplier with two 6-bit inputs and a 26-bit output, and the
adder is a double-precision device. (We can convert the adder to a single-
precision device by moving the quantizer to the adder inputs, if necessary). The
unshaded areas in Fig. 5.17 represent O's (or 1's for negative numbers). The
crosshatched area in Fig. 5.17 is what gives rise to the quantization error; it is
not necessarily equal to the quantization error e(n) because e(n) [defined to be

w(n)

v(n

(a)
y(n)

w(n)

v(n)

(b)

Fig. 5.17. (a) Appearance of internal signals in a first-order digital filter, (b) Word lengths of signals
in (a).
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Kf-

u ( n ) -^VtDw
/ V

Fig. 5.18. The error feedback technique.

y(n) — w(n) according to (5.7)] depends on the exact quantization rule. However,
it is easy to find e(n) from the crosshatched portion shown.

Now, instead of discarding the error e(n), let us consider feeding it back, as
shown in Fig. 5.18. Such error feedback (EFB) often leads to noise reduction,
as shown next. The quantity (3 is called the EFB coefficient.

Analysis of the EFB Circuit 1

Since e(n) is represented by b bits in the range 2~~(b+1} to 2~~2b, the product
fie(n) produces additional secondary quantization error at the 2'2b level unless
ft is an integer. Moreover, an integral value of ft such as ±1, + 2 is much simpler
to implement without multipliers. Under the assumption that multiplication by
/? does not generate quantization error, we can show

w(n) = <xw(n - (a (5.62)

y(n) = ay(n e(n) (5.63)

Note that the difference between y(n) and w(n) is e(n), which is the negligible
unamplified quantization error. The noise transfer function with EFB is

if W(z) is the output signal (5.64a)

if Y(z) is the output signal (5.64b)

Because of EFB, the noise transfer function has changed (compare with the
results of Section III). However, as from Eqs. (5.62) and (5.63), the input-output
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transfer function is unaffected:

Y(z)

£(z) = IU(z)

Thus, EFB has the effect of changing the noise transfer function without changing
either the input-output transfer function or the scaling properties.

2 Choice of the EFB Parameter ft

Careful choice of ft leads to reduced noise variance at the filter output. From
Eq. (5.64) it is clear that if a is close to unity, then the choice ft = — 1 has the effect
of reducing the noise. It is easily verified that the noise variance at the filter output
is (with W(z] considered as output)

2 (565)p.03]
1 — a2 e

where er2 is the basic quantizer noise variance (Table IV). Thus, if we restrict ft to
be an integer, the following choice is the "best" from the viewpoint of minimizing
the noise variance:

0, M<4
-1, 4«x<l (5.66)

With |a| < |, the noise level a} is not high and does not represent an interesting
case (the pole is not sufficiently close to the unit circle to be of concern). With
|«| > i and with the choice of Eq. (5.66), Eq. (5.65) becomes

*/ = ̂ T1-̂ 2 = i^£U2, |a| > 4 (5.67)

Thus the N/S ratio is decreased by — 101og(l — |oc|)2dB. For example, with
|aj = 0.995, we obtain — 101og(25 x 10~6) = 46 dB of improvement (equivalent
to 46/6.02 ^ 7 bits of increased accuracy!).

Comparing Eq. (5.67) with Eq. (5.32), which is the noise variance in absence of
EFB, it is clear that for |a| -> 1, Eq. (5.32) is very large, whereas Eq. (5.67) is not.
The denominator of Eq. (5.32) can get arbitrarily small for |a| -> 1, but this is
not the case in Eq. (5.67). The noise gain in Eq. (5.67) does not exceed | for any
a in the range £ < |a| < 1!

The price paid for the dramatic noise reduction is the additional b-bit register
that holds e(ri), and the extra double-precision adder in the EFB path. If we
assume that b is 8 (i.e., single precision = 8 bits), then the above EFB scheme is
almost equivalent to replacing single-precision multipliers with double-precision
multipliers [21].
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-shaped

-unshaped

0 u +

Fig. 5.19. The error power spectrum.

The name "error-spectrum shaping" derives from the fact that the quantization
error E(z) has effectively been shaped to become Es(z) = (1 + fiz~l)E(z), which
then passes through the usual noise transfer function 1/(1 — cnz"1), as seen from
Eq. (5.64b). Thus, with narrowband lowpass filters (where a -»1), the choice ft =
— 1 [see Eq. (5.66)] leads to the "shaped" spectrum Es(z) = (1 — z ~ l ) E(z). In
other words, there is a zero in the spectrum of Es(z) at z = 1 (i.e., w = 0). The
power spectral density of the shaped error es(ri) is thus redistributed to lie mostly
in the stopband (Fig. 5.19) and is given by 4sin2(o>/2)o'g, where G2

e is the
flat power spectral density of the unshaped quantization error e(n). Since
1/(1 — az *) has a lowpass nature for a > 0, the effective output noise variance
is reduced by the ESS technique.

Note that the choice ft = — a. corresponds to a double-precision implementa-
tion of Fig. 5.17 (i.e., 2b-bit multiplier, 4b-bit adder, etc.) See [21] for detailed
discussions on this. Under this condition, Eqs. (5.64) and (5.65) are not
meaningful because the secondary noise generated by /? in the EFB path cannot
be ignored any more (since this is the only noise source and corresponds to the
usual error in a double-precision implementation). Essentially, ESS offers a
compromise between single-precision and double-precision implementations.

ESS in Second-Order Sections B

The noise-reduction strategy outlined above can readily be extended to
second-order OR sections. Figure 5.20 shows a typical second-order filter with
EFB incorporated. The overall transfer function under ideal (unquantized)
conditions is

H(z} =
1/L

(5.68)
blz~l + b2z

 2

The scaling multiplier 1/L is chosen as indicated in Section V.B. If the poles are
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u(n)

Fig. 5.20. Second-order section with error feedback.

complex conjugates, then

bl — —2rcos0, (5.69)

In practice, the EFB coefficients ft and ft, should be chosen such that they are
simple to implement and do not generate additional quantization error, if
possible. Some practical choices have been studied in [22,23], and several
examples of this scheme can be found in the literature. From the view-
point of simplicity, we restrict, in this chapter, the choice of ft and /?2 to the
set {±2, +1,0}. For the structure of Fig. 5,20 we have the relation

y(n) = - biy(n - 1) - b2y(n - 2) e(n) 02e(n - 2)

(5.70)

where e(n) = y(n) — w(n) is the basic quantizer error. The noise transfer function
with EFB is thus

(5.71)

whence the noise variance at the filter output is

a} = a2
e\\G\\2

2 (5.72)

where al is as in Table IV and \\G\\\ is the L2 norm of G(z). The choice ft =
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blt ft2 = b2 in Eq. (5.71) implies G(z) = 1, and hence a} = <r2. This seems to be
(and can be shown to be [23]) the optimal choice, since the basic quantizer noise
is thus not amplified. However, under this condition, the EFB network itself
generates quantization noise at the 2 2fc level (which we have ignored in our
analysis) and the circuit with EFB becomes equivalent to a double-precision
implementation [21].

A more practical and useful strategy is to choose ft and [12 to be integers
nearest to bl and b2, respectively. Thus, for poles zp = re±j0 close to the unit circle
and close to the real axis, we have bv ->• — 2 and b2 -* 1 so that the choice

ft = _2, ft, = 1 (5.73)

is most appropriate. This situation is common in narrowband lowpass filters.
With this choice the noise transfer function is

G(z) = ̂ ~^^T^^2 (5.74)

It can be shown [24] that for r -> 1 and 0 -> 0, \\G\\\ is approximately given by

_ ,5.75)

where 8 = I — r. We can now proceed to calculate the noise-to-signal ratio for
the structure of Fig. 5.20 under scaled conditions (i.e., with l/L present). Note
that the presence of EFB does not affect the overall input-output transfer
function H(z) or the required value of L in Fig. 5.20 for a given class of inputs
(see Table VIII).

Table VIII can now be revised, with the above type of EFB. Assuming that (^
and /?2 are as in Eq. (5.73), and with 6 = 1 — r -» 0 and 0 -> 0, Table IX shows a
complete summary. In case of bounds on N/S as in entry 1 of Table VIII, the
lower bound is taken as N/S for simplicity in Table IX. The low-noise
performance of the circuit with EFB is clearly placed in evidence by this table.
Thus, for entry # 1, N/S varies as l/<5202 with no EFB and as 02/62 with EFB; for
small 0, this clearly implies a significant improvement. Table 5.9 also shows a
numerical example, which demonstrates about 26 dB improvement in N/S. This
is equivalent to increasing the word length of conventional direct form (i.e., with-
out EFB) by 26/6.02 ~ 4 bits.

Note that the only additional complexity introduced by the above EFB scheme
is the inclusion of two adders and two b-bit storage registers. Once again, ESS is a
compromise between single- and double-precision implementations.

The justification for the name "error-spectrum shaping" is once again evident
from Eq. (5.74). The conventional noise transfer function [as in Eq. (5,50)]
is replaced by Eq. (5.74), which is equivalent to adding two zeros at z = 1 in the
noise spectrum. Thus, the "shaped" noise source has power spectral density
16 sin4'((o/2)a2 , whereas the unshaped noise source has a (white) spectral den-
sity equal to a2, for all to.
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TABLE IX

Noise Reduction in Second-Order Filter Sections with ESS

Numerical exam pie;
Entry r = 0-995, 0 = 0-077t, b = 16,
No. N/S ratio; 6 -* 0, 6 -+ 0, 0 » 5 /?, = - 2, /?2 = 1 (N/S in dB)

No EFB With EFB No EFB With EFB

1 —TT —~? ~49"° 75'17

. ,. 3 ._,„ 302

-44-23 -70-4
()<• 16^)z

2^2fc

_74-0 -99-94
24<5

4 2"2fc 2"2fr^— -67-42 -93-4
I6d02 166

See Table VIII for meaning of "Entry No." In this table, b-bit rounding arithmetic is
assumed; d stands for 1 — r.

1 Relation to the Agarwal and Burrus Structures

In 1975 Agarwal and Burrus [25] proposed a family of second-order OR
structures having low sensitivity and quantization noise for certain pole loca-
tions. Later on, Chang [26] used a different approach to show that some of the
structures proposed by Agarwal and Burrus are equivalent to EFB structures.
Chang's approach gives a natural explanation of the low-noise behavior of
some of the structures in [25].

Consider once again the structure of Fig. 5.20. We know that if the pole loca-
tions are such that r -> 1 and 9 -> 0, then the choice /^ = — 2, J32 = 1 leads to a
low-noise implementation. Figure 5.20 can then be redrawn as in Fig. 5.2la,
which in turn can be redrawn as in Fig. 5.21 b. In this structure the multipliers
involved are bl = — 2 — b^ and b% = 1 — b2. Since b, is close to —2 and b2 is
close to 1, the quantities bt and b2 are "small numbers." Let hl — rnl • 2Cl, b2

= m2 - 2C2, where \ < \mv |, \mz\ < 1 and cx and c2 are appropriate integers. If m^
and m2 are implemented as i>-bit fractions, then the equivalent accuracies of b t

and b2 are much higher. The representations of cl and c2 do not require storage
because they represent equivalent hardwired shifts of the signals being mul-
tiplied. Note that we are not digressing into a floating-point system because cx and
c2 are fixed for a given second-order filter. Because of the increased equivalent
accuracy of b^ and b2, coefficient quantization effects are dramatically reduced
[26]. This structure is precisely one of the structures proposed in [25], where
certain judicious internal scaling schemes are incorporated to obtain a good
SNR.
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y(n) u(n)

(a) (b)

Fig. 5.21. Rearranging the second-order error feedback circuit.

Other related structures [24,27-29] have been proposed by other authors for
reducing noise and coefficient sensitivity. For want of space we refrain from
elaborating further on these.

SIGNAL-TO-NOISE RATIO IN GENERAL DIGITAL VII
FILTER STRUCTURES

Digital filter structures are in practice more complicated than the simple
structures of Figs. 5.5 and 5.14. For example, structures can be built by parallel or
cascade interconnection of these sections. There exist even more sophisticated
structures such as state-space structures [30-32], wave digital filters [33], and
orthogonal digital filters [34], for which the scaling and quantization noise
analysis cannot be performed as readily. A more general procedure is required in
such cases.

Consider again Fig. 5.8, which shows a general digital filter structure. Recall
from Section IV that there exists a subset of signals rk(n), k = 1,2,..., P, which
alone need to be scaled, according to an appropriate scaling policy (see Table V).
Now, let el(n),ez(n),...,eM(n) represent the errors due to quantizers in the
structure. (It is sufficient to have a quantizer at the output of each multiplier, even
though this is not necessary, for avoiding infinite bit accumulation. For example,
in Fig. 5.15 it is necessary to use only one quantizer because the two loops
containing the multipliers have a common branch.) Each ek(ri} is assumed to
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satisfy the assumptions listed in Section III concerning noise sources. In addition,
we assume that any pair of noise sources is uncorrelated. Let Gk(z) denote the
noise transfer functions from these noise sources to the filter output for the
unsealed structure. Then the total quantization noise variance at the filter output
for the unsealed structure is

fr/^JI \\Gk\fi (5.76)
k = I

where <?j is as in Table IV.
We thus have two sets of transfer functions Fk(z), k = 1,...,P, and Gk(z\

k— 1,...,M. Scaling is a process by which the transfer functions Fk(z) are
converted to F'k such that F'k(z) satisfy one of the conditions in Table V;
for example,

Lk £ ||F;||2 < 1, 1 < k < P (5.77)

In the process the functions Gk(z) change to a new set G'k(z). But the overall trans-
fer function H(z) = Y(z)/X(z) should not change due to the scaling process.
The scaled structure has output noise variance

^ = <*t I I I G i l l i (5-78)
ft = i

Assuming for simplicity that the input u(n) is white and WSS with uniform
density, we obtain the output signal power

(5.79)

whence
M

N I I IGi l l i (5-80)

For a given scaling policy, Eq. (5.80) gives a meaningful performance measure.
Note that the noise variance Eq. (5.76) for the unsealed structure is itself not
meaningful, because there might be some internal signals that frequently
overflow and other internal signals that occupy only a fraction of the dynamic
range available to them.

Vlil LOW-NOISE CASCADE-FORM DIGITAL
FILTER IMPLEMENTATION

Given a higher order IIR transfer function H(z), a direct-form implementation
as in Fig. 5.1 has several undesirable properties, as discussed earlier, such as
high roundoff error, high coefficient sensitivity, and possibility of limit cycles.
Accordingly, there exist several methods of implementing such a transfer func-
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tion based of first- and second-order building blocks. Prominent among these
are the cascade-form and parallel-form structures [35].

Figure 5,22 shows a cascade-form structure for H(z) where

H(z) = a0
k=i

The building blocks Hk(z} are second-order sections with

T „ , ,

b2kz'2 Bk(z)

(5.81)

(582)l+S.Q&f

These can, in general, be in direct form, coupled form, direct form with EFB, and
so on. Each second-order section can thus be implemented in any of several
possible ways. The order of H(z) is clearly 2M. If H(z) has odd order, an
additional first-order section should be added. There are several types of direct-
form structures [4]. The structures in Fig. 5.22 are called direct-form 2 (DF2)
structures. For 6-bit fixed-point fractional arithmetic, each internal signal has a
binary representation as in Fig. 5.2, so it is necessary to scale the structure to
avoid overflow. Recall from Section IV that only the inputs to (nonintegral)
multipliers need be scaled. Thus it is sufficient to ensure that the nodes indicated 1
through M are scaled.

Let Fk(z) represent the transfer functions

Fk(z) ± -blkz
k = 1 , 2, . . . , M (5.83)

2k

(For k = 1 the product 0?= i Ht(z) is taken as unity.) Depending on the scaling
policy (Table V), an appropriate measure of Fk(z) should be bounded by unity in
order to get a scaled structure. For Lp scaling let us define the numbers

= \\Fk p (5.84)

Then the scaled structure is as shown in Fig. 5.23, which also shows the
quantizers. The noise transfer functions for the quantizer noise sources ek(n) in
the scaled structure are clearly

G'k(z) = a0Sk = SkGk(z) (5.85)

With the usual assumptions on ek(n) (Sections III and VII), the noise variance at

21 ~ U 2M

Fig. 5.22. A cascade-form implementation.
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e,(n} e,(n) eH(n)

Fig. 5.23. The scaled cascade form; noise sources are also indicated.

the output of the scaled structure is

k = l
(5.86)

where the unity term in brackets is due to the rightmost quantization in Fig. 5.23.
Notice that scaling has not affected the overall transfer function Eq. (5.81); hence
the output signal level for a given input signal is unaffected. The effect of scal-
ing is to reduce the internal overflow probability, and this in turn affects the
quantization noise variance at the filter output, as seen from the factors Sk in
Eq. (5.85).

It has been observed [35] that the noise variance in Eq. (5.86) depends on the
ordering of the sections and the pairing of second-order numerators (zeros) with
the second-order denominators (poles). Jackson [35] has given intuitive
guidelines for choosing the ordering scheme and pairing scheme. For L2-scaling
the section ordering does not seem to have a significant effect on Eq. (5.86). For
L^-scaling, however, a judicious ordering scheme can reduce the output noise.
We can see this by writing Eq. (5.86) as

a} = a2
e\_\ + + ||F2||J||G2||i + • • • ] (5.87)

In Eq. (5.87), p = oo corresponds to L^-scaling. Recall from Table V that
corresponds to maxJFfc(e

Jf°)|; hence for LX ) -scaling,

= al{\ + + + • • • ] (5.88)

To minimize the effect of the "peak values" in the scaling transfer functions, it is
judicious to order the sections according to increasing "peakedness." (Thus, the
first section should have the least peakedness.) A quantitative measure of
peakedness of the /cth section Hk(z) has been defined by Jackson [35] as

Pk =
\\Hk\\2

(5.89)

Thus, for L^-scaling, the section with smallest pk should be the first section, and
so on.

An intuitive guideline for the pairing of sections is to realize that if a pole is
paired with the "nearest" zero, then the peakedness of the section is smallest, and
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therefore the overall noise variance is low. Several examples and further elaborate
discussions on the above topic can be found in [35].

The Optimization Due to Liu and Peled 1

In general, a cascade-form structure having M sections gives rise to Ml
different implementations because of Ml possible section orderings. Moreover,
since each numerator can be paired with any one of the M denominators, there
is a total of (M!)2 possible cascade-form realizations. For example, with M = 5
(tenth-order filter), (M!)2 = 14,400 different structures exist. The noise variance
Eq. (5.86) under scaled conditions is, in general, different for these different
structures. The natural question is, how can we find the best ordering (i.e., one
that minimizes o-2)? For digital filters having all transmission zeros at one point
(such as lowpass Butterworth and Chebyshev filters, which have all zeros at
z = —1), the number of distinct cascade-form structures is only M!, and an
exhaustive search might be possible. However, for more general transfer func-
tions (such as elliptic filters), in view of the large value of (M!)2, an exhaustive
search is not feasible. Hwang [36] has suggested a dynamic programming
approach to reduce the search time for such cases. Liu and Peled [37] have
proposed a heuristic procedure for arriving at a suboptimal cascade-form
realization. The Liu-Peled procedure is much faster and generally leads to a
solution that is very close to optimal. This algorithm can be described as follows:

1. Generate a random ordering of the numerators |/lk(z)} and denominators
(fl^)} [see Eq. (5.82)].

2. By keeping the ordering of (/tfe(z)} fixed, interchange all possible pairs of
Bk(z}. For each resulting cascade form, evaluate the noise variance a2 under
scaled conditions [i.e., (5.86)]. This requires [(^f) + 1] evaluations of <r2. Then the
smallest a2 corresponds to a local optimum.

3. Repeat steps 1 and 2 a prescribed number of times L. Thus there are L local
optima to choose from.

4. Pick the ordering and pairing that corresponds to the best local optimum.

Note that the above algorithm takes care of section ordering as well as pole-zero
pairing. Even though it is heuristic and does not result in the global optimum, it
generally leads to near-optimal results. Several examples demonstrating the
usefulness of this technique can be found in [37].

In Section VI we found that ESS is a powerful approach to noise reduction in
first- and second-order IIR filter sections. Since these sections are the basic
building blocks in cascade-form implementations, we can design very low-noise
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cascade-form filters by ESS. In Section VLB we saw that the most suitable choice
of the EFB coefficients &, f$2 is obtained by rounding b± and b2 to the nearest
integers. Thus for narrowband lowpass designs, the choice of Eq. (5.73) is best.
This choice is also compatible with the viewpoint that the ESS technique is a
compromise between single- and double-precision implementations.

Let us now reconsider the scaled cascade-form structure of Fig. 5.23. If we
incorporate EFB into each section, the resulting structure is as shown in Fig. 5.24.
Notice that a scaled structure continues to remain scaled, even after EFB is
incorporated. Thus EFB has the effect of changing the noise transfer functions
without affecting either the scaling properties or the input-output behavior. The
total noise variance at the output of the scaled filter is now given by an expression
similar to Eq. (5.86), except that the spectral shaping factors

1 + pnz~l + 02ftZ-2 (5.90a)

are now to be taken into account. (See Eq. (5.71) and discussions thereof.) Thus
the output noise variance for the scaled filter is

Ife=i
(5.90b)

where G'k is as in Eq. (5.85). The EFB coefficients filk, /?2ft for the kth section affect
only the kth term in the summation of Eq. (5.90b), so the best choices of /?lft, fi2k

are obtained by minimizing the kth term in Eq. (5.90b) independent of other
terms. Thus /?lk, ft2k

 are found by solving the following problem:

minimize |
/?lk>02k

+ + p2kz~2) H^lH (5.91)

u(n)

Fig. 5.24. The scaled cascade-form with error-spectrum shaping.
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The solution to this problem is derived in [22], and the results are as follows:

2k - 2
J3 J I

where

1 2*
Q(a))cos (o dw (5.93a)

o

*
((w)cos(2co)rftt> (5.93b)

(o>)de» (5.93c)

The quantities Jl5 J2, J3, and Q(co) depend on the section number fc, though this
dependence is not indicated in Eq. (5.93) for simplicity of notation. Here Q((a) is
defined by

M
6(0) = [I I W)l2 (5-94)

where H,(z) are the second-order transfer functions in Eq. (5.82). Thus, in practice,
one would compute f$lk and fi2k for all k using Eq. (5.92) and then round the
results to the nearest integers (or powers of 2) for simplicity of EFB network.
Note that, unlike in single, isolated second-order sections, the optimal choice
of Eq. (5.92) does not necessarily represent a simple "double-precision" imple-
mentation. The reason is that the optimal choice in Eq. (5.92) depends on all
the transfer functions Hk(z\ Hk+ t(z), . . . , HM(z).

If we are interested only in applying a first-order EFB to the second-order
sections, then the optimal choice [22] is given by j8u = —Ji/J3 and /J2fc is, of
course, zero.

As a design example [22], consider a tenth-order elliptic lowpass filter with
passband edge equal to n/4. The scaled cascade-form structure of Fig. 5.23
has noise gain ffj-/ffg equal to 20.77 dB, whereas the EFB-based cascade form
of Fig. 5.24 has noise gain equal to 5.91 dB. The EFB coefficients, which are
taken as power-of-2 approximations to (5.90) are given by plk = — 2, fi2k = 1 for
all k, in this example. f

It is thus clear that ESS techniques can reduce the effect of quantization errors
in cascade-form implementations. Once again, section ordering and pole pairing
should be carefully considered for further improvement in SNR. Further dis-
cussions and guidelines can be found in [22].

f The comparison is made for a fixed ordering and pole-zero pairing. See [22] for details.



402 P. P. Vaidyanathan

X LOW-NOJSE DESIGNS VIA STATE-SPACE OPTIMIZATION

Any OR digital filter transfer function H(z) given by

H(z) =
N

U(z)

can be implemented as [30-32] follows:

x(n + 1) - AX(M) + BM(W)

y(n) = Cx(n) + Du(n)

(5.95)

(5.96a)

(5.96b)

where x(n) is an JV-vector called the state vector, A is an N x N matrix, B is
an N x 1 matrix (column vector), C is a 1 x AT matrix (row vector), and D is a
scalar.* Thus the output sequence [y(n)} is related to the input sequence {«(«)}
by N coupled first-order difference equations (5.96). Recall, in contrast, that the
direct-form structure implements H(z) as a single Nth-order difference equation:

k=0 k-0
(5.97)

Given a direct-form implementation as in Fig. 5.25, the state variables xfc(n) can
be identified as shown. Essentially, these are the outputs of the delay elements.

u(n) jQ

Fig. 5.25. State variables in the direct-form structure.

The reader may want to review Section I on matrix notation.
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With x(n) defined as

x(n) = [*i(w), x2(n),..., xN(n)]r

it is easily verified that for the direct form are given by

0
0

0

1
0

_ P N 1

0
1

A =

B = [0 0

= gw - q0pN

~P2 -Pi

(5.98)

(5.99)

A state-space implementation (A, B, C, D) is an implementation in which the
elements of A, B, C, D are the multiplier coefficients. Thus the state-space
implementation corresponding to Eq. (5.99) is as shown in Fig. 5.26. Note that
Fig. 5.25, strictly speaking, is not a state-space implementation.

For emphasis, we wish to observe that, given any digital filter structure, we can
always write a set of state equations as in Eq. (5.96), thus obtaining a state-space
representation. However, the digital filter structure is said to be an implemen-
tation of the state equations so obtained only if the elements of A, B, C, D physi-
cally appear as multipliers in the structure.

Fig. 5.26. The state-space structure of Eq. (5.99).
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A Analysis of the State Equations

It is easily verified that the impulse response h(n) from u(n) to y(n) (i.e., the filter
impulse response) is given in terms of A, B, C, D by

h(n) = 1) + Dd(n) (5.100)

where !(•) represents the unit-step function. The transfer function H(z) is related
to the state-space parameters by

It can be shown that the eigenvalues of A are precisely the poles of H(z).
Throughout this chapter we assume that there is no pole-zero cancellation in
Eq. (5.95) and that pN ^ 0. Thus Eq. (5.95) represents a minimal rational function,
and Eq. (5.96) represents a minimal realization. Moreover, we assume for ob-
vious practical reasons that H(z) is stable and, hence, that the magnitudes of
all eigenvalues of A are strictly less than unity.

Assuming zero initial conditions (i.e., x(0) = 0), if we apply an impulse for the
input u(n), then the state vector is

x(n) = 1) (5.102)

Thus, Eq. (5.102) represents the impulse response vector from «(«) to x(n).
Similarly, under zero input conditions, if x0 represents the state vector at n = 0
(i.e., x(0) = x0), then

Thus, the impulse response from u(n) to xk(n) is

-"1 B]k,
/*(») = 0, n < 0

(5.103)

(5.104)

xk(n+l

^Qr\ xk(n)

x. (n+1) xk(n)=fk(n)

Fig. 5.27. The responses fk(n) and gk(n).
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whereas the impulse response from the kth state terminal to the output terminal is

A"]" *
Figure 5.27 demonstrates this. The quantities fk(n) and gk(n) play an important
role in the noise-minimization procedure [31], as elaborated later.

B

Given a state-space structure (A, B, C, D) for a digital filter, the transfer function
is given by Eq. (5.101). The following set of manipulations leave H(z) unchanged:

H(z) = C(zl - A)~1E + D

= CTT-l(zl - A)-1TT"1B + D

= CT(zI - T-'ATr1!'^ + D

= H(z) (5.106)

where T is any N x N nonsingular matrix. Thus, given a state-space structure
(A, B, C, D), we can trivially obtain an equivalent representation

A! = T *AT, El = T-1B, C^ = CT, Dt = D (5.107)

having the same transfer function H(z). Transformations of the form in
Eq. (5.107) are called similarity transformations. Since T is an entirely arbitrary
(noesingular) matrix, we have an infinite number of state-variable structures for
implementing the same transfer function.

The natural question now is whether these structures all yield the same output
SNR. It turns out that the SNR under scaled conditions is strongly dependent
upon the actual state-space realization. In other words, given an arbitrary
realization (A, B, C, D) for a particular transfer function H(z), there exists an
optimal equivalent structure (A1,B1,C1,D1) derivable as in Eq. (5.107), which
has the lowest noise-to-signal ratio under scaled conditions. The purpose of this
section is to present design rules and algorithms for obtaining such structures.

Complexity of State-Space Structures 1

We can easily verify that an explicit implementation of Eq. (5.96) requires
(N + I)2 multipliers and (N + i)N two-input adders. (The example of Eq. (5.99)
is a special case where many of the multiplier coefficients are zero.) In compari-
son, a direct-form implementation (Fig. 5.25) of Eq. (5.95) requires only (2N 4- 1)
multipliers, whereas a cascade form (Fig. 5.23) requires 5N/2 + 1 multipliers (for
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N even). Thus, for N = 10 the general multiplier count is

Direct form
Cascade form
State-space

21
26

121

P. P. Vaidyanathan

(5.108)

In other words, the cost of implementation of a general Nth-order state-space
structure is exorbitantly high. Thus, even though the roundoff noise can be
minimized for a given N, enabling us to use a smaller value for b, the overall
implementation cost, might be much higher because of the increased multiplier
requirement. Moreover, in examples of the form in (5.99), many of the multi-
pliers are O's and Ts and therefore do not generate roundoff noise. Since this fact
is not easily taken into account in the noise-minimization process for general
state-space structures, the minimum-noise state-space implementation might
even have higher noise than an implementation with fewer nontrivial multipliers.

In view of these problems the fundamental results reported in [31] have been
adapted for the generation of minimum-noise, second-order, state-space filters
by several authors [38-41]. For N = 2 the number of multipliers is not large, and
the minimum-noise state-space structure often represents a global minimum-
noise structure, particularly for narrowband filters. In this section simple and
useful guidelines, for such designs are presented.

C Roundoff Noise and Dynamic Range in State-Space Structures

Assume that u(n), y(n) and all internal signals, x(n), are represented by h-bit
fixed-point fractions as in Fig. 5.2. Figure 5.28 shows a schematic of the state-
space structure. To avoid internal overflow, it is necessary and sufficient for us to
scale the signals xk(n) (which are inputs to multipliers). Recall that the impulse
response from the filter input to the feth state variable is given as in Eq. (5.104).

u(n)

Fig. 5.28. The state-space structure with quantizer.
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Thus, for L2 -scaling policy we would like to have

I I Will = £ fl(n] = 1, 1 < k < N (5.109)
n = 0

Next consider the quantization noise vector e(n) = [e\(n\ ..., eN(n)~]r, where

ek(n) = Q[(Ax(n) + B«(n))k] - (Ax(«) + Eu(n))k (5.1 10)

We assume that each ek(n) satisfies the assumptions made in Section III, and that
ek(n) and et(n) are uncorrelated for k ^ /. We easily verify that the impulse
response from the location of the noise sources e(w) to the output terminal y(n) is
C A" ~ 1 1 (n — 1). In other words, gk(n) in Eq. (5. 105) precisely represent the impulse
responses of the noise transfer functions Gk(z) (except for a delay). Thus the noise
variance at the output is

Vf = <r2
e Z IIG*l l i (5.111)

/t= i
where

2n do) *

and al is as in Table 5.4. When we apply a similarity transformation, the
quantities fk(n) and gk(n) change. Thus, both the scaling (i.e., dynamic range) and
noise properties are altered by T in Eq. (5.107). An efficient way to keep track of
these changes of fk(ri) and gk(ri) is through the so-called K and W matrices [31].

The Matrices K and W 1

Since gk(n) is the fcth component of the row vector CA", the diagonal elements
of the N x N matrix (CA")T(CAn) are precisely the quantities gk(n). Now define
the N x N matrix

W = Z (CA")T(CA«) (5. 1 1 3)
n = 0

Clearly

Wkk= f02(n) = ||GJ|i (5.114)
n = 0

In a similar manner, defining the N x N matrix

K = £ A«B(A"B)T (5.115)
n = 0

we clearly see that the diagonal elements of K are

(5.116)
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Thus, a state-space structure has total output noise variance Eq. (5.111) given by

= °l E rkk (5.117)

and a state-space structure is said to be scaled in the L2-sense if

Kkk=l, 0<k<N (5.118)

Equation (5.118) is called the scaling constraint.
By definition, K and W are real, symmetric, positive semidefinite matrices

satisfying the matrix equalities

K = AKAT + BBT (5.119)

W = ATWA + CTC (5.120)

Moreover, since Eq. (5.96) is assumed to represent a minimal stable system, it can
be verified that K and W are strictly positive definite. Thus

K = K T >0 , W = W T > 0 (5.121)

It can also be shown that, under a similarity transformation Eq. (5.107), K and W
transform as follows:

! = T *KT T, Wt = TTWT

Thus, in particular,

(5.122)

(5.123)

whence the eigenvalues KW are invariant under a similarity transformation.
These eigenvalues, which are always positive, are denoted fi%, and nk are called
the "second-order modes" [31] of the system H(z).

Given a state-space realization as in Eq. (5.96) with matrices W, K as in
Eqs. (5.113) and (5.115), we can easily obtain a scaled realization (A 1 ? B t ,C , ,D^}
by applying the diagonal transformation

T =

because, by Eq. (5.122), we get

'K22

0

(5.124)

(5.125)
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that is, (Ki),-,- = 1 for all i, satisfying the scaling constraint. The W-matrix of the
scaled realization isf

W , = T T W T = -22 "22 (5126)

KNN WNN_

Thus the noise variance at the output of the scaled realization is

N N
~2 _ -.2 V^ fnr \ _ _2 y is rxr (c 197-1
O f — u } V" l /Wt — "e / ^kk'^kk \J.i£*t)

Equation (5.127) expresses the noise variance for the scaled structure in terms of
the parameters K, W of the unsealed structure.

Thus, the noise-minimization problem can be stated as follows: given an initial
state-space realization A0, B0, C0, D0 for H(z), find a new equivalent description
A, B, C, D,

A = T"1A0T, B = T^1B0, C = C0T, D = D0 (5.128)

such that £f= i Kkk Wkk is minimized—that is, smallest among all equivalent state-
space realizations of H(z). Once we find such a realization, it is trivial to obtain a
scaled realization A.l,Bl,Cl,D1 as described above.

Mullis and Roberts [31] have laid down the necessary and sufficient conditions
for (A,B, C, D) to represent such an optimal realization. We next state these
conditions. The detailed proofs, based on intricate linear algebraic inequalities,
are omitted.

Necessary and Sufficient Conditions for (A, B, C, D) to Represent a 3
Minimum-Noise Realization

Consider the state-space realization Eq. (5.96), implemented as in Fig. 5.28. The
quantization noise source e(n) has components ek(n) as in Eq. (5.110). Assuming
equal word length for each xk(n), and under the usual assumptions about noise
sources, we have

v2
e = variance of each noise source ek(n)

as in Table IV. The output noise variance is as in Eq. (5.117), whereas the output
noise variance of the scaled realization in terms of the unsealed parameters is as
in Eq. (5.127).

Theorem 5.1. Under the above conditions and noise modeling, (A, B,C, D)

+ The cross in Eqs. (5.125) and (5.126) indicates that the nondiagonal entries are unconstrained.
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represents a minimum-noise realization if and only if K and W satisfy

(i) K = D0WD0,
(ii) KkkWkk = constant independent of k

for some diagonal matrix D0 of positive elements.
The above condition implies that for L2 -scaled structures (i.e., when Kkk = 3

for all k), the roundoff noise is minimum if and only if W = p2K, where p is some
scalar constant. Note that for such systems Wkk = constant; that is, the noise
contribution to the output is the same from all N noise sources. In view of the
practical significance, we state these results as a lemma:

Lemma 5.1. A scaled realization—a realization with Kkk = 1 for all k—has
the smallest possible roundoff noise if and only if

W = p2K (5.129)

for some real scalar p. Under this condition, Wkk = constant, thus equalizing the
noise contribution at the output due to all internal quantizers.

Based on these results, several authors have obtained closed-form expressions
and design equations for second-order state-space structures having minimum
noise. If such structures are used in cascade-form or parallel-form realizations,
the resulting structures have impressively low noise performance.

4 Minimum-Noise Second-Order IIR Filters

Jackson et al. [38] showed that the conditions for minimum roundoff noise
in second-order sections can be expressed in a particularly simple form. Based
on this, they obtained closed-form expressions for the matrices A, B, C of a
minimum-noise realization. Jackson et al. showed that the conditions of Lemma
5.1 are satisfied by any second-order state-space structure such that

an — a22 (5.130a)

blc1 = b2c2 (5.130b)

Thus Eqs. (5.130a) and (5.130b) form a set of sufficient conditions1" for a scaled
structure to have minimum noise. The synthesis of low-noise second-order
sections thus reduces to the problem of satisfying Eq. (5.130) while preserving the
propertyfcu = k22 = 1.

With Jackson's conditions as a starting point, a number of authors have
approached this problem from different viewpoints [39-41] and obtained
alternative and simpler expressions for A, B, C and the noise gain aj-/aj of the
optimal realization.

f It has not been proved, however, that these conditions are necessary. Perhaps they are not.
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For want of space we include only one of these approaches to second-order
minimum-noise design. The method we describe is due to Barnes [40]. Let

(5.131)
\ + p.z-1 + p2z

represent a second-order section. We assume that the poles are complex con-
jugates given byf

A = ff + ;w, A* (5.132)

Since q0 in Eq. (5.131) is equal to D in Eq. (5.96), which is invariant under
similarity transformations, it is sufficient to obtain the optimal (minimum-noise)
state-space structure for G(z) = H (z) — q0 :

r< \ q'lZ'1 + q'2Z 2 q'lZ + q'2G(z) =

1 _ M | 2 ' *v ' JV i ;21 |/.| 1 — A

Then a scaled minimum-noise state-space structure for G(z) is

cr

where

r, —, --
1 + ptz -f p2z * z + PIZ + p2

which can be expressed in partial-fraction form as

G(Z) = -^j + -^ (5.133b)
Z — A Z — A*

where the residue a is in general complex:

a = ar + y'<Xj (5.133c)

Let us define the intermediate real- valued parameters P, Q, R by

R + JQ = T^J (5-134)

.«,/* ,1' "-"- ' - = [C' Cz] (5'B5)

*./^±|

(5.136b)
' y r - v / \j r -r u

and

a.. (Y
(5.137a)

f Recall that asterisk denotes complex conjugation.
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This structure is scaled in the L2-sense; that is, K, 1 = K22 = 1. The noise gain of
the structure fff/ffg is

^>=2[F2-Q2] (5.137b)
<ie

Thus, given the transfer function H(z), we have a simple and elegant way of
designing the L2-scaled minimum-noise structure and computing the noise gain
of the resulting structure. Closed-form expressions for structures scaled in a Lp-
sense, with p ^ 2, have not been reported in the literature to the best of our
knowledge.

XI PARAMETER QUANTIZATION AND LOW-SENSITIVITY
DIGITAL FILTERS

Given a digital filter structure as in Fig. 5.8, the multiplier coefficients mk in
practice can be represented only with a limited number of bits. This multiplier-
quantization produces a deviation of \H(ej<0)\ from its ideal value, and this
is termed the "sensitivity problem." The sensitivity of the phase response
arg(H(eJt0)) has not received as much attention as the magnitude response
sensitivity. This is partially because the latter is generally more important in
applications. In situations where the phase distortion cannot be tolerated, one
can generally employ linear-phase FIR filters, which have an exact linear phase in
spite of multiplier quantization. For the rest of this chapter, "sensitivity" refers
only to sensitivity of \H(ejm)\.

For a low-sensitivity structure the variation of \H(ej(0)\ with respect to
multiplier values is small; hence we can obtain an implementation with very few
bits per multiplier that reduces the implementation expense.

For large filter order N the IIR direct-form structure of Fig. 5.25 has very high
sensitivity; that is, in order to obtain a response that is satisfactorily close to the
infinite-precision response, one has to use an exorbitantly large number of bits
per multiplier. The reason for this is that the roots of a polynomial are very
sensitive to the coefficients, so the poles and zeros of H(z) are very sensitive to the
multipliers pk and qk in Fig. 5.25. If z(- represents a pole of H(z) in Eq. (5.95), then it
can be shown [4] that

- = ___^___ (5.138)
dpk n /, „^

JI (Zi-Zj

For standard filters such as lowpass and bandpass, the poles are generally
crowded at angles close to the bandedge, as shown in Fig. 5.29. Hence, the
quantities z, — zl are very small in Eq. (5.138), and their product is exceedingly
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z-plane

(a)

Fig. 5.29. Pole crowding in IIR transfer functions (a) Example of pole locations, (b) Typical
magnitude response.

small. Thus, a small change in pk leads to a large change in z£. This effect is called
pole crowding.

The simplest way to avoid this sensitivity problem is to implement H(z) as a
sum or a product of first- and second-order sections leading, respectively, to
parallel-form and cascade-form implementations [4,5]. This clearly eliminates
the pole-crowding effect to a large extent. However, for complex-conjugate poles
with small pole angles, we still have high-sensitivity problems even with second-
order sections. Accordingly, researchers have developed new second-order
sections with low sensitivity. If these sections are used in cascade or parallel
structures, the resulting sensitivity is generally acceptable.

An entirely different approach to the synthesis of low-sensitivity digital filters
is to simulate continuous-time LC (i.e., inductance-capacitance) filters digitally.
Certain continuous-time LC filters (the doubly terminated lossless networks) are
well known for low passband sensitivity [42,43]. Fettweis has shown how a
realizable digital filter structure can be developed by simulating certain "wave
variables" pertaining to the LC structure. Such wave filters [33,44] have been
studied extensively. In particular, the potentiality and usefulness of lattice wave
filters has been well established [45,46].

Another family of structures having low passband sensitivity is the class of
orthogonal digital filters [34]. Certain digital lattice filters introduced by Gray
and Markel [47-49] are known to be "partially orthogonal" in the sense that the
recursive part [i.e., the denominator of H(zJ] is realized in an orthogonal manner.
Truly orthogonal filters can be implemented entirely in terms of planar rota-
tion building blocks and are suitable for very large-scale integration (VLSI)
architectures [50].

Wave filters and orthogonal filters have several other desirable properties in
addition to low passband sensitivity. Thus, they can be designed so as to be free of
"limit cycles" [51,52]. In addition, the multiplier parameters in these structures
can always be quantized in such a way that the quantized implementation is
guaranteed to be stable. Many of these structures also have low roundoff noise.
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Finally, certain wave filters (the lattice wave filters) and certain orthogonal filters
[46,50] lend themselves to implementations with a high amount of com-
putational parallelism.

In the next few sections we present results and design-oriented aspects
concerning some of these of low-sensitivity digital filters. It can be shown that, as
a general rule, low-sensitivity digital filters also have low quantization noise
under scaled conditions [53]. Even though this is not a direct proportionality
relation, it gives us a fairly dependable guideline for relating sensitivity to
roundoff noise. Some of these aspects are also explored in the succeeding
sections,

'Measuring" Sensitivity

There have been a variety of "measures" of sensitivity that authors have used
for comparing the sensitivity of different structures. In general, it is difficult to
define a single measure that is applicable in all contexts.

Some authors use as a measure of sensitivity the fractional change in \H(ejca)\
defined as

1,1 = mk d\H(e»°)\
~ \H(e*>)\ 3mt

 ( '

where this quantity is clearly a function of o> and should be specified for every
multiplier mk. The fractional change in \H(ej<a)\ due to the perturbation of mk is

\H(e**)\

Thus, the fractional changes &\H\/\H\ and Amk/mk are related by
The sensitivity of the poles with respect to multipliers is often a useful measure.

For second-order sections with poles at re±je, the measures

dr 30
,— (5.141)

dmk' dmk

are commonly used, where mk is the kth distinct multiplier. For state-space
structures (of any order) the sensitivity of the poles (which are eigenvalues lk

of A) with respect to the elements anm of A is often employed [40]:

dL
1 <k,n,m<N (5.142)

danm

The only disadvantage of Eq. (5.142) is that there are JV3 numbers characterizing
the sensitivity. Some authors [40] prefer to use a global measure of sensitivity for
state-space structures, defined by

211/2

(5.143)
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Magni tude
Response

Fig. 5.30. A typical tolerance specification for the magnitude response.

It can be shown that S(lk, A) has a lower bound of unity for any realization. This
lower bound is achieved by certain structures, such as the normal form [54].

Crochiere [55] has used some useful and intuitive measures for comparing the
sensitivity of digital filter structures. Consider a typical lowpass filter specifi-
cation as in Fig. 5.30. The passband response of an equiripple design under
unquantized conditions is shown in Fig. 5.31, which also shows a typical response
with multipliers quantized to b bits. The peak-to-peak error /fmax — Hmin is
greater than the ideal tolerance AM. The fractional deterioration defined as

"max "min (5.144)

is a meaningful single number representing the passband sensitivity. A different,
but useful measure, can be defined by taking the total shaded area shown in
Fig. 5.32, The advantage of this measure is that if the tolerance is exceeded by a
large amount only in a small region of frequencies, then its contribution to sensi-
tivity is correspondingly small. Thus under situations where the input signal has
a more or less flat spectrum, this measure is quite meaningful.

max

Fig. 5.31. A typical passband magnitude response (dB) under quantization.
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Fig. 5.32. An alternative performance measure.

XII LOW-SENSITIVITY SECOND-ORDER SECTIONS

A second-order all-pole section with complex conjugate poles has transfer
function

H(z) = ——--—.L—-„- (5,145)
- 2r(cosO)z~l + r2z"2

and can be implemented in direct form as in Fig. 5.33, where the multipliers are
ml = 2rcos9 and m2 — —r2. It can be shown that the poles re±je have the
following sensitivities:

dr

0m i

dr 1 80 1 1
dm2 2r' dml 2rsin0' dm2 2r2tan9

(5,146)

u(n)

Fig. 5.33. The conventional two-multiplier second-order section.
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For narrowband filters where 0-+Q, the sensitivities d9/dml and d9/dm2 are very
large. This makes second-order direct-form sections unsuitable for narrowband
lowpass designs. This can also be seen from the pole-grid diagram in Fig. 5.34,
which shows the set of possible pole locations when mt and m2 are quantized to
three bits. Since the poles are crowded near the imaginary axis and close to the
unit circle, it is clear that for small 9 and small r, large errors in pole location are
created by quantizing m: and m2. The pole-grid pattern can be made uniform
all over the z-plane in \z\ < 1 simply by implementing rco$9 and rsin6> as
multipliers rather than 2rcos0 and — r2. Such a structure, called the coupled-
form structure, is shown in Fig. 5.35, which also shows the pole-grid pattern [4].
It can be shown that

dm i
= cos 6,

dr

dm-.
= sm

66

dm i

sin 9 d9 cos 9

dm-
(5.147)

so the sensitivities are well behaved for all 9. For r -»1 all the functions in
Eq. (5.147) have magnitudes bounded above by 1 for all 9.

Some authors [28] have derived modified coupled-form structures that are
particularly well suited for certain pole locations. Figure 5.36 shows two such
circuits. The sensitivities are

or 1

dm j cos#

for Fig. 5.36(a) and

dr 1

6r_

dm^
— r sin 9 cos 9, 0,

dm-

dr
dm, sinf?' dm-

= r sin 9 cos 9,
d9

dml
0,

60

dm?

cos2 9 (5.148)

-sin20 (5.149)

j l . O -—_._
Z-PLANE

the unit
circle.

J0.5

0.5 1.0
Fig. 5.34. The grid of permissible pole locations for "*-bit direct-form implementation.
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.10.5

the unit.
circle.

(a) (b)

Fig. 5.35. The coupled-form structure and the corresponding grid of permissible pole locations
(3 bits).

for Fig. 5.36(b). Thus for 0 -»0 Fig. 5.36(a) represents a particularly useful
structure, whereas for 0 -* n/2 Fig. 5.36(b) represents a good structure. Finally,
consider the Agarwal-Burrus structure in Fig. 5.2 l(b). Define

= -2 - bi = -2 + 2rcos6 (5.150)

(5.151)

rcose tane rcose

-tane

" ( n )

(a)

rsine

cote cote Y Y

(b )
Fig. 5.36. Modified coupled forms.
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TABLE X

Sensitivities for Various Second-Order Sections

Modified coupled forms

fir

dml

cr

am2

80

dml

m
dm 2

When to
use?

Direct form

0

1

2r

I

2rsin0

1

2r2tan0

9 *U

2

Agarwal
and Burrus

0

1

2r

j

2r sin 0

I

2r2tan0

0->0,-
2

Coupled form 1

1
cos 0

COS0

sinfl rsin0cos0

sin0
0

r

COS0
cos2 0

r

r-*l 0-+0

2

1

sin 0

r sin 0 cos 0

0

— sin20

7C
0-*-

2

r-> I

(see text)

Thus, mt and m2 are the physical multipliers. The sensitivities are now again
given by Eq. (5.146). However, with b bits the quantization errors ^ml and Am2

of the multipliers in the Agarwal-Burrus structure are much smaller than
the corresponding error in the direct form (see Section VLB for explanation).
Consequently, the Agarwal-Burrus structure represents a low-sensitivity struc-
ture for r -» 1 and 9 -> 0, even though the sensitivity expressions are the same
as in Eq. (5.146). Table X summarizes these results pertaining to second-order
sections.

The Agarwal-Burrus structure, introduced in Section VLB in the context of
low-noise designs, also has low sensitivity, as we observed above (assuming
that r -+ I and 0 -» 0). This gives evidence that sensitivity and roundoff noise are
closely related.

WAVE DIGITAL FILTERS XIII

In Section XII we presented a number of all-pole second-order sections that
have low sensitivity for certain pole locations. Thus, depending on the pole
location, we can choose a second-order structure with the help of Table X so
that the sensitivity is low. A higher-order filter can be designed by a cascade or
parallel combination of such sections with appropriate numerators.



420 P. P. Vaidyanathan

In 1971 an entirely new approach [33] to the design of low-sensitivity digital
filters was introduced by Fettweis. This approach is based on digital simulation
of continuous-time LC filters. There exists a class of continuous-time LC filters,
called doubly terminated LC structures [42]. When "properly" designed [43],
these structures exhibit very low passband sensitivity with respect to electrical
element variations. The explanation for this is based on the concepts of max-
imum available power and perfect impedence matching [43]. When a digital
filter structure is built to simulate such a "prototype" LC network, it inherits the
low passband sensitivity property. In addition, due to the inherent passivity of
the LC prototype, the digital filter is also passive in a certain sense [51], and this
can be exploited to suppress limit cycle oscillations.

The purpose of this section is to briefly outline the procedure for designing
WDF structures. Several excellent papers have been published in the last 15
years, but for want of space we will not attempt to discuss in detail all these
contributions.

A The Overall Design Procedure

Consider, for example, the design of a digital lowpass filter with specifications
as in Fig. 5.37(a). The first step in the WDF design procedure is to translate these
specifications to the continuous-time domain by application of the bilinear
transformation, that is,f

(5.152)
1 + z~J

With

s=jO and z = ejm (5.153)

we get from Eq. (5.152)

QT = tan(ftV2) (5.154)

Thus, the bandedges of the continuous-time filter are

The second step is then to design a doubly terminated lossless (LC} network
whose transfer function has magnitude response as in Fig. 5.37(b). This can be
done by standard software, such as FILSYN [56], FILTOR [57], etc., or by

t For our discussion we can think of T as an arbitrary constant with the dimension of time.
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Fig. 5.37(a). Typical lowpass specifications.

"p s
Fig. 5.37(b). The mapped continuous-time specification.

design charts and tables [58]. Figure 5.38 shows a typical example of such a
filter network.

The third step is to translate this LC network into the digital domain in such
a way that the resulting network has no delay-free loops [33]. This is by far the
most involved step because digital simulation of voltages and currents in a
network such as Fig. 5.38 always produces delay-free loops. To overcome such
loops, Fettweis introduced wave variables that are linear combinations of
voltages and currents. By careful manipulation and simulation of wave variables
in the digital domain, we can avoid delay-free loops. This leads to the ingenious
concept of WDF. The rest of this section is dedicated to an elaboration of step 3.
Several standard references [42,56-58] are available for obtaining details on
step 2.

Fig. 5.38. A doubly terminated LC filter.
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B Wave Digital Simulation of Electrical Elements

We begin with a simple example. Consider the inductor L in Fig. 5.39. The
voltage and current are related by

V(s) = sLI(s)

Let us define two new variables A^s) and B^s) as follows:

Ai(s) = V(s) + RI(s), B^s) = V(s) - RI(s)

(5.156)

(5.157)

where R is a positive constant with dimensions of resistance. The inductor,
which is completely described by Eq. (5.156), can equally well be described by
the "corresponding" relation between A^s) and Bj(s), obtained by substituting
Eq. (5.156) in Eq. (5.157). Thus

<5-158)

(5.159)

Now apply the bilinear transformation Eq. (5.152) to Eq. (5.158). Let

B(z) = B1(s)

and similarly define A(z). Then B(z) and A(z) are related by

The quantity T in these equations is used only to match the physical dimensions.
Hereafter, we shall set T = I without loss of generality. Next, if we choose

R = L (5.161)

the variables B(z) and A(z) in the digital world are related by

B(z)=-z-lA(z) (5.162)

Thus, Fig. 5.40(b) is a "discrete-time" simulation of the inductor of Fig. 5.39. In

Ks)

/N

V ( s )

\ /
Fig. 5.39. An inductor.
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Ks)

423

B, (s )

A(z)

8 ( 2 ) 4

[a) (b)
Fig. 5.40. The wave equivalent for the inductor.

essence, an inductor translates into a simple delay with a negative sign. The
variables being simulated are A(z) and J3(z) rather than discrete versions of V(s)
and I(s). By conventions of drawing figures, the variables At(s) and B1(s) are
indicated in the inductor diagram. The classical name for A^s) is the incident
wave, and B^s) is called the reflected wave. As far as the LC network is concerned,
such wave variables are fictitious, but in the digital world these variables are the
physical signals that are manipulated inside a WDF.

The value L does not explicitly appear in Fig. 5.40(b). The definitions of A and
B, however, implicitly have L because of Eq. (5.161) and the relations

A = V + RI, B = V - RI (5.163)

The simulation in Fig. 5.40 is referred to as a one-port simulation. The port, which
is characterized by the unique relation Eq. (5.156), has thus been "digitally"
simulated. The exact result of the simulation itself depends on the choice of
the arbitrary constant R. If R is chosen as in Eq. (5.161), then the network of
Fig. 5.40(b) occurs. R is called the port resistance of the one-port being simu-
lated. Similarly other circuit elements can be simulated. Table XI shows a few
such simulations, some of which we plan to use in this chapter. A more complete
list is in [33].

Certain comments are in order. First consider the simulated resistor Ri. The
resulting digital network has B — V — RI = 0, if we choose R = Rl; hence A =
V + RI is arbitrary. Thus, regardless of what the value of the incident "wave"
is. no wave gets reflected. In other words, we have a "wave sink" in the digital
domain. The new notation in Table XI implies this fact. Next, the voltage source e
with internal resistance Rl ( = R) is simulated simply by setting A — V + Rl = e
and ignoring B, which is arbitrary.

Interconnection of Simulated One-Port Elements C

For the LCR circuit of Fig. 5.38 it is easy to draw, based on the previous
subsection, the wave digital equivalent for each circuit element in isolation.
However, when we try to interconnect these simulated equivalents, we
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TABLE XI

Wave-Simulation of Electrical Elements

Electrical element

Al~1'
v IL

-fi,
I

84.. 1 ]

• ! =0

V

(open circuit)

I
A— *-*-f V = 0

B«-

(short circuit)
.1

r— \AAA/ )
P^^K -4 A

•«"' I
1 «^ B

Discrete-time
wave-variable simulatio

^

A
v

BJ?

^37 Wave sink

8=0

A-^|

B^-J

A—)

-1
B ^r -̂ 1
^XT

Q %/\

^— B

Choice of R where
A = V+RI, B = V~RI

R = L

R c

R = R]

R = arbitrary

R = arbitrary

R = R1
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encounter a major problem: the A(z) and B(z) variables attached to various
circuit elements are not compatible because their definitions involve R, which in
turn varies from one-port to one-port. We can overcome this difficulty by using
the ingenious concept of wave adaptors [33,44, 59], which serve to interconnect
several one-ports. For our purposes it is sufficient to deal with series and parallel
interconnections of three one-ports at a time; we now do this.

Parallel Three-Port Wave Adaptors 1

Figure 5.41 shows the parallel connection of three one-ports. The port
resistances are defined as Rl, R2, and R3. The port voltages and currents are
constrained by

V, = V2 = V3 (5.164)

/ !+/2 + / 3 = 0 (5.165)

The wave variables are also accordingly constrained. Using the definitions

Ak=Vk + RtIk (5.166)

Bk=Vk-RkIk (5.167)

we easily verify that Eqs. (5.164) and (5.165) translate, in terms of wave

Fig. 5.41. A parallel interconnection of three one-ports.
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variables, to

for k — 1,2, 3, where

B = 2A - A f - A3)

a, =
2G,

G3'

(5.168)

(5.169)

Thus, to obtain the wave digital equivalent of Fig. 5.41, we first replace each of
the three one-ports with its equivalent from Table XI and then interconnect them
with the "parallel wave adaptor," which is a three-input three-output memoryless
device satisfying Eq. (5.168). Figure 5.42 is a notation for this device. Figure 5.43
shows the use of a parallel adaptor.

An implementation of Eq. (5.168) is shown in Fig. 5.44, which therefore
depicts the internal details of the parallel adaptor of Fig. 5.42. Notice that the
implementation requires seven two-input adders and two multipliers. When
adaptors are interconnected to other adaptors, it results in a delay-free loop
unless special precautions are taken. Under specific conditions, certain de-
grees of freedom are available in the choice of port resistances Rk (this will be
demonstrated with a design example in the next subsection). These degrees of
freedom enable us to avoid such delay-free loops.

Fig. 5.42. The parallel adaptor schematic.

simulated
ports

Fig. 5.43. The use of a parallel adaptor.
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Fig. 5.44. Implementation of a parallel adaptor with two multipliers and seven two-input adders.

For example, let us assume that we are free to choose the port resistance R2 in
Fig. 5.41. If we choose R2 such that

_L__L _L (5.170)

then we can show that B2 in Eq. (5.168) does not depend on A2. Thus, there is no
direct connection between B2 and A2, and if port 2 of such an adaptor is
connected to another device it does not lead to delay-free loops. Since B2 is zero
regardless of A2 whenever A± — A3 = 0, port 2 is called a reflection-free port.

We can use Eq. (5.170) to simplify Eq. (5.168) as follows:

-1 + a 1 1 — a Av

a 0 1-a A2 (5.171)
a 1 ~~a _ _^3_

where a = % is as in Eq. (5.169). Figure 5.45 shows an implementation of the
three-port parallel adaptor, with port 2 being reflection free. Note that only one
multiplier and four adders are required for its implementation. The reflection-free
nature of port 2 is indicated in Fig. 5.45.

Series Three-Port Wave Adaptors 2

Consider next a series interconnection of three ports as in Fig. 5.46. There are
three ports connected in series, with port resistances Rt, R2, and R3. Once again,
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u

L-

/ '\

r^ V

\ /

>

J^

\

/*

&
<—

T T
Fig. 5.45. Parallel adaptor with one multiplier and four two-input adders (port 2 is reflection free).

I,
Fig. 5.46. Series interconnection of three one-ports.

each one-port can be simulated by a corresponding wave digital one-port. To
interconnect the ports, we need "series wave adaptors."

The port voltages and currents in Fig. 5.46 are constrained by

+ V2 + P3 = 0

,=I2= /3

(5.172)

(5.173)

It can be shown that the corresponding constraint on the wave variables Ak, Bk

defined in Eqs. (5.166) and (5.167) is

= Ak — Bky A,K * K J«^ *

where
2R,
R

(5.174)

(5.175)

The three-port series wave adaptor is a device that implements Eq. (5. 1 74). Fig-
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3 U3

symbolic
notation

Fig. 5.47. The series adaptor with two multipliers and six two-input adders.

ure 5.47 shows this adaptor along with the block diagram notation. Notice that
two multipliers and six two-input adders are required for this implementation.

To avoid delay-free loops, we once again need reflection-free ports. We can
make port 2 in Fig. 5.47 reflection free simply by choosing

z\2 == -*M ~l~ •"' (5.176)

This is possible only if R2 is not constrained for other reasons. In practical wave
filter design, such freedom to choose R2 is always available; hence reflection-free
adaptors are quite commonly employed.

Figure 5.48 shows such a reflection-free three-port series adaptor along with
building-block notation. Only one multiplier and four adders are required for its
implementation.

(symbolic
notation)

Fig. 5.48. The series adaptor with one multiplier and four two-input adders (port 2 is reflection
free).
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D Design Summary And A Design Example

Given an LCR network as in Fig. 5.38, for instance, the first step in convert-
ing it to a wave digital network is to identify the "interconnections" (i.e., series
and parallel interconnection of one-ports). The second step is to assign "port
resistances" to the wire interconnection ports. During this step the guidelines
in column 3 of Table XI along with the rules for obtaining reflection-free ports
[Eqs. (5.170) and (5.176)] should be judiciously used (as demonstrated in the
examples to follow). The third step is to use Table XI to replace the electrical
elements with wave one-ports, and then interconnect these with appropriate
wave adaptors. The wave filter design is then complete.

As a design example, consider the circuit of Fig. 5.38 again. The various
interconnections are identified as in Fig. 5.49. Interconnections "1," "3," and "4"
represent parallel interconnections, whereas "2" represents a series intercon-
nection. These interconnections must be simulated with adaptors. For each
interconnection the "ports" have been numbered. Let Rlk, R2k, l*3fc represent
the three port resistances for the /cth interconnection. We now assign these
resistances as follows:

1. RI i = R = internal resistance of voltage source
2. 1*31 = l/Ci (according to Table XI)
3. 1/1*2 t = l/Rn + 1/1*31 [according to Eq. (5.170)]
4. R14 = L2 (according to Table XI)
5. R34 = 1/C2 (according to Table XI)
6. 1/1*24 = 1/1*14 + 1/1*34 [according to Eq. (5.170)]

= 1*

c,; h-0

2 I

©

C, C3

Fig. 5.49. Identifying appropriate interconnections for Fig. 5.38 [30]
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Fig. 5.50. The resulting WDF structure [30J.

9. R22 = R12 + R32 [according to Eq. (5.176)]
10. R13 = R22
11. #33 = l/C3 (according to Table XI)
12. K23 = ^

Assignments 1, 2, 4, 5, and 11 have been made according to Table XL As-
signments 7, 8, and 10 have been made in order to make the port resistances of
connected ports compatible. Assignments 3, 6, and 9 have been made to force
ports 2 of adaptors corresponding to the interconnections 1, 2, and 4 to be
reflection-free ports. The freedom to choose /?2i> ^24> and ^22 according to
Eq. (5.170) or Eq. (5.176) was available and exploited accordingly.

Figure 5.50 shows the resulting WDF. Note that port 2 of adaptor 3 is not
reflection free. This, however, is not harmful because there is no possibility of a
delay-free loop being caused by this port.

Several authors have taken other viewpoints in order to obtain different types
of WDFs. An important family of WDFs results from considering each electrical
element as a two-port rather than a one-port [60,61]. The advantage of such a
viewpoint is that "adaptors" are not necessary for interconnection purposes.
However, these adaptors are implicitly taken care of in the simulated digital
two-ports. The main advantage of this class of wave filters is the simplicity of the
design procedure.

Although we do not give details of this class of filters, we do indicate the na-
ture of the resulting structures. Thus, consider Fig. 5.38 again. Here each series
and parallel branch is regarded as a two-port. Each two-port is assigned port
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resistances as shown in Fig. 5.51. (Thus the capacitor Q is a two-port with
port resistances R! and R2.) Each such two-port has a standard wave digital
equivalent two-port, as demonstrated in Fig. 5.52, where the "wave variables" are

Rlllt (5.177)

(5.178)

The port resistances Rlt R2,... are chosen such that there is no delay-free
connection between A± and Bl (or between A2 and B2). If such equivalent digital
networks are cascaded as in Fig. 5.53, there are then no delay-free loops, and the
resulting cascade represents a realizable digital equivalent of the LC network.
The design rules for such a class of filters are in [61] and are quite simple to apply.

As a typical example, Fig. 5.54 shows the two-port wave equivalent [61] of a
series inductor L. For a given L, Rj and R2 are chosen such that there is no delay-
free path from A2 to B2. This occurs when R2 = Kj + L. In practice, we can
choose either Ri or R2 as convenient, and we exploit this to force R2 — Rl + L.
The multiplier a in Fig. 5.54(b) is

R - L

#
0«T< 1 (5.179)

Fig. 5.51. Viewing each circuit element as a two-port.

Fig. 5.52. The shunt capacitor as a two-port.

—> -*

Fig. 5.53. Cascading the wave two-ports.
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I, L I

(b)
Fig. 5.54. (a) A series inductor and (b) its two port equivalent.

O

Fig. 5.55. Simplification of the circuit of Fig. 5.54(b).

There are five adders and one multiplier in Fig. 5.54(b). It can, however, be
shown that the input-output relation of the circuit in Fig. 5.54(b) is the same
as the structure in Fig. 5.55, which requires only four adders and one multi-
plier. The striking point here is that Fig. 5.55 is precisely the same as the series
adaptor in a conventional wave filter, with the wave equivalent of an inductor
(i.e., — z *) connected between B3 and A3 (see Fig. 5.48). Thus, the complexity
of implementation of these structures is really the same as the wave filters
presented earlier. However, the design rules seem to be simpler. For complete
details see [61].
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THE LOSSLESS BOUNDED REAL APPROACH FOR THE DESIGN
OF LOW-SENSITIVITY FILTER STRUCTURES

As outlined in Section XIII, WDFs have several desirable properties under
finite word-length constraints. To design structures with these properties, we
must map the filter specifications into the continuous-time domain and then
synthesize the LC network. It is only after this that we can translate the LC filter
back to the wave digital world.

The intermediate step of going into the continuous-time domain and designing
the LC prototype and then translating back into the digital domain is actually
unnecessary and can be eliminated by direct cascade synthesis (not to be confused
with conventional cascade-form synthesis of Fig. 5.22) in the digital domain itself.
To do this, we require a general theory for low-sensitivity digital filters, and a
formal procedure for synthesizing such filters in the z-domain. Such develop-
ments have been reported recently [62,63].

An important advantage, among others, of such a procedure is that familiarity
with LC networks and classical filter synthesis is not a prerequisite either for
designing the filters or for comprehending the procedure. This situation is
particularly attractive in view of the fact that digital filtering is an important and
popular tool in other branches of engineering.

This section outlines these independent z-domain methods. For all theoretical
details see [62-64].

Wave digital filters have low passband sensitivity because they are derived
from passive continuous-time circuits are designed to satisfy certain maximum-
power bounds [51]. If we can somehow accomplish such "bounds" by designing
structures independently in the z-domain, then we have a means for direct low-
sensitivity digital filter design. To be more specific, consider a typical lowpass
transfer function magnitude as shown in Fig. 5.56. The magnitude \H(eJO>)\ attains
the maximum of unity at certain frequencies a)k in the passband. Let us now
assume that we have invented a structural interconnection such that, regardless
of the multiplier values mk (i.e., as long as the multiplier values stay within a
well-defined range, such as, for example 0 < |mfc| < 1), the quantity \H(ej<a)\ is
bounded above by unity. In other words, the structure forces the bound

\H(ej(a)\<l for all co (5.180)

Now consider | H(ejo)k)\, which is unity when the multiplier values are "ideal" (i.e.,
have infinite precision). Now if a multiplier mfc is perturbed (quantized), then
\H(ej(0k)\ can only decrease because of the bound (5.180). Hence a plot of \H(ejtak}\
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|H(eJ'u)|

Fig. 5.56. A typical lowpass response.

looks like Fig. 5.57, exhibiting a zero derivative; that is,

d\H(ejmk)\
= 0 (5.181)

In other words, the first-order sensitivity. of \H(ej(0)\ with respect to each
multiplier m^ is zero at each ojk where \H(ejf°)\ attains its maximum. Clearly, if
there exist several frequencies a)k in the passband where this happens, we can
expect very low passband sensitivity.

Since the structure forces the bound in Eq. (5.180) rather than the incidental
values of the multipliers, we call it structural boundedness or structural passivity.
Basically* if we can find an implementation that is structurally bounded or
structurally passive, then we can design low passband sensitivity digital filters.

If the structure is such that Eq. (5.180) holds with equality for all o> (i.e., H(z) is
all-pass), then we have structural losslessness, and this leads to a structurally
lossless implementation of the all-pass function; thus in spite of coefficient
quantization, the transfer function continues to remain all-pass.

We now introduce some useful terminology. Any stable transfer function H(z)
with real coefficients satisfying Eq. (5.180) is called a bounded real (BR) function
[62], whereas if Eq. (5.180) holds with equality for all <w, then H(z) is said to be
lossless bounded real (LBR). An LBR function is any stable all-pass function with
real coefficients. A stable transfer matrix 3~(z] = [T],(z)] is said to be LBR if 3T(z]

H(e

Fig. 5.57. The zero-sensitivity property.
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is real for real z, and satisfies?

^(ejo})^~(ej<a) = l for all CD (5.182)

It can be shown that if ^~(z) is LBR, then each component T(j(z) is BR.

B The Design of Structurally Bounded Implementations

It is a simple matter to find elementary examples of structurally bounded
implementations. Consider a first-order transfer function

-a
1 az

(5.183)

where a is assumed to be positive. Clearly, IH^e-*0*)] has maximum value (equal
to 1) at to = 0. A structure that implements this is shown in Fig. 5.58. It is clear
that, regardless of the value of a in Fig. 5.58, as long as a satisfies 0 < a < 1,
\H(ej<a)\ continues to be bounded by unity. Thus, Fig. 5.58 represents a struc-
turally bounded (or passive) implementation of (5.183).

The numerator and denominator of Eq. (5.183) have the same coefficient a,
which is what enabled us to obtain the implementation of Fig. 5.58. In general, if
we have a higher-order transfer function with essentially unrelated numerator
and denominator, it is nontrivial to obtain structurally bounded implemen-
tations. To explain the procedure we adopt in such cases, consider Fig. 5.59.
Here, a transfer function Gm(z) is obtained by starting with a two-input, two-
output system and forcing the second input X2(z) to be Gm_t(z) times Y2(z).

u ( n )

A

Fig. 5.58. A structurally passive implementation.

Fig. 5.59. A constrained two-pair.

Matrices and vectors satisfying Eq. (5.182) are also termed all-pass matrices and all-pass vectors.
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The two-input, two-output system is called a (digital) two-pair [62] and is de-
scribed by a 2 x 2 transfer matrix STm(z] =

'P1(
'l*2lr 2 2 ( z ) 2 ( z )

(5.184a)

Another equivalent way of describing the two-pair is via the chain parameters
A, B, C, D:

A(z) 0(z)iry2(z)
(5J84b)

Thus, Gm(z) in Fig. 5.59 is obtained by constraining the two-pair at the right side
by the transfer function Gm-i(z). A typical situation is where the two-pair is of
first-order (has one delay), whereas Gm(z) and Gm_ t(z) have orders m and m — 1,
respectively.

Referring to Fig. 5.59, the basic idea pertaining to structural boundedness is as
follows: Let the two-pair ^~m(z) have the following property:

Property 1. If |Gm_1(ejw)| < 1 for some frequency CD, then \Gm(ej(0)\ < 1 for
the same co.

This in turn means that if Gm_ t(z) has a structurally bounded implementation,
then Gm(z) in Fig. 5.59 is certainly structurally bounded. Thus, Fig. 5.59 helps to
convert the problem of structural boundedness of Gm(z) into a problem of
structurally bounding the lower-order function Gm~i(z). If we now repeat this
idea, we obtain the cascade of two-pairs in Fig. 5.60. Each two-pair «^(z), m =
1, 2, . . . , JV, in this figure is such that if Gm _ t(z) is structurally bounded, then so
is Gm(z). G0 is a constant and is automatically structurally bounded as long as
| G0 1 < 1. Thus, by inductive reasoning, Gj(z) is structurally bounded and so are
G2(z), G3(z), ____ In essence, the higher-order transfer function GN(z) is struc-
turally bounded as long as JG0| < 1 and each two-pair satisfies Property 1.

We now encounter two design-related questions, (i) What kind of two-pair
matrices «^,(z) satisfy Property 1? (ii) Given an arbitrary GN(z), under what
conditions can we construct the cascaded structure in Fig. 5.60, where each 3Tm{z]
satisfies Property 1 ? What, in essence, is the procedure for synthesizing such a
cascade?

Both of these issues have been recently handled in the literature [62-64]. We
now proceed to present some of the related basic results without proofs.

—>

f
= constant

Fig. 5.60. The cascaded two-pair.
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1 The Concept of Digital Two-Pair Extraction

Given a transfer function Gm(z), let us assume that we have identified a transfer
matrix ̂ (z) (typically, first order or second order) such that Gm(z) can be realized
as in Fig. 5.59, where Gm_1(z) is a reduced-order "remainder function." This
process is called (digital) two-pair extraction. It can be shown that Gm(z) and the
remainder GM _ i (z) are related through the parameters of the extracted two-pair
in the following manner:

0.-,- (5.18*0

c-
If the extracted two-pair is LBR, then the above process is simply termed LBR
extraction.

Given a stable tranfer function GN(z), assume that it is scaled such that it
satisfies | GN(ej<a) \ < 1 for all a>. If \GN(eJ<0)\ is not equal to unity for any a>, it can be
scaled up so that it is equal to unity for some <x>. Therefore assume, without loss of
generality, that GN(z) is BR and such that its magnitude attains the maximum of
unity at some frequency cok . Clearly, if o)k = 0 or n, then GN(ej<a") is either 1 or — 1 .
If, on the other hand, 0 < cok < n, then GN(ejo)k) might be complex. Thus we have
three distinct cases to handle:

Case I. tok — 0 or n; that is, zk — 1 or — 1.

Case 2. 0 < cok < n and GN(eJo>") = ± 1.

Case 3. 0 < cok < n and GN(eJt0k) = ej<t>.

It is shown in [62] that in Cases 1-3 there exists an LBR two-pair such that when
it is "extracted" from GN(z) the remainder G^^z) is lower-order BR, It is also
indicated in [62, 63] how such a two-pair can be determined from the known
transfer function GJV(Z). IfCase 1 is true, then the LBR two-pair is first order and
GJV _ i (z) has order one less than that of GN(z). For Cases 2 and 3 the extracted LBR
two-pair is second order, and the order of G/v- i(z) is two less than that of Gjv(z).
Since the reduced-order remainder GJV-^Z) continues to be BR, the above
procedure can be repeated until the cascade of Fig. 5.60 is obtained, with
|G0j < 1, Gjy(z) has thus been synthesized as a cascade of LBR two-pairs
terminated in a BR constant G0.

We will have a complete set of rules for synthesis once we specify the transfer
matrices of the LBR two-pairs to be extracted in each of the three cases. The first
three entries of Table XII give us this information for Cases 1 and 2. The LBR
two-pairs in the first two entries are characterized by a single parameter a that
can readily be computed from the transfer function Gm(z). Similarly, the LBR two-
pair in the third entry is characterized by two parameters a and jS, both of which
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can be computed from Gm(z), Also note that the LBR two-pairs in entries 1 and 2
can be implemented with one delay element, whereas those in the third entry
require two delays.

To handle Case 3, we first extract a type 1A two-pair from Gra(z) with a = cr, , as
shown in the fourth entry of Table XII. The result is a remainder Gm_. }(z) such
that Gm^ ,(ej£0k) = -1. Now a type 2B LBR two-pair (with a = <72> ft = &) is

extracted so that the remainder Gm^2(z)nas order two less than that of Gm_ i(z).
This is then followed by a further two-pair extraction of type 1A with a = <r3

for reasons established in [62]. The required value of er3 is

2(1 -

(5.186)

The final remainder Gm_3(z) has order two less than that of Gm(z). Figure 5,61
summarizes the situation. Moreover, Gm_3(z) is BR (assuming Gm(z) is BR), and
the cascade of the three two-pairs is LBR. However, only one of the two first-
order two-pairs in Fig. 5.61 is LBR. The three two-pairs in Fig. 5.58 can be

TABLE XII
Rules for Two-Pair Extraction

Type
Condition
when used

1A

common denominator = 1 + az

1C Gm(l) = 1
T22 = -(a - l)z~l

common denominator = 1
c;,+ !,-,=,

2A

1A

Gm(e*"*) = 1

should be
forced to — 1

common denominator
= 1+0(1 +<r )z~ ' +az~2

rn = l - < 7
7~i2 = T2) = v/(J(l + 2 )

r22 = ( f f - i ) z - 1

common denominator = 1 + <rz

2B
After 1A

extraction in
Case 3 common denominator

Prime denotes derivative with respect to z l',zk = ejo>k and ft — — cos o)k
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e
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Type 2B

'

•-
£.' £.

• 1 m

r*
Type

1A

j
V3

Fig. 5.61. The cascade of three two-pairs.

combined into a single second-order two-pair (called type 3 LBR two-pair) and
implemented with two delay units. Thus the structure is canonic in delays.

It can be shown that a type 1A LBR two-pair can be implemented as in
Fig. 5.62 in terms of planar rotation operators [63]. Type 1C can be imple-
mented simply by replacing z~l with — z~l in Fig. 5.62. Also, type 2A can be
obtained from type 1A by replacing z~* as shown in Fig. 5.63; the overall struc-
ture involves a total of three planar rotation operators. Finally, type 3 LBR two-

f

(

**>
-wr' -»

*> Jf '
rf-

ul -»
stands for

cos6 sinG

-sine cost

Fig. 5.62. An implementation of type 1A LBR two-pair [63] (© 1985 IEEE).

Fig. 5.63. The building block that should replace z
two-pair [63] (© 1985 IEEE).

in a type 1 A two-pair to get a type 2 A
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Fig. 5,64, Implementation of type 3 two-pair in terms of planar rotation operators
[63] (© 1985 IEEE).

pairs (Fig. 5,61) can be implemented with two delays and four planar rotation
operators as shown in Fig. 5.64. Detailed justifications for these are quite in-
volved and can be found in [63].

More Economic Implementations 2

Consider the implementation of the first-order LBR two-pair in Fig. 5.62. This
implementation involves two "planar rotators" and a delay unit and is called an
orthogonal implementation, since planar rotators are orthogonal operators; in
other words, if

R
cosO

sin i

sin 01
COS0J

then RTR = /. Such implementations have the desirable feature that internal
signals that normally require scaling (i.e., multiplier inputs) are automatically
scaled in an L2-sense.

We can obtain unsealed and less expensive implementations of the two-pair
building blocks by noting that if we replace T12(z) and T21(z) with aT12(z) and
a~1T21(z) in the two-pair structure of Fig. 5.59, where a is a scalar, then Gm(z) is
unchanged for a given Gm _ l (z). Thus, in the two-pairs of Table 5.12 the quantities
\fa can be avoided by taking a = l/\fa or ̂ , Such resulting structures are more
economical in the sense that the first-order two-pairs can be implemented with
one multiplier, four adders, and a delay, and second-order two-pairs (type 2) can
be implemented with two multipliers, six adders, and two delays. Notice that
Property 1, which was crucial for accomplishing structural boundedness, is still
preserved. Figure 5.65 shows the type 1A two-pair implemented in this manner,
whereas Fig. 5.66 shows the corresponding type 2A two-pair.
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<—J <H
-1

Fig. 5.65. Economic implementation of type 1A two-pair.

Notice that the structure of Fig. 5.65 is precisely the same as that of Fig. 5.55,
which in turn represents the wave filters due to Swamy and Thyagarajan [61].
In addition, these structures are also equivalent to the series-adaptor-based
realization of an inductor as shown in Section XIII.D.

In summary, the LBR approach has placed in evidence a new synthesis
procedure for digital transfer functions. The procedure is such that the resulting
implementation is structurally passive and hence has low passband sensitivity.
The procedure is based entirely in the z-domain and does not require the use of

Fig. 5.66. Implementing a type 2A LBR two-pair with six additions and two multiplications.
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an LCR prototype. However, the implementation of LBR-based filters with
building blocks as in Figures 5.65 and 5.66 shows that WDFs are special cases of
this approach; thus the low-sensitivity property of the WDFs is essentially a
consequence of structural passivity or structural boundedness. On the other
hand, planar-rotation-based implementations as in Figs. 5.62 and 5.64 show that
orthogonal digital filters can be derived based on this approach, too. Because of
the generality of the LBR approach, it can be used with proper modification
even for the design of low-sensitivity FIR filters [65,65a]. This issue will be taken
up later.

In the previous section we saw that a structurally passive implementation leads
to low-sensitivity digital filters. Wave digital filters, the LBR-based filters, and
orthogonal digital filters are all specific instances of such structural passivity
[66,67]. Recall that structure passivity (or structural boundedness) implies a
situation where the structure forces the bound of Eq. (5.180) automatically.
Accordingly, the magnitude response is robust with respect to quantization
effects. In the LBR-based approach this boundedness was forced by employing
lossless 2 x 2 matrix building blocks (the LBR two-pairs) and scaled versions
thereof (Figs. 5.65 and 5.66). So is the case with wave filters and orthogonal filters.

Several authors have noticed in the past that a low-sensitivity structure also
has low roundoff noise, and vice versa [53,68]. (Recall that we made a similar
observation in Section XI with respect to the Agarwal-Burrus structure.)
Accordingly, any structurally passive implementation is also expected to have
low roundoff noise.

Because of the passivity (actually losslessness) of the building blocks, several
other interesting properties [66] can be established. For example, we can
suppress unwanted granular oscillations (limit cycles) by proper quantization
rules. In addition to the above-mentioned structures, there exist several other
structures ("normal" digital filters [69], minimum-noise second-order filters
[70], etc.), which are based on different viewpoints and possess excellent
properties such as low sensitivity, low noise, and freedom from limit cycles. It
turns out that the properties in these structures are also attributable to internal
passivity and/or losslessness of building blocks.

Therefore the major conclusion emphasized here is that structural passivity
plays a key role in minimizing the effects of several kinds of quantization
effects—sensitivity, limit cycles, and roundoff noise in digital filters. From an
engineering viewpoint it is therefore of considerable interest to explore newer and
simpler ways to accomplish structural passivity. The next section outlines one
such new method.
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XVI LOW-SENSITIVITY ALL-PASS-BASED
DIGITAL FILTER STRUCTURES

In this section we outline an exceptionally simple and attractive procedure for
attaining structural boundedness for certain transfer functions. The method is
once again entirely z-domain based and leads to low sensitivity in the passband.
In addition, the resulting structures have very few multipliers per transfer
function. The basic building blocks are again structurally lossless, and limit cycles
can therefore be suppressed. Moreover, the resulting structures have more
inherent parallelism and lend themselves to pipelinable implementations using
VLSI technology. An additional advantage of these structures is that they are
ideally suited for multirate filtering (see quadrature mirror filters in Chapter 8)
even though the details of this particular aspect are outside the scope of this
chapter.

The basic idea is as follows: consider once again the magnitude response
\H(ej<0)\ in Fig. 5.56. Let us assume that H(z) has the property that it can be
written as a sum of two stable all-pass functions A0(z) and A^z):

\A0(e
J<a)\ = = 1 for all ca

Since A0(z) and A^(z) are all-pass, they can be written as

A0(e
jm) = ej*o(to}

(5.187)

(5.188)

(5.189)

(5.190)

where </>0(a>) and <f>i(a>) are real-valued functions of CD. At frequency <ak, where
\H(ejt°k)\ = 1 (see Fig. 5.56), it is clear that the complex numbers A0 and At are in
phase [ie., ̂ (co) = 0i(o>)] so tnat tnev add up to 2. It is also clear that if A0 and
At remain all-pass in spite of coefficient quantization, then \H(ej(0)\ can never
exceed unity in spite of coefficient quantization. Thus we have a structurally
passive implementation of H(z) (Fig. 5.67) provided A0 and A± are implemented
in a structurally lossless manner.

Fig. 5.67. The all-pass-based implementation.
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There exist several methods of implementing digital all-pass functions such
that they remain all-pass in spite of multiplier quantization [47,71]. Hence the
preceding method can be applied successfully as long as H(z) satisfies Eq. (5.187).
Fortunately, it turns out that several transfer functions of practical interest do
satisfy the requirement of Eq. (5.187)—that is, can be written as the sum of all-
pass functions. For example, this is possible for Butterworth, Chebyshev, and
elliptic-digital filters of odd order [72]. More generally, a much wider class of
transfer functions satisfies Eq. (5.187), as revealed by the following theorem.

Theorem 5.2. Let H(z) = P(z)/D(z) be BR and such that the numerator
P(z) — E^=oP«2 " is a symmetric polynomial; that is,

P n ~ P N ~ n (5.191)

where N represents the orders of P(z) and D(z). Consider \D(es<0)\2 - \P(ej<0)\2. If
there exists a spectral factor Q(z) = H£L0 qnz~" of this quantity such that Q(z) is
an antisymmetric polynomial—that is, if

\Q(ejto)\2 = \D(ejo>)\2 - \P(ejl°)\2 (5.192)

with

<?„=-<?*-„ (5-193)

—then H(z) can be written as a sum of two all-pass functions. More specifically,
defining G(z) — Q(z)/D(z), we have the all-pass decomposition property

H(z) = ̂ A0(z) + Al(z)-] (5.194)

G(z) = K^(z)-,40(z)] (5.195)

where A0(z) and A^(z] are all-pass functions.

Comments. Note first that since H(z) is BR, we have \H(eJto)\ < 1; hence the
right side of Eq. (5.192) is nonnegative, as required for spectral factorization.
Second, the symmetry condition Eq. (5.191) is not very restrictive. Most digital
filter transfer functions have zeros on the unit circle; hence P(z) is symmetric (or
possibly antisymmetric if highpass). Third, in view of Eq. (5.192), we have, by
construction of G(z),

\H(ej(0)\2 + \G(ej(0)\2 = 1 (5.196)

In other words, H(z) and G(z) form a power-complementary pair (Section X,
Chapter 2). Thus, if H(z] is lowpass, then G(z) is highpass, and vice versa.

If H(z) satisfies the conditions of the Theorem 5.2, it only remains to show
how AQ and Al in (5.194) should be identified so that we can build the structure
of Fig. 5.67. The details of this can be found in [72], and we give only the results.
The procedure is as follows:

Step 1. Given H(z) = P(z)/D(z), find Q(z) such that (5.192) is satisfied.
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Step 2. Compute the roots of the polynomial P(z) 4- Q(z). Let these be
zl, z2,..., zr, zr +!,..., Zjy, where Z j , . . , , zr are strictly inside the unit circle, and
zr + j , . . . , ZN are strictly outside.

Step 3. Construct A0(z) and Av(z] as

Al(z} = f[ f-^nW (5-197)
fc = r + i 1 — Z Zj,

4,00 = flf—^r (5.198)
fe = 1 1 ~ ZfeZ

Note that AQ(z) and ,4j(z) identified in the above manner are stable all-pass
functions. It can be shown that P(z) + Q(z) cannot have any zero on the unit circle
(as long as H(z) is stable); hence step 2 always succeeds.

While performing step 1 we need not go through an elaborate and general
spectral factorization algorithm. Since Q(z) is antisymmetric, we can find its
coefficients qk simply by using the closed-form formula

= =~ (5.199)

where R(z) = ̂ =0rnz " is the polynomial

o(rr\ A 7~N(p(- i\p("\ n(? hnfvvi (*( ^nnI\\Z) — Z I* v^ / * V4-/ — Lf\L jU\2,jj \J .^-U1;

t Complexity of the Implementation

Any all-pass function of order m has only m distinct coefficients, because the
numerator polynomial is the flipped version (i.e., mirror image) of the denomi-
nator. It is therefore always possible to implement it with only m multipliers
(rather than the 2m + 1 multiplers required for a general mth-order transfer
function). Thus A0(z) requires r multipliers, whereas At(z) requires N — r
multipliers, making a total of N multipliers in Fig. 5.67. Thus we obtain two
transfer functions H(z) and G(z) with only N multipliers that is. [N/2] multipliers
per transfer function where [x] is the smallest integer greater than or equal to x.
In contrast, a direct implementation of H(z) alone would normally require
N + fN/2] ^ 3(N/2) multipliers! Thus, there is a reduction by a factor of 3
in the complexity of the implementation as a result of the all-pass based struc-
ture in Fig. 5.67. In addition, each multiplier coefficient requires fewer bits in
Fig. 5.67 because of the low passband sensitivity property, as explained earlier.
We now proceed to demonstrate these ideas with a design example.
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Design Example 2

As mentioned above, odd-order digital Butterworth, Chebyshev, and elliptic
filters (classical optimal filters) can always be implemented in the computation-
ally efficient form of Fig. 5.67. However, the class of transfer functions satisfying
Theorem 5.2 is much wider. To demonstrate this, we take a transfer function H(z)
that is not a classical optimal filter and obtain the design of Fig. 5.67. Thus
consider the BR transfer function

P(z)
H(z) = }

D(z)

+ 1.73306Z"1 + 2.83075z'2 + 2.83075z~3 + 1.73306z
k
. - 0.7004Z'1 + 1.42787z~2 - 0.57995z~3 + 0.40866z ~4 - 0.05463z"5

(5.202)

where k = 0.13494, so \H(ej(a)\maK = 1. Clearly,

P(z) — 0.13494(1 + 1.73306z"1 + 2.83075z~2+2.83075z^34- 1.73306z~4 + z~ 5 )

whereas

D(z) = 1 - 0.7004Z"1 + 1.42787z~2 - 0.57995z"3 + 0.40866z"4 - 0.05463z 5

Computing D(z)D(z) — P(z)P(z) (see Section I for the meaning of ~) and
employing Eqs. (5.199) and (5.200), we obtain its anti-symmetric spectral factor

Q(z) = 0.26989(1 -2.63479z~l + 4.09366z~2-4.09366z~3 + 2.63479z"4-z'5)

Next, we determine the zeros of F(z) + Q(z):

z, = 0.155661, z2 = 0.109659 + jO.924586

z3 = zf , z4 = 0.401930 + 71.51943

zs =z|

Of these, z,, z2, and z3 are inside the unit circle, and z4 and zs are outside. We
therefore construct the two all-pass functions

Al(z)= - _ *4* , _ ZgZ ̂

A0(z) =

Thus /4j(z) is a second-order section, whereas A0(z) is a cascade of a first-order
section /t()1(z) and a second-order section A02(z), where

AA
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The appropriate all-pass functions are therefore

, , 0.40482 - 0.32542z~J -I- z"2

and

-0.13494 + 0.90102Z"1 - 0.37498z~2 + z"3
A (2\ . /s 204i

ov ' 1 - 0.37498Z"1 + 0.90102z~2 - 0.13494z"3 l "

To study the sensitivity properties, we quantized the coefficients of the all-pass
filters A^z) and A0(z) to 3 bits of mantissa in canonic sign digit code (SD code),
and the structure of Fig. 5.67 simulated. Note that each multiplier has a
complexity equivalent to two additions. Figure 5.68 shows the relevant frequency
responses. In all the plots the dashed curve indicates the ideal (infinite-precision)
response. The excellent sensitivity properties of the structurally passive im-
plementation are evident from the response plots, particularly in the passband.
In the present example, H(z) has been chosen to be a filter transfer function
that is not optimal in any classical sense, as seen from the ideal response plots
in Fig. 5.68. We purposely chose H(z) this way to emphasize the point we made
earlier that to obtain an implementation as in Fig. 5.68, H(z) need not neces-
sarily be optimal.

As a comparison, the transfer function of (5.202) was also implemented in
direct form with the same amount of parameter quantization (3 bits of SD code
per mantissa). Figure 5.69 shows the relevant frequency response plots. Not
surprisingly, the performance is unacceptable.

In the new structures, since A^z) and A0(z) are all-pass functions, they require
only two and three multipliers, respectively. Thus a total of five multiplications
are involved per computed output sample, and we get two filters, H(z) and G(z).
Thus the average multiplier count is 2.5. In contrast, the direct form requires
seven multipliers [even after taking into account the symmetry of the numerator
F(z)] and more precision for each multiplier.

As a further demonstration, the all-pass functions of Eqs. (5.203) and (5.204)
were implemented with only 2 bits of SD code per multiplier mantissa. (Note that
each multiplier is then as complex as one addition operation.) The resulting
quantized all-pass functions are

0.375- 0.3125Z"1

and

-0.1328125 + Q.875Z'1 - 0.375z~2 + z~3

AQ(Z) — ~t rv i -7r_- l ,~7ToTC_-2 r. iiitx^e-T' (5.206)

Figure 5.70 shows the resulting frequency responses obtained with the im-
plementation of Fig. 5.67. Notice that the passband behavior continues to be
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0.100 0.300

N O R H f l l l Z E D F R E Q U E N C Y

Fig. 5.68(a). The new implementation with 3 bits per multiplier.
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Fig. 5.68(b). The new implementation with 3 bits per multiplier.
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-?0.000

-40.000

-100.000
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Fig. 5.69(a). The direct form with 3 bits per multiplier.
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Fig. 5.69(b). The direct form with 3 bits per multiplier.
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excellent. The quantized response has less error in the passband and stopband
than does the ideal response! The reason is that the quantized response has a
wider transition band. The improved behavior is not surprising since the ideal
response is not optimal in any way. Since each multiplier is equivalent to one
addition in complexity, the total complexity of the quantized circuit of Fig. 5.67 is
now only 16 addition operations (equivalent to a single 17-bit multiplier
coefficient!). With this low complexity the structure still achieves about 30-dB
stopband attenuation and 0.1 dB peak passband ripple. This example therefore
demonstrates the excellent potentiality of the circuit of Fig. 5.67 from a sensitivity
viewpoint. (For completeness we note that with a quantization level of 2 bits of
SD code per multiplier mantissa the direct-form structure became unstable in this
example.)

3 Comment on Stopband Sensitivity

The passband sensitivity of the complementary filter G(z) is expected to be
excellent for the same reason that the passband sensitivity of H(z) is excellent. In
spite of parameter quantization, Eqs. (5.194) and (5.195) hold; hence Eq. (5.196)
holds for each frequency. Thus, the stopband sensitivity of H(z) is expected to be
good. However, in terms of decibels, a small passband error in G(z) corresponds
to a large stopband error in H(z), particularly in the region of low passband and
stopband error. Figure 5.71 shows a plot of a versus /?, where

a=-201og10a, /? = -201og106, a2 + b2 = 1 (5.207)

Notice that the quantity a decreases very sharply for small changes in /? in the
region of large a. This figure demonstrates that if H(z) has large stopband
attenuation, then low passband sensitivity of G(z) does not necessarily imply low
stopband sensitivity of H(z).

4 Comments on the All-Pass Filters

As we mentioned earlier, the implementation in Fig. 5.67, based on all-pass
decomposition, always exhibits low passband sensitivity regardless of how the
all-pass filters are implemented as long as they are implemented in a structurally
lossless manner.

A structurally lossless implementation of an all-pass function A(z) of order m
can be obtained by implementing A(z) with m multipliers (rather than 2m). The
use of the smallest number of multipliers ensures that the numerator of A(z) is a
mirror image of the denominator in spite of parameter quantization. Accord-
ingly, A(z) remains all-pass even after multiplier quantization.

There are several well-known all-pass structures [47-49,72] requiring the
smallest number of multipliers, and hence possessing structure losslessness.
Among them, some have the additional property that crucial internal nodes
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Fig. 5.71. The tradeoff between passband and stopband errors.

(multiplier inputs) are automatically scaled [48]; and some have the property that
limit-cycle oscillations can be suppressed [49]. In addition, a particular choice of
the all-pass implementation gives rise to certain well-known WDFs called the
lattice wave filters [45,46].

Because of the crucial role of all-pass filters in several applications (including
the applications of this section), we dedicate the next section to a summary of
results in the literature in this connection.

DIGITAL ALL-PASS FUNCTIONS XVII

A digital all-pass function is of the form

b\r + few_ 1 z + ' " '
A / \ JT ill Jl (5.208)

Thus the numerator is the flipped version (or mirror image) of the denominator.
Therefore it is possible to implement it with only N multipliers. Figure 5.72 shows
how a first-order all-pass function

>*(*)= i*1. t*-i (5.209)

can be built using one multiplier. This structure has two delays even though the
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u(n) • y(n)

Fig. 5.72. A one-multiplier, two-delay implementation of the first-order all-pass function.

order is only unity. A structure with one multiplier and one delay can be obtained
as shown in Fig. 5.73.

For second-order all-pass functions it is once again possible to obtain
structures having only two multipliers and two delays. Figure 5.74 is a typical
example where

A(z} =
b2 + b^z l + z"2

(5,210)

A systematic way to generate first- and second-order all-pass structures with a
minimum number of multipliers is advanced in [71] based on the "multiplier
extraction approach." Four first-order structures and 24 second-order structures
are catalogued in [71]. More and newer structures can be found in [73]. Based on
these structures, one can readily obtain a cascade-form implementation of an all-
pass function having arbitrary order. In addition, for each such all-pass struc-
ture, closed-form expressions for roundoff noise variance are included in [71].
Sufficient information for scaling these structures in the L2-sense can be found
in [72].

An entirely different family of all-pass structures is the Gray and Markel
(untapped) recursive structures. The overall appearance is shown in Fig. 5.75,
where each building block is a digital two-pair characterized by a single param-
eter /cm, making a total of N parameters altogether. The building block has a

Fig. 5.73. A one-multiplier, one-delay implementation of the first-order all-pass function.
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X ( z j

Fig. 5.74. A two-multiplier, two-delay implementation for a second-order all-pass function.

U(z)-_>

Y(z)<_

kN

k z

'

ie-
kN-l

A(z) = 44Alz; ufz)
Fig. 5.75. The cascaded Gray and Markel lattice structures.

transfer matrix

m + m

and is drawn in Fig. 5.76. Note that only one multiplier and one delay are
required per stage in Fig. 5.75.

It can be shown that if ^(z) in Eq. (5.211) is replaced by

(l-fcm)/am -k
(5.212)

for arbitrary am, the transfer function A(z) in Fig. 5.75 remains unchanged. With
y.m = 1 — km we get the two-multiplier implementation of Fig. 5.77, whereas with
am = V(l - km)/(l + kj we get the structure of Fig. 5.78. Note that Fig. 5.78
requires four multipliers and is called the normalized structure. When each section
in Fig. 5.75 has the form of Fig. 5.78, the cascade of Fig. 5.75 are automatically
internally scaled in the L2-sense. The price paid for this is sections in the increased
number of multipliers.
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Fig. 5.76, The one-multiplier Gray-Markel lattice.

Fig. 5.77. The two-multiplier Gray-Markel lattice.

Fig. 5.78. The four-multiplier Gray-Markel lattice.

It has been shown by Gray [49] that building blocks of the form in
Figs. 5.76-5.78 are passive; hence Fig. 5.75 represents a passive implementation.
Therefore interesting properties can be established, including freedom from limit
cycles [49].

For a given all-pass function the coefficients km do not depend on whether we
use building blocks of Figs. 5.76, 5.77, or 5.78. Indeed, we can even use an
arbitrary combination of them. Given A(z) as in Eq. (5.208), the most important
question is, how does one compute (fcm, m = 1, 2, . . . , N} so that the structure of
Fig. 5.75 can be built? Here is an algorithm for computing all fem: let

AN(z) = 1 + + bNz (5.213)

(5.214)
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be the denominator and numerator polynomials of A(z). Recursively define the
polynomials

where

= Am(z) - kmBm(z)

km = Bm(co)/Am(co)

(5.215)

(5.216)

(5.217)

Repeated use of Eqs. (5.215)-(5.217) reveals the values of all km. For a proof of
this procedure see [74, 74a].

It can be shown that newer all-pass structures can be obtained by using the
building blocks of Fig. 5.55 as the two-pairs in Fig. 5.75. The resulting structures
are, however, not as simple and may not offer specific attractions.

Design of Arbitrary Transfer Functions Based on the
All-Pass Structure of Figure 5.75

Gray and Markel have developed structures that are extensions of Fig. 5.75 in
order to realize arbitrary (i.e., not necessarily all-pass) transfer functions. These
structures are called tapped cascaded lattice structures [47] (Fig. 5.79), where the
tap coefficients am are computed depending on the desired transfer function
numerator. These structures are known to exhibit low sensitivity and roundoff
noise and can be made free of limit cycles.

We conclude this section with an important remark. If the all-pass sections in
the low-sensitivity structure of Section XVI (Fig. 5.67) are implemented as in
Fig. 5.75 with building blocks (two-pairs) as in Fig. 5.76, the resulting struc-
tures are precisely the wave digital lattice filters studied in [75]. This observa-
tion once again shows the relation between structural passivity methods, wave
digital methods, and the Gray-Markel lattice structures.

u(n)

Fig. 5.79. The tapped cascaded lattice structure.
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XVIII ORTHOGONAL DIGITAL FILTERS

We saw earlier that filters based on passive and lossless building blocks tend to
have several excellent properties when word lengths are quantized . We also saw
that the LBR approach gave rise to wave filters as special cases. In addition, the
LBR approach also leads to certain structures having orthogonal building blocks
(Figs. 5.62 and 5.64); these structures are actually a class of orthogonal digital
filters [34,63].

Several other classes of orthogonal digital filter structures exist. Some of them
are truly orthogonal, and some have an orthogonal implementation of the
recursive part. The tapped cascaded Gray and Markel lattice of Fig. 5.79 has an
orthogonal recursive part if each building block is as in Fig. 5.78. The transfer
matrix of such a building block is an orthogonal matrix

(5.218)

and hence corresponds to a planar rotation.
A particular class of orthogonal filters that can be implemented with N delays

(N being the transfer function order) and that are highly pipelinable is described
in [76] and [50], These structures have the advantages of a conventional
orthogonal filter [34], but at the same time permit a high degree of concurrency
in implementation. In this section we describe only these structures, and we base
our discussion on the LBR framework [63].

Given any JVth-order OR BR transfer function H(z) ~ P(z)/D(z), assume that
we have constructed the complementary function G(z) = Q(z)/D(z) satisfying
Eq. (5.196). Define the vector

GN(z) =
H(z]

P(z)

(5.219)

(5.220)

for all co. Note that the components of an all-pass vector satisfy Eq. (5.196); each
component can be any function bounded by unity for z = ejto. It therefore leads us

G(z)J D(z)

Clearly GN(z) is an LBR vector (i.e., an all-pass vector) because

= 1

Fig. 5.80. Cascaded lattice realization of a vector all-pass function.
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to believe that this vector all-pass function can be realized by a vector version of
the Gray-Markel cascaded lattice of Fig. 5,75, illustrated in Fig. 5.80. This
indeed turns out to be the case. Each 3 x 3 building block in Fig. 5.80 has a
transfer matrixf

(I - kmk'm)1/2

— krakm

(5.221)

which is orthogonal and is analogous to Eq. (5.218) in the scalar-all-pass case.
Since Eq. (5.221) represents an orthogonal matrix, it can be written as a
succession of planar rotations. It can be shown that

" 1 0 0
0 cos a2 sin a2

0 sina2 — cosa2

— cos <*

0

0
COS QCj 0

0 1

where kt — — cos OLI and k2 = sin at cos a2. Figure 5.81 shows an implementation
of this building block. See Fig. 5.62 for the definition of the "0-bloek." In
Eq. (5.221) km is a column vector with two components. Given GN(z), the struc-
ture of Fig. 5.80 can be obtained once we compute km for all m. We do it by a
vector extension of the earlier recursive procedure described in Eqs. (5.215)-
(5.217). The details are as follows:

Given Gm(z) = Nm(z)/Dm(z), compute

km = Gm(oo)

Dm_1(z) = (1 - k'mkm)-1/2(Dm(z)

- kmDm(z))

(5.222)

(5.223)

(5.224)

If this process is repeated starting from m = N downward, we obtain all km

coefficients. The above recursion is initialized by

NN(z) =
P(z)

DN(z) = D(z)

because of Eq. (5.219).
In Fig. 5.80 the column vector ̂  is

No

(5.225)

(5.226)

(5.227)

Futher details concerning these and related structures can be found in [50]
and [63].

Matrix notation is reviewed in Section I.
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Fig. 5.81. A typical 3 x 3 building block in Fig. 5.80.

Consider the FIR transfer function
, -<Ar-D (5.228)

A direct-form implementation is shown in Fig. 2.1 (a), requiring N multipliers,
N — 1 delays, arid N -~ 1 adders. If H(z) has linear phase, then it can be any of
four types (Table IV in Chapter 2) and, because of the impulse response sym-
metry, requires only \N/T\ multipliers. Figure 2.1(b) shows a type 1, sixth-order
linear-phase FIR filter implemented in direct form.

If we introduce a quantizer after each multiplier mk, then the quantization
error ek(n) introduced at the output of each multiplier contributes to the output
noise variance. It is readily seen that the output quantization noise variance is

ff2 = PV<re
2 [Fig- 2.1(a)3 (5.229)

f \\N/2-]a2
e [Fig.2.1(b)3 (5.230)

where al is defined in Table 5.4 and the usual assumptions concerning noise
sources are made (Section III). If, however, we quantize not after each multiplier
but only after all additions have been performed, then

(j} = a2
e (5.231)

and is the smallest possible output roundoff noise we can hope to get. This
scheme requires double-precision adders to preserve the unquantized internal
precision before quantizing at the output. For large N, Eqs. (5.229) and (5.230)
imply large noise gain. We recall (Chapter 2) that for FIR filters the order N — 1 is
generally large. Thus, AT — 1 = 10 is considered low, whereas N — 1 = 50 is quite
common.

Scaling the Direct-Form FIR Structure. From Fig. 2.1 it is clear that the
signals that are inputs to multipliers are nothing but delayed versions of the input
signal. Thus as long as the input is scaled to be in the range (—1,1), there is no
possibility of internal overflow. To avoid overflow at the output node, we must
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insert a scale factor \/L (as we did for IIR filters, Sections IV, V), where

L = "Z \h(n)\ (5.232)
n-tj

Even though the choice of L as in Eq. (5.232) guarantees complete freedom from
overflow, it is too conservative. Less stringent scaling rules (and improved SNR)
can be obtained if further knowledge concerning the input is available, as
summarized in Table V.

Direct-Form Versus Cascade-Form FIR Filters A

It is clear from the above discussions that the direct form is an exceptionally
simple structure and offers very low roundoff noise. In addition, the scaling rules
are simple and well understood. Thus unlike IIR filters, direct-form FIR filters are
quite widely used, even if the order N — 1 is large.

However, there is the problem of coefficient sensitivity in FIR filters. For
direct-form filters Herrmann and Schuessler [77] have demonstrated that for
high filter orders and stopband sensitivity under quantization is rather large
while the passband sensitivity is generally acceptably low. The basic explanation
is that, as the filter coefficients are rounded, the transmission zeros on the unit
circle generally move off, causing a loss of stopband attenuation. (Notice however
that structures such as in Fig. 2.1(b) continue to offer exact linear phase in spite
of quantization of multipliers.)

An obvious attempt to remedy this situation is to use the cascade-form
structure. Any FIR transfer function with real-valued h(n) can be written in the
form of a product of sections of the form 1 + akz~l + bkz~~2, where ak and bk are
real. (If H(z) has odd order, one of the bk can be taken as zero.) The zeros on the
unit circle contribute to factors of the form 1 — 2cos(9k)z~l + z~2. Thus, upon
quantization of the multipliers the zeros on the unit circle can move only along
the unit circle, causing reduced stopband sensitivity. In view of the linear phase of
H(z), each factor of the form 1 + akz~l + bkz~2 (representing a zero not on the
unit circle) has associated with it the factor bk + akz"1 + z~2. As long as the aks
(and bks) in these factors are the same even after quantization, the linear-phase
property continues to be preserved. The major disadvantage here, however, is
that such a cascade of (first-and) second-order sections requires more multipliers
than [JV/2]. We can remedy this by implementing the factors 1 + akz~~l + bkz~2

and bk + afcz
 l + z~2 after combining (and rescaling) as

1 + ckz~l + dkz"2 + ckz~* + z'"4 (5.233)

which is a fourth-order linear-phase section requiring only two multipliers (ck

and dk). Thus the total number of multipliers is minimum, as in linear-phase
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direct forms. Obviously, phase linearity is still preserved in spite of quantization.
Such a structure, based on fourth-order sections, unfortunately has an unfore-
seen disadvantage: the section of Eq. (5.233) has very high zero sensitivity with
respect to the multiplier coefficients [77]. Accordingly, this kind of cascade form
has high passband sensitivity, even though the stopband sensitivity is low.

1 Section-Ordering Problems

A further disadvantage of cascade-form FIR filters is that the output round-
off noise depends very strongly on the ordering of sections. Thus the SNR at
the filter output under scaled condition depends crucially on this ordering [78].
(Schuessler has demonstrated the example of a thirty-second-order FIR filter in
cascade form for which the noise gain is 2.4 for one ordering and 1.5 x 108 for
another ordering!) Thus it is important to search efficiently for an optimal order-
ing; because there are so many sections, the number of possible orderings is
enormous and a direct search is impractical. Chan and Rabiner [78] have come
up with efficient procedures for finding a good ordering scheme.

In addition to the direct and cascade forms, several authors have proposed
novel FIR filter structures, some of which are known to exhibit low roundoff
noise, and sensitivity properties. Schuessler [79] has introduced structures based
on polynomial interpolation formulae; Jing and Fam [80] have advanced a class
of structures called the multiplicative FIR (MFIR) structures. In addition, the
novel concept of "space-time duality" has been introduced in [81] to obtain
efficient FIR implementations. Mahanta et al. [82] have studied FIR filter
structures with permuted coefficients in order to accomplish remarkable
reductions in quantization effects. In addition, the concept of structural passivity
introduced in Section XIV has recently been employed [65] to design certain very
low-sensitivity FIR structures (called the FIRBR structures).

B Estimation of Coefficient Accuracy Requirements

Unlike IIR filters, the problem of coefficient sensitivity in FIR filters is much
more tractable in the sense that it is possible to get estimates for the number of
bits per multiplier required to obtain a certain degree of accuracy in the frequency
response. A number of contributions pertaining to this problem have appeared in
the literature [83,84].

Chan and Rabiner [83] proposed a technique in 1973 for estimating the
frequency response error due to parameter quantization. Let H(ej<0) be the
frequency response of a type 1 linear-phase FIR filter given by

H(ej(a) = e-j<0(N ~ l }l2H0(e
Jm) (5.234)



5. Low-Noise and Low-Sensitivity Digital Filters 463

where
M

H0(e
j(0) = Y. bncosa)n

and, as in Chapter 2,

- 1

(5.235)
n = 0

After quantizing the coefficients h(n) in a direct-form implementation, the error in
H0(e

jm) is

E(eJ(0) = H0(e
j(0) - H0(e

jca) (5.236)

where HQ(eJtt>) corresponds to the response of the quantized direct form. Clearly,
E(ejM) can be written as

M

E(ejca) = ]T 2e(n)cos con + e(0) (5.237)
n= 1

where e(n) are the quantization errors in the impulse response coefficients
h((N — l)/2 — n). If each h(n) is represented by b bits as in Fig. 5.2, then e(n) be-
haves as in Table IV. Assuming rounding arithmetic, we have an upper bound
for E(ej<0] as follows:

\E(eja)\ < (2M + l)A/2, A = 2~b (5.238)

where 2M + 1 = N is the filter length. The above upper bound is pessimistic in
the sense that the error E(ej(0) will hardly ever attain this magnitude. Chan and
Rabiner have taken a more practical viewpoint to derive useful bounds. Even
though a filter structure, once quantized, remains fixed, a statistical viewpoint
gives us a preliminary guideline for choice of the required number of bits b per
coefficient h(n). Thus, assume e(n) to be an uncorrelated random sequence
satisfying all the assumptions of Section III concerning error sources. E(ejm) is
then a real-valued random variable and can be assumed to be Gaussian [12] for
large N. Its standard deviation is

GE(ej(0} = A

where

2

Notice that WN(co) is in the range (0,1), as shown in the plot of Fig. 5.82. Thus, the
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Fig. 5.82. A typical plot of WH(to) [83] (© 1973 IEEE).

0.5

standard deviation is bounded for all <z> by

(5,241)

Since E(ejm) is assumed to be Gaussian, we can say that E(ei<a] lies in the range
( — 3<%,3cr£) with very high probability. Based on this, Chan and Rabiner
[83] could actually derive estimates for the required number of bits b per fil-
ter coefficient h(n) for a specified tolerance requirement in the passband and
stopband.

Heute [85] has pointed out that the bound in Eq. (5.241) underestimates peak
errors in the frequency response. Gersho et al. [86] have shown that the new
bound due to Heute [85] overestimates the peak errors; in [86] are presented
new bounds based on some fundamental mathematical results concerning
trigonomentric polynomials.

A major point is that most of the literature available for estimating the number
of bits b assumes that the coefficients are represented as in Fig. 5.2. However, it is
often much more efficient to represent coefficients in canonic sign digit code
(CSD) [87], which permits the digits 1, — 1, and 0 in the representation. As an
example, 111101 in binary corresponds to 1000 —101 in CSD code, requiring
only three rather than five active bits (i.e., nonzero bits). If the digital filter
architecture is such that multiplications are to be performed by shift-and-add
operations, then CSD is an efficient way to represent coefficients. The true
meaning of "number of bits" in CSD should be taken as the number of nonzero
bits. With this definition, it is nontrivial to obtain simple formulas for the error
such as Eq. (5.239).
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LOW-SENSITIVE FIR FILTERS BASED ON STRUCTURAL PASSIVITY XX

In Sections XIII-XVI we saw that structural boundedness (or passivity)
enables us to obtain low-sensitivity digital filters with additional favorable
properties. We also saw that the LBR approach is sufficiently general and z-
doinain based. Hence it is possible to design structurally passive FIR filters
without referring to any continuous-time LC filters.

Most of the FIR filters that are of interest in practice have linear phase. There
are four types of linear-phase FIR filters (Chapter 2). Types 3 and 4 are used for
the design of Hilbert transformers and differentiators, and we will not consider
them here. Type 2 filters have the restriction that H(ejn) = 0, and therefore are
less general than type 1 filters. Therefore, in this section we shall consider only
type 1 linear-phase FIR filters. The frequency response of such a filter is

H(ejm) = e~ jo>(N ~ 1 }l2H0(e
jm) (5.242)

where H0(e
j<0) is a real function of co. Let us now consider a "complementary

transfer function" G(z), defined as

G(z) = z~(N ~ 1)/2 - H(z) (5.243)

Clearly,

G(ejm) = e-
Jto<N- 1)/2[1 - H0(e

J<0)'] = e~j(0(N'-^2G0(e
jo>) (5.244)

and G(z) is again a linear-phase transfer function of type 1. Figure 5.83 shows
typical plots of H0(e

jl°) and G0(e
J<0). Note that G0(e

jf°) has double zeros at the
frequencies cult co2, . . . , COM where \H(eJ(0)\ is equal to unity. In other words, G(z)
has factors of the form

Glik(z) = (1 - 2cos(cokK
1 + z~2)2 (5.245)

and can therefore be written as

G(z) = G2(z) ft (1 - 2cos(cok)z-1 + z~2)2 = G2(z)G,(z) (5.246)
fc = i

Let us now implement H(z) in the form

H(z) = z~( ] V"1 ) / 2 -G(z) (5.247)

where G(z) is implemented as in Eq. (5.246). Let us consider the effect of

f See reference [65].
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Fig. 5.83. Typical appearances of G0 and H0 [65] (© 1985 IEEE).

quantizing the multiplier coefficients 2 cos cok in Eq. (5.246). Clearly, the sign of
G()(ejf0} is not affected by the quantization, because the zeros of G0 represented
by Eq. (5.245) are all double. In other words, G0(e

jta) cannot become negative in
the passband of H(z). Consequently, H0(e

jm), defined to be

jj (pj<o\ _ i _ r (pj<o\ /•< 248)"Ov^ / — *JOVt' / \J.4.*ro)

cannot exceed unity in the passband. Thus H(z) is "structurally bounded" with
respect to all the multiplier coefficients involved in the implementation of G^z).
Next, G2(z) has no zeros on the unit circle, so quantization of multipliers in G2(z)
cannot affect the sign of G0(e

j(a). In conclusion, therefore, the implementation in
Fig. 5.84 is structurally bounded with respect to all the digital multipliers
involved. We call these structures FIRBR structures.

For completeness of the theoretical argument, we note that in Eq. (5.246) that
the zeros of G2(z), even though not on the unit circle of the z-plane, occur in
reciprocal pairs, thus if z0 is a zero, so is l/z0. Under extreme conditions of
multiplier quantization, a zero of G2(z), say, z0 = reje, may move onto the
unit circle. This is possible if r is very close to unity. Such zero pairs can
then be implemented by combining the factors 1 — 2rcos(0)z~1 + r2z~~2 and
r2 — 2rcos(0)z~1 + z'2 in such a manner that if z0 moves onto the unit circle
because of quantization, then so does l/z0. Thus the zeros (of the quantized

Fig. 5.84. The FIRBR implementation [65](© 1985 IEEE).
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implementation) on the unit circle are still double zeros; hence H(z) is still
structurally bounded.

The FIRBR implementation requires the same number of multipliers as the
direct form and one adder more than the direct form, which is a negligible
overhead. According to our arguments in Section XIV, the FIRBR structure in
Fig. 5.84 is expected to have low sensitivity. We give an example to show this.

An Example B

A thirty-fourth-order wideband lowpass FIR filter with equiripple passband
extending from 0 to O.Src and equiripple stopband extending from 0.971 to n was
designed with the McClellan-Parks (MP) algorithm [88]. The resulting transfer

1.002
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0.994
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0.986

0.982
0.0 O.I67T 0.32 IT 0.487T 0.647T 0.8 IT

1.002

0.998

0.994

0.990

0.986

0.982

ideal

(b)

0.0 0.2ir 0.47T 0.67T O.STT TT

Fig. 5.85. Passband response of the quantized implementations (5-bits per multiplier)
[65] (© 1985 IEEE).
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function H(z) has maximum magnitude of unity at the following frequencies:

co0 = 0.0, MI = 0.1182?!, a)2 = 0.2367T, OJ3 - 0.354n;

<a4 = 0.472?i, cos = 0.5887T, o>6 = 0.69871, <»7 = 0.7847t (5.249)

Thus,

Gt(z) = (1 0 0 - 2cosK)z-1 + z~2) : (5.250)

with degree 30. G2(z), therefore, is a fourth-order linear-phase filter.
At this point we have several choices for implementing G(z). Instead of

implementing G(z) with all factors of the form of Eq. (5,245) grouped together, we
may pick a subset of these and group them together. For example, instead of

1.10

0.86

0.62

0.38

0.14

( a )

-ideal

5-bit
Direct Form)
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0.86 -

0.62 -

0.38 -

0.14 -

0.0 0.27T 0.47T 0.67T 0.8-rr rr

Fig. 5.86. Overall response of the quantized implementations [65]
(© 1985 IEEE).
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using Eq. (5.250) we could define

G,(z) - (1 - 2cos(a)l)z'1 + z 2)2(l - 2cos(co3)z
 ! + z~~

x (1 - 2cos(<w5)z-1 + z ..... -2}2(\ - 2cos(<»7)z~1 + (5.251)

and we would redefine G2(z) accordingly. This flexibility allows us to have a
tradeoff between the passband and stopband sensitivities. In the example under
consideration, we define Gx(z) to be as in Eq. (5.251) and we implement H(z) as
in Fig. 5.84.

Figure 5.85 shows the passband frequency response of the direct form and
FIRBR implementations with 5 bits per multiplier, compared to the ideal
frequency response. Figure 5.86 shows the entire frequency response with 5 bits
per multiplier. It is clear from these implementations that the FIRBR structure
has excellent passband sensitivity properties. Results on roundoff noise in
FIRBR structures can be found in [65].

In any IIR filter implementation we always have feedback loops, and in order
to use practical word lengths, we always have quantizers in the loops, as
explained in Section III. A typical situation is shown in Fig. 5.87 where Q is a
quantizer in a feedback loop and T(z) is the transfer function as seen by the
quantizer. Since Q(-) is a nonlinear operation, stability of the system is not
guaranteed, even though the ideal system (with no quantizer) may be stable.

Such instability due to (nonlinear) quantization effects can produce unde-
sirable oscillations called limit cycles. Instructive examples of this are in [4]. Even
if the quantizer is a magnitude-truncation type so that \Q(x)\ < \x\, it is still
possible to have limit cycles because of the gain that T(z) might offer. Excellent
and comprehensive results are in [89,90].

Two types of limit cycles can be distinguished: (1) granular or roundoff and
(2) overflow. Granular limit cycles occur because of the quantization error
e(n) — Q[x(ri)] — x(n), which behaves as in Table IV. These oscillations are

Fig. 5.87. A closed loop with quantizer nonlinearity.
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Q ( x )

--1

Fig. 5.88. Overflow characteristics in 2's complement arithmetic.

usually "small" (but large enough to be objectionable), and one can often place
bounds on their amplitudes [91]. Overflow oscillations are the result of inter-
nal signal overflow. Thus, if \x(n)\ > 1 in a fixed-point fraction implementa-
tion, then, because of overflow, Q\_x(ri)] is drastically different from jc(n), as
depicted in Fig. 5.88 for 2's complement arithmetic. Since an overflow is a non-
linear operation, it can lead to oscillations. These oscillations are large amplitude
and must be avoided.

The most straightforward approach to avoiding overflow oscillations is to
avoid overflow. This in turn can be accomplished by ensuring that all crucial
internal signals (multiplier inputs) are most conservatively scaled ("sum-
scaling," Table V). However, such an approach leads to an enormous decrease
of SNR for b bits. If we instead take a statistical approach to scaling and
reduce overflow probability (as in Section V), then we still have some chance
of overflow. Such overflow should not cause overflow oscillations (it has been
shown to be possible to avoid these oscillations). Wave digital filters [52], lattice
and orthogonal filters [49,34], minimum-norm and normal digital filters [69],
and "minimum-noise second-order filters" [70] are structures that can be
designed to avoid overflow oscillations. Turning our attention now to granular
oscillations, we can show that some of these same structures can be made free
of such oscillations simply by restricting the quantizers to be the magnitude-
truncation type.

All the above-mentioned structures that have the potentiality to suppress limit
cycles are more complicated than the simple cascade-form structure. For a
second-order direct-form section, Classen et al. [92] have shown that with
truncation arithmetic the probability of limit cycles is very small. Mitra and
Lawrence [93] have advanced a set of arithmetic rules (which are neither simple
truncation nor rounding) for the inherently simple second-order direct-form.
These rules suppress all zero-input limit cycle oscillations but are somewhat
involved.

When discussing limit cycles, one should clearly distinguish between oscilla-
tions in absence of an input (zero-input limit cycles) and oscillations in presence
of some input signal. Most of the results available thus far and mentioned in
the above paragraphs are related only to zero-input limit cycles.
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A second-order IIR transfer function of the form

471

Overflow Oscillations A

(2.252)

is known to be stable (i.e., all poles inside the unit circle) when a, and a^ lie within
the triangular region shown in Fig. 5.89(a). However, in an actual 2's complement
fixed-point fraction implementation as in Fig. 5.90, the effects of possible
overflow at the adder output w(n) can cause oscillations. We can show [94] that if
a i and a2 belong to the shaded diamond region of Fig. 5.89(b), there cannot be
any overflow under zero input with arbitrary initial state. If, however, a1 and a2

do not belong to this region, then there always exists an overflow limit cycle for
some suitable internal starting state, even with zero input. The shaded area in

stability region

overflow-free region

Fig. 5.89. Stability region and overflow-free region for second-order IIR filters.

w(n)

> y ( n )

Fig. 5.90. Second-order section with quantizer.
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Fig. 5.89(b) is characterized by

Kl + Vh\ < (5.253)

which represents a necessary and sufficient condition for avoiding overflow
oscillations in second-order direct-form filters using 2's complement arithmetic in
absence of an input.

Thus to guarantee freedom from limit cycles, we must find a different structure,
even if it involves additional multipliers.

1 A Fundamental Result Concerning Overflow Oscillations

Mills, Mullis, and Roberts [70] showed that certain state-space realizations
can be made entirely free from zero-input overflow oscillations due to 2's
complement arithmetic. Referring to Fig. 5.91, where A represents the state-
transition matrix [Eq. 5.96(a)], we have the physical set of equations

= Ax(n)

1)1

(5.254)

(5.255)

instead of the ideal equation \(n + 1) = Ax(n). Assume that Eq. (5.254) is an
exact equation (not involving any rounding or overflow) and that the possi-
bility of overflow is accounted for by Eq. (5.255). The actual interpretation of
Eq. (5.255) is

xk(n + 1) = Q[wk(n + 1)] (5.256)

where the subscript k refers to the /cth component of the vector and {>(•) is as in
Fig. 5.88. Since \Q(x)\ < \x\ for any x, Q(-) can be regarded as a "passive"
operation. If the matrix A is also "passive" in a certain sense, then the closed loop
of Fig. 5.91 cannot sustain overflow oscillations^ The following result is derived
in [70].

u(n) = 0

X(n)

Fig. 5.91. The state-space feedback loop with quantizer.

+ The term "passive" has not been used in [70], but we believe that the conditions in [70] are closely
related to the role of passivity in limit-cycle suppression [66,67].
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Theorem 5.3. Let A be such that D — ArDA is positive definite for some
diagonal matrix D with postive elements. Then there can be no overflow
oscillations with 2's complement arithmetic under zero-input conditions.

For the case of second-order stable systems with

A =
a\\ al2

«21 «22

the above condition for absence of overflow oscillations reduces to the following
simple conditions:

i. either a12a21 ^ 0,
ii. or, if a,2 «2i < 0»tnen lf lu ~~ a22\ + det(A) < 1.

Because of its simplicity, this condition is extremely useful and attractive.
Some very interesting structures have been proposed by various authors before

Theorem 5.3 was available. However, the theorem serves to unify all of these
earlier results. We now consider some specific examples of practical structures
satisfying the conditions of the theorem. Notice that if A satisfies these con-
ditions, it continues to satisfy it even if a diagonal similarity transformation is
applied. Thus, scaling does not affect the above result.

Minimum-Norm Digital Filters 2

Consider a state-space structure with state transition matrix A. The norm of A
(also called the induced L2-norm) denoted ||A||2 is defined by

I|A||2 — m a x I r I (5.257)
x ^o \ x'x /

The quantity in Eq. (5.257) is nothing but the maximum eigenvalue of AfA. The
smallest possible value that ||A||2 can ever attain is equal to the maximum-
magnitude eigenvalue of A. For a stable system all eigenvalues of A have
magnitudes strictly less than unity. Barnes and Fam [69] have defined a
minimum-norm structure to be a state-space structure with the property that
jjA |2 is precisely equal to the smallest possible value; that is,

I|A||2 = |A(A)|max (5.258)

where A(A) denotes an eigenvalue of A. For such structures it can be shown [69]
that no overflow limit cycles are sustained under 2's complement arithmetic. The
reason is that such structures satisfy the conditions of Theorem 5.3.

Normal-Form Digital Filters 3

Normal-form digital filters are structures with the matrix A satisfying the
condition ArA = AAr. This condition implies that the norm of A is a minimum



474 P. P. Vaidyanathan

[as in Eq. (5.258)] and hence overflow oscillations are suppressed. A second-order
normal form has state transition matrix

, a
where the poles of the transfer function are given by /i i2 = cr ± jft. If the poles are
real, then the matrix

A = I1 ° I (5,260)
0 /2

serves as a normal realization. Higher-order implementations free of limit cycles
can be obtained simply by cascading such second-order sections (and possibly a
first-order section). Reference [69] contains a direct state-space approach for
higher-order normal forms.

4 Minimum-Noise Second-Order Sections

We saw in Section X that minimum-noise, second-order, state-space re-
alizations satisfy an = a22 [Eq. (5.130(a))]. Thus, the conditions of Theorem 5.3
are satisfied, and these structures are free from overflow oscillations under 2's
complement arithmetic.

5 Wave and Lattice Digital Filters

Based on the notions of pseudopassivity, wave filters can be made entirely free
from limit cycles of both types [52] (granular as well as overflow) as long as 2's
complement magnitude-truncation rules are used. These claims hold true
regardless of the filter order N and are therefore strong results. Similar results
have also been established for cascaded lattice digital filters [49] and more
generally are known to hold for orthogonal digital filters [34]. Mills, Mullis, and
Roberts [70] have shown the connection between these results and Theorem 5.3,
which therefore leads to a unified outlook.

6 The Role of Passivity in Limit-Cycle-Free Filters

It has recently been shown [66,67] that several digital filters can be classified
under the framework of structural passivity and that properties relating to
freedom from limit cycles can be established based only on this. The major
conclusion is that structural passivity leads to low-noise, low-sensitivity
structures that are free from limit cycles, as evidenced by several well-known
special cases.
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Closed-Form Expressions For Normal-Form Digital Filters 8

In view of the advantages that have been outlined above, normal forms play an
important role in digital filter design. For the second-order transfer function H(z)
it is possible to obtain the quantities A, B, C, D of a normal structure based on
closed-form expressions advanced in [39]. Let

H(z) =
P(z)

have poles A = a + jfi and 1* — a — jfl. Define

r =

Then the state-space realization

"a -p~
A =

a

cos v —

C =

D = tf (oo) = q0

rsinf

(5.261)

(5.262)

(5.263)

(5.264)

(5.265)

(5.266)

(5.267)

(5.268)

that is,is a normal-form realization. Furthermore, it is scaled in the L2 -sense
the K-matrix of Section X satisfies Xtl = K22 = 1.

Even though normal structures are not the same as minimum-noise structures,
they do have very low roundoff noise in most cases. Further results and
alternative closed-form expressions for normal-form filters, minimum-noise
filters, and suboptimal filters are in [39-41].
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The solution of a mathematical problem is often made more tractable when the
problem is first transformed into a different domain. The Fourier, Laplace, and z-
transforms are well-known transforms (see Chapter 1). So when a signal in the
time domain is to be processed, the task may often be more easily or quickly
accomplished by first transforming the signal into the frequency domain. Al-
though this is theoretically true, such an approach was very often avoided in
the past because of the added labor of transforming between the two conju-
gate domains. The added computation had often made this approach less
than attractive. Even with high-speed digital computers, the transform domain
processing was time consuming and real-time implementation was deemed al-
most impossible. All this was changed when Cooley and Tukey [1] introduced
an efficient computational algorithm for the Fourier transform, which was aptly
named the fast Fourier transform (FFT). Since then, many discrete transforms
based on different sets of basis functions have been examined. The basis func-
tions for some of these transforms date back to the early 1900s: for example,
Walsh functions [2] and Haar functions [3]. Others, such as the discrete cosine
transform (DCT) [4], rapid transform (RT) [5], and discrete sine transform
(DST) [6] are more recent developments.

As for a mathematical problem, where the choice of a transform depends on
the nature of the problem, engineers also have to choose a transform that is
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appropriate for the signal processing task at hand. Very often, however, this
choice is determined not by any objective criterion, but by the user's own
familiarity with the transform. This chapter briefly discusses the theoretical bases
of the various transforms, their basic properties, performance criteria, and
various fast algorithmic implementations so that sufficient objective information
is available for the user to make an informed choice.

The next section is devoted to the theoretical aspects of unitary transforms.
Section III discusses the optimal Karhunen-Loeve transform. The suboptimal
transforms are grouped into sinusoidal ones in Section IV and nonsinusoidal
ones in Section V. Section VI discusses various performance criteria that form a
basis for selecting a particular transform. Section VII summarizes the chapter as
well as the computational complexities of the various algorithms.

Consider a real signal x(t) in the time domain. If {0fc}, k — 1,..., oo, is a
complete set of basis functions in the signal space, then

x(t) = £ Xk<l>k(t) (6.1)

If the signal is sampled at a regular time interval Af, then the z'th sample can be
similarly expressed:

oo

When the signal is of finite duration, such that only N samples are of interest,
Eq. (6.2) reduces to the finite case:

N

fc= 1

where xt = x(i&t),.<t>ik = $ft(iAt), and the Xk are the coefficients of expansion. (See,
for example, [7].) In matrix notation Eq. (6.3) is reduced to

x = <f>X (6.4)

where x = {xj,. . . , XN}J, X = {Xl,..., XN}T, and $ is the N x N matrix

(11 012 ••• 4>1N

<t>= (6.5)

Equation (6.4) states that x, the "time" signal, is represented as a linear
combination of "frequency" functions <pik, with coefficients given by the vector X.
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X is said to be the transform of x. All the properties of the transform are
contained in the matrix $. If 4> is nonsingular so that

where the superscript f denotes complex conjugate transpose, the transform is
said to be unitary. If, in addition, (f> is real, and the superscript T denotes trans-
pose, then

0T0 = I (6.7)

Unitary transforms have a preeminent position in the realm of discrete
transforms because they are easy to invert and because they preserve energy. The
vector

X^-'x (6.8)

is said to be the transform of x. Many properties of integral transforms are
directly transferable to the discrete case. These properties form part of the
discussion on specific discrete transforms.

A discrete transform is not necessarily a unitary transform, since the matrix $
need only contain linearly independent row vectors. We concentrate only on
unitary transforms and begin by looking at what is considered the optimal
transform, the Karhunen-Loeve transform.

THE OPTIMUM KARHUNEN-LOEVE TRANSFORM III

If $, is used to denote the ith column of <f> and X, the ith component of X,
Eq. (6.4) reduces to

x = X& (6.9)
1 = 1

There are many ways of choosing the complete set $£; one is to effect a maximum
amount of decorrelation in the coefficients Xt. This is the basic premise of the
Karhunen-Loeve transform (KLT). If Eq. (6.9) is truncated so that x represents
an approximation to x in the equation

x(f) = *,*, (6.10)
fc= i

a measure of the approximation is given by the mean-square error (MSB)

£ 0j[xxT]<J= £ *}E[xxT]4, (6.11)
D+l J j = D + l

where E is the expectation operator, and the covariance matrix is

^ = £[XXT] (6.12)
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assuming the mean of x is zero. The minimization of e in Eq. (6.11) subject to the
normality condition for the $, leads to the eigenvalue problem

(*-^1)^ = 0 (6.13)

Thus the basis vectors 0£ are the eigenvectors of the covariance matrix M*. This set
of vectors forms the bases for the KL expansion. We note also that the MSB due
to truncation is

€ = £ A, (6.14)
i = D + 1

Thus the error of truncation is minimized by ranking the eigenvalues ̂  and the
corresponding eigenvectors $,- in decreasing order. (For more detail, see [8].)

Since Eq. (6.13) indicates that ̂  are the eigenvectors, the corresponding matrix
$, representing the transform, diagonalizes the covariance matrix fy for the
signal x. This property is both a blessing and a curse for the KLT, as can be
seen by the following lists of advantages and disadvantages.

1 Advantages

1. It completely decorrelates the signal in the transform domain.
2. It minimizes the MSE in bandwidth reduction or data compression.
3. It packs the most energy (variance) in the fewest number of transform

coefficients.
4. It minimizes the total representation entropy of the sequence, which

is linked to the rate-distortion criterion of transform performance (see Sec-
tion VLD).

2 Disadvantages

1. Each data sequence requires its own KLT basis set.
2. The covariance matrix diagonalized by the KLT has to be estimated, or else

a large amount of sampling has to be done.
3. There is considerable computational effort in generating the KLT basis set.
4. Even after the basis set is obtained, there is no readily available fast

algorithm for implementation.

On balance, the KLT is often used not in the practical sense but as a measure of
performance for other so-called suboptimal transforms. If we assume that the
signal sequence has a certain statistical distribution (e.g., Markov-1), it is possible
to generate deterministic basis sets that will approximate the KLT performance
in the limit [9].

In Fig. 6.1 the basis functions for the KL expansion are shown for JV = 16. The
sampled signal is assumed to have a Markov-1 statistic with adjacent correlation
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Basis function
Number

0
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Fig. 6.1. KL basis functions for N = 16 and p = 0.95 for a Markov-1 signal.

coefficient p = 0.95. The corresponding covariance matrix is

Note the similarity between these functions and sampled sinusoids.

(6.15)

As pointed out in the last section, the KLT, which is optimal in the sense of
decorrelation, is difficult to implement, mainly because the basis functions are
essentially signal dependent. In most signal processing situations deterministic
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basis functions are more practical. Since these deterministic functions are not, in
general, the eigenvectors of the covariance matrix of the signal in question, the
corresponding transforms are necessarily suboptimal. In this section we shall
discuss in more detail those suboptimal transforms based on sinusoidal functions.
The discrete Fourier transform (DFT), which belongs to this category, has
already been developed in Chapter 1. Fast algorithms for efficient implementa-
tion of the DFT are developed in Chapter 7.

A Discrete Cosine Transforms

When the basis functions in Eq. (6.3) are cosine functions, the signal is said to
undergo a DCT. The first such transform was developed in 1974 by Ahmed et al.
based on a class of discrete Chebyshev polynomials. A symmetric version of the
DCT was later developed by Kitajima (1980). By reversing the roles of the indices
k and i in the basis functions and by phase shifting the basis functions, Wang
(1984) was able to develop and systematically study the fast implementations of
these DCTs.

There are four types of DCTs, defined as follows:

/2TDCT type I ^ = [C']tt = /-1 c,-ck.

DCT type 11 0* = [CI1]»

DCT type III 0iJks[CIH]tt

N\ ' V N

I

= 0, . . . ,AT-1

(6.16)

where

if i ̂  0 or N
Ci ' ^ i f i = 0 or AT

We note that the normalization factor ^J2/N and the scale factors ct are
included in the input and transform sequences in all of the flow diagrams shown.

Since the basis functions are real, only real arithmetic is involved in the
computation of DCTs. A storage-efficient way of implementing [C1!] and [CHI]
was first examined by Haralick (1976). Several ways of implementing [C11] via the
FFT are described in Appendix A. Chen et al. (1977) provided the first significant
sparse-matrix factorization with a recursive algorithm. Wang (1984) evaluated
the various DCTs through what are called W-transforms, and Lee (1984) studied
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the decimation-in-time (DIT) version of [C11]. Yip and Rao (1984) extended the
analysis to all DCTs.

Figure 6.2 shows an N = 16 flow diagram based on sparse-matrix factorization
of [Cu] developed by Chen et al. (1977). Note the modular and recursive nature
of the algorithm. The number of arithmetic operations in this algorithm makes it
almost three times as fast as the corresponding FFT of the same size and six times
as fast as the conventional way of evaluating the DCT with a 2JV-point FFT. The
transform sequence is obtained in the bit-reversed order (BRO). A real-time 32-
point DCT processor using CMOS/SOS-LSI circuitry has been built based on
this algorithm (see [16]). For N = 2L the recursive sparse-matrix factorization is

X = [A(L)]x (6.17)

where X and x are the properly scaled and normalized transform and input
sequences, respectively. If x is in natural order (i.e., 0, 1,2,...), then X will be in
BRO. The transform matrix A(L) is recursively generated as

~[A(L - 1)]
0

0
[R(L - 1)]

L > 2 (6.18)

where [(•)] means (•) is a recursively generated or index-dependent matrix, 0

Transfom sequence
_, ^

OjXc(0)N = 8 0JX C (0)N=16
I
I

/32

Fig. 6.2. Signal-flow graph for efficient computation of the DCT for N = 4, 8, 16 [13]. For
notational simplicity, the multipliers cO and s0 stand for cos 0 and sin 0, respectively.
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means a zero matrix, and [R(L— 1)] is factored into 2L—3 sparse matrices. Thus

[R(L- 1)] = [MilCMjD-CM^.a] (6.19)

and
N/2

N/2
(6.20)

where IM is an M x M diagonal unit matrix and 1M is an M x M opposite
diagonal unit matrix:

"0 •-- 1

0

The starting matrix for A is

In Eq. (6.19) the factor matrices are of four distinct types1

i. [MJ the first
ii. [M2L-3] the last

iii. [Mg] the odd-numbered ones ([M3], [M5], etc.)
iv. [Mp] the even-numbered ones ([M2], [M4], etc.)

For example,

sin
32

sm
32

sin
571

'32
cos

5n

'32

. 13?r 137T
sm~3T cos^

. 3ft 37t
'Sm32 C°SS

Ibr
— sin -

lln
cos

— sm
771

32

71

C°S32

9n

cos
771

'32

— sm
157T I57t

cos —

f For details, see [13] or [7].
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7T
- cos —

4

3n
cos —

4

1 1
1 1

- cos — cos —
4 4

cos — cos —
4 4

7T
cos —

4

n
cos-

4

71
- cos —

. 7T
sin

3n
cos —

371cosy
371

(6.21)

where all entries not shown are zeros.
Fast algorithms can also be generated for all four types of DCTs by DIT

(i.e., rearranging and combining nonsequential input points for processing).
For N = 2L Yip and Rao (1984) have provided systematic factorization, which
reduces the computational complexities of Chen's and Wang's algorithms. The
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relevant equations are summarized as follows:

(i) [C1], type I DCT

X(k) = G,(fc)+ //,(&)'

X(N -k) = G,(fe) - H,(fc)
(6.22)

where
N/2

i = 0

I x(2i - 1)]

and x( —1) = 0.
Here Cl

k is defined as cos(in/k). Note that G,(fc) and H,(fc) are both [C1] of half
the original size. This successive reduction in size is the key to the fast algorithm.
Similar features persist for the remaining DCTs.

(ii) [C11], type II DCT

X(k) = Gn(k) + Hn(k)\ ^ N_

X(N - k - \) = Gn(k) - Hn(k)\ ' '""2
(6.23)

where Gn(k) =
JV/2^1

•2AT
Tl S W2/ x(2i

(iii) [Cm], type III DCT

1

Hm(k + 1)]

-,..., ^

where
N/2

N/2

= E x(2i (6.24)

and x(-1) = x(N) = 0. Note that Hin(k) is [Cin] of size N/2 and G,,,(fc) is [C1]
of size N/2.
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(iv) [CIV] type IV DCT

X(k) =

X(N - k - 1) =

1
[GIV(/c)

where

?2k+\
'4JV

JV/2-1zo
JV/2-1

i = 0

Hlv(k)l

-l (6.25)

andjc(~l) = 0.
The flow diagrams for N = 16 are shown in Figs. 6.3-6.6. Note that for [CII!]

and [CIV], decimation occurs after one stage of preprocessing.

Fig. 6.3. DCT type I, N = 16. Here C, = (2cos;7t/16)~'.



[C11] N=16

[c"l

= 8

Fig. 6.4. DCT type II, N = 16, Here Cj = (2cosjn/32Y

[CMI] N=16

Fig. 6.5. DCT type III, N = 16. Here C, = (2cosyn/32)~ '.
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N=16

N= 8

[c'v

N=8

X( lc )

Fig. 6.6. DCT type IV, N = 16. Here C, = (2 cosju/M)'' and Sy = (2 siny«/64)~'.

Discrete Sine Transforms B

When the basis functions in Eq. (6.3) are sine functions, the signal is said to
undergo a DST. Jain [6] first proposed such a transform when he diagonalized a
matrix asymptotically equivalent to the covariance matrix of a Markov-1 signal
and found that the eigenvectors were the DST basis functions. Kekre and
Solanki [17] developed another version of DST in their study of unitary trigno-
metric transforms. Wang [11] has also investigated the fast implementation of
these DSTs.

The four types of DSTs are defined as follows:

DST type I

DST type II

= [Sl]tVt =
N

sin

i, k= 1 ,2 , . . . , JV- 1

— [S Jik — I \r

i,k=\,2,...,N
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DST type III fa =

DST type IV fa EE [SIV]tt =

i,k= 1 ,2, . . . , AT

sm I ! /

/:, k = 1,2,. . . , A/
(6.26)

where

if i^QorN
if / = 0 or A/"

A comparison between Eq. (6.16) and Eq. (6.26) reveals the similarity between
the two sets of transforms. As would be expected, a fast implementation similar to
the algorithm of [13] exists. Yip and Rao [18] developed such an algorithm.
DIT algorithms were developed later (see [15]). The speeds of computation
of the DSTs were comparable to, and in some cases faster than, those for DCTs.
Figure 6.7 shows the flow diagram of the DST developed by Yip and Rao for
N = 16. (Note the actual size of the transform is N — 1 or 15 in this case.)

For N = 2L, with notation consistent with Eq. (6.18), a DST of size N — 1 has
the following recursive sparse-matrix factorization for L > 2:

0

where1

and

[Djv/2 - 1 ] = Ar/4 , jv/4 1 1 (6.27)

} The matrix factor [_DN/2- i] was left out in the original paper [18].
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Fig. 6.7. FDST flow graph: N = 3, 7, 15, cj/k = cos(jn/k), sj/k = sin(jn/k).

Matrices [Ajy^] of odd size are recursively generated by Eq. (6.27) with
[AJ = 1, and matrices [Ajv] of even size are generated by the equation

T A i ro i l ' (2»[A*] = [IVII sm i, fe = 0, 1,. . . ,N- 1 (6.28)

where [P^] is a permutation matrix. The matrix can be further factored into
sparse matrices (see [18]). The transform sequence is, as before, in BRO.

The following equations provide the basis for the DST DIT flow diagrams in
Figs. 6.8-6.11:

(i) [S1], type I DST

X(k) = G,(fc) + #,(*)

X(N - k) = Gt(k) - H^k)
(6.29)

and
N/2 - i

= Z (-l)'x(2i
i = o
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Fig. 6.8. DST type I, N = 16. Here C, = (2 cos;TI/16)

S1 1] N = 16

Xfic)

Fig. 6.9. DST type II, N = 16. Here C} = (2 cos jn/32)
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xli)
S"1] N=16

kill] —
i-5 J

Fig. 6.10. DST type III, N = 16. Here C; = (2 cos jn/32)

N=16

(si

N=8

Fig. 6.11. DST type IV, N = 16. Here C, = (2cosyrc/64)
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1 JV/2 - 1

nfc
'iV/2

where S'k is defined as &m(in/k). Note that both G,(fc) and H,(fe) are DST type I
of size N/2.

(ii) [S"], type II DST

where

+

1 */?
'H(^) = s)r2i-~T X Cx(2' —1) + x(2z

2Cjy ,- = 1

N/2

(6.30)

(iii) [S111], type III DST

where

G,n(fc) =
N/2

= l , 2 , . . . , y - 1 (6.31)

JV/2 - 1

E [x(2 JV/2

Note that while Gm(k) is a type III DST, Hm(k) is a type I DST.
(iv) [SIV], type IV DST

X(N-k

= 0,l , . . . ,y-l (6.32)
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JV/2-1

N/2- 1

and x(N) = 0. Although Glv(k) is a type IV DST, HIV(/c) is a type II DST.
In both [SIU] and [SIV] the decimation process is performed after one stage of

preprocessing on the input data.

Inverse DCT and DST C

In both DST and DCT, because of the orthogonality and symmetry properties,
the inverse transforms are directly related to the forward transforms and
therefore have similar sparse-matrix factorizations. We summarize these as
follows:

[C'r^CC1]; [CT^CC™]; [C'v] ~l = [CIV]
(6.33)

[ST1 = [S1]; [S'T1 = [Sin]; [SIV]^ = [S1V]

The sinusoidal discrete transforms discussed in Section IV are suboptimal in
terms of deeorrelating the signal. They are, however, asymptotically equivalent to
the KLT under some constraints of signal statistics. There are, nevertheless, other
transforms that simplify computation when decorrelation is not the prime
objective. For example, the discrete Walsh transform (DWT) and Walsh-
Hadamard transform (WHT) require no multiplications since the values of the
basis functions are equal to ±1 [19]. This feature makes WHT capable of
extremely fast implementations. The Haar transform (HT) (see [20]) basis
functions are particularly suitable for coding edges for the transmission of
images. Irrational numbers such as V2 are used in the HT. When these irrational
numbers are replaced by rational numbers under a special rationalization
scheme, the resulting transform is said to be the rationalized Haar transform
(RHT) (see, e.g., [21]). The uniform changes in the basis functions of the slant
transform (ST) [22] make it a good candidate to represent the gradual brightness
changes in TV images. Attempts to simplify the DCT by replacing some of its
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elements by integers led to the development of the C-matrix transform (CMT)
[23], which can also be applied to image processing. Finally, RT, a singular
transform with no theoretical inverse, has been found useful in character
recognition because of its invariance properties with respect to small shifts and
rotations [24].

Before discussing each of these nonsinusoidal transforms in some detail, we
point out that the concept of frequency associated with the sinusoids has to be
generalized. The term "sequency" is used to denote one half of the number of zero
crossings per second (zps) in the basis functions (see, e.g., [24, 25]).

A The Walsh-Hadamard Transform

A complete set of orthonormal rectangular functions developed by Walsh
(1923) for the normalized interval of [0,1] can be used as basis functions in
Eq. (6.9). The resulting transform is the WHT. The basis functions for N = 16
are shown in Fig. 6.12. The functions can be ordered according to the sequency
(i.e., zero crossings per unit interval), according to the dyadic representation,
(Paley or dyadic order), or according to the recursive generation of these func-
tions from Rademacher functions [26]. The basis functions shown in Fig. 6.12
are given in Walsh or sequency order. Half of these functions are even, and half
of them are odd about the midpoint of the range [0,1], The even ones are called
cal, and the odd ones are called sal in analogy to the cosine and sine functions
for sinusoids. The corresponding discrete Walsh functions constitute the
Walsh-Hadamard matrices. Different orderings of these matrices provide dif-
ferent ways of implementing the fast transforms. Figure 6.13 shows the flow
diagram of WHT in sequency order for N = 16, and Appendix C contains a
complete program implementing Fig. 6.13. The similarity between this and the
decimation-in-frequency FFTs in Chapter 7 is obvious. There are, however,
no twiddle factors or multipliers in the WHT. Note also that the order of the
output points is in BRO.

Just as sinusoids are solutions to differential equations in the continuous
domain, Walsh functions are solutions to so-called dyadic differential equations.
If wal(m, t) is used to denote a Walsh function defined for 0 < t < 1, where m
represents the sequency, then

wal(m, ?)wal(/i, t) = wal(m © h, t) (6.34)

where m © h denotes bit-by-bit addition of m and h modulo 2. This closure
property of Walsh functions under multiplication implies the possibility of
bandwidth reduction by a factor of 2, compared to sinusoids for signal
transmission. Other properties are associated with the use of Walsh functions in
the transmission of information. The relevant theory and practical applications
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Fig. 6.12. Walsh functions in sequency order for N = 16.

are dealt with in great detail in [26]. (See also [27].) The discrete Walsh-
Hadamard functions for a size N = 2L transform are given nonrecursively
by [28].

wal(m,n) = -—(— 1)q(m,n) (6.35)
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WHT

4

12.

2

to
6

14

13

X(k)

• 14

• 15

Fig. 6.13. WHT for N = 16, sequency ordering.

where

q(m, n)

q(m, n)

L - 1

Z
i = 0

Z

mod 2

1
ini

Jmod

for sequency or Walsh ordering

for natural or Hadamard ordering

In Eq. (6.35) m, and nt are the ith bits of the L-bit binary representations of m and
n, respectively. #,(m) ig the /th bit of the L-bit binary reversed Gray code of m,
given by

, . . . , yL-i(m) = m (6.36)

It has been shown by Jones et al. [29] that all orthogonal transforms consisting
of one-half even and one-half odd basis functions can be implemented in terms of
the WHT. Thus frequency contents of each sequency component in the Walsh -
Hadamard expansion can also be computed (see [30]).

When the WHT is computed using the natural or Hadamard orderings for the
basis functions, the resulting transform is also called the binary Fourier transform
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or BIFORE transform [31]. The flow diagram is an exact duplicate of the FFT,
with the removal of all twiddle factors and the substitution for all Wik factors in
the FFT by + I if (ik)modN < N/2 and by - 1 if (ik)modN > N/2. This diagram is
shown in Fig. 6.14 for N — 16. Since the matrix is real, symmetric, and
orthogonal, the inverse matrix is identical to the forward transform matrix.

We conclude this subsection by stating the recursive generation of the WHT
in Hadamard or natural order. Using H(L) to denote the (WHT)h matrix of size
(N x N), where N = 2L, we obtain the recursive factorization

H(L+ l) = H(l)(g)H(L)

with H( 1) = [{ _ | ] and (g) denoting the Kronecker (direct) product between two
matrices; that is,

H(l)(g>H(m) =
'H(m) H(m)
H(m) -H(

(6.37)

For other ordering schemes, such as Paley or cal-sal, we refer the reader to
[7, 25, 27].

Fig. 6.14. Signal-flow graph for WHT in natural or Hadamard ordering for N = 16.
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B The Haar Transform

When the basis functions in Eq. (6.3) are Haar functions, the input sequence x
undergoes a HT. The basis functions were originally developed by Haar [3], and
are shown in Fig. 6.15. The localized nature of most of the basis functions makes
HT an ideal transform for edge detection and contour extraction. Each basis
function is normalized to retain the unitary property of the transform. The
recursion relation for the matrix generation, using [Ha(k + 1)] to denote the

7 ••

Fig. 6.15. Flow diagrams for forward (a) and inverse (b) Haar transform for N = 8; (c) Haar basis
functions for N = 16.
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Fig. 6.15. (Continued)

16

N =

where

HT matrix, is

[Ha(/c + 1)] =

[Ha(l)3 =

(1,1)

1 -1

for k > 1 (6.38)

Sparse-matrix factorization of Eq. (6.38) leads to the flow diagrams in Fig. 6.15
for N = 8. Since the matrix is not symmetric but orthogonal, the inverse is the
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transpose of the forward transform as shown. This fast algorithm also lacks the
in-place structure of all the previously discussed algorithms. However, Ahmed
et al. [32] have developed an in-place version of the fast algorithm.

If 2kl2 is dropped in Eq. (6.38), the resulting matrix is orthogonal but not
unitary. The removal of 2k/2 is referred to as rationalizing, and the resulting
transform is the RHT. The modification takes into account the hardware
realization of the algorithm, in which irrational numbers are difficult to
implement. Denoting the matrix for the RHT as [RH(/c)], we have the transform
pair (for N = 2k)

(6.39)X = [RH(k)]x and x = [RH(k)]T[P(fe)]X

where [RH(fc)] is identical to Ha(fc) with the 2k'2 removed and [P(fc)] is a 2k

diagonal matrix containing negative powers of 2, and is used to restore the
normality of the transformation.

C Slant Transform

In designing image representation for TV signals, Enomoto and Shibata [22]
modified some of the Walsh functions and developed the first eight basis
functions, eventually named the slant vectors. These are designed to retain the
orthonormahty and completeness properties, with one constant vector (for the dc
component) and a combination of sampled sawtoothed functions. Using S(L) to
denote the N = 2L transformation matrix, we have the recursive formula for
L>2

[S(L)] =
1

v'2"

r i °
aN bN

0

0 1
-hN aN

0

0

*]V/2 - 2

0

* JV/2 - 2

0 -1
biv aN

0

where

= -P '/ - T i l 1
-v / / I 1 1

and the parameters aN and bN are recursively generated by

. . I

(6.40)

r, a^ = 2bNaN/2, N = 4, 8, 16,... (6.41)
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Fig. 6.16. Signal-flow graph of the ST for N — 8. (For simplicity, the multiplier l/\/8 is not shown.)
8 = 4/V2l',£>8 = V5/21.

Equation (6.40) implies an intrinsic fast algorithm, since [S(L)] is expressed in
terms of [S(L — 1)]. Figure 6.16 shows the flow diagram of a fast algorithm for
ST for N — 8. Again, we note that the inverse is the transpose of the forward
transform, and the flow graph is not in place. An in-place algorithm for the ST has
been developed by Ahmed and Chen [33]. Figure 6.17 shows the slant basis
functions for N = 16.

Rapid Transform D

The HT and ST in Sections V.B and V.C can be obtained by variations to the
Walsh basis functions. For RT the modification is made to the flow diagram. The
Hadamard ordered WHT flow diagram (e.g., Fig. 6.14) is modified by applying
an absolute value operation at the output of every node subsequent to the
input (see Fig. 6.18). The immediate consequence of this modification is that RT
has no inverse. Thus all processing, classification, feature extraction, or identi-
fication must be performed in the transform domain. However, the modification
also makes the transform invariant to circular shifts and to reflection of the
input sequence. These properties lacking in the previous transforms described
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Waveform number

t
0 2 4 6 8 10 121416

Fig. 6.17. Slant transform waveforms for N = 16.

in Sections V.A,B,C make the RT a good candidate for use in character recogni-
tion, feature extraction, and identification. Recovery of input data from the
transform sequence is possible, given additional information (see [34].)

E Hybrid Transforms

The discrete transforms described so far can be combined in different ways to
generate many hybrid transforms. The direct, or Kronecker, product of matrices
as a means of combination preserves both the unitarity and the sparseness of the
transform matrices. Such combinations as slant- Haar [35] and Hadamard-
Haar transforms [36] result from the direct product of the corresponding
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Data sequence Transform sequence
XRT( )

0

Notation

IA + BI B» * -

Fig* 6.18. Signal-flow graph for the rapid transform for N = 8. [Reprinted with permission from
H. Reitbeock and T. P. Brady, A transformation with in variance under cyclic permutation for
applications in pattern recognition, Information and Control 15, 130-154 (1979).]

matrices. In addition, Jones et al. [29] have shown that all even-odd transforms
are related through conversion matrices. A specific case for N = 8 was
established for the DCT (specifically [C"]). The cosine multipliers in the
conversion matrix can be approximated closely by rational numbers (ratios of
integers). This reduces the complexity of the conversion matrices and makes
hardware realization much easier. Such a transform is called a CMT. However,
the CMT has been developed only up to N = 32 (see [23]).
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VI PERFORMANCE CRITERIA

How well a particular transform performs depends on the signal processing
problem. Feature selection, bandwidth reduction, and pattern recognition all
make demands on transform performance. We shall discuss four common criteria
used in assessing particular transform performance. To obtain some idea about
these criteria, we make the assumption that, in general, the data to be transformed
have a sample-to-sample correlation governed by the Markov-1 model, where
the covariance matrix has the form, as in Eq. (6.15),

1 p p2 ••• pN r

p 1 p ••• pN-2

2 p (6.42)

where p < 1 is the adjacent correlation coefficient of the Markov-1 model. (Note
that $ is a symmetric Toeplitz matrix of order N.) The values of p are usually
considered to vary from 0.7 (for high-detail images) to 0.99 (for low-detail
images) (see, e.g., [37]). In investigating the criteria for performance, p is usually
allowed to vary between 0.5 and 0.99. Comparisons between different transforms
very often use a typical value of p — 0.9.

A Variance Distribution and Energy Packing Efficiency

In feature selection problems of signal processing, the choice of coefficients in
the transform domain determines how well a pattern may be recognized. The
choice is guided by the variance of the transform coefficient, which is a measure of
how much energy (proportionately speaking) is contained in the corresponding
basis vector (see, e.g., [38]). The higher the variance, the more information is
carried by that basis vector. If ̂  denotes the covariance matrix and T denotes the
transform matrix, the diagonal matrix elements in the transform domain
represent the variances of the corresponding coefficients:

4 = WT-%, ; = !,...,# (6.43)

In particular, if T represents the KLT, then a2^ = A,-, the eigenvalues of the KLT,
since KLT diagonalizer the covariance matrix $. We note here that variance
distribution is not defined for the RT since its inverse does not exist. Table I
displays comparisons between the variances of various transforms for JV = 16 at
a correlation coefficient of p = 0.9 for a Markov-1 signal. Note that since a.fj is a
theoretical result obtained by Eq. (6.43), it is quite independent of the algorithms
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TABLE I
Variance Distribution for First-Order Markov Process Defined by p *= 0.9 and N = 16

Where t is the Transform Coefficient Number

Transform

HT WHT DCT DFT ST DST"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

9.8346
2.5364
0.8638
0.8638
0.2755
0.2755
0.2755
0.2755
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000

9.8346
2.5360
1.0200
0.7060
0.3070
0.3030
0.2830
0.1060
0.1050
0.1050
0.1040
0.1040
0.1030
0.1020
0.0980
0.0780

9.8346
2.9328
1.2108
0.5814
0.3482
0.2314
0.1684
0.1294
0.1046
0.0876
0.0760
0.0676
0.0616
0.0574
0.0548
0.0532

9.8346
1.8342
1.8342
0.5189
0.5189
0.2502
0.2502
0.1553
0.1553
0.1126
0.1126
0.0913
0.0913
0.0811
0.0811
0.0780

9.8346
2.8536
1.1963
0.4610
0.3468
0.3424
0.1461
0.1460
0.1047
0.1044
0.1044
0.0631
0.0631
0.0631
0.0631
0.0631

8.8567
2.4102
1.3608
0.6395
0.4875
0.2814
0.2387
0.1553
0.1373
0.0986
0.0886
0.0703
0.0642
0.0567
0.0538

" DST is [S1] for a 15-point transform.
Note that the DST does not have a constant valued basis function as do all the others. Thus a signal

with dc component removed would be a good candidate for transform analysis using DST.

used to implement the transforms. The DCT seems best in terms of the variance
distribution, since it has the highest variances in the fewest coefficients. It is
therefore a good candidate for feature selection and bandwidth compression.

Another very similar criterion is the energy packing efficiency (EPE) first
proposed by Kitajima [39]. This is defined as the proportion of energy contained
in the first K of N coefficients. When K = 2m and N = 2", the EPE r\ is

_ _ (6.44)
P = O " / p=o

where E denotes expectation and Xp is the pth coefficient in the transform
domain. Yip and Rao [28] examined r\ for some unitary transforms and
concluded that v\ is invariant with respect to transforms that display block
spectral structure. To see how rj is related to the variance distribution, we
consider

K. K (/ N \*/ N \)
y p(x2} = y F<\ y (h .x 1 I y tb -xH (645i/ jL/yj-i fj j — / JL/ A I / T^ni i I I / t^f)i' ! I C \\j*^<jj

N

(6.46)
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If (4>Pi) - T is the transform matrix, then
Tf = T"1 so that Eq. (6.46) is reduced to

and if T is unitary,

(6.47)
P = i

where ifr = £(xj.xf) is the covariance matrix of the sampled data. Thus, under
comparison with Eq. (6.43), the EPE r\ is directly equivalent to the ratio between
the sum of the first K variances and the total sum of the variances. Although
variance distribution is considered for transform coefficients (output sequence) in
sequency order, the EPE efficiency may, quite possibly, be considered when the
output sequence is in some other type of ordering.

B Residual Correlation

A measure, which indicates the amount of correlation left in the transform
domain, is the residual correlation first defined by Harnidi and Pearl [40]. Let ̂ '

3O

20

. WHT

0.1 0.3 0.5 0.7

Correlation Coefficient p

0.9

Fig. 6.19. Residual correlation vs. correlation coefficient p for N = 16. DCT is type II.
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be the diagonal matrix of the variances, as defined in Eq. (6.43):

(6-48)

The covariance \]s is then approximated in the original data domain through the
inverse transformation given by

The residual correlation is then defined by

If -f"|2
Residual correlation = y-—?-±- (6.50)

where | |2 is the Schmidt we^k norm defined by

|M|2 = — f |(M)y|2 (6.51)
N U = I

and |f —1|2 is a measure of the cross-correlation in the input sequence.
According to Eq. (6.49), when the transform matrix T is the KLT, f" is identical
to f since T then diagonalizes f, and the residual correlation in Eq. (6.50) is zero
for the KLT. Figure 6.19 shows the residual correlation for some of the discrete
transforms as a function of p for N — 16.

Wiener Filtering C

The Wiener filter, first derived to minimize the MSB of the linear estimate, can
be formulated in the spatial and frequency domains (see [41, 42]). The Wiener
filter transfer function is

H*H" = (6-52)

where H * is the complex conjugate of the point-spread transfer function of the
signal path, and (f)n, (f)f are the power spectra of the noise and signal, respectively.
Thus, the estimated signal in the transform domain is

F = HWG (6.53)

where G = HF + N is the transform domain representation of the received
signal plus noise.

Here F and N are the "frequency" transforms of the signal and noise,
respectively. The Wiener filter minimizes the expected squared error:

MSE = £[|F- F|2] (6.54)

Thus, the appropriate transform to use to effect the Wiener filter would be the one
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that also minimizes the MSB for a given noise statistic or for a given signal-to-
noise ratio (SNR). The result for the scalar Wiener filter, that is, a diagonal matrix
for Hw in Eq. (6.53), for the MSB is

MSE = 1 -
N «•= i fa +

(6.55)

where ij/n and % are the diagonal elements of the N x N covariance matrices for
the signal and noise, respectively, in the transform domain. Since this perfor-
mance criterion also depends on the noise statistics (or SNR), no systematic
comparison of any significance has been carried out. However, Wang and Hunt
[43] did compare the Wienner filter criterion for two versions of DCTs.

A rate-distortion function can be defined to measure the information rates in
bits per transform coefficient needed for coding when a certain maximum average

10

0.1

0.01

0.001

HT, WHT, (HHT)1f(HHT)2

0.2 0.4 0.6 0.8 1.0

Fig. 6.20. Rate vs. distortion of a first-order Markov process for p = 0.9 and N = 16(1 nai - 1.44
bits; i.e., Iog2<? = 1.44). DCT is type II.
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distortion is allowed. This function is defined as

K(r'D) = 9^7 £ maxl°' lo^irj (6-56)ZN ,-=i ( t; J

where T denotes the transform used, D is the distortion function, and 9 is chosen
to give a predetermined value to D:

,i^) (6.57)
TV i=\

\l/' are the diagonal elements of the co variance matrix in the transform domain:

(6.58)

Figure 6.20 compares some discrete transforms using the rate-distortion
function. IT in the figure shows the rate-distortion function for the identity
transform. The DST (not shown) has a curve practically identical to the DFT. If 8
is chosen in Eq. (6.57) to be smaller than all \l/ih then D — 0 and the rate-
distortion function is reduced to

*<T> 0) = w £ iog2 *« - ^ iog2 D (6-59)
ZYV i = i Z

The first term in (6.59) depends only on the transform T and is defined by Wang
and Hunt [43] as the negative maximum reducible bits (mrb) from each
transform component:

mrb=--^f>g2«A;, (6.60)
z/v ,• = i

The larger this value is, the better is the performance of the corresponding
transform in the sense of bit reduction. Table II shows some mrbs for p = 0.9
and N = 16.

TABLE II
Maximum Reducible Bits
for /V = 16 and p = 0.9

Transform

HT
WHT
DCT(II)
DFT
ST
DST(I)

mrb

0.9311
0.9374
1.1172
0.9485
1.0744
0.9752
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VII COMPUTATIONAL COMPLEXITY AND SUMMARY

We have presented a collection of discrete transforms that may be used for
signal processing works of various kinds. Each transform has been defined, and
its main properties discussed. Fast algorithms based on radix-2 factorizations
into sparse matrices were given, and many similarities and differences have been
noted. Since we left out the general orthogonal transforms (GT)r of Ahmed and
Rao [44] and the number-theoretic transforms (NTT) of Nussbaumer [45], we
have not been exhaustive. Instead, we have concentrated on the common types of
sinusoidal and nonsinusoidal discrete transforms. Fast algorithms are all based
on radix-2 factorizations to provide a common ground for comparing the
structure and efficacy of the implementations.

The reduction of computational complexity, in particular the reduction of the
number of multiplications in an algorithm, is no longer as critical as it once was.
By using look-up tables, we can perform a multiplication almost as fast as an
addition. However, the implication of structural simplicity based on a few
multiplications is just as valid as before. The total number of arithmetic
operations required in an algorithm is still a valid criterion for computational
complexity. We summarize this aspect of the discrete transforms in Table III,
where the number of real arithmetic operations (complex operations for the FFT)
in terms of multiplications and additions is listed as a function of AT, the
transform size, for some of the transforms we have discussed.

Aside from this consideration of computational complexity, a recursive
structure is always a desired property, since it will enable modular structures,
both in software and in hardware realizations.

We have also considered different performance criteria for the various
transforms. These criteria in conjunction with the computational complexity
considerations will guide the engineer to choose the appropriate transform.

TABLE HI
Computational Complexity for Fast Implementations of

Various Discrete Transforms

Transform Number of Multiplications Number of additions

HT
WHT
DCT(II)"
DFTfe

ST
DST(I)°

N -2

(N/2)log2N
(JV/2)log2 JV/2
2(3N - 4)
(N/2)log2 N - N + 1

2(N - 1)
N Iog2 N
(3N/2)log2 N - • N +
N Iog2 N
2(3N - 2)
(2/V)log2 N - 4(N -

i

1)

Based on DIT algorithms of Yip and Rao [15].
1 Complex operations.



6. Fast Discrete Transforms 517

APPENDIX A. FAST IMPLEMENTATION OF DCT VIA FFT

Section IV.A discusses DCTs, This appendix discusses several methods of
implementing the DCT by the FFT, since FFT computer programs are more
likely to be available. By manipulating the original TV-point data sequence, we
can obtain its DCT by a 2N-point or an N-point FFT using the techniques
described next.

Method 1 1

The type II DCT (see Section IV.A) of a data sequence x(m), w = 0, 1, . . . ,
N — 1, and its inverse are respectively defined as

m = 0

. , [(2m + I)fc7tl
x(m)cos ——: ,

L J

(2m + l)/c?r______

= 0, 1 , . . . , /V - 1 (A6.1)

= 0, 1,...,JV- 1

where

and Xc(k), k — 0,'!,..., N — 1, is the DCT sequence. A computer program
implementing Eq. (A6.1) is in Appendix B.

The DCT in Eq. (A6.1) can be also expressed as

Xc(k) 1N̂
~jkn/2N

(A6.2)

where W2N = exp(-j2;r/2N) and x(m) = 0, m = JV, N + 1,..., 2N - 1. This
implies that the DCT of an JV-point sequence can be implemented by adding N

Extended sequence

x(0), x(l), ..., x(N-l)
0, 0, . . . , 0

c(k)

DCT

k = 0 , 1 , . . . , N-1
Fig. A6.1. Computation of even DCT by even length extension of x.
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zeros to this sequence and by using a 2N-point FFT. Other operations such as the
multiplier exp(-jkn/2N) and real part also are needed. This is shown in block
diagram form in Fig. A6.1. By using the FFT on two 2N-point sequences,
Haralick [12] has developed a DCT algorithm that is more efficient com-
putationally and storagewise compared to that implied by Eq. (A6.2).

2 Method 2

Extending the W-point data sequence to a 2W-point sequence in another
manner eliminates the real part operation in Fig. A6.1. Let x(n), n = 0, I , . . . ,
N — 1, be extended as follows:

x(n) =
x(n),
(x(2N-l-n), n = N, N+ 1, . . . ,2W- 1

Then the DFT of x(n) given by XF(k\ k = 0, 1, . . . , 2N - 1, is defined as

] 2N - 1
(K) =

where W2N = exp( —j2n/2N). By writing Eq. (A6.4) as

and using Eq. (A6.3), we can easily show that

(A6.3)

(A6.4)

(A6.5)

original sequence
x(n) , n=0 , l , . . . ,N-1

A - -.x(n) = x(n) n=0,l
x(2N-l-n)

n=N, N+l

Extended sequence
x(n)

XF(k) x (k) k=0,l,

2c(k)
Fig. A6.2. Computation of an JV-point DCT by a 2N-point FFT without a real part operation.
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Inspection of Eqs. (A6.1) and (A6.5) shows that

Xc(k) = 2c(k)e~jnk'2NXF(k) (A6.6)

This technique is shown schematically in Fig. A6.2.

Method 3 3

A much simpler algorithm, which requires only an N-point DFT, has been
developed by Narasimha and Peterson [46]. The details are as follows: Assuming
N is even, delete the constant multiplier in Eq. (A6.1). Let

/ *x(m)cos = 0, 1 , . . . ,W- 1 (A6.7)

Define a new /V-point sequence y(m) by

y(m) = x(2m), y(N - 1 - m) = x(2m +1), m = 0, 1,..., N/2 - 1 (A6.8)

Using Eq. (A6.8), we can write Eq. (A6.7) as

£ v(w)cos^^±^

"(4m
~ m)cos , 1,...,N- 1

2N
(A6.9)

Letting m = N — 1 — m in the second summation, simplifying, and recombining
the two terms yield

Xc(k) = "£ y(«)c
m = 0

where

H(k) = cJ'**/2N Z
m = 0

c), fc = 0, 1, . . . , N - 1 (A6.10)

In Eq. (A6.10), Yf(k) is the inverse DFT ((IDFT) of y(k). Hence

H(k) = e^^Y^k) (A6.ll)

It is easy to see that

H(JV-/c) = y[HOc)]* (A6.12)

where * implies complex conjugation. In view of Eq. (A6.12), we can evaluate
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x(m)
y(m) = x(2m)
y(N-l-m) = x(2m+l)

m = 0 , l , . . . , N / 2 - l

Y f (k )

H(k)
k = 0 , l , . . . , N - 1 Re[H(k)]

In lH(k)]
k=0, l , . . . .N/2-1

x ( k )

X (N-k) k = 0 , l , . . .

Jrtk/2N

X (k ) , k = 0 , l , . . . , N - l

Fig. A6.3. Computation of an JV-point DCT using an N-point IDFT.

Xc(k) in Eq. (A6.9) by computing H(k) for k = 0, 1,..., N/2 as follows:

Xc(k) = Re [#(&)]

XC(N - fc) = Im[H(fe)], k = 0, 1 , . . . ,—

(A6.13)

The operations described by Eqs. (A6.7)-(A6.13) imply that an N-point DCT of
x(m) can be implemented by an N-point IDFT of a sequence y(m) rearranged
from jc(m), followed by a complex multiplication and extraction of the real and
imaginary parts. If N is an integer power of 2 (i.e., N = 2L\ then the IDFT can be
implemented by a radix-2 FFT [1]. Otherwise other fast algorithms such as the
Winogard Fourier transform algorithm (WFTA) [47], prime factor algorithm
(PFA) [48,49], recursive cyclotomic factorization algorithm (RCFA) [50], radix-
3 [51], radix-6 [52], and mixed radix algorithms can be used. The fast DCT
algorithm described by Eqs. (A6.7)-(A6.13) is illustrated in Fig. A6.3.
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APPENDIX B. DCT CALCULATION USING AN FFT

The following computer program implements Eq. (A6.1) in Appendix A by
means of a FFT.

. THIS PROGRAM IS TO FIND THE DCT V A T R I X DCTC32.32) AND ITS TRANSPOSE
TDCTC 32, 32).Tt-c;-N THc TcST DATA ICRGC32.32) IS MULTIPLIED IN THE FORM
COCT3*CIQRG3*C.TOCT] TO GET THE TRA N S F O R M E D DATA TRQRG{32,32) OR IF T^E
TRANSPOSED CATA T R O R C - C 32 , 32) IS THERE THE P R O G R A M WILL INVERSE
T R A N S F O R M IT ?. Y C TOO T 3*CTft OR G3*C CCT 3 TO GtT THE ORIGINAL TEST DATA.
IN Th£ PfiCGSAC M IS THt CRDtR CP THE KATRICcS ANC INV WHICH IS A
LUblCAL V A R I A B L E JtCIQES WETHER TO P E R F O R M F O R W A R D OR INVERSE T R A N S F C R M
IF iNV=.T(?Ut. THEN FORWARD T R A N S F O R M IS C A R R I E D OUT AND IF 1NV=. FALSE.
TrttN INVERSE T R A N S F O R M IS CARRIcC OUT.
THIS PROGRAM CAN TRANSFORM DATA CF 8X8,16X16,32X32 MATRICES.

THIS PART OF THE P R O G R A M G E N E R A T E S THE DCT M A T R I X DCTC32.32) AND THE
T R A N S P O S E OF THE DCT M A T R I X TOCTC32.32)

LOGICAL INV
DIFtKSION IOKG(32,32),DCTC32,32),TDCT(32,32>,TRORGC32,32),TRCRGU32,3?)
DlMtNSIUN TRCC32,32),TROH3t,32),DCTI(32»32),TOCTIC32,32)
H = 4

INV=. FALSE.
PI=3. 1415927
RM = F L O A T C M )
CO 15 J=1,M
DCT(1,J)=SORTC1.C/RM)
TOCTC J,1)=OCTC1, J)
CO 20 1=2, M
CO 20 J=1,M
R I = F L O A T C I )
KJ=FLOATCJ)

TDCTC J,I)=DCTCI,J)
C3NTINUC

CO 21 1=1, M
WSITc(7,41)CCCTO,J),J =

CONTINUE
CC 25 1=1, M
CO 25 J=1,M
OCTICI,J)=OCTCI,J)/CSCRTC2.0/RN))
TOCTI(I,J)=TCCTCI,J)/CSQ^T(2.C/R^))

> = GCT(I,J)*S3KT(2.0/P.M)

CON T I N U E

IF INV IS TRUt The F O R W A R D T R A N S F O R M IS C A K R I E C CUT

IF C l N V . c C . F A t S f c ) G 'C, TO 100

, J ) , J = 1 , '•')
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!'
CK»fO = o.o

CO 50 J = 1,M
TRQRGKK, N J ^ T F i O R G l C K i N,) + nCT(K,J)=: I ORGCJ.rO
CONTINUE
CO 51 K = 1 , M
DO 51 N = 1 . M
TRORGCK,, N)=O.C
00 51 J = 1,M
T * C R G ( K , N ) = T K C R & ( K , N > * T R C K G 1 ( K , J ) * T O C T ( J , I O
C O N T I N U E

CQ 52 1 = 1, f,
W R I T t ( 2 , 5 3 X T K 0 8 C - C I . J ) , J = l , M )
F O R H f l T C < M X ' : : l l . 6 , 2 X 5 )
C O N T I N l U t :
GO TO 500

THIS PART OF THt PkJGRAM DDES THt INVtRSfc T R A N S F O R M IN THE FCRW
CTOCT3*CTROKGj*CCCT3 IF IMV=FALS5

OPENCUNIT=3,FILc='lNV.OAT',STATUS='OLC')
00 60 1=1, M
« E A O C 3 » 6 1 ) C T R C R S ( I , J ) , J = 1 , M )
F - O R M A T C < M > C F 1 1 . 6 , 2 X ) )
CONTINUc
CO 70 K=1,M
DO 70 N=1,M

CQ 70 J=1,M

CONTINUt
CO 71 K=1,K
00 71 N = 1 , K
TRO(K,N)=0.0
CQ 71 J=1,H
TROCK,N) = TRO(K,N
CONTINUt:
OPcN(UNIT=5,FILc='Cni*P.OAT',STflTCS='NEW')
CO 120 1=1, M

130 FORMAT«M>CF 1-1 . 6 , 2 X ) )
120 CQNTINUL
iQO CONTINUE

STOP
END
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APPENDIX C. WALSH-HADAMARD COMPUTER PROGRAM

C, THIS SUBROUTINE COMPUTES THE FORWARD HADAMARD TRANSFORM C
C OF ORDER 16. C
C X = DATA VECTOR OF LENGTH 16. ON RETURN X WILL BE THE C
C TRANSFORMED VECTOR. C
C Y = AN AUXILIARY VECTOR OF LENGTH 16. C
C C

DIMENSION X(16), Y(16)
DO 1 I - 1, 15, 2
Y(I) = X(I) + X(I + 1)

1 Y(I+1) = X(I) - X(I+1)
DO 2 I = 1, 2
X(I) * Y(I) + Y(I+2)

X(I-f-4) =

2 X(I-fU) = Y(I+12) - Y(I+14)
DO 3 1=1, 4

3 Y(I+12) = X(I+8) - X(I+12)
DO 4 1=1, 8

4 X(I+8) = (Y(I) - Y(I+8))/16.0
RETURN
END
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Chapter 7

Fast Fourier Transforms

DOUGLAS F. ELLIOTT
Rockwell International Corporation

Anaheim, California 92803

The fast Fourier transform (FFT) computes the discrete Fourier transform
(DFT) using a greatly reduced number of arithmetic operations as compared to
brute-force evaluation of the DFT [1-5]. The method is efficient because it
eliminates redundancies that result from adding certain data sequence values
after they have been multiplied by the same factors of fixed complex constants
during the evaluation of different DFT transform coefficients. The efficiency is
achieved at the expense of reordering the data sequence and/or transform
sequence, but the additional expense is generally small compared to the reduction
in multiplications and additions. For example, the reduction in arithmetic using a
radix-2 FFT is about N/log2 JV, which for N = 1024 = 210 is 100, so hardware
could be reduced by approximately a factor of 100 by using an FFT to compute a
1024-point DFT that continuously processes acoustic, sonar, or other data in real
time.

As mentioned in Chapter 1, Fourier announced in 1807 that he had developed
a method of representing an arbitrary function as a series. Consequently, the
Fourier transform, DFT, and FFT bear his name. However, as Heideman et al
[6]f point out,

In a recently published history of numerical analysis H. H. Goldstine
attributes to Carl Friedrich Gauss, the eminent mathematician, an al-
gorithm similar to the FFT for the computation of the coefficients of finite
Fourier series. Gauss' treatise describing the algorithm was not published in
his lifetime; it appeared only in his collected works as an unpublished
manuscript. The presumed year of the composition of this treatise is 1805,
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thereby suggesting that efficient algorithms for evaluating coefficients of
Fourier series were developed at least a century earlier than had been
thought previously. If this year is accurate, it predates Fourier's 1807 work
on harmonic analysis.

Gauss used normal and digit-reversed number representations to obtain his
FFT. In this chapter we shall use the same technique as well as several other
techniques for representing integers. We shall also exploit a two-dimensional
(2-D) aspect of the number representation to visualize 1-D DFTs as 2-D struc-
tures. The 2-D aspect can be extended to an L-D representation, but it is usually
simpler to concatenate flow diagrams derived from 2-D developments. Matrix
representations often aid in the understanding of FFTs, and we use them freely.

The next section reviews 1-D and 2-D DFTs and explains our matrix
notation. The following sections derive FFTs. The first FFTs result from a mixed-
radix integer representation (MIR) that includes binary, decimal, octal, etc.,
integers and is more familiar to engineers than the name might indicate. One FFT
that follows from the MIR is the radix-2 FFT discovered by Cooley and Tukey
[7] which was the first to gain wide usage. Radix-3, -4, and -6 FFTs also result
from the MIR.

Integer representations with the exotic names of Chinese remainder theo-
rem (CRT) and Ruritanian correspondence (RC) are used to derive IV-point
FFTs, where N is the product of relatively prime integers (e.g., N — 3 > 5 • 7,
5 * 1 6 - 3 , etc). The FFTs are therefore "prime factor" algorithms (PFAs) that
include Good's FFT [8,9] and the Winograd Fourier transform algorithm
(WFTA) [10].

The number of arithmetic operations required to compute various FFT
algorithms is compared later in the chapter. This comparison is not the final word
in efficiency, since data transfers for some of the FFTs may be significantly higher
and may negate gains due to reduction of arithmetic.

Many real-time FFTs are mechanized with dedicated, fixed-point hardware.
Determining the number of bits to fully utilize these FFT processors is discussed
at the end of this chapter. A simple, easy to visualize graphical technique is
presented to specify digital word lengths in a typical spectral analysis system.

Several appendixes are included. Appendix A gives small-N DFTs to
implement the PFAs. Appendix B lists sources of other relevant FFT programs.
Appendix C gives some radix-2 FFTs that satisfy many requirements for an FFT.
Appendixes D and E present two program listings for efficient implementation of
the PFA.

Discrete Fourier transforms and their properties are discussed in Chapter 1,
Section VII. In this section we repeat the definition of 1-D and 2-D DFTs, present
2-D flow diagrams and the equivalent operations in matrix format, and discuss
DFT and FFT matrix representation.
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1-D DFT Matrix Representation A

We shall represent the 1-D DFT in vector-matrix notation and, by
rearranging the matrix, shall end up with a matrix factorization leading to the
FFT. Let x(n) be a 1-D data sequence defined for n — 0, 1, 2,..., N — 1. Then
the IV-point 1-D DFT is defined by [see Eq. (1.76)]

where X(k) is the transform sequence. For example, if N = 8, W8 = e'j2n/s and
x = (x(0), x(1), x(2),..., x(7))T. Then Eq. (7.1) gives

= (W° W° W° W° W° W° W° W°)\

-.(W° W1 W2 W3 W4 W5 W6 W}\
X(2) = (W° W2 W4 W6 W° W2 W4 W6)\ (7.2)

X(1) W1 W5 W4 W3 W2 Wl)\
All of the operations in Eq. (7.2) can be combined into the matrix form

X = H/Ex = Dx (7.3)

where X = (X(0), X(l), X(2),..., X(1))T, D = WE is the N x N DFT matrix with
row numbers k = 0, 1, 2,..., N — 1 and column numbers n = 0, 1, 2,..., N — 1,
and the entry WE(k<H} is in row k and column n. For example, if N = 8, then E and
WE are given by \n

t\ 0
0
1
2

= 3
4
5
6
7

~0
0
0
0
0
0
0
_0

~W°
w°
w°
w°
w°
w°
w°
w°

1
0
1
2
3
4
5
6
7

W°
W1

W2

W3

W4

ws
W6

W

2
0
2
4
6
0
2
4

6

3
0
3
6
1
4
7
2
5

W°
W2

W4

W6

w°
W2

W4

W6

4
0
4
0
4
0
4
0
4

W
W
W
W

5
0
5
2
7
4
1
6
3
0

3

6

1

W4

W
W
W

7

2

5

6
0
6
4
2
0
6
4

2

W°
W4

w°
W4

w°
W4

w°
W4

1
0"
7
6
5
4
3
2

1_

= ((fcn)mod N)

W°
W5

W2

W1

W4

W1

W6

W3

W°
W6

W4

W2

w°
W6

W4

W2

W0'
W1

W6

W5

W4

W3

W2

wl_

(7.4)

(7-5)

where A = (a(k, n)) means a matrix with elements a(/c, n).
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In the future, we shall often tag rows and columns of an £ matrix with k and n
values, as shown in Eq. (7.4), to clarify rearrangements of the matrix that lead to
FFT algorithms. We shall find that FFTs are represented by factored matrices,
As an example of an FFT in matrix form, let

(7.6)

and let N = 4, W = exp(-;27r/4) = -y,

and

E, =

0 0
0 2

-700 -700
—700 — 700

-700 -700
—700 —700

0 0
0 2

(7.7)

0

-700

0

J 00

-700
0

-700
1

0
-700

2
—700

-7.00

0
-700

3

Then

WE2 = and WEl =

0
1
0

(7.8)

since W~jao = e~j2n/4(~j'x) = <r°° = 0. Matrices like Eq. (7.8) are called sparse
matrices because of the zero entries that become more numerous as N increases.
Substituting Eq. (7.8) in Eq. (7.6) yields

(7.9)

where

F =

\ n
k\ 0

0
2
1
3

'0
0
0
0

1
0
2
1
3

2
0
0
2
2

3
0"
2
3
1

(7.10)

which is the E matrix of a 4-point DFT with a different ordering (called bit
reversed order) of the rows.

The matrices in Eq. (7.7) have many —700 entries. In the future, instead of
making these entries we shall use the shorthand notation that a dot (no entry) in
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row k and column n of E means — joo. In the matrix WE the corresponding
entry in row k and column n is H^"00 =
shorthand notation Eq. (7.7) is written

and

= 0. For example, in

(7.11)

Taking the matrix product WE = wE*WEt gives

~w° w
w° w
0 0
0 0

~TJ/0 + 0

p^O + O

J4/0 + 0

|4/o + o

0 0
2 Q

w°
w°

pyO + 0

J4/0 + 2

^0 + 1

f f l + 2

0 "
0

w°
w2

~W° 0 W^°
0 M^° 0

W° 0 W2

0 W1 0
jyO + 0 ^0 + 0"

jyO + 0 jyO + 2

^{/0 + 2 j^/0 + 3

^j/0 + 2 (^/2 + 3

0 ~
w°
0

w3

(7.12)

The factorization of WEz is such that only the nonzero entry per row of WE2 is
multiplied by a nonzero entry of any column of WKl using the row-times-column
rule of matrix multiplication. The matrix multiplication becomes addition when
applied to the exponents; since eaeb = ea+b, each entry in E is the sum of two
exponents, so

" 0 + 0
0 + 2
0+ 1
1 +2

0 + 0

0 + 0

0 + 0

0 + 0

0 + 0
0 + 0
0 + 2
0 + 2

0 + 0
0 + 2
0 + 3
2 + 3

(7.13)

We shall let the shorthand notation

(7.14)

mean the matrix derived using El and E2. For example, WE = WE2WEi

Eq. (7.12) is equivalent to
n

E =

0 0

0

1

0
(7.15)

In general, when dealing with N x N FFT matrices that factor into the product
of L N x N sparse matrices, we shall use the notation [2]
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B 2-D DFT Matrix Representation and 2-D Processing

Similar to the 1-DDFT let (x(n2^i)) bean N2 x N{ 2-D data array defined for
H! =0, 1 ,2 , . . . , A/, - 1 and w2 '= 0, 1, 2 , . . . , N2 - 1. Then the 2-D DFT is
defined by [see Eq. (1.97)]

(X(k2, k,)) = "JT ' ' " '

WN. = e~i2*'Ni; *,. = 0, 1, 2 , . . . , ty - 1; / = 1, 2 (7.18)

where (^(^2,^!)) is an N2 x NI transform array. The summations over nl and n2

transform the rows and columns, respectively, of the matrix (x(n2, nl)). They may
be done in either order, and are referred to as the row-column rule of
transformation. To express this rule using matrix notation, let

Dj = Wf1 and D2 = W\2 (7.19)

where D,. is an Nt x Nt 1-D DFT matrix and Wt = e'"J2vlNi [see (7.3)]. Then the
row-column rule is equivalent to

(X(k2,k1)) = D2(x(o2,«J)D{ = D2[Di(*(«2>"i))T]T (7.20)

According to the row-column rule of matrix multiplication, the rows of £>.,
transform the columns of (x(«2, «i))T = (x(ni,n2)), yielding the array (X(k1, «2)),
and the rows of D2 transform the columns of ( X ( n 2 , k l ) ) , yielding the array
(X(k2, kl)). Since matrix multiplication is associative, it is again apparent that the
rows and columns of the 2-D data array may be transformed in either order.
Figure 7.1 graphically displays the 2-D processing equivalent to Eq. (7.20) for
N1 = 3 and N2 = 2. The 3- and 2-point DFTs, Dl and D2, respectively, can be
applied to the data in either order. Figure 7.1 (a) shows the 2-point DFTs applied
first, and 7.1 (b) shows the 3-point DFTs applied first. The coordinate axes n, and
n2 are below the input. After the 2-point DFTs are applied along the n2-axis, the
axes are n, and k2, as shown between the 2- and 3-point in DFTs Fig. 7.1 (a). After
the 3-point DFTs the axes are kv and k2, as shown below the output in Fig. 7.1 (a).
Similarly, the «t and n2 coordinates in Fig. 7.1(b) get transformed to ki and /c2,
respectively.

Ill FFTS DERIVED FROM THE MIR

The MIR leads to N-point FFTs, where N may be integers such as 2L, 3L, 4L, 6L,
2L3M, . . . , etc., where L, M, N,..., are integers [11]. This section presents a
development that applies to all these cases, and some general examples. In
subsequent sections we shall develop the radix-2, -3, -4, and -6 FFTs in
more detail.
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(0,0)

(1,0)

(0,1)

(1,1)

(0,2)

(1,2)

2-POINT
DFTs

3-POINT
DFTs

( a )

(k^)
v -» •

—O (0,0)

(1,0)

-0(0,1)

(1,1)

-0(0,2)

(1,2)

(n

(0,0) o_

(1,0) o •

(0,1) o—

(1,1) 0 1

(0,2) 0—

(1,2) 0 .

y/ 0 (0,0)

/X- — 0 (1,0)

.̂  O (0,1)

i£ 0 (0,2)

1

(b)

Fig. 7.1. Transformation of a (3 x 2)-point 2-D data array with (a) 2-point DFTs first and
(b) 3-point DFTs first.
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A Mixed-Radix Integer Representation

Let NI and kt be integers, where 0 < kt < Nt, z = l,2,...,L. Let N
NL'"N2Ni• Then any integer k, 0 < k < N, has a MIR given by

For example, if Nt = 10 for / = 1,2,..., we obtain the decimal number system. If
Nt = 2 for all f, we obtain the binary number system, as illustrated in Table I(a) for
L = 3. If N! — 3 and N2 = 4, we get the integers in Table I(b). Rather than writing
Eq. (7.21), we will let

(7.22)

TABLE I

Mixed-Radix Integer Representations

A. = N =

*3

0
0
0
0
1
1
1
1

k2

0
0
1
1
0
0
1
1

*1
0
1
0
1
0
1
0
1

k
(binary)

000
001
010
Oil
100
101
110
111

k
(decimal)

0
1
2
3
4
5
6
7

B. N. = 3 and N-, = 4

k2

0
0
0
1
1
1
2
2
2
3
3
3

*i

0
1
2
0
1
2
0
]
2
0
1
2

k
(MIR)

00
01
02
20
11
12
20
21
22
30
31
32

k
(decimal)

0
1
2
3
4
5
6
7
8
9
10
11
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mean the integer given by Eq. (7.21). To determine /q if we are given k, note that
A/j divides every term in the summation on the right of Eq. (7.21) except ki. Thus,
k1 is the remainder of k divided by A/j. Likewise, k2 is the remainder of
(k — &i)/A/i divided by JV2, etc., as follows:

~\f \f v \j
rv rv ^ / V 2 i T 1

N*\

(7.23)

where .^[a/5] means the remainder of a divided by b.

Computing a 1-D DFT Using 2-D Processing B

We shall apply the MIR for N = N^N2 and show that the 1-D JV-point DFT
can be computed using processing equivalent to 2-D processing. We demonstrate
that the method leads to an FFT flow diagram for computing the AT-point DFT
and illustrate the processing with some simple examples. We point out that very
simple matrices contain all of the required information for FFT computation.

Digit-Reversed-Order Data Sequence index 1

Let N = A/! A72. Then Eq. (7.21) yields the integer k in natural order (NO):

k = k2Nl+kl^(k2,k1)NO (7.24)

Furthermore, we can reverse the roles of Nl and N2 and express the data sequence
index n in digit-reversed order (DRO) as

n = «1A/2 + M 2 - ( « 2 » w i ) D R o (7-25)

where fct, nl — 0, 1,..., N^ — 1 and k2, n2 = 0, 1,..., N2 — 1. When using the
above notations we will always let the right digit in the parentheses vary most
rapidly. Note that if the subscripts 1 and 2 are switched, NO in effect becomes
DRO. Table II shows the values that k and n can assume for NL = 2 and N2 = 3 as
well as for JVA = 3 and N2 = 2. The phenomena of digit reversal (bit reversal if all
factors of N are 2) is evident in Table II. For example, for n2 = 0 and n± — 0, 1, 2,
we see that n = 0, 2, 4 in Table II(b), whereas for k2 = 0 and kv = 0, 1, 2,
Table II(b) shows that k is in normal counting order (k — 0, 1, 2).

Using Eqs. (7.24) and (7.25) to represent the exponent kn in Eq. (7.1) yields

kn = k2n2N1 + k^nvN2 + kln2 (modulo N) (7.26)

The computation of kn is modulo N because exponents containing N can be set
to zero, since
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TABLE II

Mixed-Radix Integer Representations of k and n

k2

0
0
1
1
2
2

k2

0
0
0
1
i
1

*1
0
1
0
1
0
1

*1
0
1
2
0
1
2

A. N, =

kin NO
(decimal)

0
1
2
3
4
5

B. N! =

feinNO
(decimal)

0
1
2
3
4
5

2 and N2 = 3

"2

0
0
1
i
2
2

3 and N2 = 2

«2

0
0
0
i
1
i

"i

0
1
0
1
0
1

«i

0
1
2
0
1
2

n in DRO
(decimal)

0
3
i
4
T

5

n in DRO
(decimal)

0
2
4
i
3
5

We see from Eq. (7.25) and Table II that we can obtain a summation over n by
summing over nx for n2 fixed, incrementing n2, and summing again over «l}

incrementing n2 again, etc. The summation over n is therefore equivalent to a
double summation over nl and n2. Using the double summation idea in Eq. (7.1)
yields

N N

N2-l Ni- 1
h \ _ V ^T V/M M \ l/f/N2k
'M/NO ~ 2j 2-i Xv"2'' n l 'DROK K N

n2=0 HI =0

Noting that WN
N

2 = WfcN2 = WNl,we can rewrite Eq. (7.28) as follows:
N2-lNi-l

*(*2,*,)No= I I xin^n^oW^W^W^
n2 = 0 m =0

(7.28)

Ni-point DFT twiddle
factor

X(n2,ki)

02=0

where
Nz-point DFT

(7.29)

(7.30)
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Except for the factor Wk
N

in2, known as the twiddle factor, Eq. (7.29) has the same
form as a 2-D DFT [see Eq. (7.18)]. There is an input for each n2 and nt , and these
inputs can be formatted in an AT2 x Nl 2-D array. The twiddle factor is combined
with the A/j-point DFT output, giving the N2 x Nt 2-D array ( X ( n 2 , k i ) ) . For
each value of kl an N2-point DFT over the index «2 converts the array to
( X ( k 2 , k l ) N O ) . From the N2 x A/t array ( X ( k 2 , k i ) N O ) we define the DFT output

Similar to Eq. (7.20), let (x(n2,n1)DRO) represent the data, where the notation
(x(n2 , HI )) means a matrix with row numbers n2 — 0, 1, . . . , Nt — 1. The notation
x(fi2,n1)DRO means that for row n2 and column nt the datum in the matrix
(x(n2,«i)DRo) is *(w)> n — n\N2 + n2. Dt transforms the rows of (x(n2,nl)Dfi0\
yielding a matrix each of whose entries is multiplied by Wk

N
lt>2. D2 then transforms

the columns. Except for the twiddle factor these matrix operations are the
same as Eq. (7.20) and may be written

(X(k2tkl)tto) = D2{Wg™ o [(xfo.ntWODj]} (7.31)

where W%TF is the N2 x NI matrix of twiddle factors

W^ETF = (Wfy"2) (7.32)

and A o B = (almblm); that is, A ° B means point-by-point multiplication of each
entry in the L x M matrices A = (alm) and B = (blm). The operation in brackets
must be performed before the point-by-point multiplication, and the matrix
multiplication by D2 must be performed last.

We have computed a 1-D DFT, but we have used 2-D processing to do it. The
result of this restructuring of the DFT is a reduction of arithmetic because
smaller DFTs are computed first over one index (i.e., along one axis) and then
over the other, thus eliminating redundancies in the brute-force computation
over just one index (axis).

DRO Transform Sequence Index 2

Again let N = N{N2, but let k be expressed in DRO and n in NO:

K = klN2 + k2 = (K2,K1)D R O

n = n2Ni + n, ^ ( « 2 > « i ) N o

In this case we obtain a DRO output given by

*i)Dno = "I," "^ x("2,n^0W
k
N^Wk

N^Wk
N^ (7.34)

Comparing Eq. (7.34) with Eq. (7.28), we see that the order of summation is
reversed. Thus, in terms of 2-D computation it is a moot point whether k or n is in
DRO. However, in terms of the 2-D input and output data ordering, it is
important to consider whether k or n will be in NO, since that determines whether
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the data or transform sequence, respectively, is in NO; the other is in DRO, unless
internal formatting, discussed in Section III.E, occurs.

Similar to Eq. (7.31) we can write the 2-D processing implied by Eq. (7.34) in
terms of matrices:

(7-35)

where now the input x(n2,nl)NO and the output X(k2,kl)mo are in NO and
DRO, respectively, the matrix multiplication in brackets is first, the point-by-
point multiplication of the N2 x Nt twiddle factor matrix PF^TF = (Wfy*1) and
the matrix in the brackets must be next, and the matrix multiplication by Dj
is last.

3 DFT for Wi = 2, N2 = 3, and DRO Input

In this case the top line in Eq. (7.29) gives

Z X x^n^oW^W^W^
112 = 0 H I = 0

2-point DFT twiddle
factor

(7.36)

3 -point DFT

Figure 7.2(a) shows the 2-D nature of the 6-point DFT [12]. The dual
interpretation of fef and nt, i — 1, 2, as both indices and coordinate axes is evident
in Fig. 7.2(a). The indices k = (k2 , k^Q and n = (n2 , «!)DRO are in Table II(a), are
in NO and DRO, respectively, and are shown in Fig. 7.2(a) along with the
intermediate indices (n2,kl). Since

W3 = e~J2*'3 = W\ (7.37)

we see that the 3-point DFT can use the same complex exponential, W6 , as the
twiddle factors.

An arrow in any flow diagram indicates a multiplier whose value is shown next
to the arrow. If a multiplier has unity value, the unity is not shown to simplify the
diagram. Arrow heads point to summing junctions; arrows extending from a
junction take the value of the sum of the inputs to the junction:

+ y

+ y)
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nMna,ni)D«,

0 - (0,0) <

3 = (0,1)O —

2-POINT TWIDDLE 3-POINT
DFTs FACTORS k DFTs j (^Z,^)HO = *

^^ 1— ̂ f jj— ^_
^ r wo

1 = (1,0)0 — yf if-
4 = (1,1)0 -f ./- +-

* ' wi

2 - (2,0)O -y if-

5 = (2i1)0 -y jt- *~-
^ ^ W2

na i

-* \ (0,0) <
1

1

(2,1) i

1

I

I

I

i
— A (2 0)

i

i

i

O (0,0) = 0

— O (0,1) = 1

O (1,0) - 2

— O (1,1) = 3

O (2,0) - 4

—0(2,1) = 5

A

i S\
""2 kz

(a )

Fig. 7.2. (a) Six-point DFT reduced to 2-D processing using 2- and 3-point DFTs and twiddle
factors, (b) Planar DIT FFT flow diagram for (a) with 3-point DFTs overlapping, (c) Planar DIF FFT
flow diagram for (a) with 3-point DFTs separated and 2-point DFTs overlapping.

In Fig. 7.2(b) the 2-D diagram has been reduced to a planar flow diagram. The
diagram shows the signal flow to compute the 2- and 3-point DFTs. For example,
for a 2-point DFT with inputs x(0) and x(i) the outputs are

w = z (7.38)

where W2 = -l and k - 0 or 1. Thus, X(Q) = x(0) + x(l) and X ( l ) = x(0) -
x(l), and the signal flow to compute the 2-point DFT simply takes the sum and
difference of the inputs. The signal flow to compute the 3-point DFT is similarly
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STAGE 1 STAGE 2
0 a » A »

1 <*—\ »/ o »

Fig. 7.2. (Continued)

derived. Since one 3-point DFT overlaps the other in Fig. 7.2(b), only one is
shown for clarity.

Figure 7.2(c) shows Fig. 7.2(a) reduced to another planar flow diagram. This
time the 3-point DFTs in Fig. 7.2(a) have been separated vertically, so the 2-point
DFTs overlay. The butterfly shown in dark lines is the same 2-point DFT in
Fig. 7.2(c) as the one shown in dark lines in Fig. 7.2(b).

Figure 7.2{b) is called a decimation-in-time (DIT) FFT because, going left in the
6-point DFT flow diagram, we start with an NO output and finally encounter 2-
point DFTs with inputs whose indices are separated by f = 3. This corresponds
to decimating a time sequence so as to use every third point in the 2-point DFTs.
The data sequence ordering at the DIT input is (n2,n1)DRO = n1N2 + «2, i.e., «,
varies more rapidly than n2.

Figure 7.2(c) is called a decimation-in-frequency (DIF) FFT because, going
right in the 6-point DFT flow diagram, we start with an NO input but finally
encounter 3-point DFTs with outputs whose indices are separated by f = 2.
This corresponds to decimating a frequency sequence so as to use only every
other point of the output. The transform ordering at the DIF FFT output is
(^i>k2)DRO — ̂ N, + kl; k2 varies more rapidly than kl.

The FFT computation can be separated into two stages, as shown in
Figs. 7.2(b) and (c). It is customary to show the twiddle factor at the input of a
DIT stage and the output of a DIF stage [5]. From the 2-D processing viewpoint
it is again a moot point as to the stage in which the twiddle factor is included.

The 6-point FFTs were derived from 2-D processing that used a DRO input
and an NO output. However, when the 2-D structure in Fig. 7.2(a) is converted to
1-D structures, one structure with an NO input and another with a DRO input
may be obtained. Thus, the output and input of Fig. 7.2(b) are in NO and DRO,
respectively, while the reverse is true in Fig. 7.2(c). This generalizes to the
interesting point that a DRO input to a 2-D structure of the type in Fig. 7.2(a)
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results in either a DRO or an NO FFT input, depending on how the 2-D structure
is reduced to a planar diagram [see Figs. 7.2(b) and (c)].

a. 1-D Matrix Representation of the 6-Point FFT. The flow diagram in
Fig. 7.2(b) is equivalent to the matrix operations

J^/E
 = pf-^H/ErFW/Ei = p f / E z i E T F i E i (7.39)

where WE, WE\ WErf, and WEl are 6 x 6 matrices, W = e~
J2n/6, ETF is the

matrix of twiddle factors, and the matrices of exponents E2 J ETF J Ex are given
by

3-point DFTs twiddle factors

2Jc2\ 0 0 1 1 2 2 »2

0
0
2
2

"0
•

0

0

•
0
•

0
.

0

0
•

2

4

•

0
-

2
•

4

0
•

4

•

2

•

0

•

4

2

«2\ 0 1 0 1 0 1
0
0
1
1
2
2

" 0
0 -700

0
1

-JQO 0

2_
2 -point DFTs

3^\ 0 1 0 1 0 1
0
3
0
3
0
3

" 0 0
0 3 — 700

0 0
0 3

-700 0 0
0 3

(7.40)

where the 2-point DFTs use the complex exponentials

(7.41)

so that the transform index tag for the right matrix in Eq. (7.40) is 3fcj and for
the left matrix 2/c2. All entries not shown and the dots are — jao. Note that each
entry other than — 700 in the matrices of exponents is the product of the data
index tag above the entry's column and the transform index tag to the left of the
entry's row. The matrix WKl corresponds to processing along one axis and W®2

to processing along the other in the 2-D diagram in Fig. 7.2(a). The twiddle-factor
matrix can be combined with either the left or the right matrix in Eq. (7.40) in
the same manner that the twiddle factors can be combined with either stage 1
or stage 2 in Fig. 7.2(b). Including it with the first matrix results in some well-
defined rules for generating a matrix of exponents [2].
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Combining the operations in Eq. (7.40) and recalling that k = 2k2 + k{ and
n = 3«! + n2 yield

\ n
k\ 0 3 1 4 2 5

E

~0
0
0
0
0
0

0
3
0
3
0
3

0
1
2
3
4
5

0
4
2
0
4
2

0
2
4
0
2
4

0"
5
4
3
2
1_

(7.42)

We see that the DIT FFT data sequence indices in Eq. (7.42) are scrambled,
whereas the transform sequence indices are naturally ordered and correspond to
the input and output indices in Fig. 7.2(b).

Similarly, for the DIF FFT in Fig. 7.2(c) we get

E =

V
fe\ 0

0 0
2 0
4 0
1 0
3 0
5[0

2^\
0"
2
4
0
2
4

3feX
C

C
3
3

3

1 2 3 4 5_
0 0 0 0 0 "
2 4 0 2 4
4 2 0 4 2
1 2 3 4 5
3 0 3 0 3
5 4 3 2 1_

0 1 2 0
0 0 0

1 2

0 2 4 -joo
0 4 2

0
-700 0

0

0 0 0 1 1
)["0 • • 0 •
) • 0 • - 0
) . . 0 • •

0 • • 3 •
• 0 • • 3

|_. . o . •

0 0
2 4
4 2_

1
•
.

0
•
•

3_

.*!

\

0
1
2
0
1
2

0 0 1

-joo

1 1

-/GO

1

(7.43)
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Equation (7.43) is for the DIF FFT, and we see that in this case the n index is in
natural order and the k index is in scrambled order.

b. Arithmetic Operations for the 6-Point FFT. Let the input to the FFT
consist of complex numbers. Then the 6-point DFT matrix in unfactored form,
see for example Eq. (7.42), requires 16 complex multiplications. (W\ = — 1 and
W°b --= I are not counted as multiplications.) The complex additions total 30. We
shall next determine the number of arithmetic operations to compute the same 6-
point DFT using an FFT implementation. On many computers multiplications
are more time consuming than additions, so we will minimize multiplications at
the expense of a few extra additions. Note that

= w\ (7.44)

where

W3 = e-JW=----L±- (7.45)

and Eq. (7.44) is evident from Fig. 7.3(a).
The 3-point DFT in Fig. 7.2(b), (c) is redrawn in Fig. 7.3(b). Implementing

each 3-point DFT as in Fig. 7.3(b) shows that the 6-point FFT is imple-
mented with four complex multiplications, compared to 16 using a DFT. Using
Eq. (7.44), we see that the multiplications by W\ in Fig. 7.3(b) can be replaced
by — 1 — W3. This substitution yields

X ( l ) = x(0) - x(2) - [x(2) - x(l)] W3

X(2) = x(0) - x(l) + [x(2) - x(lJ]W3

which has the implementation in Fig. 7(c). Although Fig. 7.3(b) requires four
complex multiplications, Fig. 7.3(c) requires just one.

(a) (b)

Fig. 7.3. (a) Unit circle in the complex plane showing W\ =
mechanized (b) directly and (c) using (a).

l-W3. Three-point DFTs
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Seven complex additions are required for the 3-point DFT in Fig. 7.3(c), so the
FFTs in Fig. 7.2(b), (c) require 7 + 7 + 6 = 20 complex additions, compared to
30 using a DFT. The economy of arithmetic operations of the JV-point FFT
versus DFT increases rapidly as N increases.

4 DFT for N, = 3, N2 = 2, and DRO Output

In this case Eq. (7.34) gives

Z

(7.46)

2-point DFT

X ( k 2 , n i )

3-point DFT

which is the same as Eq. (7.36) with the subscripts 1 and 2 interchanged. Fig-
ure 7.2 also applies when the subscripts 1 and 2 are interchanged and the data
tags are appropriately changed. In terms of the array processing in Fig. 7.2(a),
the input data is in NO and the output data is in DRO.

5 DFT for N, - 3, N2 = 2, and DRO Input

Going through the same development for this case as for the previous DRO
input case, in which Nl = 2 and N2 = 3, leads to Fig. 7.4. Figure 7.4(b), (c) show
the 6-point DIF and DIT FFTs, respectively. Again W6 = exp( —j27i/6),
so W\ = W%, etc. Figure 7.3(c) is used to implement the 3-point DFTs in
Fig. 7.4(b), (c).

The matrix of exponents for Fig. 7.4(b), E = E2 | ETF J Et, is

E =

0 1 2 3 4 5
~0
0
0
0
0
0

0
3
1
4
2
5

0
0
2
2
4
4

0
3
3
0
0
3

0
0
4
4
z.

2

0"
3
5
2
4
1
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2-point DFTs twiddle factors

\«2

3fc2\ 0 1 0 1
0
3
0
3
0
3

0 0
0 3

0 0
0 3

-700

' V'i
0 1 n2\ 0 0 1 1 2 2

J GO

0 0
0 3

0
1

* 0
1
0
1

0
0 -700

0
1

-700 0

2

3-point DFTs

0 0 1 1 2 2
0 0 0

0 0 0
0 . 2 - 4 .
• 0 - 2 - 4

0 • 4 • 2 •

• 0 . 4 - 2

(7.47)

The transpose of the E matrix is equal to the E matrix in Eq, (7.42). Consequently,
Figs. 7.2(b) and 7.4(b) are obtained from each other by flow graph reversal or

3-POINT TWIDDLE 2-POINT
n = ("2,ni)DRO DFTs FACTORS DFTs C<2,ki)NQ

0 = (0,0)0 —

1 =(1,0)0

2 = (0,1)0—

3 = (1,1) 0

4 (0,2) 0—

5 = (1,2)0- A

r* 1I

Iii
--i

>__

•-

— J

_* — -X y^ o(0,0)
» y^ yL — 0(1,0) -3

wo £ ^

+ -/" y/ 0(0,1)

>, -/ j£- <, (1>1) = 4

> » jf if- 0(0,2)

^ -S .£. 0(1,2) = 5
\AA' * f

= k

= 0

-1

- 2

"2

( a )
Fig. 7.4. (a) Six-point DFT reduced to 2-D processing using 3- and 2-point DFTs and twiddle

factors, (b) Planar DIF FFT flow diagram for (a) with 3-point DFTs overlapping, (c) Planar DIT FFT
flow diagram for (a) with 2-point DFTs overlapping.
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STAGE 1

SAME AS
?'" BELOW "•

(c)
Fig. 7.4. (Continued)

transposition; that is, one is obtained by reversing the input, output, and direction
of signal flow in the other [5].

Figures 7.2(c) and 7.4(c) are similarly obtained from each other.

6 DFTforN, = W2 = 2

Figure 7.5(a) is the 2-D implementation of a 4-point DFT. Figure 7.5(b), (c)
show the DIT and DIF FFTs, respectively, that result when Fig. 7.5(a) is reduced
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2-POINT
DFTs

2-POINT
DFTs

( ) I STAGE 1

» ( )

Fig. 7.5. (a) Four-point DFT reduced to 2-D processing using two 2-point DFTs and twiddle
factors, (b) Planar DIT FFT flow diagram for (a) with output DFTs overlapping, (c) Planar DIF FFT
flow diagram for (a) with input DFTs overlapping.
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to a planar diagram. The matrix of exponents for Fig. 7.5(c) is W*' =
VE\ where now W = e"j2n'4 and E = E2 % ETF % El is

0 0 1 1
0 — 700

\
2fcz

«2

\ o
0
2
0
2

0
0

-;oo

1
0
2

0

0
0

\ K I
1 «2\

-700

0
2

0

t 1
0
1

0 0 1 1
0

o

0

0

0 • 2 •

• 0 - 2

(7.48)

C Mixed-Radix FFTs

Mixed-radix FFTs result when N has factors such as 2L3M, 2 • 3 • 5, etc. Fig-
ure 7.2 is an example when N — 2 • 3. The mixed-radix FFTs can be developed
by successively combining 2-D DFTs. For example, for a 15-point FFT we can
use five 3-point DFTs along the n2'

axis followed by twiddle factors and three
5-point DFTs along the nraxis. For a 30-point FFT we can use two of the
15-point FFTs followed by twiddle factors and fifteen 2-point FFTs.

D FFTs by Matrix Transpose

We showed that implementing 6- and 4-point DFTs using 2-D processing leads
to flow diagrams that correspond to the product of sparse matrices. The
transpose of a matrix product leads to a new FFT. This result is very general
[2,5]. Let W = e~j2n/N and let an N-point FFT in factored form be given by

WE = WEL • • • WE2WEt (7.49)

Then another W-point FFT is

where we have used the relation for N x N matrices A and B that (AB)T = BTAT

and the fact that

(H/E)T - WET

which can be seen, for example, from Eqs. (7.4) and (7.5).

(7.51)
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Transposing a DIT FFT leads to a DIF FFT; both require the same arithmetic
operations, and one is as good as the other in terms of internal computations.
However, the input-output ordering is scrambled-natural and natural-scrambled
for the DIT FFT and DIF FFT, respectively, so input-output data flow might
make one FFT preferable in a given application.

Computing a 1-D DFT Using Multidimensional Processing E

The results presented for computing a 1-D DFT using 2-D processing are
readily generalized to compute the DFT using multidimensional processing. We
express k and n in normal and digit-reversed MIR format, respectively, or vice
versa. The DFT becomes a summation over n1,n2,...,nL, where N has L factors.
A twiddle factor is applied to the output of each of the first L- DFTs. At the
output of the /th stage the twiddle factor is W{$, where for a DRO input tt is
determined by kt and n, f + 1 , «,- + 2 , . . . , nL ; for an NO input r,- is determined by fe, and

In-Place Computation 1

If x(n) is an NO input, then an NL-point DFT, DL, is computed along the %-
axis for each combination of nl , n2 , - . . , nL _ l . This transforms the nL index to kL .
Twiddle factors determined by kL and n l 5 n2, . . . , «£ ,_ x are then applied. Let T,
denote the tandem operations of Dt and the point-by-point application of
twiddle factors. Then similar to the transform of nL to kL the n t . _ i , . . . , «2, n^
indices are converted to kL^i,...,k2,kl by TL _ l , . . . , T2 , Ti . Symbolically we
indicate the transforms as follows:

l,...,n2lni) ^-^ X(kL,kL.l,nL.2,...,nl)

X(kL,...,k2tki)Dtlo (7.52)

The computations are in-place in the sense that only Nt data points are required
by the JV,-point DFT to produce N{ transform points using a maximum number of
memory locations given by N + e, where e « N.

In-Order Computation 2

Since the n( indices are replaced by kt indices, the output data array ends up
with the same memory map as the input, as Eq. (7.52) shows. We have found that
an NO input results in a DRO output, and vice versa. However, in certain cases
we can use an NO input and map the transform outputs as the computation
progresses to achieve an in-order, that is, NO, output [13, 14]. This allows the
computation to be both in-place and in-order.
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In-order computation results from interchanging data between two indices.
We will show why this is possible for L = 3. Note that for a DRO transform
sequence X(k') = X(k3 , k2 , kt )DRO the 1-D DFT coefficient number is

k' = klN2N3 + k2N3 + k3 (7.53)

whereas for an NO sequence, X(k), k is

k = k3N2Ni + k2N^ + k± (7.54)

If Ni = N3, transform coefficients may be swapped between the k3 and k1 axes to
convert the DFT output to the input data ordering. Alternatively, number
swapping may occur during the DFT computation to achieve an in-place and in-
order FFT. In the latter case, the array x(n3,n2»wi) is transformed by JV3 -point
DFTs along the n3-axis, This is followed by twiddle factors determined by k3 , w2 ,
and ni and yields an array X(k3 , «2 , nt ). Next, a mapping M3 interchanges the k3-
and «!-axes and the corresponding data. Then follow JV2-point DFTs and twiddle
factors determined by k2, and finally A^ -point DFTs and twiddle factors
determined by kl , Let Tt denote the application of the DFT D, and twiddle factors
determined by /c,-, i = 1, 2, 3. Then symbolically we indicate the foregoing steps as
follows:

*2,*3)No (7.55)

where ( k l } k2, /c3)NO = k1N2N3 + k2N3 + k3.
Figure 7.6 is a pictorial representation of the sequence of operations in

Eq. (7,55) for A^ = JV3 = 2andN2 = 3. Numbers that are complex, in general, are
representated by dots in Fig. 7.6. The data is in normal order, as shown by the
numbers alongside the dots. The 2 x 2 DFT matrix D3 converts the n3,n2,nl

space to k3,n2, nt space. Twiddle factors determined by k3,n2, and nt are then
applied. These computations are in-place in the sense that, for each combination
of nl and n2 > data are taken from the array along the n3-axis and processed. Next,
M3 swaps points between the k3- and nraxes, in effect changing the coordinate
system from right-handed to left-handed. The data defined by n2 and nl is still

"1
t ^•^<2*y*\^' ''" *'

• ' ' *

v IN-ORDER SCRAMBLED ,
Y

TRANSFORM SEQUENCES
Fig. 7.6. Pictorial representation of a sequence of operations to compute a 12-point DFT.
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properly ordered for transform, respectively, by the 3 x 3 matrix D2 plus twiddle
factors and the 2 x 2 matrix D3 plus twiddle factors. When the transform
sequence indices are computed in DRO we see that the transform sequence is in-
order; that is, X(i) is in the same location as x(i). If the computations are done
entirely in a right-handed coordinate system, the transform sequence is
scrambled and must be recovered using digit reversal, as shown in the scrambled
transform sequence array in Fig. 7.6.

We will say that the mixed-radix FFT is in-order if data swapping along
certain axes as the computation progresses leads to an NO output. For L = 3
we showed the swapping requires that JVj = N3. For L = 4 we require Nl = /V4

and N2 = N3, etc. In general, let JVt_,- + i = Nh i = 1, 2,..., [L/2], where [(•)]
is the largest integer less than or equal to (•), and let the data be naturally
ordered. Let ML-t be a mapping following the twiddle factors determined
by /CL_,-, and let ML_f interchange data point by point along axes kL-i+i

and n, for each combination of kL, kL^t,,.., fcL_,+2, fcL_,-,..., k2, kl and
«i, n2 , . . . ,« ;_! , «; + !,..., HL-I - I - Then an NO output results. Table III illus-
trates the DFTs the mappings for L = 6 [13]. N — N/N{ data transfers are re-
quired per nontrivial mapping, so a total of about \_L/2]N data transfers
is required.

If L = 2 and Nj_ = N2, swapping data along the axes nl and k2 corresponds to
matrix transpose. In this case the transpose of the right side of Eq. (7.35) yields

where now both input and output data are in NO. As a simple example, let
# ,=#, = 2. Then

,2 \ 0 1

Opc(O) + x(2) x(l) + x(3)

lLx(0)-x(2) WiWl)-x(3)]

x(0) + x(l) + x(2) + x(3) x(0) - x(2) + W4\x(l) - x(3)]

1 \_X(2) X(3)J (7-57>
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TABLE III

Memory Maps and DFTs to Yield an In-Order, In-Place Computation for /, = 6

Mapping
function

M6

MS

M4

I
1

Memory map

n 6 ,« 5 ,n 4 ,« 3 ,« 2 ,« 1

«, ,«, , n 4 ,« 3 ,n 2 , f c 6

n , , n 2 ,n 4 ,n 3 , f c 5 ,& 6
nl,n2,n3,k4,ks,k6

^ , f e 2 , /C 3 , f e 4 ) /C 5 , /C 6

DFT Memory map

D6 / C 6 , n s , n 4 , n 3 ! n 2 , n 1

D n k n n n k
D4 n , , n 2 , f c 4 , n 3 , f c 5 , f c 6

D3 K J , n2, K3, n4, K 5 , kf,

D, fe^fc,,^,^,^,^

where the indices nl,n2, kt, and /c2 are shown explicitly several times to indicate
the transposing of data. Comparing the matrices (x(n2,nl)NO) and (X(kl,k2)wo)
shows that the input and output data sequences are in the same order. We have
obtained an in-order output by physically moving (transposing) the matrix in the
braces in Eq. (7.56). This represents about N data transfers, which generalizes to
about [L/2JA? data transfers to achieve an in-place, in-order FFT.

Figure 7.7 presents the operations in Eq. (7.56) diagrammatically. Figure 7.7(a)
is a 2-D representation reduced to planar form in Fig. 7.7(b).

Fig. 7.7. In-place and in-order 4-point FFT. (a) 2-D operations described by Eq. (7.56). (b) Planar
flow diagram for (a).
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/ RADIX-2 FFTs

553

A large percentage of engineering work requiring an FFT is probably best
accomplished with a radix-2 FFT. This FFT takes 2L-data points, L— t, 2,. . . ,
and produces 2L transform coefficients. The radix-2 FFT is easy to understand
and use. The only complication is that either the input or output is in bit-reversed
order (BRO), but many existing general-purpose computer programs auto-
matically take care of the bit reversal so as to accept NO inputs and provide NO
outputs.

The butterfly structure of the radix-2 FFT results in a simple subroutine to do
the computations. Computation is in-place: two numbers into any stage yield two
output numbers that replace the input, which is not needed again.

Eight-Point DIT FFT

Applying Eq. (7.29) and Eq. (7.30) for /V, = 4 and N2 = 2 shows that 2-D
processing computes the 8-point DFT using two 4-point DFTs followed by
twiddle factors and four 2-point DFTs, as shown in Fig. 7.8(a). Figure 7.8(b)
shows the planar flow diagram resulting from separating the 4-point FFTs and
letting the 2-point FFTs overlap. Combining Figs. 7.5(b) and 7.8(b) yields the
8-point DIT FFT shown in Fig. 7.9.

4-POINT
n = (n2,ni)DRO

TWIDDLE
FACTORS

2-POINT
DFTs (k2,ki)NO = K

- - 0 (0,

/~+ (1-0)

(0,0) = 0

= 4

-̂  o (0,1) = 1

><- 0(1,1) = 5

(0,2) = 2

6

6 = (0,3)

7 = (1,3)

* — / " ^ o (0,2

•+. y Z-—o d,2) =
Utf mtm^m^mmMm^^mnff^tf

y? • <°'3>
yl o (1,3) = 7

.A ,Xl
( a )

Fig. 7.8. (a) Eight-point DFT reduced to 2-D processing using 4- and 2-point DFTs and twiddle
factors, (b) Planar DIT FFT flow diagram for (a) with 2-point DFTs overlapping.
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x (

»—q. * j> o

*> o-X » / o 1

(b)
Fig. 7.8. (Continued)

x( ) I STAGE 1

Fig. 7.9. Flow diagram for 8-point DIT FFT derived by replacing 4-point DFT in Fig. 7.8(b) with
4-point DIT FFT from Fig. 7.5(b).
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a. Matrix Representation. The arithmetic operations in the three stages of
Fig. 7.9 are succinctly displayed in matrix format. Moving the twiddle factors into
the butterflies immediately to the right yields the matrix of exponents
E3 1 E2 | E, given by

o o o o i i i i 0 0 2 2 0 2 2

"0 • • • 0 • • -~
. 0 • • • 1 • •
. . o . . • 2 •
. . . 0 • • • 3
0 . . . 4 . . .

. 0 • • • 5 • •
. . 0 - • • 6 •
. . . 0 . . . 7 _

0
1
2
3
4

* 5
6
7

0
0

0
0

-jco

0 •
• 2
4 •
• 6

-jco

V
k \ 0 4 0 4 0

0
1
2
3
4
5
6
7

" 0 0
0 4

0 0
0 4

0
-joo 0

4 0

-jco

0
4

0
0

4

0
4.

(7.58)

The matrices HKEl, WE2, and WE* correspond to processing along the first,
second, and third axes, respectively, of three-dimensional space.

b. Computational Considerations. When an FFT digital computer program
is written, the procedure to minimize multiplications is that of Fig. 7.9. For
example, on the bottom line in Fig. 7.9 the output of stage 2 should be multiplied
by W"l instead of moving Wl into the butterfly on its right. The multiplier W% is
included in the butterfly in Eq. (7.58) due to combining twiddle factor and
butterfly matrices for convenience in displaying the matrices of exponents.

c. Multiplier-Free Butterflies. Note in Fig. 7.9 that the butterflies are
implemented with additions and subtractions. The only multiplications are those
associated with the twiddle factors. The only other known FFTs that can be
implemented with multiplier-free, butterflylike structures plus twiddle factors are
radix-3, -4, and -6 FFTs, as will be discussed later.



556 Douglas F. Elliott

TABLE IV

Data Sequence Index Derivation for DIT Eight-Point FFT

Bits of binary index Decimal index

«3

0

0
0
0
1
1
i
1

«2

0
0
1
1
0
0
1
1

«1

0
1
0
1
0
1
0
1

n
(bit-reversed

order)

0
4
2
6
I
5
3
7

n
(natural
order)

0
1
2
3
4
5
6
7

d. Bit-Reversed Order. The input to the 8-point DIF FFT is in a scrambled
order that can be explained using Figs. 7.5 and 7.9. In the 4-point DFT (Fig. 7.5)
the data sequence index is n = 2nl + «2 = 0,1,2,3, since n{, n2 = 0, 1. Let prime
denote indices in the 8-point DFT (Fig. 7.5). Then n' — 2n\ + n'2, where n\ =0,1,
2, 3 and n'2 = 0, 1. We can replace n\ by n and n'2 by n3 to get

n' = 4nl + 2n2 + n3 (7.59)

Table IV shows Eq. (7.59) with the prime discarded. It is evident from the table
that n is in BRO; that is, n is the decimal number resulting from reversing the
order of the bits.

B 2L-Point DIT FFT

We have derived 2-, 4-, and 8-point FFTs that correspond to L = 1,2, and 3,
respectively. For L > 3, the 4-point DFTs in Fig. 7.8(a) are replaced by 2L~l -point
DFTs followed by 2L~i 2-point DFTs. A 16-point FFT results from using the 8-
point FFT of Fig. 7.9 for each of two 8-point DFTs, and 8 butterflies follow,
similar to those in Fig. 7.8. A 32-point FFT uses two 16-point FFTs followed by
16 butterflies, etc.

a. BRO Input. Table IV shows that the data sequence into the 8-point DIT
FFT is in BRO. The BRO follows from Eq. (7.59), which extends to larger FFTs
with the usual result that DIT radix-2 FFTs have BRO inputs and NO outputs.

b. Arithmetic Operations for 2L-Point FFT. We will make the pessimistic
assumption that all additions and all multiplications by a power of WN are
complex operations. For example, in Fig. 7.6, W\ = — j will be counted as a
complex multiplier, although only an exchange of real and imaginary parts of the
multiplicand is required.
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From Fig. 7.9 we note that there are JV complex additions per stage and Iog2 N
stages, JV = 2L. In general,

number of complex additions = NL = N Iog2 N (7.60a)

The first stage is implemented with additions only, but the remaining L — 1 stages
have JV/2 multiplications per stage. Since L — 1 = log2(A//2)

N N fN\
number of complex multiplications = — (L — 1) = -r-log2l — I (7.60b)

Expressing the DFT as a matrix shows that approximately N2 complex
additions and N2 complex multiplications are required for a brute-force
approach. Thus the FFT cuts the computation of arithmetic operations by
N/log2 N complex additions and 2JV/log2(AT/2) complex multiplications.

2L-Point DIP FFT C

The DIF FFT has an NO input and an output in BRO. This FFT results from
starting with 2L~l 2-point DFTs followed by two 21'"1 -point DFTs. For
example, an 8-point DIF FFT is derived from representing the FFT two-
dimensionally as four 2-point DFTs followed by two 4-point DFTs. The 4-point
DFTs are similarly expanded. Figure 7.10 shows the resultant 8-point FFT
reduced to a planar diagram. The matrix representation of Fig. 7.10 is the
transpose of Eq. (7.58), so the input is in NO, whereas the output is in BRO.

1 - 1 w

Fig. 7.10. Flow diagram for 8-point DIF FFT.
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In general, a DIF FFT is characterized by a BRO output and NO input. The
numbers of arithmetic operations to compute DIF and DIT FTTs are the same
and are given by Eqs. (7.60a) and (7.60b).

D Split-Radix FFT

The split-radix FFT (SRFFT) [16,17] has the optimum number of multipli-
cations and the minimum known number of additions for radix-2 FFTs for
lengths up to and including 16 [18,19]. The SRFFT has a good compromise
arithmetic operation count for all longer radix-2 lengths. The algorithm is
performed in-place using a repetitive butterfly structure and is numerically as well
conditioned as radix-4 algorithms [19].

The SRFFT results from applying the DFT definition to get [18]
N/2-l

C(2fc) =

for even index terms and

jv/4-i r
C(4fc+l)= £ x(n)-Xn +

x(n)
N

" + 7

N

(7.61)

3N

(7.62a)

and

C(4k + 3)=
N
— — x
4

3N
-~-
4

(7.62b)

for odd index terms. This reduces an JV-point DFT to one iV/2-point DFT and
two AT/4-point DFTs. When applied recursively, the preceding formulas result in
L-shaped butterflies that advance the top half of the butterfly by one stage and
the bottom half by two stages. Figure 7.11 shows the 32-point SRFFT using the
simplified notation of a small circle to represent a 2-point DFT. DIF and DIF
computer programs are available for the SRFFT (see Appendix C).

V RADIX-3 AND RADIX-6 FFTs

Radix-3 and radix-6 FFTs can be implemented with multiplier-free, butterfly-
like structures plus twiddle factors similarly to radix-2 and radix-4 FFTs.
Depending on the cost (i.e., time to compute a multiplication on a particular
machine), the radix-3 and radix-6 FFTs can be very efficient. This efficiency is
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Fig. 7.11. Flow diagram for 32-point split radix FFT [16] ©1986 IEEE.

achieved by doing the FFT arithmetic in a nonorthogonal coordinate system. If
the input data is complex, it must be converted to the nonorthogonal coordinates,
and the conversion incurs an additional expense. The output data may or may
not need conversion from the nonorthogonal coordinates, depending on the
application.

The output data does not need to be converted from the nonorthogonal
coordinates if convolution is being computed. The product of transforms is taken
in the nonorthogonal coordinates and is inverse transformed. If the input data is
real, the convolution data is also real and no transformations are required. If the
input data is complex, transformations of the two data sequences and of the
inverse transform are required.

Another application not requiring coordinate conversion of the output data is
spectral analysis in which the squared magnitude of the DFT output is displayed.
Transform coefficient magnitudes are computed in nonorthogonal coordinates.

We shall discuss nonorthogonal coordinates and then the radix-3 and radix-6
FFTs. The following radix-3 and radix-6 developments came from [20] and [21],
respectively.



560 Douglas F, Elliott

A Nonorthogonal Coordinates

We can think of a complex number a + jb as a vector sum of the vector la
along the real axis and the vector jb along the imaginary axis, where 1 and j are
unit vectors with (x,y) coordinates (1,0) and (0, 1), respectively. We will say that
complex numbers use the basis (1, jf). In most cases arithmetic is simplest using the
basis (1, j). However, the basis (1, ju) is equally suitable and occasionally can be the
simplest, where // is a vector of unit length and is not parallel to the real or
imaginary axes.

To develop the radix-3 FFT, we let ju= W3 — —-^—j^/3/2. Then j— — l/\/3 —
W32/^, and transformations between numbers using the bases ( I , / ) and
(I, W3) are accomplished by

W2b

(7.63b)

Addition using the basis (1, W3) is given by

(a + W3b) + (c + W3d) = (a + c) + W3(b + d) (7.64)

Using W\ ~ — 1 — W3 (see Fig. 7.3), we find that multiplication is given by

(a + W3b)(c + W3d) = (ac - bd) + W3[_ad + b(c - d)] (7.65a)

= (ac ~bd)+ W3[_(a + b)(c + d) - ac - 2bd] (7.65b)

Note that Eq. (7.65a) requires four real multiplications, whereas (7.65b) requires
just three plus a shift and extra additions and may be more economical,
depending on the relative cost of additions and multiplications. Twiddle factors
are powers of WN expressed in nonorthogonal coordinates:

(166)

Finally, complex conjugation using the basis (1, W3) is

(a + W3b)* =a + W2
3b - (a - b) - W3b (7.67)

B Three-Point DFT

The 3-point DFT has been discussed previously and is shown in Fig. 7.3(c). If
the input to the DFT uses the basis (!,;'), complex multiplications are required. If
the input uses the basis (1, l^), no multiplications are required, as Eq. (7.65)



1, Fast Fourier Transforms 561

shows. Let the input coordinate transform yield the data sequence

1 2
x(n) = Re[x(n)] - ~7^Im[x(n)] - W, -= Im [x(n)]

^ jct(n) + W3x2(n), n = 0, 1, 2 (7.68)

Then the 3-point DFT in Fig. 7.3(c) is implemented with additions only as shown
explicitly by the equations

X(0) = [x,(0) + xt(l) + x](2)] + W,[x2(0) + x2(l) + x2(2)]

x2(l)-x2(2)]

j(l) + xt(2) - x2(2)] (7.69)

FFT C

This FFT is mechanized as a cascade of L stages with twiddle factors in
between. Each stage consists of 3L~1 3-point DFTs. The 3-point DFTs are
multiplier free in the basis (1, W3), so the only multiplications are due to the
twiddle factors that are powers of WN expressed with respect to the basis (1, W3)
[see Eq. (7.66)]. These multiplications are implemented using Eq. (7.65a) or
Eq. (7.65b).

Figure 7.12 shows the 9-point FFT in 2-D form with the input and output
transformations shown explicitly. Figure 7.13 shows the 27-point DIT FFT
reduced to planar form without the input and output transformations.
The small circles are used to simplify the flow diagram and indicate 3-point
DFTs; that is, three inputs are used to produce three outputs with additions
only using Eq. (7.69). A total of ((f)L — 1)JV + 1 nontrivial complex multiplica-
tions are required to implement the twiddle factors that are powers of W =
exp( — j2n/21). The 4LJV/3 complex multiplications required by the 3-point
DFTs [see Fig. 7.3(b)] are eliminated by this method.

Six-Point FFT D

The 6-point FFT in Fig. 7.4 can be implemented without multiplications with
respect to the basis (1, W3) by using the identities (see Fig. 7.14).

W6 = -W$=-Wl = l + W3, W$ = -WS
6 = W3, Wl = -\

Thus, if a + W3b is the input to the twiddle factors W6 or W\ in Fig. 7.4, then the
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Fig. 7.13. Twenty-seven-point DIT FFT; W = exp(-j2n/27) [20] ©1978 IEEE.

outputs are

(a + W3b)W6 = a W3a, (7.71)

The twiddle factors require no multiplications, so, after the input data is
converted to the basis (1, W3\ the 6-point FFT requires no multiplications.

Fig. 7.14. Unit circle showing multipliers used for 6-point DFT computation.
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E 6L-Point FFT

A 62-pont FFT is implemented with a coordinate conversion, six 6-point FFTs
along the n^axis (similar to Fig. 7.12), twiddle factors involving Wk

3
lg2, kl n2 =

0,1,.. . , 5, and six 6-point FFTs along the «2-axis. A 63-point FFT is
implemented with a coordinate conversion, thirty-six 6-point FFTs, and six 36-
point FFTs. A 6L-point FFT uses 6L l 6-point FFTs followed by six 6L 1-point
FFTs, etc. The twiddle factor computations are the only ones requiring
multiplications. The twiddle factors are implemented using Eq. (7.66).

F (2L3M)-Point FFT

Martens has developed a so-called recursive cyclotomic factorization al-
gorithm (RCFA) that is efficient for transforming 2L3M-point sequences [22].
When the RCFA is for a sequence whose length is a power of 2, it can be shown to
be the same as the SRFFT (Section IV.D) [17]. The RCFA requires only a few
different computational cells (a cell is a few operations to accomplish a specific
computation, such as a generalized butterfly). The main advantage of the RCFA
is that it reduces the size of the program to compute the FFT compared to the
PFA and the WFTA (Sections X and XI.B). The RCFA also offers a slight
advantage over these algorithms in execution time based on run times from a
VAX-11/750 computer. Martens recommends the basis (1,W6) because it is
slightly more efficient. He also demonstrates how two different basis represen-
tations can be used in the same algorithm.

VI RADIX-4 FFTs

As mentioned, the only known butterfly or butterflylike structures that can be
implemented without multiplications are for radix-2, -3, -4, and -6 FFTs,
For radix-3 and radix-6 FFTs it is done at the expense of computation in
nonorthogonal coordinates (see Section V). Radix-4-FFTs are computed with
standard complex arithmetic and are attractive for distributed arithmetic
mechanizations.

A Four-Point FFT

Figure 7.5 shows that 4-point FFT flow diagrams contain only butterflies and
the multipliers W% = 1 and W\ — exp(— j2n/4) = —j. Multiplying a + jhby ~-j
simply changes the sign of a and then interchanges — a and b between their real
and imaginary locations in memory. The 4-point FFT is multiplier free.
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n = (ri2,ni)DRO
4-POINT

DFTs (ka,ki)NO = *

* TO, "2* tk. *a* »ki

Fig. 7.15. Sixteen-point FFT.

4L-Point FFT B

The 4t-point FFT is mechanized as a cascade of L stages where each stage
consists of 4L ' 4-point FFTs. Figure 7.15 shows the 2-D version of the 16-point
FFT. The 64-point FFT can be mechanized as 16 parallel 4-point DFTs along the
n j -axis followed by four 16-point DFTs (implemented as FFTs) along the n2-a\is.
The 4i-point FFT can be viewed as 4i~1 4-point FFTs followed by four 4L l-
point FFTs.

SMALL-W DFTs VII

Small-iV DFTs are used in the FFTs discussed in the following sections. They
are the most economical algorithms for computing the DFT in terms of
minimizing multiplications, although at the expense of computations that are not
in-place. Appendix A gives small-N DFTs for N = 2-5, 7-9, 11, 13, 16, and 17.
The theory for developing the algorithms was derived by S. Winograd using
mathematical concepts that are probably less familiar to most engineers than
those we have presented. Although they are not unique, only the most efficient
small-JV DFTs are used. You need not know how to derive them in order to use
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them. Therefore, we only shall state the small-JV DFTs and refer the interested
reader to the literature for the theoretical background [2-4, 10, 15,23-25].

The algorithms in Appendix A are implemented with a definite sequence of
operations that may be grouped as input additions, multiplications, and output
additions. For example, one 3-point DFT is in Appendix A and another is

x(2), x(2)

m, m~, .V3

(7.72)

s2 = m,

: S2 m2

Evaluation of Eq. (7.72) requires six additions, one multiplication, and one shift.
For analysis purposes, it is useful to put the small-JV DFTs into a factored

matrix representation. The matrix representation can then be handled with
matrix analysis tools to arrive at the WFTA described in a subsequent section.
The factored matrices representing small-Af DFTs have many zero entries and
are not used to implement FFTs. Instead the equations that minimize arithmetic
operations are stored in memory. These equations do not generally have the
symmetrical form of radix-2 FFTs and therefore require more program storage.

Let D be a small-JV DFT. Expression of a small-N DFT makes it possible to
combine input data using only additions. All multiplications can then be
performed. Finally, more additions determine the transform coefficients. These
operations are represented by

D = SCT (7.73)

where T accomplishes input additions, C accomplishes all multiplications, and S
accomplishes output additions. For example, if N = 3, then Eq. (7.72) is an
optimum algorithm and has the matrix representation

1 1 0
0 0 1
0 0 1

X

"1 0
0 1
0 1
0 0

0~
1

— 1

"1
0
1
0

S

0"
0
0
1

"1 0
0 1
0 1

0 0
1 0
0 1
0 0

0"
1

_ 1

0"
0
0
1

[ 1 0 0

0 1 0

o o - i
l_o o o

0

0

0

-7^3/2.

(7.74)

Note that some components of the factored S and T matrices in Eq. (7.74) are
nonsquare; in general they are not necessarily square. Note also the following
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characteristics of the C matrix:

1. It is diagonal matrix implementing all the small-N algorithm's
multiplications.

2. The numbers along the diagonal are either real or imaginary but not
complex.

3. The real numbers along the diagonal may be grouped on one side of the C
matrix; the imaginary numbers may be grouped on the other side.

FFTs DERIVED FROM THE RURITANIAN CORRESPONDENCE (RC) VIII

The RC is another method of representing integers. It leads to N-point PFA
FFTs when N = N1N2"-NL and the factors of N are mutually relatively prime;
that is, the greatest common divisor (gcd) of N( and JV} is 1, i ̂  j and i, j —
1, 2,... , L. Thus, these FFTs are available for such values of JV as 2 • 3, 3 • 4,
3 • 4 • 5, 2 • 5 • 7 • 9, etc. We shall refer to them as RC FFTs. Their advantage is
that one can implement them without twiddle factors, using the efficient small~JV
DFTs of the preceding chapter. Their disadvantage is that a scrambling of the
transform coefficient numbers occurs and must be accounted for.

Ruritanian Correspondence A

This is an integer representation that we will use to represent the indices k
and/or n in an N-point DFT in this and later sections [2,26]. Let N =
N{ A/2 • • • NL, where gcd(NhNj) = 1, i ̂  j, and i, j = 1, 2, . . . , L. Then given nt.
0 < n, < Nj, there exists a unique n, 0 < n < N, such that

(175)

L \VV /A'J

and

"= t"'- modN (7'76)

where <(Ar/A/i)^1>Jv, is the multiplicative inverse of (N/Nt) (modulo N{) and n
mod JV is the remainder of n/N. For example, let L — 2,Nl = 2, and N2 = 3. Then
<(JV/Ay "~1>] V l = <3~1>2 = 1, since 3 • <3"1>2 mod 2 = 3 - 1 mod 2 = 1; that is,
the product of 3 and its multiplicative inverse is 1 when computed mod 2.
Likewise, <(N/N2r

iyN2 = <2"1>3 = 2, since 2 • <2"1>3 mod 3 = 2 - 2 mod
3 = 1. Also, n = (nlN/N1 + n2N/N2) mod JV = (3^ 4- 2n2) mod 6, as displayed
in Table V.
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TABLE V

Ruritanian Correspondence Integer
Representation for /V, = 2 and JV2 = 3

RC digits

»2

0
0
1
1
2
2

«i

0
1
0
1
0
1

Decimal
number

n = (3n, +2n2)
mod 6

0
3
2
5
4
1

The two-factor RC FFT occurs for JV .= NlN2t where Nl and JV2 are relatively
prime, and the RC is used to represent both k and n [27, 28] :

k = (k2N1 + k l N 2 ) modN ^(k2,kl)RC (7.77)

n^(n2Nl +nlN2) modJV £ (n2,«i)Rc (7-78)

The exponents of W^" can be simplified by noting that

kn = klnlNl + k2n2N\ + N(kln2 + fc2«i)

fcn modJV = fc1n1yV| + fc2n2Nf (7.79)

so that

^"= Wk
N^lN2Wk

N
2^Nl (7.80)

Since the DFT input data is determined by (n2 , nv ) and the output coefficients by
( k 2 , k l ) , we can write the DFT

= I l *(«2, WiW^"1^ ̂ 2JVl (7.81)
02 = 0 ni = 0

Equation (7.81) is the same as a 2-D DFT except for the N2 in the exponent of
WNl, and similarly for the NI in the exponent of WN2.

We can nevertheless compute Eq. (7.8 1) as a 2-D DFT, as we explain next. Note
that if A/i and N2 are relatively prime, then the sequence (0, N2 , 2iV2

(Ni — l)N2} modN, (i.e., each integer in the sequence is computed mod Nl
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generates the sequence (0, 1,2, . . . , / s / j — 1} after reordering. For example, if
A/i = 5 and N2 = 3, then (0, 3, 6, 9, 12} mod 5 = (0, 3, 1, 4, 2}, which reorders to
{0,1,2,3,4}. The sequence klN2 is exactly such a sequence. As Jq takes the
values in the sequence (0, 1, 2, . . . , yvt — 1} we get a sequence

k\ = (0, N22N2,..., (Nl - \)N2 } mod JV, (7.82)

In like manner we get a sequence

k'2 = {0, Ni,2Ni,...,(N2- 1)N,} modJV, (7.83)

Using these sequences, we compute the 2-D DFT

X(k'2,k\) = *£ ' *£ * x(n2, n t)R C W£" W^"2 (7-84)
=0

The 1-D DFT output is determined from Eq. (7.84) by selecting X(k2 , /c^from the
array X(k 2 ,k\), where Eq. (7.77) is used to determine (k2 , kt ). Note that we obtain
k{ and k2 from Eqs. (7.82) and (7.83) using the inversion formula

' (7.85)

For example, for A^ = 5 and N2 = 3, <(N/Ar1)~1>N l = < 3 ~ l > 5 = 2, since
3 • 2 mod 5 = 1 . Thus, k\ = (0, 3, 1, 4, 2} yields fcj = (0, 6, 2, 8, 4} mod 5 -
(0, I, 2, 3, 4). Equation (7.84) is evaluated as follows:

"2 = 0 ni~Q

I -point DFT

DFT

Note that Eq. (7.86) is similar to Eq. (7.29) except that Eq. (7.86) has no twiddle
factors. We have eliminated them at the expense of mapping n into (n2, n t ) space,
using the RC and retrieving k using Eq. (7.82), Eq. (7.83), and the RC.

As an example, let Ni = 2 and N2 = 3. Figure 7.16 is the 6-point RC FFT.
Input and output indices are in Table V and VI, respectively. Note that
Figs. 7.2(a) and 7.16 are both implemented with 2- and 3-point FFTs, that the
latter has no twiddle factors, and that the indexing for the two is different. Fig-
ure 7.2(a) used the MIR to represent k and n, and there are no constraints on Nl

and N2, whereas Fig. 7.16 used the RC, so Nl and N2 must be relatively prime.
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n = (n2,nl)RC

o - (0,0) o — -/*
3 = (0,1) 0 -Jf

2 - (1,0) 0 -^

5 = (1,1) O -Jf

4 - (2,0) 0 yf

1 - (2,1) 0 -jf

2-POINT 3-POINT
DFTs DFTs (k2> k'») k

~^=\
£-
t-

I

-4
l

I

i

i

(0,0)
, o o o
— O O 3
(0,1)

iftrKs/
«.m\/\=i=A,,b4

"2 nz kj. k2

Fig. 7.16. Six-point FFT in 2-D format with indices represented by the Ruritanian correspon-
dence.

TABLE VI

Six-Point RC FFT Output Indices

fe

0
3
2
5
4
1

k2

0
0
1
1
2
2

*,

0
1
0
1
0
1

k'2
0
0
2
2
4
4

k'2 mod N2

0
0
2
2
1
i

k\

0
3
0
3
0
3

k\ mod Afj

0
1
0
[
0
1

C RC FFT When N Has L Factors

Let N = NiN2'"NL, where the N{ are mutually relatively prime. Then using
the RC to represent both k and n gives us an L-D representation of a 1-D DFT
that is a direct extension of Eq. (7.81). For example, for L = 3 we get

N3-i N2~l Ni-l
V V V v(n n n2-, 2-, 2-, X(n3'<n2^nl

"3 = 0 B2 = 0 ni = 0

(7.87)

Conversion of the 1-D DFT to an L-D DFT yields an FFT without twiddle
factors. The Nr, AT2-, . . . , NL-point DFTs are evaluated in the most efficient
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manner, usually with the small-JV DFTs in Appendix A. These FFTs can be
programmed to be in-order as well as in-place, as described next.

In-Order and In-Place RC FFT D

The mapping of data into the RC FFT is determined by (nL,..., n2, nl), where
the nh i= 1 ,2 , . . . ,L , are determined using the RC. After the index nt is
transformed to k't = ktN/Ni by the Appoint DFT, let the corresponding DFT
outputs be reordered according to the index /t, = 0, 1, 2,. . . , Nt — 1, where k{ is
determined from k using the RC. Then the RC FFT is in-order in the sense that
the RC determines the mapping for the input and the output of the DFT.

Equation (7.85) shows how scrambled output indices k\ and k'2 are converted
to NO indices kl and /c2, respectively, when L = 2. In general the mapping

modA/i, i = l , 2 , . . . , L (7.88)

converts a scrambled-order Appoint DFT output to an NO output; and if this is
done as FFT computation progresses, the algorithm is in-order [28].

In-place computation is described for mixed-radix FFTs in Section III.E and is
similar to the RC FFT.

The CRT is still another method of representing integers that leads to Appoint
PFA FFTs when N — N1N2'"NL and factors of N are mutually relatively prime.
We shall refer to these as CRT FFTs. The same remarks apply to these FFTs as to
the RC FFTs.

Chinese Remainder Theorem A

Let N — NI N2 • • • NL, where gcd(A/,-, Af-) = 1, i ^ j, and i, j = 1,2,. . . , L. Then
given «,-, 0 < n, < Nh there exists a unique n such that [2,26]

«. = n mod Af. for all i f7.89)

For example, let L = 2, A/", = 2, and N2 = 3, so n = nl
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TABLE VII
Chinese Remainder Theorem Integer

Representation for /Vr = 2 and N2 — 3

CRT digits

«2 <

0
0
1
1
2
2

«i

0
1
0
1
0
1

Decimal
number

n = (3«, + 4n2)
mod 6

0
3
4
1
2
5

n2Nl(Nl
lyN2 = 3«j + 4n2» as displayed in Table VII. We shall also use the

fact that

For example, for Nl = & and N2 — 9 we find that <Ni 1 > J V 2 = 8, since
8 • <8 ]>9 = 8 - 8 = 1 (modulo 9). Also, (N2

lyNl = 1, since 9 - 1 = 1 (modulo 8).
Thus, Eq. (7.91) reduces to gcd(8, 1) = gcd(9, 8) = 1.

B CRT FFT When N Has Two Factors

The two-factor CRT FFT occurs when L = 2 and the CRT is used to represent
both k and n [27,28]:

k = (k2Nlal +k1N2a2) modJV = (fc2,*i)cRT (7-92)

n = (n2Nlal + niN2a2] mod N = («2>ni)cRT (7.93)

where af = <(N/Ntr
l>Ni, i = 1, 2, and, from Eq. (7.91),

gcdM,^) = gcd(N2,a2) = 1 (7.94)

The exponents of Wk" can be simplified by noting that

kn modN = k1ni(N2a2)
2 + k2n2(Nia1)

2 (7.95)

so that

Wk
N" = W/^1

1
nifl2 Py^2"

2fll (7.96)
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since N2a2 mod JVj = Nta{ mod N2 = 1. The DFT in this case can be written

" * " ^lUT^T2 W&"" (7-97)

Equation (7.97) is the same as Eq. (7.81) when Nt and N2 are replaced by a1 and
a2. Since at and «2 plav the same roles in the CRT FFT development as JV^ and
A/2 in the RC development, everything in Section VIII following Eq. (7.81) applies
to this section after replacing Nt and JV2 by at and a2. Also, the input and output
ordering must be changed to correspond to the CRT.

As an example, let JVt = 2 and N2 = 3. Then Fig. 7.16 applies to the CRT FFT
after the 2-point DFT input and 3-point DFT output indices are changed to those
of Table VII and the unscrambling is modified appropriately.

GOOD'S FFT X

Good's algorithm was described in his 1958 paper [8] but went largely
unnoticed until after Cooley and Tukey published their 1965 paper describing a
radix-2 FFT [7]. However, Good's FFT was not competitive with the radix-2
FFT before the efficient small-JV DFTs became available. Good's FFT is also
called the Good-Thomas PFA or simply the PFA. Since there are a number of
algorithms requiring that the factors of N be relatively prime, we shall use the
terminology Good's algorithm.

The difference between Good's FFT and the RC or CRT FFT has to do with
the indexing of data and transform sequences. Whereas the latter two use the RC
or the CRT for indexing both sequences, Good's FFT uses the RC for one
sequence and the CRT for the other.

Good's FFT When N Has Two Factors A

Let k be represented by the CRT and n by the RC:

k = (k2Niai + kiN2a2) mod N ^ (fc2^i)cRT (7-98)

n = (n2Nl + n^N2) modN 4 (n^n^c (7.99)

where a i and a2 are the multiplicative inverses of N/Nl (modulo JVJ and N/N2

(modulo JV2), respectively. Since Ntat mod JV2 = N2a2 mod Nl = 1,

W% = Wkj}?Wkjf** (7.100)

Using Eq. (7.100) in the 1-D DFT definition yields Eq. (7.18), which defines a 2-D
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DFT. The indexing scheme has converted a 1-D DFT to a true 2-D DFT in
which the data and transform sequences are scrambled according to Eqs. (7.99)
and (7.98), respectively. If the indices k and n are represented by the RC arid CRT
instead of the CRT and RC, respectively, the development still applies. The only
change is that the input and output indexing are reversed.

As an example, let Nl = 2 and N2 = 3. Let k and n be determined by the CRT
and RC, respectively. Then Fig. 7.13 applies to Good's FFT after the 2-point
DFT input indices are changed to those of Table VII. As another example, let
Ni — 1 and N2 = 3, but let k and n be determined by the RC and CRT, respec-
tively. Then Fig. 7.16 still applies to Good's FFT after the 3-point DFT out-
put indices are changed to those of Table VII and the unscrambling is
modified appropriately.

B Good's FFT When N Has L Factors

Let k and n be represented by the CRT, Eq. (7.90), and the RC, Eq, (7.76),
respectively (or vice versa). Then the 2-D DFT generalizes to

X(kL,..., K 2 , M)CRT
NL-! pV 2 - lpV , - l ~] )

= E -] I I x(nL,...,n2,nl)RCWlif™ \W^2\'"Wk
N^ (7.101)

HL-O (n2 = 0 |_m=0 J j

which is an L-D DFT. The 1-D DFT data is assigned to an L-D array according
to the RC. The L-D DFT is computed by the most efficient method possible to
compute the JVr, N2-,..., IVL-point DFTs. These efficient DFTs are generally the
small-Ar DFTs of Appendix A. The L-D output data is reassigned to the 1-D
DFT output by converting the locations in the L-D array to those in a 1-D array
by the RC. Consequently, Good's FFT is in-order: the output data is in the same
location as the input data, at least if we allow for determining k from
(7cL,.. . , /c2, &I)CRT and n from (nL,...,n2,nl)RC using Eqs. (7.90) and (7.76),
respectively (or vice versa).

Development of the WFTA is accomplished by first representing Good's FFT
as a Kronecker product. Let

(7.102)

be a K x L matrix, where k - 0, 1, 2, . . . , K - 1 and / = 0, 1, 2, . . . , L - 1. Let
B = (bmn] be an M x N matrix. Then their Kronecker product is A (g> B, where
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a0>0B
a, ftB

iB

(7.103)

The Kronecker product causes B to be repeated KL times, each time scaled by an
entry from A. Since B is M x N, A ® B is KM x LN.

DFTs can be combined into a larger DFT by taking their Kronecker product.
Let DL,... , D{,..., D2, D! be NL-t..., Nr,..., N2-, JVrpoint DFTs where the Nt

are relatively prime. Let D, have naturally ordered indices; that is, D, = (Wft"1'), k(,
«, = 0, 1, 2,..., Nt - 1. Then another DFT is given by [2,8,10]

D = D7 <g> • • • <g> (7.104)

where the data and transform sequence indices are determined by the RC and
CRT, respectively, or vice versa. For example, let L = 2, Nl = 2, and N2 = 3.
Then

) W^1 (7.105)

E, =

0 1 2
"0 0 0"

1 2
2 1

0 1

0 0" (7.106)

and the matrix E with the n and k indices determined by the RC and CRT (see
Tables V and VII), respectively, is

fc\ 0 3 2 5 4 1
010 0 0 0 0 0"

0 3 0 3 0 3
£ = 4 0 0 2 2 4 4 (7.107)

0 3 2 5 4 1
0 0 4 4 2 2
0 3 4 1 2 5

Note that the k and n indices may be interchanged without affecting the E
matrix , but the data and transform sequences are now ordered according to the
CRT and RC, respectively. Note also the equivalence of the 2-D processing
(Fig. 7.16 with the transform sequence indices changed to the CRT ordering)
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and the Kronecker product in Eq. (7.105). We conclude that L-D processing
using Good's FFT, Eq. (7.101), is equivalent to the Kronecker product of L
DFTs, Eq. (7.104).

A The Winograd Fourier Transform Algorithm

The WFTA results from a Kronecker product manipulation to group input
additions so that all transform multiplications follow. The multiplications are
then followed by output additions that give the transform coefficients. The
Kronecker product manipulation that nests the multiplications inside of the
additions results from the relationship

(AB) ® (CD) = (A <g> C)(B <g> D) (7.108)

where A, B, C, and D are matrices with dimensions M± x Nt,N± x N2, M3 x N3,
and A/3 x N4, respectively. According to Eq. (7.73) a small-N DFT of dimension
A/, can be put into the form

D, = SAT,- (7.109)

We can construct a DFT of dimension N = NL- • • N2Ni by using Eq. (7.109) in
Eq. (7.104). We get

D = (SLCLTL) ® • • • <g> (S2C2T2) <g>(SjC^) (7.110)

Using Eq. (7.108) repeatedly in Eq. (7.110) gives [29]

D = (S i ®- - -®S 2 ®S 1 ) (C t ®- - - (g )C 2 (x )C 1 ) (T L ®-- -®T 2 ®T 1 ) (7.111)^ i 1 1 1 ^ -***- ^^ , , , , ^
output additions multiplications input additions

Equation (7.111) is the WFTA. The T,- matrices are sparse, usually with
nonzero entries of ± 1; therefore, TL (x) • • • (x) T,- ® • • • (x) T2 ® T^ specifies ad-
dition operations on input data. In like manner each of the Sf matrices
accomplishes output additions. DFT multiplications are specified by the
Kronecker product of the Ct matrices, i — 1, 2,..., L, where each of the C,-
matrices is diagonal and is made up of entries that are either purely real or purely
imaginary.

If we write Eq. (7.111) as D = SCT, then the DFT output is

X = Dx = SCTx (7.112)

where X and x are transform and data vectors ordered as the CRT and RC, or vice
versa. The matrix operations are carried out with much fewer arithmetic
operations by doing equivalent L-D processing. The data in the vector is
reformatted into an L-D array that is processed in L-D space by T =
Tt® • • • ® T2 (g) Tj. This yields an M-point output, y = Tx in vector form,
where T is an M x N matrix. Again y has L components that are processed in
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L-D space by C = CL® ••• ® C2 ® Ct . Finally, L-D processing by S =
SL <g> • • • ® S2 <g) St yields X(k), with /c determined by the CRT if n is determined
by the RC. Since the C,- are diagonal matrices, the multiplications specified by the
C, are simplified, as the 2-D processing shows.

2-D WFTA B

In the 2-D WFTA the DFT defined by X = D2

2-D space, which is equivalent to
may be processed in

w h e r e ( x ( n 2 , n 1 J ) a n d ( X ( k 2 , k l ) ) a r e N2 x NI matrices, DA and D2 are ATj-and N2-
point DFTs, and Dt and D2 transform the rows and columns of (x(n2,nl)),
respectively. At this point the WFTA uses the small-Af DFTs that were shown
(Section VII) to have the format D£ = S,-C,T,-, where S,-, C,-, and T,- are A/,- x M,,
M, x M,-, and M, x A^ matrices, respectively. Using these DFTs in Eq. (7.113)
yields

( X ( k 2 , k l ) ) — S2C2T2(x(«2,n1))T{C{S[ (7.114)

TI and T2 transform the rows and columns, respectively, of the 2-D array
(x(n2,nl)). The operations equivalent to Tl and T2 are accomplished by
"preweave" modules (see Fig. 7.17). Next the multiplications specified by Cj and

3POINT
PRE-WEAVE

MODULE 5-POINT
PRE-WEAVE

MODULE

MULTIPLICATION
PHASE

( 6 X 3 = 18 muitsl

3-POINT
POST WEAVE

5 POINT MODULE
POST WEAVE

MODULE

Fig. 7.17. Fifteen-point DFT algorithm decomposed using Good's mapping to obtain a two-
dimensional (3 x 5)-point DFT and Winograd's algorithms for 3-point and 5-point DFTs. The
algorithm requires 18 = 6 x 3 multiplications which are "nested" between the preweave and
postweave modules. Reprinted with permission from J. H. McClellan and C. M. Rader, Number
Theory in Digital Signal Processing, Prentice-Hall, Englewood Cliffs, N. J., 1979. Copyright © 1979 by
Prentice-Hall, Inc.
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C2 are carried out; they can be expedited because Cl and C2 are diagonal
matrices. To illustrate, we shall compute the transpose of the center five matrices
in Eq. (7.114) when they are all 2 x 2 matrices:

0 1 „ fC2(0) 0C Z = L o c2(
) (7,115)

\c dj

so that

C1T1(x(n2,nl))
TT|C| =

^2W^lVUc ^alU^llU"

where A ° B means point-by-point multiplication of corresponding points in the
MI x M2 matrices A and B, and, in general, C = (c(/j, 12)) is an MI x M2 matrix
defined by

c ( l l t l 2 ) = Ci(ljc2(l2\ It = 0, 1, 2,. . . , Mt - 1, i = 1, 2 (7.117)

The significance of Eq. (7.116) is that the multiplications are combined into one
phase, as illustrated in Fig. 7.17. Finally, the operations equivalent to Sj and S2

are carried out by postweave modules. Thus, alternative representations for
Eq. (7.114) are

(X(k2tk1)) = S2[C
T o [r^xfo.M

= S^S^C o [T1|T2(x(»i2,«1))]
T]]]T (7.1l8a)

M2~ 1 Mi - 1
I £

/2 = 0 / i = 0

(7.ll8b)
"2 = 0

where in Eq. (7.1 18a) the operations must proceed from the inner brackets to the
outer ones. Equations (7.118) and Fig. 7.17 illustrate the WFTA structure. The
input and output data are ordered according to the RC and CRT in Fig, 7.17 (this
ordering can be reversed). All input additions are done so that the number of
points can be expanded along the n2-axis and the f^-axis, or both. Point-by-
point multiplications are followed by the output additions. Combining the
multipliers c,(/,) into one [see Eq. (7.117)] gives the WFTA. It requires fewer
multiplications than any FFT discussed previously, but at the expense of extra
data transfers, compared to the FFTs using the in-place computations of
butterfly and butterflylike structures.
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L-D WFTA C

In this case the DFT is defined by X = DL <g> • • • ® D2 ® D^x, where X and x
are ]V-point transform and data vectors whose entries are ordered by the CRT
and RC, or vice versa. The equivalent L-D processing can be expressed by
extending Eq. (7.1 18a) with a definition of L-D transpose [2,29]. It is more
straightforward to extend Eq. (7.118b), which gives

l,=0 12 = 0 / i = 0

JVt-1 N2-lNi-l

•€(/„.. . , / 2 ,M Z ' • • Z Z TL(lL,nL)-T2(l2,n2)
HI, — 0 n 2 — 0 n i = 0

• r1(/1,n1)x(nL,...,n2,n1)RC (7.119)

where C(/L,..., / 2 , / i ) = CL(^)'"c2('2)ci(^i) is an ^-D array defining point-by-
point multiplications that are nested inside the A^ -point DFT input and output
additions, which in turn are nested inside the JV2-point DFT input and output
additions, etc., until finally the NL-point input and output additions determine the
transform output.

In the computation of a 2-D DFT or a 1-D DFT using Good's FFT, there are
many redundancies in the multiplications and summations. H. J. Nussbaumer
showed that the method of polynomial transforms substantially reduces these
redundancies and, therefore, the arithmetic to compute the DFT [4,30]. For
example, suppose we are required to compute an N x N 2-D DFT. The normal
row-column rule requires N DFTs to transform the rows and N more to
transform the columns, for a total of 2N DFTs. If N is a prime number, the
polynomial transform method computes the N x N DFT with N + 1 JV-point
DFTs, thus cutting the computation in half for N » 1. The AT-point DFTs are
computed in the most efficient manner possible.

Developing the polynomial transforms would take us somewhat away from the
approach we have followed in this chapter. We therefore refer the reader to
several other publications [2, 4, 30, 45] for details. However, in the next section
we give some results for DFT computation using polynomial transforms plus
nesting, so we will illustrate this method for the case of transforming an N x N
array (x(n,m)), N = N1N2, and gcd(Nl,N2) = 1. Let Dt and D2 be Nr and Ap-
point DFTs, and let D = D2 <g> D! . Then the 2-D DFT is

)) = D(x(m,n))DT = D2 <g> D1(x(m,n))(D2 ® D^1" (7.120)
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Let k and / be represented by the CRT, and m and n by the RC. Then the 2-D
arrays become 4-D arrays, (X(h,/)) = (X(k2,kl,l2,ll))atr

 and x(m,n)) =
(x(m2,ml,n2,nl)tLC), that may be transformed by applying D2 to first the k2

index and then the 12 index, followed by applying Dj to the /q and /, indices,
written symbolically as

(*(*2,*i, WiWr) = [Dl[D1[D2[D2(x(m2,n2,m1,n1)|lc)]T]T]T]T (7.121)

The computations in Eq. (7.121) can be performed by nesting N2 x JV2 DFTs
inside of JV, x Nt DFTs, and these DFTs can be computed efficiently by
polynomial transforms. Thus, the 2-D DFT (X(k, /)) is obtained from polynomial
transforms plus nesting.

Data giving arithmetic computational requirements were obtained from a
number of sources [15,17,24,29-34]. The data is in Table VIII and is plotted in
Fig. 7.18. Note that approximately a 3:1 reduction in multiplications results from
using the WFTA or a polynomial transform algorithm instead of a radix-2 FFT.
Note also that for the data in Fig. 7.18, the SRFFT minimizes additions and offers
a compromise multiplication count. Since the SRFFT has a butterfly structure
that implies in-place computation, no reordering of the data is required, and this
leads to efficient program execution. Multidimensional DFT computation is
compared in Table IX, which shows that there is often a sizable reduction in
multiplications using polynomial transforms plus nesting.

Figure 7.19 compares the ratio of theoretically computed computational times
using the nonorthogonal coordinate system with the basis (1, W3) described in
Section V.A and (a) a standard radix-3 algorithm, (b) a radix-2 algorithm, and
(c) a radix-4 algorithm. The comparison is for large values of N. The cost of a
multiplication is r times that of an addition, and the time comparison does not
include time for data transfers or computational overhead. Four real multiplica-
tions and three real additions were assumed for implementing multiplications
using the basis (1, W3), and four and two, respectively, were assumed in the
complex plane. The costs are relative, since a radix-2 or radix-4 algorithm and
a radix-3 algorithm cannot both exist for the same N. Note that the radix-3
algorithm, which is described in Section V.C and uses nonorthogonal coor-
dinates, is more efficient than a radix-2 or a standard radix-3 algorithm but is less
efficient than the radix-4 algorithm, discussed in Section VI, based on a
multiplication - addition comparison.

Similar to Fig. 7.19, Fig. 7.20 shows the ratio of computational times using a
radix-6 FFT implemented using the nonorthogonal coordinate system with the
basis (1, W3) (see Section V.D) and several other FFTs, one of which is a 6-point
FFT using Good's algorithm (see Section X). Note that the radix-6 FFT is more
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Fig. 7.18. Comparison of real arithmetic operations to compute 1-D FFT algorithms with
complex input data: solid line, additions; dashed line, multiplications.
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1.0
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Fig. 7.19. Ratio of computational times of radix-3 algorithm computed in nonorthogonal
coordinates and (a) standard radix-3, (b) radix-2, (c) radix-4 algorithms [20] ©1978 IEEE.
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584 Douglas F, Elliott

Fig. 7.20. Ratio of computation time of radix-6 algorithm computed in nonorthogonal coor-
dinates and (a) standard radix-6, (b) radix-2, (c) radix-4, (d) standard radix-6 implemented with Good's
FFT [21] ©1981 IEEE.

efficient than the radix-4 FFT for r > 4. The comparison is for large values of N
and neglects data transfer times.

Algorithms have been found for radix-3, -6, and -12 FFTs that are computed
in the (l ,y) plane rather than by using the basis (l,ju) [35]. These algorithms are
the most efficient of known FFTs for these radices, do not require input-output
coordinate transformations, and are simpler to implement and use than the
algorithms described in Figs. 7.19 and 7.20.

Although a particular algorithm reduces multiplications, it may require
numerous data transfers so that computer run time may be longer than for
another algorithm with more multiplications and fewer data transfers. For
example, Morris compared WFTA and radix-4 algorithms on several computers
that compile a relatively time-efficient program for execution [36]. He found that
data transfers, an increase in the number of additions, and data reordering
resulted in execution times 40-60% longer for the WFTA than those for radix-4
FFTs for a comparable number of data points.

Table X is an evaluation of five FFT algorithms on seven different computers
[37]. Each execution time is an average value obtained by repeated execution of
the algorithm. Comparing 1008- and 1024-point FFTs, note that an ordering of
the algorithms based on execution time is different for each computer.



TABLE X

FFT Execution Time in Milliseconds*

Computer

Cray-1

Cyber 750

IBM 370

VAX 11/780

PDF 11/60

PDF 11/50

POP 11/50

Length

504
512
630
1008
1024
1260
2048
2520
504
512
630
1008
1024
1260
2048
2520
504
512
630
1008
1024
1260
2048
2520
504
512
630
1008
1024
1260
2048
2520
504
512
630
1008
1024
1260
2048
2520
504
512
630
1008
1024
1260
2048
2520

Radix-2

4.25

8.98

18.97

10

24

50

194

404

920

183

360

779

266

566
"

1211

1452

3128

Mixed radix

5.75

7.50
10.55

15.31

32.20
28

36
52

76

160
237

307
441

657

1423
192

240
344

521

1127
295

411
566

849

1800
793
678
1054
1543

2250

4780

WFTA

2.73

4.72
6.77

8.60

17.25
15

21
35

41

92
134

203
314

408

873
133

207
317

423

917
250

367
"

"

"
551

835
1291

o

"

Good's Radix-4

3.71

5.84
7.77

11.41

23.03
13

20
29

35
43

88
103

147
226

314

682
85

152
213

300
308

610
183

261
384

390
511

"
411

602
952

783
1240

2651

f From [37]. ©1985 IEEE.
" Unable to execute due to insufficient memory. (continued)
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TABLE X (Continued)

Computer Length Radix-2

Cromemco

Mixed radix WFTA

18000

40000

97000

21000

62000

135000

Good's Radix-4

8000

12000
15000

23000

Mehalic, Rustan, and Route [37] explain why certain algorithms perform
better on certain computers in terms of the computer architecture, hardware,
and software. They relate the execution times to four different instructions:
(1) floating-point additions and subtractions, (2) floating-point multiplications
and divisions, (3) integer operations, and (4) data transfers. The correlation co-
efficients between the instruction categories and run times are shown in
Table XI. In all cases the number of data transfers is highly correlated with the
execution time. For processors whose architecture favors floating-point opera-
tions, it was found that FFTs minimizing data transfers did best and the radix-2
FFT was fastest. Architectures especially suited to data transfers favor FFTs
minimizing multiplications, so the WFTA and Good's algorithm run fastest.
Computers designed for vector operations (i.e., array processing) execute the
WFTA fastest.

Table XII lists the instruction counts obtained by analyzing assembly language
listings of the FORTRAN source codes. Typically, over 99.5% of the floating-
point multiplications and divisions were multiplications, and over 90% of the

TABLE XI

Correlation Coefficients between Execution Time and Instruction Type"

Floating point

Computer

Cray-!
Cyber 750
IBM 370/1 55
VAX 11/780
PDF 11/60
PDF 11/50
Cromemco Z-2D

Data
transfers

0.95
1.00
0.95
0.97
1.00
1.00
0.99

Mult. & Div.

0.88
0.73
0.87
0.66
0.97
0.92
1.00

Add. & Subt.

0.93
0.92
0.95
0.95
0.98
0.96
0.97

Integer
operations

0.97
0.96
0.78
0.92
0.98
0.98
1.00

From [37]. ©1985 IEEE.
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TABLE XII

Instruction Count for 1008- or 1024-Point FFT"

Floating point

Computer

Cray- 1

Cyber 750

IBM 370/155

VAX 11/780

PDF 11/60
and

PDF 11/50

Cromemco Z-2D

Algorithm

Radix-2
MFFT
WFTA
Good's
Radix-2
MFFT
WFTA
Good's
Radix-4
Radix-2
MFFT
WFTA
Good's
Radix-2
MFFT
WFTA
Good's
Radix-2
MFFT
WFTA
Good's
Radix-4
Radix-2
MFFT
WFTA
Good's
Radix-4

Add. & Subt.

29,702
33,671
34,290
29,548
32,766
34,655
34,353
29,100
28,336
32,776
33,660
34,353
29,100
32,766
33,653
34,353
29,100
32,766
32,099
34,353
29,100
28,336
32,766
33,641
34,290
29,244
28,336

Mult. & Div.

25,615
23,205
3,654
5,810

24,592
22,877
3,584
5,807
7,856

24,582
23,096
3,564
5,804

24,592
23,110

3,564
5,804

24,582
22,852
3,564
5,804
7,856

24,582
22,601
3,564
5,804
7,856

Integer

40,921
62,183
61,385
36,909
13,805
32,772

1,463
10,740
6,430

15,357
20,711
22,652
5,649

13,299
20,807
17,921

5,781
37,812
47,368
44,279
21,745

6,714
122,143
129,872
130,224
56,424
55,098

Data
transfers

242,663
178,997
200,282
140,144
68,680

144,005
114,530
81,582
83,984

103,064
150,560
167,125
68,325
59,335
68,083
77,917
37,360

136,086
162,467
163,910
93,280
78,034

444,363
447,076
368,802
267,127
201,782

"From [37]. ©1985 IEEE.

integer operations were additions or subtractions. The number of floating-point
operations depends on the FFT algorithm and is approximately equal to the
number predicted in theory, whereas the number of integer operations and data
transfers depends on the compiler and the computer architecture and is different
for each computer [37].

A sufficient number of bits must be allocated to number representation in an
FFT mechanization if the FFT is to be used to its full potential. In this section we
show how to determine word lengths for a radix-2 FFT and state results that
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show the Good FFT and WFTA require up to 5 and 2 extra bits, respectively, for
the same (approximately) length FFT. We shall investigate word lengths using
dynamic range analysis, which is an analytical technique that investigates
whether a system has sufficient digital word lengths in the digital filters, FFT, and
other processor components. We shall illustrate FFT word-length allocation in a
spectral analysis system (see Chapters 8 and 9). Chapter 14 further discusses FFT
implementation, including microprogramming the FFT butterfly (Section VLA)
and distributed arithmetic (Section VIII).

a. Dynamic Range Analysis. Dynamic range for a spectral analysis system is
stated in terms of the maximum difference that can be detected in the power level
of high- and low-amplitude pure-tone signals (i.e., single-frequency sinusoids).
The high-amplitude signal drives a fixed-point system near to saturation. The
low-amplitude signal is detectable after processing, even though it is indiscernible
in the noise before processing. We shall illustrate dynamic range analysis using a
fixed-point, sign-and-magnitude representation of numbers and shall briefly
discuss other representations.

Word lengths in a fixed-point spectral analysis system must be sufficient to
accomplish the following objectives:

1. They must allow signals with a low signal-to-noise ratio (SNR) to be filtered
so that noise is reduced to a level at which the signal can be detected. This requires
that noise due to quantizing the outputs of arithmetic operations contribute
negligible noise power compared to a reference input. In a fixed-point system this
implies that the least significant bit (Isb) represents a small enough magnitude so
that the FFT roundoff noise does not become a dominant noise source compared
to the reference.

2. They must prevent high-amplitude signals from overflowing in fixed-point
mechanizations. This requires that the processed words contain a sufficient
number of bits to prevent high-level signals from clipping while keeping low-level
signals from being lost in roundoff noise.

3. They must accomplish an accurate spectra analysis. This requires that
multiplier coefficients Wkn in the FFT be represented by a sufficient number of
bits to maintain the accuracy of the sinusoidal correlation function.

b. Spectral Analysis System with AGC. Figure 7.21 shows the block diagram
of a fixed-point spectral analysis system. The analog filter is an antialiasing filter
prior to the ADC. The width of the signal transition band (see Chapter 2, Sec-
tion III) is appreciably reduced by the digital filter so that the sampling frequency
can be reduced, permitting the FFT to run at a lower rate. The magnitude or
magnitude-squared digital filter outputs are averaged in a digital lowpass (LPF),
and filter automatic gain control (AGC) action is accomplished by comparing the
difference of average and desired LPF outputs. The integrated difference adjusts
the gain of the amplifier so that the difference goes to zero. The magnitude or
magnitude squared of the properly ordered transform sequence from the FFT is
displayed completing the spectral analysis system functions in Fig. 7.21.
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Decimation

Sensor » \_

L^
Analog
filter

AGC

ADC

•*

Digital
filter

Detect
and
average

-«N

-* — 1

h*. Buffer

Display

„ Demod.
and
filter

^ FFT -*—»

Fig. 7.21. Special analysis system using fixed-point arithmetic.

The AGC adjusts the power level to keep high-amplitude signals from
overflowing (objective 2). Thus the real signal at the digital filter output has a
power level of typically —12 dB, as shown in Figure 7.22. In general, the AGC is
controlled by a mixture of signals and noise. Suppose, for illustration purposes,
that the only signal in the system is pure tone with a period P s and a phase angle
0. If the signal is oscillating from +1 to — 1, its average power is

2(2ut
COS2 ~=r-

-PI2 V P
dt =

I
(equivalent to - 3 dB) (7.122)

A bit, which represents a magnitude change of 2 or a power change of 4, is
equivalent to 6 dB, so bits convert to decibels in the ratio of 6 dB/bit. Bit number,
bit magnitude, and power level in decibels are shown in Fig. 7.22. The power level
corresponds to a signal whose rms value is given by the bit magnitude. We assume
that the fixed-point word out of the ADC is a real sign-magnitude number with
the form s • ala2a3 • • • a k - - - a b , where ak = Oor l,afcis thelsb, k = 1, 2,. . . , bis the
bit number, s is the sign bit,

0 if 1
(7.123)

BIT BIT
NUMBER MAGNITUDE

A

nu

1 -

2 -

3 -

4 -

L MAXIMUM WORD *
(WITHOUT AGC)

RMS LEVEL
(WITH AGC)

k

ii

• 1/2

1/4

1/8

- 1/16

dB
4

- 0

-6

-12

-18

-24

Fig. 7.22. Signal levels in a fixed-point DFT.
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where x = s + Z£ = i flfc2~k, and the maximum magnitude of x is

a l l l ' " 1 = 2 + 4 + 8 + '" + 2F*1

See Section II in Chapter 5 and Section IV in Chapter 14 for further discussion of
number representations.

c. Impact of Scaling within a Fixed-Point FFT. We mentioned in Chapter 1,
Section VII.D, that the factor of 1/JV is often incorporated in fixed-point FFTs to
prevent overflowing. In a radix-2 FFT with N = 2L this is usually accomplished
by dividing the inputs to a butterfly by 2 or scaling by j in each of the L
butterfly stages. To illustrate the need for the scaling in a fixed-point FFT.
consider a complex sinusoid x(n) = eJ

2nkn/N at the FFT input. At the FFT output
the sinusoid, which is centered in frequency bin k, yields an output

I N- i
X(k) = — £ wknej27tla"N = I (7.124)

since W = e~J2lc/N. jhis is a coherent summation; the signal phase is the negative of
the phase of the kernel of the summation so that the FFT output is maximized at
1. Without the 1 /N scaling, we would have X(k) = N, which might cause overflow
in the spectral analysis system, depending on the scaling. Tracing the complex
sinusoid, for example, the sinusoid for a normalized frequency of k/N Hz in
Fig. 7.9, through the FFT on its path to the kth bin output shows that it doubles
at the output of each stage without scaling; with a scaling of ^ at each stage it
remains unity. Thus, the scaling strategy is to scale by a factor of | at each stage.

To further illustrate the consequences of scaling, consider zero mean,
independently distributed noise at the FFT input, that is,

E[x(n)] = 0, E[x(n)x(m)] =0, n ̂  m, (7.125)

EJXtt) .**(«)] = al = FFT input noise power

The output power for the kih DFT coefficient after scaling the DFT by 1/N is
r i jv-i N-I

EiX(k)X*(k)~] = E —2 Y x(n)Wkn V x*(m)W~km

1 N~1 V- 1 ^2

Jv1 m)-] = (7.126)

= — FFT input noise power

If the 1/JV factor results from doubling the noise power at each summing junction
and then attenuating it by a factor of 4 by using a scaling of ̂ , the net attenuation
is ^ at each of the L stages. Since the signal power remained unity, the SNR
increases by 2 per stage and the rms SNR increases by \/2 per stage.

We have considered noise at the FFT input and its attenuation going through
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the FFT due to the scaling of j per stage. In addition, quantization noise is
generated internally in the FFT, and this noise must be accounted for; we
consider this topic next.

d. Quantization Noise. Reducing digital word lengths by truncation or
rounding introduces quantization noise. We shall assume rounding is used in the
spectral analysis system. Quantization noise due to rounding in the FFT results
from scaling by ̂  and from rounding the output of multiplications.

Consider first division by 2. If there is uncorrelated noise at the FFT input, it is
equally probable that the Isb of a given word is 0 or 1, and furthermore it is
equally probable that the 1 represents 2~b or — Tb. Thus, the probabilities that
the Isb is zero, - 2 6, and 2b are |, 5, and £, respectively. For real data the mean
error ms after scaling by \ is zero and the variance of is 2~2f>"1, as shown in
Fig. 7.23, For complex data of = 2"2ft, since the real and imaginary components
each contribute a variance (noise power) of 2~2*~ *.

Consider next multiplication roundoff noise. Let the inputs to the multiplier, x
and y, satisfy \x\ < 1 and \y\ < 1 so that overflow will not occur. Let x and y be
sign-magnitude numbers of b bits plus sign each. Let the 26-bit output be
rounded to b bits. Then assuming that b » 1, we can approximate the rounding
error as uniformly distributed as shown in Fig. 7.24 so that the mean error is zero
and the variance vm due the rounding the multiplication is 2 26/12. For a complex
input with x = a + jb and y = c + jd, xy = ac — bd + j(ad + be), so the va-
riance is increased by 4, yielding a2 = 4(2 6/12), as shown in Fig. 7.25.

e. Roundoff Noise in an FFT. Roundoff noise is a function of the hardware
utilized and the algorithm. As an example of the effect of the hardware, a
microprocessor may have a recoverable overflow bit so that scaling by j can be
accomplished after addition of two numbers rather than before, but this overflow
bit recovery also entails a loss of speed due to additional logic. An an example of
the effect of the algorithm, the FFT quantization noise power output is slightly
different for a DIF than a DIT FFT [38]. We shall make reasonable assumptions
and give indicative results using the DIT FFT.

HARDWARE:

MODEL:

p(e)

1/2'

• 1/4 «

1

> •

i k.! * i f
- b ° - h e

-2 2

REAL DATA:

m = 0

COMPLEX DATA;

m =0

a2 - P(e)

Fig. 7.23. Noise introduced by division by 2.



592 Douglas F. Elliott

LET THE NUMBER OF BITS, b, BE LARGE, I.E., b»l

THEN, THE ERROR IS UNIFORMLY DISTRIBUTED BETWEEN -

rH
. p(e)

i ° i e

2b*i 2b+i
i

r°o . r ? b + 1 . . _-2br 2 f 2b
- / f pie) de -1

./ 1

.-b

V12
Fig. 7.24. Mean-squared error due to rounding the product of the two ft-bit numbers to ft bits.

bBIT
WORD, x

b B I T t
WORD, y

i

xy
*

ROUND TO
bBITS

«J ~m

*

REAL INPUT: om 2
,-b 2 2'

COMPLEX: a - 4 >

Vu

• (-10.79-6.02b)dB

- 1.8 BITS BELOW isb

Fig. 7.25. Quantization noise from a multiplier.

(-4.77 -6.02b)dB

0.8 BITS BELOW £sb

COMPLEX
DATA FROM
STAGE i-1

ADDITIVE
ROUNDOFF

ADDITIVE
ROUNDOFF
NOISE,

, 2 , 2 _
2 3

,-2b

Fig. 7.26. Example of quantization noise at the output of stage i in a DIT FFT.
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Figure 7.26 is an example of one stage in a butterfly computation for a DIT
FFT showing that output roundoff noise at each node of the stage is a2 =
4(2~26)/3. The first two stages and half the butterflies jn subsequent stages
have no multiplications, and for these butterflies the noise is due only to scaling
by -5, which yields a2 = 2(2~2fc). Thus, the output at stage i due to noise power at
stages i and i — 1 is bounded by

from
stage /

two noise sources
from stage /— 1 feed
into stage /

scaling of power
by l / 2 2 duc to
division by 2 at
input of each stage

At the final stage, stage L, the output roundoff noise power at any node is the sum
of powers from stages L, L — 1, . . . , 1. This roundoff noise power is bounded by
a2 from stage L, 2<r2/22 from stage L — 1,..., 2mcr2/22m from stage L — in.
Adding these powers gives

"output "̂  " 1 + 2 + - + 2<72(1 (7.128)

as a bound on the DIT FFT roundoff noise power.

f. Graphical Approach to FFT Word-Length Specification. We shall present a
simple graphical approach to FFT word-length specification [2] to meet a
requirement for a dynamic range of 38 dB. Figure 7.27 applies to an 8-stage FFT
using a word length of 12 bits (i.e., 11 4- sign). The vertical axis is the bit level,
where

bit level = -Iog2(rms level) (7.129)

rnsb.

ADC Isb-

FFT isb

BIT
LEVEL

0

2

4

6

10

12

ADC FFT
STAGE

SMAX (SET BY AGO

WHITE SENSOR
^ NOISE (COMPLEX

^^^ INPUT)

SMIN ""^

FFT RO
NOISE

• 38 dB

Fig. 7.27. FFT dynamic range using a 7-bit ADC and 12-bit FFT.
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The curves in Fig. 7.27 show the signal and rms noise levels at the ADC
output and at FFT stages 0 (input) through 8 (output). The signals and noise
include

1. A pure tone that is centered in a DFT frequency bin and has a power level of
%AX - -12 dB set by AGC.

2. White sensor noise with an rms level 4| bits (26 dB) below the 0 bit level,
This noise loses \ bit per stage relative to SMAX due to the scaling of -j per stage.
After L stages the white noise is attenuated to 8^ bits (50 dB) below the 0 bit level.

3. A pure tone that is centered in a different DFT bin than the pure tone in (1)
and has a power level of suw = — 50 dB. The power levels of this tone and the
white noise in (2) are equal at the DFT output. Assume that a SNR = 1 is
sufficient for detection at the DFT output. (Noncoherent integration, i.e.,
periodogram averaging, may be used to further increase this SNR, thereby
enhancing detection.) The difference between pure tones (!) and (3) is —12 dB —
( — 50 dB) = 38 dB, and this is the dynamic range of the system (neglecting FFT
roundoff noise).

4. FFT roundoff noise with a power bounded by 2(2 ~2d) at a stage 1 output
and by 22(2~2*) at the DFT output. Figure 7.27 is for a 12- (11 + sign) bit data
word, so the roundoff noise is bounded by the tenth bit below the 0 bit level.
The roundoff noise added at each stage leading up to the output of pure tone
(3) is assumed to be independently distributed. That is, the pure tones (1) and
(3) are assumed not to generate correlated noise in the butterflies leading up to
the DFT bin in which pure tone (3) is centered. Under these assumptions, the
ratio of FFT roundoff noise power to white sensor noise power increases as
[22/2 2b]/[(2~13/3)2/2^] oc 2^, where & is the stage number going through the
FFT [39]. The FFT roundoff noise at the output of the FFT is approximately 2
bits below the sensor white noise, and, even though it is approximately 16 times
lower in power, it represents a loss in the FFT processor that slightly degrades the
dynamic range. We next describe how to account for this loss.

g. Treating Quantization Noise as a Loss. Good FFT design keeps all
roundoff noise negligible with respect to some reference input noise, for example,
ADC quantization noise. As additional roundoff noise is introduced, it can be
treated as a loss. The loss is an SNR degradation due to the additional roundoff
noise and is given by

loss = 10 log PR * P& 1 (7.130)
L PR J

where PR is the noise power due to the reference noise and PQ is the additive
quantization noise power. Losses are correction terms subtracted from total
processor gain. The output of every arithmetic operation must be considered as a
source of roundoff noise in the loss calculations. Keeping losses to an
insignificant level relative to ADC roundoff noise ensures that word lengths are
sufficient.
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h. Impact of Rounding Multiplier Coefficients. One other source of error in
the FFT is rounding the multiplier coefficients Wkn. The FFT spectral analysis
becomes more and more inaccurate as fewer and fewer bits are used for the cosine
and sine terms of Wkn. Assessment of the number of bits to mechanize Wk" has
shown that if the cosine and sine terms are rounded to the word length of the FFT
computations, then negligible error is introduced into the DFT output by this
quantization [40, 41].

i. Impact of Other Number Representations. The results we have given apply
when rounding is used to quantize fixed-point numbers including 1's- and 2's-
complement as well as sign-and-magnitude representations. The FFT roundoff
noise results also are applicable to truncation after doubling the error mag-
nitudes and noting that truncation of 2's complement numbers leads to an
undesirable bias error. In floating-point arithmetic the quantization noise
depends on the magnitude of the numbers in the FFT, but in general the noise
effects are significantly less [5, 42]. For example, the quantization noise to input
white noise (e.g., sensor noise, ADC roundoff) ratio increases as L for floating-
point arithmetic compared to 2L = N for fixed-point arithmetic in a radix-2 FFT.

j. Impact of Other FFT Algorithms. The dynamic range analysis illustrated
with Fig. 7.27 generally applies to other FFT algorithms. The main variation is in
the accumulation of FFT quantization noise. Due to noise accumulation
characteristics, the WFTA requires 1 or 2 more bits for number representation to
give an error comparable to the radix-2 FFT, and the Good FFT requires up to
| bit more [43].

This chapter has exploited the correspondence of computing 1-D and 2-D
DFTs to develop a number of 1-D FFTs. The radix-4, and -6 algorithms are
examples of 1-D DFTs that can be computed in 2-D space using DFT compu-
tations along each axis with twiddle factors between the DFTs. The twiddle
factors are eliminated by using the CRT and/or the RC to represent integers in an
Appoint DFT. The CRT and RC impose the constraint that N must factor into
the product of relatively prime integers. Several FFTs result from using only the
CRT or only the RC. Good's FFT and the WFTA result from using the CRT and
RC to represent the transform and data sequence indices k and n, respectively (or
vice versa). Polynomial transforms minimize the arithmetic computations in 2-D
DFT computations and can be combined with other approaches. Computational
comparisons were given for the arithmetic required to compute various FFTs,
and computational word lengths were derived to ensure that the FFT has
sufficient dynamic range.
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APPENDIX A Small-A/ OFT Algorithms

This appendix summarizes the small-JV DFT algorithms, i.e., the Winogard
short fast Fourier transforms [2, 3, 14, 15, 24, 29, 31-34]. The following
statements describe the algorithms.

1. The algorithms are structured to compute X(k) = £*=o x(n)Wk".
2. Input data to the small-N algorithm are x(0), x(l), . . . , x(N — 1) in NO. This

input data may be a complex sequence.
3. Output data are X(0), X(l), . . . , X(N - 1) in NO.
4. m0, m !,..., mM^l are the results of the M multiplications.
5. f ! , t2 , . . . are temporary storage areas for input data.
6. sl9s2,... are temporary storage areas for output data.
7. The lists of input and output additions are sequenced and must be executed

in the specified order. When there are several equations to a line, read left to right
before proceeding to the next line.

8. Multiplications stated for each factor include multiplications by ± 1 or ±j.
These trivial multiplications are stated in parentheses. Shifts due to factors of \
are counted as a multiplication.

The inverse DFT (IDFT) can be computed from the preceding algorithms by
one of the following methods:

1 . Substitute — u for u (if u is defined) .
2. Use any of the methods that compute the IDFT with a DFT (see Table VI in

Chapter 1).

Summary of SmaIl-/V Algorithms

m0 = 1 x fx(0) + x(l)], m, = 1 x [x(0) - jc(l)]

2 multiplications (2), 2 additions.

N = 3: u = n.
t ,=x( l) + x(2)

mi — (cosw — 1) x tl, m2 = (;sinu) x [x(2) —

s = m + m

3 multiplications (1), 6 additions.

N = 4:
f, = x(0) + x(2), f2 = x(l) + x(3)

m0 = 1 x (t{ + t2), m, = 1 x (t, - f2)

= 1 x [x(0) - x(2)], m3 = j x [x(3) - x

4 multiplications (4), 8 additions.

(continued )
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Summary of Small-N Algorithms (Continued)

N = 5: u = }K.
f, = x(l) + x(4), 12 = x(2) + x(3), (3 = x(l) - x(4),

r4 = x(3) - x(2) £5 = f, + /.2

ffi0 = 1 x [x(0) + fs], m, = [|(COSM + cos2«) — 1] x f5

m2 — 2-(cos« — cos2u) x ( t l — t 2 ) , m3 = — j'(sin«) x (f3 + t4)

m4 = — /(sinu + sin2u) x f4 , m5 = y(sinu — sin2w) x f 3

s = m + m s = S + m , s = m — w

X(0) = m0, X(l ) = s2 + s3 , X(2) = S

6 multiplications (1), 17 additions.

N = 7: M = f TT.
?, = x(l) + x(6), t2 = x(2) 4- x(5), f3 = x(3) -f x(4)

f4 = f i + r 2 + r3, f s = x(l) - x(6), f6 = x(2)-x(5)

t? = x(4) - x(3)

m0 = 1 x [x(0) 4- t4]

m, = |[(cosu 4- cos2u 4- cos3u) — 1] x t:4

m2 = |(2 cos w — cos2u — cos3w) x (tl — t3)

m3 — 3(cosw — 2cos2f/ 4- cos3w) x (t3 — t2)

m4 — 3(cosw + cos2u — 2cos3u) x (t2 — f , )

m5 -— —y'j(sin u 4- sin 2u — sin 3w) x (ts + r6 4 f 7 )

m6 = 7*5(2 sin u — sin 2w 4- sin 3w) x (t-! — f 5)
m? = ./i(sin u — 2 sin 2w — sin 3w) x (J6 — r7)

ms = 73(sin u + sin 2w 4- 2 sin 3w) x (ts — f 6 )

,, s2 = s, 4- m2 4- m3, s3 = s, - m2 - m4, s4 = Sj

m5 + m6 + m7, S6 = m 5 - m 6 - m 8 , s7 = ms - m7 +

X(4) = s4 + s?,

9 muitiplications (1), 36 additions.

Ar = 8: W = |TI.
f, = x(0) + x(4), t2 = x(2) 4- x(6), f3 = x(l) 4- x(5), /4 = x(l) - x(5)

fs = x(3) + x(7), r6 = x(3) - x(7), t7 = t, +t2, r8 = t3 + ts

m0 = 1 x (r7 4- t8), m, = 1 x (f7 - r8), m, = 1 x (/, - t2), w3 = 1 x [x(0) - x(4)]

m4 = (cos M) x (t4 - ff)), ms = 7 x (ts - t3), w6 = j x [x(6) - x(2)], m-, = (-j sin u) x (/4 4- f6)

s, = m3 4- m4, s2 = m3 — m4, s3 = m6 4- m7, .s4 = m6 — m7

AT(0) = m0, X(I ) = s 1 +s 3 , X(2) = m2 + ms, X(3) = s2 - s4

X(4) = m,, X(S) = s2 + s4, X(6) = m2 - m5, X(l) = s, - s3

8 multiplications (6), 26 additions.

(continued)
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Summary of Small-/V Algorithms (Continued)

N = 9: u = -|w.
f i =x( l )4-x(8) , t2 = x(2) 4- x(7), I3 = x(3) 4- x{6)

z4 - x(4) 4- x(5), is - r , + f 2 4-14, r6 = x( l ) -x(8)

t7 = X(7) - x(2), f 8 = x(3) - x(6), tg = x(4) - x(5)

f10 = f6 + (7 + Z9

m0 = 1 x [x(0) 4- r3 4- fs], m, = f x Z 3 , m2 = — -2- x i,
m3 = i(2cosu — cos2u — cos4u) x ( f , — f 2 )

m4 = j(cos« 4- cos2u — 2cos4u) x (t2 — t 4 )

m$ = 5(cosw — 2cos2u 4- cos4u) x (t4 — t { )

m6 = ( — / s i n 3 u ) x (10, m7 == (—7'sin3«) x t8, m8 = ( j s i n u ) x ((•

m9 = (y'sin4w) x (t7 — 19), m10 = ( /s in2u) x (f6 — t9)

s-i = w8 4- m9 + w7, s8 = —/n9 + W I Q 4- w7, s9 = — fflg — m ) 0

X(5) = s6 - s9

s - .s7

11 multiplications (1), 44 additions.

N = 11:
tl = x(l) 4- x(10),

U = x(4) + x(7),

f 7 = x(2) - x(9),

f 10 = x(5) - x(6),

= x(2) + x(9),

= x(5) + x(6),

= x(3) - x(8),

= r , + f 2 ,

t3 = x(3) + x(8)

t6 = x(l)-x(10

t9 = x(4) - x(7)

t6)

m0 = x(0) + ( j 3 ,

m3 = 0.51541500(f2 - r4),

w6 = 0.185949300(t5 - r4),

m9 = 0.51254590(I2 - t s ) ,

m,2 = 1.24129440(f7 + f9),

*n,5 = 0.04992992(t9-f,0),

m ) 8 = i,08224607(f7 + f , 0 ) ,

m4 = 0.941253500(ti - f4),

m7 = 0.04231480a3-f4),

mt o = 1.07027569(1, - f3),

m, 3 = 0.20897830(f6 - f9),

m,6 = 0.65815896(tg - r9),

m,9 = 0.81720738(t8 -/8),

m2 = 0.33166250(tl4

m5= I.4l435370(i2

m8 = 0.38639280(r5

mn = 0.55486070(r ,2

m,4 = 0.37415717(t6

m,7 = 0.6330654308

m20 = 0.42408709(ft4.

Si = m3 4- m4,

s5 = m7 4- m8,

s9 = m,3 4- m14,

s,3 = ml9 + w20,

•S'l7 = so + -S"6 + -S'l

s20 = m2 4- su 4-

S l O = W12 - ^14.

,S"i4 = W1lg "'20 '

S18 = so ~ *;» — 's"8,

S21 = ,S',3 — S9 — W2

S24 = -S20 ~~ S21 + S22

m,7

7 4- .v0

(continued)
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Summary of Small-A? Algorithms (Continued)

= S, + /S24,

= i',8 + JS23,

= Sis ~ JS20,

!0 multiplications, 83 additions

N = 13

A"(2) = s15

r, = x(5) + x(8),

to = x(3)-x(10),

/s23,

x(6) + x(7), *7 = x(l)-x(12):

x(4)-x(9), * , ,=x(5)-x(8), = x(6)-x(7)

~ '9 "I"

= 0.74927933?, 6.

-0.52422664f22,

= 0.42763400f24,

= 1.15439500f26,

= 1.19713680*28,

= 0.04274140*30,

= m0 -MI,

= SA Wla + IT! i A .

m, = 1.08333333tis,

m4 = 0.40113213r17)

m7 = 0.51642078f23,

m,0 = 0.15180600f25,

m,3 = 0.9065220r27,

m16 = 0.86131170f29,

mt9 = 0.04524049t3 j,

s, = m1 + w6 — m2,

ss = s -m1 -m.

m2 = 0.30046261(f14-f,3)

ms=0.57514073(f,6 + / 1 7 )

m8 = 0.00770586(t22 + r23)

m , , =0.57944000(t24 + f 2 5 )

m17 = 1. 10915485(t28 + t29)

w20 = 0.29058500(t30 + t3l)

= m — m — m

X(6) = s20 - s26,

20 multiplications, 94 additions

N = 16: u = -,a6-rt.
f, = x(0) + x(8), t2 = x(4) + x(2),

t4 = x(2) - x(10), fs = x(6) + x(14)

*7 = x(l) + x(9), *8 = x(l)-x(9X

*,, = x(5) + x(13)

s26,

x(2) + x(10)

x(6) - x(14)

x(3) + x(l 1)

x(5)-x(13)

(continued)
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Summary of Small-JV Algorithms (Continued)

t, 9 = t~! -— t, j ,

^22 = ^18 + '20'

f,4 = x(7)-x(15), tis = ' i+ '2

4" I 1 -i , f-M ™ fa M '

m0 = 1 x (t17 + f 2 2 ) ,

m2 = 1 x (tl5 - f,6),

m4 = 1 x [x(0) - x(8)],

m6 = (cos 2w) x (t4 - f 6),

wg = (cos M -t- cos 3w) x r24,

m10 = j x (£2o — t is),

ml2 = j x (x(12)-x(4)),

m, == 1 x (r,7 - f 2 2 )

m3 = 1 x (f , - t 2 )

m5 = (cos2u) x (f1 9 — f 2 1

m7 = (cos3w) x (t24 + f26

mq = (cos 3« — cos u) x 12

w,i =./ x (f5 -r3)

x ((4 + i6), m,5 = (— jsin3w) x (f23 + f 2 5 )

ml(, = j(sin3u — sinu) x t23, m, 7 = —/(s inw + sin3u) x r25

s6 = m4 - m6,

s 1 7 — s 1 3 + S1 5 '

A'(0) = m0,

m2 + m,0,

1 8 = 1 3 ~~ 1 5 '

s7 = m8 -m7,

SU =S6 -fSg,

s,5 = m,5 + m l t

SIQ = Sj4 + Sj6,

AT(7) =

A-(15) =

18 multiplications (8), 74 additions.

APPENDIX B. FFT COMPUTER PROGRAMS

This appendix summarizes some FFTs available in the literature. The
literature includes computer codes that in some cases are available on
magnetic tape. The algorithms are discussed according to type.

Radix-2. See Appendix C for code.

Radix-2 SRFFT. See [18, Appendix] for DIF and DIT SRFFT code. Accord-
ing to [18+ ], "An analysis of the arithmetic complexity showed that the SRFFT

+ ©1986 IEEE.
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is a significant improvement over the Cooley-Tukey FFT and is probably
optimal in the sense of minimum floating point arithmetic. It has an efficiency
exceeding a radix-8 FFT, a size comparable to a radix-4 FFT, and the flexibility
of a radix-2 FFT."

Radix-2 RCFA See [22 Appendixes I and II] for code for transforming
complex- and real-valued sequences, respectively. The RCFA is the same as the
SRFFT for sequences of length 2L. It offers a slight advantage in computation
time, at least on the VAX-11/750 computer and uses a smaller program to
implement the calculation as compared to Good's FFT and the WFTA.

Radix-2,-4, and -8. See [44] for code. Tape available from IEEE. These
subroutines, by G. D. Bergland and M. T. Dolan, are written to produce very fast
programs at the expense of instruction memory and program complexity.

Time-Efficient Radix-4. See [44] for code. Tape available. This time-efficient
radix-4 fast Fourier transform by L. R. Morris is an example of trading off
memory for timewise efficiency when many DFTs of sequences with the same
length jV are to be performed.

Mixed Radix. See [44] for code. Tape available. This mixed-radix FFT by R. C.
Singleton permits one to use values of N containing factors other than 2. In
general, the larger the prime factors of JV, the less efficient will be the calculation
in terms of numbers of operations per output point.

Ruritanian Correspondence. See [28] for code designated PFA2 to compute an
JV-point DFT, where JV = Nt N2 • • • NL and the N{ are mutually relatively prime,
i = 1, 2 , . . . , L The computation involves JV,-point DFTs and since indexing in
the JVrpoint DFT involves the value of JV/JV,-, this program by Burrus and
Eschenbacher was written to be recompiled for the particular value of N. This
algorithm has the in-order, in-place feature.

Good's Algorithm (Also called the Good-Thomas PFA or simply the PFA).
Appendixes D and E present two programs for efficient implementation
of the PFA. Each has been tested and debugged on IBM ATs and XTs. The first
(Appendix D) is in Microsoft FORTRAN and runs a 504-point transform in 2 s.
The second (Appendix E) is an assembly language listing written to make optimal
use of an 8087 coprocessor in performing a 1008-point PFA and runs in 1.43 s

See also [28] for code designated PFA 1. The code for this program by Burrus and
Eschenbacher uses the RC and CRT for the input and output maps, respectively.

Winograd Fourier Transform Algorithm. See [44] for code and [3] for discus-
sion. Tape available from IEEE. This program by J. H. McClellan and H. Nawab
offers an improvement in run time, but the required subroutines take a lot of
instruction storage compared with FFT programs using butterfly or butterfly-
like computational structures.
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APPENDIX C. RADIX-2 FFT PROGRAM

C FORTRAN program "TRANS"
C Program author: fred harris
C Electrical & Computer Engineering Department
C San Diego State University
C San Diego, CA 92182
C Interactive driver program for performing forward or Inverse
C radiK-2 fast Fourier transform of real or complex data array.
C Input array, transform length N <N«2**p), and forward or inverse
C direction are selected by prompt. Program zero extends data to
C the selected transform length. Output is selected as transform
C index (0 -> N-l) and complex array or as normalized frequency
C (-0.5 -> +0.5) and log magnitude (with 0.0 dB = max level).

DIMENSION X(2048),Y(2048), FMAGC2048)
CHARACTER*60 FILEIN,FILEQUT,QANS

C PROMPT ASKING FOR INPUT FILE NAME
2 WRITEC*. '(A\)')' ENTER DATA FILE TO BE TRANSFORMED -> '

READ(*,'(A)') FILEIN
OPEN< 10,FILE=FILEIN,ERR=5,STATUS='OLD' )
GO TO 8
WRITE<*,*)' '

5 WRITE<*,*>* THIS FILE DOES NOT EXIST'
WRITE<*,*>' '
GO TO 2

8 wr i te (*,*>' '
WRITEC*,' <A\>' )' FILE? [i,X(i>] (0) OR ( i ,X< i ) , Y< i > 3 (1) -> '
READC*,*) IANS

C READING INPUT FILE
11=0
I F U A N S . E Q . 1) GO TO 25
DO 20, 1=1,2048
READU0,* ,END=30) N U M B R , X ( I )
I I = I I H - 1

20 CONTINUE
GO TO 30

25 DO 28, 1=1,2048
R E A D ( 1 0 , * , E N D = 3 0 ) N U M B R , X ( I ) , Y < I >

28 CONTINUE

30 CLOSEU0)

C PROMPT ASKING FOR DESIRED TRANSFORM LENGTH, I I .LE. 2**P. LE. 2048
44 wr ite(*, 45) i i
45 formate THERE WERE ',14,' POINTS')

WRITE<*,'(A\)')' ENTER EXPONENT OF TRANSFORM SI2E 2**P ~>
READ(*,47) aP

47 FORMAT<f3.0>
NN=2**if ix<aP)
IFCNN.GT.2048) GO TO 44
IF(NN.LE.l) GO TO 44
write**, 48>nn

48 formate YOU HAVE SELECTED A ',14, '-POINT TRANSFORM')

DO 49, I=II+1,NN
X<I)=0.0
Y(I)=0.0

49 CONTINUE

WRITEC *,'(A\)')' FORWARD <0) OR INVERSE <1> TRANSFORM? ->
READ(*,*> IANS
WRITE(*,'<A\)')' REAL & IMAGINARY <0) OR LOG MAGNITUDE <1) ->
READC*,*) IOPT
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IFCIOPT.EQ.0) GO TO 55
SGN=-H .

DO 50, 1=1,11
XU)=SGN*XCI)
YCI)=SGN*YCI)
SGN=-SGN

50 CONTINUE

C CALL TO FFT
55 INDX=1

IFCIANS.EQ.I) INDX=-1
CALL FFT2CX,Y,NN,INDX)
WRITEC*,'CAN)')' DISPLAY TRANSFORM? (Y,N)
READC*,'CA)') QANS
IFCIOPT.EQ, 1) GO TO 65
IFCQANS.EQ.'N'.OR.QANS.EQ.'n') GO TO 80
WRITEC*,*)' '

DO 64 1=1,NN
WRITEC*,63)1-1,X(I), Y(I)

63 FORMATC AC,14,') = ' , F8 . 4, ' , ' , F8 . 4)
64 CONTINUE

GOTO 80

C CONVERSION TO LOG MAGNITUDE AND SCALING MAXIMUM AMPLITUDE TO 0 DB
65 FMAX=0.0

DO 70, 1=1,NN
FMAGCI)=XCI)*XCI)+YCI)*YCI)
IFCFMAGCI).GT.FMAX) FMAX=FMAG(I)

70 CONTINUE

DO 75,I=1,NN
FMAG(I)=FMAGCI)/FMAX
IF<FMAG<I).LE.0.000000001) FMAG<I)=0.000000001
FMAG(I) = 10.0*ALOG10 < FMAG(I))

75 CONTINUE

IF (QANS.EQ.'N'.OR.QANS.EQ.'n') GO TO 80
WRITE<*,*)' '
DO 79, I=1,NN
WRITEC*,78) I-1,FMAG(I)

78 FORMATC AC, 13,') = ',F8.4)
79 CONTINUE

C OUTPUTTING DATA
80 WRITEC*,*)' '

WRITE<*,'<A\)')' ENTER NAME OF OUTPUT FILE
READ(*,'<A)') FILEOUT
OPENX11,FILE=FILEOUT,STATUS='NEW)
IFCIOPT.EQ.0) GO TO 90
DEL=1,/FLOAT(NN)
CRCL=-0.5

DO 85,I=1,NN
WRITECJl,82) CRCL,FMAG(I)

82 FORMAT<F8.4,5X,F8.4)
CRCL=CRCL+DEL

85 CONTINUE
GO TO 100

90 DO 95 I=1,NN
WRITEU1.92) I-1,X<I),Y(I)

92 FORMAT<I4,2(5X,F9.4))
95 CONTINUE

100 CLOSE(ll)
WRITEC*,*)' '
WRITEC*,'(A)') ' GOODBY'
END
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subroutine FFT2CX,Y,N,INDX)
DIHENSIQN X<N),Y(N)
REAL PI
M=NINT<ALOG(FLOAT(N))/ALOG<2.))

NV2=N/2
NM1=N-1

J=l
DO 40 I=1,NM1
IFO.GE.J) GO TO 10
TX=X(J)
TY=Y(J)
X(J)=X(I)
Y(J)=Y(I)
X<I)=TX
Y(I)=TY

10 K=NV2
20 IF(K.GE.J) GO TO 30

J=J-K
K = K/2
GO TO 20

30 J=J+K
40 CONTINUE

PI=4.*ATAN<1.0)
SIGN=1.0
IF(INDX.EQ.-n SIGN = -1.0
DO 70 L=1,M
LE=2**L
FLE=FLOAT(LE)
LEl=LE/2
FLEl=FLE/2.
UR=1.0
UI=0.0
WR=COS(PI/FLE1)
WI=-SIGN*SIN(PI/FLEl)
DO 60 J=1,LE1

DO 50 I=J,N,LE
IP=I+LE1
TX=X<IP)*UR-Y(IP)*UI
TY=Y(IP)*UR+X<IP>*UI
X<IP)=X(I)-TX
Y(IP)=Y(I)-TY
X(I>=X<I)+TX
Y(I)=Y(I)+TY

50 CONTINUE
TR = UR
TI=UI
UR=TR*WR-TI*WI
UI=TI*WR+TR*WI

60 CONTINUE
70 CONTINUE

IFUNDX.EQ. 1) GO TO 90
SCALE=1.0/FLOAT<N>
DO 80 1=1,N
X(I)=X(I)*SCALE
YCI)=Y(I)*SCALE

80 CONTINUE

90 RETURN
END
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APPENDIX D. PRIME FACTOR ALGORITHM
(PFA) PROGRAM LISTINGS FOR PRIME FACTOR TRANSFORM

Appendixes D and E present two program listings for efficient implementation
of the discrete Fourier transform prime factor algorithm (PFA). Both programs
were written as part of a master's thesis at San Diego State University under the
guidance of Professor Fred Harris. Each has been tested and debugged and is
running on IBM ATs and XTs at SDSU's College of Engineering.

The first program, written by Eric Johnson, is listed in Appendix D, is in
Microsoft FORTRAN, and is extremely portable. This algorithm performs a
forward or inverse prime factor transform on a complex input array. The
algorithm is performed in place and in natural order, so there is no need for a
second array to perform address rearrangement. The inverse transform is scaled
by the transform length N. The choice of prime factors for the transform is
limited to the integers 1,2,3,4,5,7,8,9,16.

Timing tests were conducted on this algorithm running on an IBM XT
with an 8087 coprocessor operating at the standard 4.77 = MHz clock. The
504-(7 x 8 x 9) point transform is performed in 2.0 s.

The second program, written by Mike Orchard, is listed in Appendix E and is
an assembly language listing intended to be used with Microsoft FORTRAN.
This program was written to make optimal use of the 8087 coprocessor. The algo-
rithm performs the forward prime factor transform on a complex input array of
length 1008 (7 x 9 x 16). The algorithm is performed in-place and in natural
order. This algorithm is a section of a general-purpose prime factor transform
for factors 2, 3, 4, 5, 7, 8, 9, 16. Three factors (7,9, and 16) are present in this ver-
sion. The code is quite compact, and the required memory space is significantly
less than a radix-2 Cooley-Tukey algorithm if we account for the space allo-
cated to the SIN-COS array.

Timing tests were performed on this algorithm on an IBM XT with an 8087
coprocessor operating at the standard 4.77 MHz clock. The 1008-point trans-
form of nonzero data is performed in 1.43 s. The transform is slightly faster if
the input array has a significant number of zero-valued data points.
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C Fortran version of the prime factor (Winograd) FFT,
C
C Program author: Eric S. Johnson
C Graduate student, SDSU
C April, 1986
C Program extracted from Master's thesis.
C
C Thesis advisor: fred harris
C
C Inquiries concerning this program are directed to:
C
C fred harris
C Electrical & Computer Engineering Department
C San Diego State University
C San Diego, CA 92182
C
C This program computes the forward and inverse discrete
C Fourier transform using the prime factor algorithm and the
C Winograd short fast Fourier transform algorithms.
C This program prompts the user to enter four relatively
C prime factors. If the application requires less than four
C factors, than enter the number 1 until the l i m i t of four
C factors is reached. The factors may be entered in any order.
C The choice of factors is limited to 1,2,3,4,5,7,8,9,16.
C The program is structured as follows:
C
C 1. Input data
C 2. If an inverse transform is specified, then a second set
C of coefficients is used, where all values associated
C with the operator j are of opposite polarity.
C 3. Map the data into subdata sections of factor lengths
C fay applying the Good-Thomas prime factor algorithm.
C This is accomplished by an in-place addressing scheme.
C 4. Transform the subdata sections by applying the Winograd
C short fast Fourier transform. These transforms have been
C reduced as much as possible to a sequence of subroutine
C calls. These subroutines are shared by the different
C Winograd short transforms, the result being a smaller,
C more organized program.
C
C Program variables
C
C N Transform length
C NI( ) Factor lengths
C X( ,1) Real data
C X( ,2) Imaginary data
C Z< ,1) Forward coefficients
C Z< ,2) Inverse coefficients
C I< ) Input address vectors
C IP( ) Scrambled output address vectors
C A< , ) Intermediate data
C
C/
C

PROGRAM FFTPFAS
C

REAL X
INTEGER N,NI
DIMENSION X<512,2),NI<4)
COMMON /A/ X /D/ NI

C
CALL INPUT (N)
CALL PFA <N>
CALL OUTPUT (N)
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STOP
END

C
P « «_ ™ ™ ., — — ™—. -~ ~, «. _ — _. _, — ™ — __-,_ — «,.«_-_.. — *.«_ __.-.«___. „.-.__. — — — — __ _«.«.

C
SUBROUTINE INPUT (N)

C
REAL X
COMMON /A/X /D/NI
CHARACTER*20 FILENAME
DIMENSION X(512,2),NI(4)
INTEGER N,NI

C
WRITE <*,*> 'Enter length of transform'
READ (*,*> N
WRITE (*,*) 'Enter the factor lengths (Nl,N2,N3,N4)'
READ <*,*> NI< 1),NI(2),NH3),NI<4)

C
WRITE(*,*>'Enter the input data file name'
READ(*,'<A>') FILENAME
OPEN<10,FILE=FILENAME,STATUS='OLD')

C
C Prepare for zero extension.
C

DO 16, I=1,N
X<I, 1) = 0
X(I,2) = 0

16 CONTINUE
C

DO 26, I=1,N
READ(10,*,END=27) X(I,1), X(I,2)

26 CONTINUE
27 CONTINUE

CLOSE< J0)
C

RETURN
END

SUBROUTINE OUTPUT (N)
C

COMMON /A/X
CHARACTER*20 OUTFILE
INTEGER N
REAL X
DIMENSION X(512,2)

C
WRITE(*,*>'Enter the output f i l e name'
READ<*,'<A)')OUTFILE
OPEN( 10,FILE=OUTFILE,STATUS='NEW)

C
DO 49, 1 = 1,N

RMAG=(X(I,1)**2+X(I)2)**2)**0.5
ARG=1
IF (XCI, D.EQ.0) THEN

ARG=90
IF (X(I,2).EQ.0) ARG=0

END IF
IF (ARG.NE.1) GOTO 48
ARG=ATAN<X(I,2)/X<I,1))
ARG=ARG*57.29577951

48 K 1 = I - 1
C
C Output format: Real I mag Mag Phase Position
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WRITE(10,51)X<I,1),X<I,2),RMAG,ARG,K1
49 CONTINUE
51 FORMAT<4<E12.4,','),I4)

CLOSE(10)
RETURN
END

SUBROUTINE PFA (N)
INTEGER NI,I,IP,LP,E,INV
COMMON /A/ X /B/ A /C/I,IP,E
COMMON /D/ NI /E/ Z,INV
REAL X,A,Z,T,R
DIMENSION X(512,2),A<16,2),Z(29,2),T<29),R<72)
DIMENSION NK4),I<16),IP(16),E<72),LP<16)

WRITEC*,*) 'FFT or inverse FFT? (1,2)'
READ <*,*> INV

c
c
c

Look

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

up table for in-place scrambled outputs.

R<1),R(2),R(3),R(4)
R(5),R(6),R<7),R(8)
R<9),R(10),R(11),R<12)
RU3),R< 14),R(15),R( 16)
R(17),R< 18),R(19),R(20)
R<21),R<22),R(23),R(24)
R(25),R<26),R(27),R(28)
R<29),R(30),R(31),R(32)
R<33),R(34),R(35),R<36)
RC37),R(38),R(39),R(40)
R(41),R(42),R(43),R<44)
R(45),R<46),R<47),R(48)
R(49),R(50),R<51),R<52)
R(53),R<54),R(55),R<56)
R(57),R(58),R(59),R<60)
R(61),R(62),R(63),R<64)
R(65),R(66),R(67),R<68)
R(69),R<70)

/ 1,2,2,3 /
/ 2,3,1,3 /
/ 2,4,2,5 /
/ 4,3,2,5 /
/ 4,3,2,7 /
/ 5,4,3,6 /
/ 2,7,3,6 /
/ 5,4,1,5 /
/ 3,7,2,4 /
/ 6,8,4,7 /
/ 8,3,2,9 /
/ 5,6,4,7 /
/ 2,9,5,6 /
/ 8,3, 1,9 /
/ 5, 13,3,7 /
/ 1 1 , 15, 12,6 /
/ 4, 14,2, 16 /
/ 8, 10 /

DO 2 K=l,70
E(K)=R(K)

CONTINUE

Coeff ic ients

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DO 3

T(1),T(2) /
T(3),T<4) /
T(5),T(6) /
T<7),T<8) /
T(9),T(10) /
T<11),TU2) /
T(13),T(14) /
T<15),T(16) /
T(17),T(18) /
T<19),T<20) /
T(21),T(22) /
T<23),T(24) /
T(25),TC26) /
T<27),T<28) /
T(29) /

K=l,29
Z<K, 1 ) = TOO

-1 .
-I .
0.
0.
-0.
-0.
-0.
0.
0.
-0.
-0.
0.
-0.
-0.
-0.

,5,
25,
,55901699,
,58778525,
,44095855,
,79015647,
,87484229,
,53396936,
,5,
17364818,
,64278761,
34202014,
,541 19610,
92387953,
70710678 >

-0.
-1 .
0.

-1 .
0.
0.
0.
0.
0.
0.
-0.
0.
1 .

-0.
f

86602540
53884180
36327126
16666667
73430220
34087293
05585427
70710678
76604444
93969262
98480775
541 19610
30656296
38268343
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Z(K,2) = -T(K)
3 CONTINUE

C
c --------------------- NESTED LOOPS --------------------
C
C Map to mul t id i mens i ons through selective addressing.
o

DO 10 K=i,4
N1=NI(K)
N2=N/N1

C
L=l
N3=N2-N1*(N2/N1)
DO 15 J=2,N1

L=L+N3
IF (L.GT.N1) L=L-N1
LP<J)=L

15 CONTINUE
r*
L*

DO 5 J=1,N,N1
IT = J
I< 1 )=J
IP( 1)=J
DO 30 L=2,N1

IT=IT+N2
IF (IT.GT.N) IT=IT-N
I(L)=IT
IP(LP(L))=IT

CONTINUE
GOTO(5, 102, 103, 104, 105,5, 107, 108, 109,5,5,5,5,5,5, 1 16), Nl

Length =

102 CALL BFLY1 (1,1,2,0,0)
X(IP< 1), 1) = A( 1, 1)
X(IP<2), 1) = A<2, 1)
X(IP( 1 ),2) = A( 1,2)
X(IP(2),2) = A(2,2)
GOTO 5

C
c --------------- WFTA Length = 3
C

103 CALL BFLY1 (1,2,3,0,2)
AC 1, 1) = X(I(1), 1)

CALL KERMIT (1,2,1)
S3 = -Z(2,INV)*A(3,2)
A(3,2) = Z(2,INV)*A(3, 1)
A(3, 1) = S3
CALL BPLY3 (1,2,3,4)
X(IP( 1), 1) =• A( 1, 1)
X<IP( 1),2) = A(l,2>
GOTO 5

c WFTA Length-4 -•
C

104 CALL BFLY1 (2,1,3,1,0)
C

El = A(4,2)
A(4,2) = -A(4,1)
A(4,1) = El
IF (INV.EQ.2) THEN

A(4, 1 ) = -A(4,1)
A(4,2) = -A(4,2)

END IF
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107

CALL BFLY3 (1,1,2,6)
CALL BFLY3 ( 1,3,4,8)
GOTO 5

WFTA Length=5

105 A( 1, i) = X(I(1), 1 )
ft( 1,2) = X(I( 1 ),2)
CALL BFLY1 ( 1,2,3,0, 10)
CALL BFLY1 ( 1,4,5,0, 12)
CALL BFLY2 (1,2,4)
CALL KERMIT (1,2,3)
CALL ERNIE (3,5,4,7,6,0)
A(4, 1) = Z(5, 1)*A(4, 1)
A(4,2) = Z(5, 1>*A(4,2)
X(IP( 1), 1) = A( 1, 1)

CALL BFLY2 (1,2,4)
CALL BFLY3 ( 1,2,3, 14)
CALL BFLY3 ( 1 ,4,5, 16)
GOTO 5

WFTA Length=7

Ad, 1) = X(I(1), 1)
A( 1,2) = X(I(1),2)
CALL BFLY1 (1,2,3,0,18)
CALL BFLY1 (1,4,5,0,20)
CALL BFLY1 (1,6,7,0,22)
CALL GROVER (2,4,6)
CALL GROVER (3,5,7)
CALL ERNIE (4,6,11,10,14,1)
CALL ERNIE (5,7,12,13,15,0)
CALL KERMIT (1,2,8)
El = -A(3,2)*Z(9,INV)
A(3,2) = A(3,1)*Z(9,INV>
A(3,l) = El
CALL BIGBIRD (3,5,7)
CALL BIGBIRD (2,4,6)
CALL BFLY3 (1,2,3,24)
CALL BFLY3 (1,4,5,26)
CALL BFLY3 ( 1,6,7,28)

= A(l, 1)
= A( 1,2)

GOTO 5

WFTA Length=8

108 CALL BFLY1 (4,1,5,1
CALL BFLY2 (2, 1,3)
CALL BFLY2 (1,6,8)

0)

El = A(4,2)
A(4,2) = -A(4
A(4, 1) = El
IF (INV.EQ.2)

1)

END IF

THEN
A(4, 1) = -A(4, 1)
A(4,2) = -A(4,2)

El = -Z(29,INV)*A(6,2)
A(6,2) = Z(29,INV)*A(6, 1)
A(6, 1 ) = El

El = A(7,2)
A(7,2) = -A(7, 1)
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A(7, 1) = El
IF (INV.EQ.2) THEN

A(7, 1) = -A<7, 1)
A(7,2) = -A(7,2)

END IP
C

A(8, 1) - Z(16,1>*A(8, 1)
A(8,2> = Z(16,1)*A(8,2)

C
CALL BFLY3 (1,1,2,30)
CALL BFLY3 <1,3,4,32)
CALL BFLY2 (1,5,6)
CALL BFLY2 (1,7,8)
CALL BFLY3 (2,5,7,34)
GOTO 5

C
C
c . WFTfl Length=9 --
C

109 A(1, 1) = X(I( 1), 1)

CALL BFLY1 (1,2,3,0,38)
CALL BFLY1 (3,5,8,0,40)

CALL KERMIT (1,2,1)
CALL COOKMON (5,6,7,4,18,19,20,17,1)
CALL COOKMON (8,9,10,11,21,22,23,2,0)
El = -Z(2,INV)*A(3,2)
A(3,2) = Z(2,INV)*A(3,1)
A(3, 1) = El

X(IP(1),2) = Ad,2) + A(4,2) + A(4,2)
A<4,1) = A(l,1) - A(4,1)
A(4,2) = A(l,2) - A(4,2)

C
CALL MSPIGGY (5,6,7,2)
CALL MSPIGGY (8,9,10,3)
CALL BFLY3 (1,4,11,46)
CALL BFLY3 (3,5,8,48)

C
GOTO 5

C
c . WFTA Length=16
C

116 CALL BFLY1 (8,1,9,1,0)
CALL BFLY2 (4,1,5)
CALL BFLY2 (1,10,16)
CALL BFLY2 (1,11,15)
CALL BFLY2 (1,12,14)
A(14, 1) = -A(14,1)
A(14,2) = -A(14,2)
CALL BFLY2 (2,1,3)
CALL BFLY2 (1,6,8)

C
CALL ERNIE (10,12,24,27,26,0)
CALL ERNIE (14,16,25,28,26,1)

C
El = A(4,2)
A(4,2) = -A(4, 1)
A(4, 1) = El
IF (INV.EQ.2) THEN

A(4,1) = -A(4,1)
A(4,2) = -A(4,2)

END IF
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El = -Z(29,INV)*A(6,2)
ACS,2) = Z(29,INV)*A<6,1)
ACS,1) = El

El = A(7,2)
AC7.2) = -A(7,1)
A(7, 1) = El
IF CINV.EQ.2) THEN

AC7, 1) = -A<7, 1)
A<7,2> = -A<7,2)

END IF

ACS, 1) = 2(16,1)*AC8,1)
ACS,2) = ZC16,1)*A<8,2)

El = -ZC29,INV)*A(11,2)
AC 1 1,2)= Z(29,INV)*AU1, 1)
AC 11,1)= El

El = AC 13,2)
AC13,2)=-AC13,1)
AC13,1) = El
IF CINV.EQ.2) THEN

AC13,1) = -AC13,1)
A<13,2) = -AC13,2)

END IF

AC15, 1) = ZC16,1>*A(15,1)
AC 15,2) = ZC16,1)*AC15,2)

CALL BFLY3 C1,1,2,54)
CALL BFLY3 C 1,3,4,56)

CALL BFLY2 C1,5,6)
CALL BFLY2 C 1,7,8)
CALL BFLY3 C2,5,7,58)

CALL BFLY2 C1,9,15)
CALL BFLY2 (1,11,13)
ACM, 1) = -AC 14, 1)
AC14.2) = -AC 14,2)

CALL BFLY2 Cl,10,11)
CALL BFLY2 (1,13, 12)
CALL BFLY2 C1,15,14)
CALL BFLY2 C 1,9, 16)

CALL BFLY3 C2,14,12,62)

CALL BFLY3 (1,9,10,66)
CALL BFLY3 (1,16,11,68)

GOTO 5

5
10

CONTINUE
CONTINUE

Divide data by length if doing inverse transform.

IF (INV.EQ.2) THEN
DO 11 K=1,N

XCK,1) = XCK,1)/N
XCK,2) = X(K,2)/N

CONTINUE
END IF
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RETURN
END

These subroutines are easily understood when
accompanied by the corresponding flowgraphs.

SUBROUTINE BFLY1 <M,C1,C2,J,H>
C
C X TO A
C

REAL X,A
INTEGER C1,C2,K1,K2,I,M,E,H,R1,R2
COMMON /A/X /B/A /C/I,IP,E
DIMENSION X(512,2),A(16,2),I(16),E(72),IP(16)

C
Kl - 0
K2 = 0

5 IF (J.EQ.1) THEN
Rl = CH-K1
R2 = C2+K1

ELSE
Rl = E(K2+H+1)
R2 = E<K2+H+2>

END IF
C

DO G N=^ 1, 2
A<C1+K1,N> = X(I(R1),N) + X(I(R2),N)
A<C2+K1,N) = X(I(R1),N) - X(I(R2),N)

6 CONTINUE
C

Kl = Kl + I
K2 = Kl + Kl
IF (Kl.NE.M) GOTO 5

C
RETURN
END

C

SUBROUTINE BFLY2 <M,C1,C2)
C
C A TO A
C

REAL A
INTEGER C1,C2,M,K1
COMMON /B/ A
DIMENSION A(16,2)

C
Kl = 0

7 DO 8 N = 1 , 2
El = ACC1+K1.N) + A<C2+K1,N>
A(C2+K1,N) = ACCH-K1.N) - A<C2+K1,N)
A(C1+K1,N) = El

8 CONTINUE
C

Kl = Kl + 1
IF (Kl.NE.M) GOTO 7

C
RETURN
END

C

SUBROUTINE BFLY3 (M,C1,C2,H)
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c
c A TO x
c

REAL X , A
INTEGER Cl,C2,M,Ki,K2,IP,E,H
COKHON /A/X /B/A /C/ I,IP,E
DIMENSION X<512,2),A<16,2),IP(16),E<72),I(16)

C
Kl = 0
K2 = ®

9 DO 10 N=1,2
X(IP<E(K2+H+1)),N) = ACCHK1.N) + A<C2+K1,N)
X<IP<ECK2+H+2)>,N> = A(C1+K1,N) - ACC24-K1,N>

10 CONTINUE
C

Kl = Kl + 1
K2 = Kl -t- Kl
IF (Kl.NE.M) GOTO 9

C
RETURN
END

C

SUBROUTINE KERMIT (C1,C2,T1)
C

REAL A,Z
COMMON /B/ A /E/ Z,INV
INTEGER Cl,C2,Ti
DIMENSION Z(29,2),A<16,2>

C
DO 11 N=1,2

A<C1,N> = A<C1,N> + A<C2,N)
A<C2,N) = A<C1,N) + Z(T1,1)*A(C2,N)

11 CONTINUE
C

RETURN
END

C
Q__ — — _..,. _ — _ »._«.__«.„__-.«.«,__«.» — ______«.._^»__«,_.«.__™«™.___1«.«M__

SUBROUTINE ERNIE (Cl,C2,Tl,T2,T3,Wl)
C

COMMON /B/ A /E/ Z,INV
DIMENSION Z<2S,2),A(16,2)
INTEGER C1,C2,T1,T2,T3,W1

C
Ul = A<C1,1) + A(C2,1)
VI = A<C1,2) ^ A(C2,2>

C
IF (Wl.EQ.l) THEN

U2 = Z(T2,1)*U1
V2 = Z<T2,1)*V1

C
El = A(C1,1)*Z(T1,1> + U2
A(C1,2)= ACC1,2)*Z(T1, 1) +• V2
A<C1,1)= El

C
El = A(C2,1)*Z(T3,1) + U2
A<C2,2)= A(C2,2)*Z(T3,1) t V2
A<C2,1)= El

ELSE
U2 = -Z(T2,INV)*V1
V2 = Z(T2,INV)*U1

C
El = -A(C1,2)*Z(T1,INV) + U2
A<C1,2) = A(C1,1)*Z<T1,INV) + V2
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A(C1,1) = El

El = -A(C2,2>*Z<T3,INV> + U2
A(C2,2) = A<C2, 1>*Z(T3,INV> + V2
A(C2,1) = El

END IF

RETURN
END

SUBROUTINE GROVER <C1,C2,C3)

REAL A
COMMON /B/ A
DIMENSION AC 16,2)
INTEGER Cl,C2,C3

DO 12 N=l,2
El = A(C1,N) + A(C2,N) + A(C3,N)
E2 = A(C1,N) - A<C2,N)
A<C3,N) = A<C2,N) - A(C3,N)
A<C2,N) = E2
A<C1,N) = El

12 CONTINUE

RETURN
END

SUBROUTINE BIGBIRD <C1,C2,C3)

REAL A
COMMON /B/ A
DIMENSION A(16,2)
INTEGER C1,C2,C3

DO 13 N=l,2
El = A(C1,N) - A(C2,N) + A(C3,N)
E2 = A(C1,N) + A<C2,N)
A(C3,N) = A<C1,N) - ACC3.N)
A(C2,N) = E2
A(C1,N) = El

13 CONTINUE

RETURN
END

SUBROUTINE COOKMON <C1,C2,C3,C4,Tl,T2,T3,T4,J)

INTEGER C1,C2,C3,C4,T1,T2,T3,T4
REAL A,Z,G
COMMON /B/ A /E/ Z,INV
DIMENSION A(16,2),Z<29,2),G(4,2)

DO 14 N=l,2
IF (J.EQ.l) THEN
G(1,N) = Z(T1,1)*(A(C2,N) - A(C1,N>>
G(2,N) = Z(T2,1)*(A<C3,N) - A<C2,N>>
G(3,N) = Z(T3,1)*(A<C1,N) - A<C3,N>>
G(4,N) = Z(T4,1>*<A<C1,N> + A(C2,N) t A(C3,N))
ELSE
G<1,N) = Z(T1,INV)*CA(C2,N) - A(C1,N»
G<2,N) = Z<T2,INV)*<A<C3,N) - A<C2,N)>
G(3,N) = Z(T3,INV)*(A(C1,N) - A<C3,N»
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G(4,N) = Z < T 4 , I N V ) * < A C C 1 ,N> +- A < C 2 , N ) +• A ( C 3 , N ) >
END IF

14 CONTINUE
C

IF (J.EQ.1) THEN
DO 15 N=l,2

A < C1, N ) = G ( 1, N)
A<C2,N) = G(2,N)
A(C3,N) = GC3,N>
ACC4,N> = G(4,N)

15 CONTINUE
ELSE

A(C1,1) = -G(1,2)
A<C2,1> = -G<2,2>
A(C3,1) = -G(3,2)
A(C4,1) = -G(4,2)
A(C1,2) = G(l, 1)
A<C2,2) = G(2,1)
A<C3,2) = G(3, 1)
A<C4,2> - G<4, 1)

END IF
C

RETURN
END

C
£_.„-..-,_—_.. ««_———*. — «-.— «. — «.— — »«. — ̂ _«.«- — — -. — -.». — -.____„_-.:

SUBROUTINE MSPIGGY (Cl,C2,C3,C4)
C

INTEGER Cl,C2,C3,C4
REAL A
COMMON /B/ A
DIMENSION A<16,2)

C
DO 16 N=l,2

El = A(C1,N) 4 A(C3,N> + A(C4,N)
E2 = ACC4.N) - A(C2,N) - A(C1,N)
A(C3,N) = ACC4.N) - A(C3,N) + A(C2,N)
A<C2,N) = E2
A(C1,N) = El

16 CONTINUE
C

RETURN
END

Subroutines used in the FORTRAN version of the Winograd short FFTs
follow.

BFLY1
For almost all the algorithms, the input consisted of a number of stacked 2-

point convolutions (butterflies). To let us take advantage of this, subroutine
BFLY1 allows any number of consecutive loops, with the addresses being
incremented every time.

Another consideration was that the ordering of the inputs was often not
sequential. Thus, this subroutine had to allow for the specification of each input
address. The variable X represents an input or output address, whereas the
variable A represents the intermediate in-place variable. The back slashes indi-
cate a multiplication by — 1. The direction of flow is left (input) to right (output).
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inputs
sequential
(J = l)

• A
Cl one pass ( M ~ l >

• A
C2

inputs
sequential
(J = l)

Cl two passes (M=2)

• A
C2

C3

C4

inputs
specified
<J = 0)

• A
Cl one pass <M=1)

• A
C2

BFLY2
Same as BFLYl, except that inputs and outputs are strictly sequential (in-

place).

BFLY3
Same as BFLYl, except that outputs have the option of being specified.

KERMIT

-• A

Z(T1)
Cl

C2

Strictly an in-place algorithm. The passed variable Tl determines which
coefficient value to use.

ERNIE

Z < T 1 )

Z < T 2 >

Z(T3)

Cl

C2
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BIGBIRD

COOKMON

MSPIGGY

• A
Cl

C2

C3

• A
Cl

• A
C2

C3

Z<T1>

Cl

C2

C3

* A
Cl

C2

C3

C4
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Winograd Short FFT Algorithms

Flow diagrams for Winograd's short FFTs, that is, for the Winograd small-N
DFTs, follow.

0

I

2 J Z(2)

WFTA-3

WFTA-2

WFTA-4

WFTA-5

WFTA-7
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WFTA-8

WFTA-9
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APPENDIX E. HIGHLY EFFICIENT PFA ASSEMBLY LANGUAGE
COMPUTER PROGRAM

FORTRAN subroutine "ONEKO".

Program author: Mike Orchard
Graduate student, SDSU
April, 1986

Program extracted from Master's thesis.

Thesis advisor: fred harris

Inquires concerning this program are directed to:

Mike Orchard
Princeton University
Princeton, NJ

or
fred harris
Electrical & Computer Engineering Department
San Diego State University
San Diego, CA 92182

This program listing is a highly efficient assembly language
implementation of a 1008-point prime factor transform. This
program is described in the introduction to appendix D.
ONEKO has been optimized for use with the 8087 coprocessor.
ONEKO is intended to be used with the Microsoft FORTRAN compliler
for the IBM PC. Special attention should be paid to the passing
of arguments when interfacing to other compilers.

Descript ion:
ONEKO performs a 1008-point DFT on an array of complex
data passed to it from the FORTRAN calling program.

Cal1 ing format:
COMPLEX*16 TEST<1008)
CALL ONEK(TEST)

Hardware requirements:
IBM PC with 8087 coproccessor (or emulating library).

Memory Requirements:
ONEKO adds 1172 bytes of code to the program CODE segment
and 266 bytes of data to the program DATA segment.

Ti m i ng:
ONEKO completes a typical 1008-point DFT in 1.43 seconds.
*Nate: this typical timing was measured on an IBM-PC, using
a 4.77 MHz clock, on an array of non-zero data. This time
decreases when operating on data sequences with a substantial
number of zeros.

Theory of Operation:
ONEKO implements the Good-Thomas prime factor algorithm (PFA)
using factors of 7, 9, and 16 to obtain the 1008-point DFT.
The following techniques are used to minimize code and
maximize speed:

1. Unscrambling: Direct implementation of the PFA produces
an output array in scrambled order. An unscrambling stage
can be avoided by proper permutation of the output of the
individual factor algorithms, but this approach adds code and
time required to manipulate separate input and output index
pointers into the array. This program uses a technique
suggested by Burrus (IEEE ASSP Proc. Feb. 1985), which achieves
correct output array ordering by permuting the multiplier
coefficients used by each algorithm.

2. Winograd Small FFT: The development of efficient 7-, 9-,
and 16-point DFT algorithms involves recognizing that much of
the computation required can be organized as cyclic convolu-
tions. A cyclic convolution can be modeled as a polynomial
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product modulo a third polynomial. If we reduce the polynomial
product modulo each of the factors of the third polynomial,
perform each of these residue products independently, and
reconstruct the original product using the Chinese remainder
theorem, we obtain savings in required computation. (Refer to
texts on fast algorithms for more detailed treatment.) The
structure of algorithms developed in this way is determined
by the size of the cyclic convolutions identified in each DPT
and the particular factors used in the reduction and recon-
struction of polynomial products.

This program recognizes that the 7-, 9-» and 16 point
algorithms share some convolution sizes and polynomial factors.
The resulting similarities in structure are exploited to minimize
code. For example, the 7- and 9-point algorithms both include a
6-point cylic convolution. The structure of this convolution is
implemented in the subroutines INTO and OUTGF and the 7- and
9-point programs, SV and NN, call these subroutines. Similar
code sharing is achieved in the 16-point algorithm.

3. Indexing: Accessing data from the array to be processed
by each of the small OFT algorithms can be time consuming and
can require overhead code. This program greatly reduces this
effort by accessing all data in-place (never moved from the
original large array) addressed by index registers. The
standard indexing calculations usually required to determine
the order of data to be sent to the small DFTs is eliminated
by incrementing the index registers in a way that reflects
the desired order in which data should be sent to each small
DFT algorithm. For example: When performing the 7-point
DFTs, all indexes are incremented by (9 * 16) mod 1008.
Starting indexes are initialized in the storage locations
SVPOS, NNPOS, and HXPOS.

*NOTE: This program has been extracted from the larger program NPFAO,
which is a general purpose PFA algorithm for factors 2, 3, 4,
5, 7, 8, 9, and 16.

PAGE 60,120
DATA
SEVCF

NINCF

OCTCF

HXCF

TWSTAT

SEGMENT
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DB

PUBLIC 'DATA'
-1. 166666666666667
-.4409585518440984
-.7901564685254002
.7343022012357524
.05585426728964767
.3408729306239314

-.8748422909616567
.5339693603377252

-1,
-.8660254037844387
-.1736481776669304
.9396926207859083

-.7660444431189780
-.9848077530122080
.3420201433256689
.6427876096865393
.7071067810000000
.7071067810000000
-.3826834323650898
-.5411961001461969
1.3065629648763770
-.9238795325112867
.5411961001461969
1.3065629648763770

D(5)
;D(3)
;D(2)
;D<4)
D(7)
;D(6)
D<8)
;D<2)
;D<1)
;D(6),D(7)
;D(3)
D<5)
D(4)
;D<8)
D<10)
;D(9)
;D<7)
D(4)

D< 12)
D(17)
D( 16)



7. Fast Fourier Transforms 623

CNT
SVPOS
THPOS
TWPOS

DATA

DGROUP
CODE

PUBLIC
ONEK

HX

HXBG:

HXLP1 :

HXLP2:

HXLP3:

HXLP4:

DB
DW
DW
DW
DW
ENDS

GROUP
SEGMENT
ASSUME

?
0CA00H, 0F700H, 0D300H, 0EB00H, 0DC00H, 0E500H, 0C 100H
0D600H , 0EB00H , 0G800H , 0F900H , 0DD00H , 0E400H , 0CF00H , 0F200H , 0C 1 00H
0C8E0H, 0F820H, 0D8A0H, 0E860H, 0F040H, 0D0C0H, 0C 1 00H, 0E080H
0C4F0H , 0FC 1 0H , 0DC90H , 0E470H , 0CCD0H , 0F4 30H , 0D4B0H , 0EC50H

DATA
' CODE '
CS : CODE . DS : DGROUP , S3 : DGROUP ;

SV,NN, SUB 1,SUB2, I NTO,OUTOF,SVSCL,NNSCL, DUMP, EIGHT, HX,SUB5,SUB6,ONEK
PROC
PUSH
MOV
LES
ADD
MOV
CALL
CALL
CALL
POP
RET
ONEK

PROC
PUSH
MOV
SUB
LEA
CALL
CALL
CALL
MOV
SUB
FSTP
LOOP
ADD
MOV
SUB
FLD
LOOP
LEA
CALL
ADD
CALL
MOV
SUB
FSTP
LOOP
FLD
FLD
CALL
MOV
SUB
FSTP
LOOP
ADD
LEA
CALL
SUB
CALL
CALL
ADD
MOV
MOV
LEA

FAR
BP
BP,SP
BX, tBP+6]
BX, 16128
DX, 16128
HX
NN
SV
BP
4
ENDP

NEAR
BP
BP,SP
SP,260
DI, TWPOS
SUB4
SUBS
EIGHT
CX,6
BP, 10
TBYTE PTR [BP]
HXLP1
BP, 140
CX,6
BP, 10
TBYTE PTR [BP]
HXLP2
DI.HXCF
OUTOF
BP,60
SUB6
CX,4
BP, 10
TBYTE PTR [BP1
HXLP3
TBYTE PTR CBP-301
TBYTE PTR [BP-40]
SUB6
CX,4
BP, 10
TBYTE PTR CBP]
HXLP4
BX,8
D I, TWPOS
SUB4
BP,60
SUB5
EIGHT
BP, 120
CNT, 3
CX,256
DI , TWPOS+8
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HXLP5:

HXLP6:

HXFIN:

NN

NNBG:

NLP1 :

CALL
ADD
MOV
SUB
FLD
LOOP
LEA
CALL
ADD
MOV
CALL
MOV
LEA
CALL
SUB
FLD
FLD
CALL
MOV
ADD
CALL
SUB
LEA
ADD
JL
SUB
ADD
JGE
ADD
JMP
SUB
ADD
POP
RET
HX

PROC
PUSH
MOV
SUB
LEA
MOV
CALL
SUB
FSTP
FSTP
CALL
CALL
CALL
ADD
LEA
CALL
MOV
SUB
FSTP
LOOP
MOV
CALL
SUB
FSTP
FSTP
CALL
CALL
CALL
ADD
MOV

DUMP
BP,20
CX,6
BP, 10
TBYTE PTR [BP]
HXLP5
DI,HXCF
OUTOF
BP, 180
CNT.2
SUB6
CX,256
DI,TWPOS+28
DUMP
BP, 160
TBYTE PTR CBP+10]
TBYTE PTR IBP]
SUB6
CNT,2
BP, 160
DUMP
BX,8
DI.TWPOS+14
tDIJ,CX
HXLP6
CDI l.DX
[DI-2J.CX
HXFIN
BP,100
HXBG
IDI-2],DX
SP,260
BP

ENDP

NEAR
BP
BP.SP
SP, 100
DI.THPOS
CX, 1
SUB1
BP,20
TBYTE PTR tBP+10]
TBYTE PTR C BP )
INTO
NNSCL
OUTOF
BX,8
DI.THPOS
SUB2
CX,6
BP, 10
TBYTE PTR [BP]
NLP1
CX, 1
SUB1
BP,20
TBYTE PTR CBP-H0]
TBYTE PTR IBP]
INTO
NNSCL
OUTOF
BP.60
CNT,3
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NNFIN:

BV

SVEG :

LPi:

SVFIN:

FVDC

MOV
CALL
LEA
CALL
FLD
FLD
ADD
MOV
CALL
SUB
LEA
ADD
JGE
ADD
JMP
SUB
ADD
POP
RET
NN

PROC
PUSH
MOV
SUB
LEA
CALL
CALL
CALL
ADD
LEA
CALL
MOV
SUB
FSTP
LOOP
CALL
CALL
CALL
ADD
MOV
MOV
CALL
LEA
CALL
SUB
LEA
ADD
JGE
ADD
JMP
SUB
ADD
POP
RET
SV

PROC
MOV
FLD
FADD
XCHG
FST
FXCH
FMUL
FADDP

CX, 144
SUB2
DI,THPQS+12
DUMP
TBYTE PTR IBP]
TBYTE PTR [BP-H01
BP,80
CNT, t
DUMP
BX,8
DI.THPOS+16
tDI),CX
NNFIN
BP,40
NNBG
CDI ],DX
SP, 100
BP

ENDP

NEAR
BP
BP,SP
SP,60
DI,SVPOS
INTO
SVSCL
OUTOF
BX,8
DI,SVPOS
SUB2
CX.6
BP, 10
TBYTE PTR [BP1
LPI
INTO
SVSCL
OUTOF
BP,40
CNT, 3
CX, 1 12
SUB2
DI,SVPOS+8
DUMP
BX,8
DI,SVPOS-(-12
IDI 1,CX
SVFIN
BP,80
SVBG
(DI 1,DX
SP,60
BP

ENDP

NEAR
SI, [DI ]
ST(0)
QWORD PTR CBXi-SI J
AX.DI
QWORD PTR CBX+SI )
ST( 1)
QWORD PTR tDI J
ST( 1),ST
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EIGHT

RET
FVDC

PROC
FLD
FXCH
FADD
FSUBRP
FLD
FXCH
FADD
FSUBRP
FLD
FXCH
FADD
FSUBP
FLD
FXCH
FADD
ADD
FSUBRP
MOV
FSTP
MOV
FXCH
FSTP
LEA
FLD
FLD
FXCH
FMUL
FADD
ADD
SUB
FSUBRP
FXCH
FLD
FLD
FXCH
FMUL
FADD
FSUBP
ADD
FXCH
RET
EIGHT

PROC

ENDP

NEAR
ST(1)
ST(1)
ST( 1),ST
ST(2),ST
ST(2)
ST(5)
ST(5),ST
ST(3),ST
ST(3)
ST(6)
ST(4),ST
ST(6),ST
ST(4)
ST(1)
ST(1),ST
BP, 10
ST(5),ST
SI , [DI-41
QWORD PTR ES: CBX+SI ]
SI, [DI-21
ST(3)
QWORD PTR ES: IBX+SI1
DI,OCTCF
TBYTE PTR EBP]
ST(0)
ST(3)
QWORD PTR CDI]
ST(3),ST
DI,8
BP,10
ST( 1),ST
ST(4)
TBYTE PTR CBPJ
ST(0)
ST(3)
QWORD PTR IDI1
ST(1),ST
ST(3),ST
BP,20
ST(4)

ENDP

NEAR ; BX :
;DI

ADD BP,10
MOV SI.tDI]
FLD TBYTE PTR IBP]
FLD ST(0)
FADD QWORD PTR ES:[BX+SII
FADD ST,ST(2)
LEA DI,NINCF
FST QWORD PTR ES:IBX+SIJ
FXCH ST(2>
FMUL QWORD PTR IDI]
FADD ST(2),ST
ADD DI.8

BASE OF ARRAY
(IN) ADDRESS OF OFFSET INDICES
(OUTX ADDRESS OF COEFFICIENTS
USED - (NOT PRESERVED)
ADDRESS OF t5 ON STACK
(tl AND t5 ARE REPLACED ON THE STACK
BY T4 AND m? WITH BP POINTING TO »7>



7 Fast Fourier Transforms 627

SVSCL

DUMP
LP2:

Li :

1,2:

INTO

FADD
FADD
FSTP
FMUL
FADDP
ADD
SUB
FLD
FMUL
FXCH
FMUL
FSTP
RET
NNSCL

PROC

LEA
CALL
ADD
FXCH
FMUL
FXCH
RET
SVSCL

PROC
FLD
FLD
FADD
MOV
ADD
JL
SUB
FSTP
FSUBP
ADD
ADD
MOV
MOV
PSTP
FLD
FLD
FSUB
SUB
SUB
XCHG
FSTP
FADDP
XCHG
ADD
JL
SUB
SUB
FSTP
ADD
DEC
JG
RET
DUMP

PROC

MOV

ST(2),ST
ST,ST(2)
TBYTE PTR
QWORD PTR
ST(1),ST
DI, 16
BP, 10
TBYTE PTR
QWORD PTR
ST<2)
QWORD PTR
TBYTE PTR

ENDP

NEAR

AX,SEVCF
FVDC
DI, 16
ST(1)
QWORD PTR
ST( 1)

ENDP

NEAR
TBYTE PTR
ST(0)
ST,ST(2)
SI, (DI ]
(Dl ],CX
LI
[DI ],DX
QWORD PTR
ST( 1),ST
BP, 10
DI,2
AX, SI
SI, IDI]
QWORD PTR
TBYTE PTR
ST(0)
ST,ST(2)
BP,30
BX,8
AX, SI
QWORD PTR
ST( 1),ST
AX, SI
(DI J,CX
L2
(DI 1 ,DX
DI,6
QWORD PTR
BX,8
CNT
LP2

ENDP

NEAR

CX.3

(BP!
[DI]

[BP]
[DI-81

£DI-8)
IBP]

;BX:

Isi:

(DI-81

(BP]

ES: (BX+SI 1

ES: (BX+SI !
EBP]

ES: [BX+SI]

ES: [BX+SI 3

;DI:
;BX:

BASE OF ARRAY
(IN) ADDRESS OF OFFSET INDICES
(OUT) ADDRESS OF COEFFICIENTS
USED - (NOT PRESERVED)

;IM(N*)

;RL(N)

;RL(N*)

ADDRESS OF OFFSET INDICES
BASE OF ARRAY
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OUTOF

OUTLP:

SUBi

LONE:

SUB2

SUB4

CALL
CALL
RET
INTO

PROC
FLD
FSUBR
FLD
FSUBR
MOV
FMUL
ADD
FXCH
FMUL
FSUB
ADD
FXCH
FXCH
FMUL
ADD
FADDP
LOOP
RET
OUTOF

PROC

MOV
FLD
ADD
MOV
FLD
FLD
FADD
ADD
FSUBP
LOOP
RET
SUBI

PROC
FLD
FADD
FLD
FADD
FXCH
FADD
FSUBR
FSUBRP
FXCH
FSUB
FADD
FADDP
RET
SUB2

PROC
MOV
CALL
FLD
FXCH
FADD
FSUBP

SUBI
SUB2

ENDP

NEAR
ST(3)
ST,ST(6)
ST(3)
ST,ST(6)
CX,2
QWORD PTR
DI,8
ST(4)
QWORD PTR
ST,ST(4)
DI,8
ST(4)
ST(6)
QWORD PTR
DI,8
ST(6),ST
OUTLP

ENDP

NEAR

SI,tDI 1
QWORD PTR
DI,2
SI, (DI ]
ST(0)
QWORD PTR
ST( 1 ),ST
DI,2
ST(2),ST
LONE

ENDP

NEAR
ST(5)
ST,ST(4)
ST(5)
ST,ST(4)
ST(2)
ST(2),ST
ST(4),ST
ST(6),ST
ST(2)
ST(2),ST
ST(4),ST
ST(6),ST

ENDP

NEAR
CX,2
SUBI
ST(2)
ST( 1)
ST(3),ST
ST( 1),ST

1DI 3

[DI ]

[DI]

;DI:
;BX:
• Q T *t O 1 »

;CX:

ES: [BXiSI 1

ES: IBX+SI )

ADDRESS OF OFFSET INDEXES
BASE OF ARRAY
USED - (NOT PRESERVED)
COUNT - (NOT PRESERVED)
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SUBS

S5LP:

SUB6

FLD
FXCH
FADD
FSUBP
RET
SUB4

PROC
INC
CALL
LEA
FLD
FXCH
FMUL
FADD
INC
FSUBRP
FXCH
FSTP
FSTP
CALL
LEA
FLD
FXCH
FMUL
FADD
FSUBP
FXCH
FSTP
FSTP
FLD
FXCH
FADD
FSUBP
SUB
MOV
TEST
FXCH
JZ
FCHS
SUB
FSTP
LOOP
CALL
ADD
FSTP
FSTP
CALL
SUB
FSTP
FSTP
FLD
FLD
RET
SUBS

PROC
FLD
FXCH
FADD
FSUBP
FLD
FXCH
FADD
FSUBP
RET

SUB6

CODE

ST(3)
STC2)
ST<2),ST
ST(4),ST

ENDP

NEAR
CX
SUB1
SI.OCTCF
ST(1)
ST(4)
QWORD PTR
ST<2),ST
CX
ST<4),ST
ST(3)
TBYTE PTR
TBYTE PTR
SUB1
SI,OCTCF+8
ST<1)
ST<3)
QWORD PTR
ST(3),ST
ST(2),ST
ST<2)
TBYTE PTR
TBYTE PTR
STC0)
STC2)
ST< i),ST
ST(2),ST
BP,80
CX,4
TWSTAT, 1
ST<3)
S5LP

BP, 10
TBYTE PTR
S5LP
SUB4
BP,20
TBYTE PTR
TBYTE PTR
SUB4
DI, 16
TBYTE PTR
TBYTE PTR
TBYTE PTR
TBYTE PTR

ENDP

NEAR
STC0)
ST(3)
ST(3),ST
ST(1),ST
ST<3>
ST(2>
ST(4),ST
ST(2),ST

ENDP

ENDS

[SI]

tBP-70]
tBP-503

tSI ]

CBP-80J
[BP-60]

EBP]

[BP+80]
IBP+90]

[BP+60]
[BP+70J
[BP-10]
CBP-20]

END
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Chapter 8

Time Domain Signal
Processing with the DFT

FREDERIC J. HARRIS
Department of Electrical and Computer Engineering

San Diego State University
San Diego, California 92182-0190

INTRODUCTION I

The discrete Fourier transform (DFT), implemented by one of the computa-
tionally efficient fast Fourier transform (FFT) algorithms, has become the core
of many digital signal processing systems. These systems can perform general
time domain signal processing as well as classical frequency domain processing.
We can partition these FFT-based processors into three broad categories, which
are shown in Table I. This partitioning is based upon the domains of the input
and output of the processing, the domains being time and frequency (or distance
and wave number for spatial processing).

In the first category, spectral analysis, the input data is in the time domain (or
frequency domain), and the output data is in the frequency domain (or time
domain). The DFT performs the transformation between the two domains. This
form of processing is the easiest to visualize because it is a simple extension of
classical continuous spectral analysis.

TABLE I
Categories of DFT-Based

Processing

3. Spectrum analysis and estimation
2. Fast convolution and correlation
3. Multiband channelizers
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634 Frederic J. Harris

The second category, fast convolution, has the input and the output in the same
domain (such as time). Here the DFT is used to transform the input time, signal to
the frequency domain, where each frequency component is multiplied by the
corresponding spectral component of a second signal. The inverse transform
returns, the resultant signal to the time domain. The value of the FFT for this
processing is that it efficiently transforms the convolution operation in one
domain to a product in the second domain. This too is a simple extension of the
use of the Fourier transform to convert a convolution operator to a product
operator.

The third category, multiband channelizers, like the second category, has both
the input data and the output data in one domain. Unlike the second category,
the signal does not pass through the frequency domain between the input and the
output. Here, as in the first category, the transform is applied only once per
output set.

A Systems that Use the DFT for Time Domain Processing

We describe some signal processing applications that use the DFT to perform
specific time domain filtering tasks [1-4]. Two basic filtering tasks can be
performed with DFT: (1) convolution (or correlation) between two arbitrary
arrays and (2) narrowband channelization. The DFT gives us access to the
computational efficiency of the FFT. Some very clever perspectives have evolved
that allow classical filtering operations to be implemented by the FFT. We will
develop these perspectives shortly.

1 Channelized Digital In-Phase Quadrature (I-Q) Receivers

In this example we offer an intuitive description of how a DFT is used to
synthesize a bank of narrowband filters. In conventional DFT processing a block
of time data /(«) (of length JV) is weighted; that is, a time domain window is
applied to the data, and the data is presented to a transform algorithm. The
output of the transform is N points of what is classically interpreted as the
weighted data spectrum, denoted F(k). We can imagine that blocks of overlapped
time data are sequentially delivered to the transform for spectral processing.

From the classical viewpoint, a time domain window (i.e., a weighting function)
is applied to the overlapped data blocks to reduce the levels of spectral leakage at
the output of the transform by controlling the severity of discontinuities at the
boundaries of the observation interval. From another viewpoint, the time
domain window shapes the spectral width and controls the spectral sidelobes
of equivalent narrowband filters of the spectral decomposition. The outputs
of these equivalent filters can be sampled at a rate consistent with the filter
bandwidth to obtain samples of the narrowband complex envelope. The sample
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rate is controlled by selecting the overlap of consecutive time intervals processed
by the transform.

An output data point is obtained from a single transform bin for each time
block processed by the transform. We can emphasize the time dependence of the
output data by stacking the succession of transform outputs in a two-
dimensional array; one array dimension is the spectral sample number of the
transform, and the other is a time index identifying the center position of the
processed time interval. This two-dimensional array is of the form F(/c, m) and is
indicated in Fig. 8.1. Suppose we select a particular frequency, say the rth bin i.e.,-
rth DFT filter output), and view how that spectral output evolves with time. We
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Fig. 8.1. Time series from sequential transforms.
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do this by running down the time axis in the two-dimensional frequency - time
array. What we encounter is a time series! The first index, the frequency variable,
is now interpreted as the index identifying the center frequency of that particular
narrowband (filtered) time series.

Note that blocks of time data are delivered to the transform, and that the
output block computed by the transform is now seen as a collection of time
samples from a bank of contiguous narrowband filters. The center frequencies of
the bank are the bin centers of the classic spectral analysis performed by a single
transform. Their bandwidth is controlled and shaped by the time domain window
applied to the input time blocks. The output sample rate of the narrowband
filter(s) is controlled by overlap of the blocks processed by the transform. Note
again that for each block of time data a single time sample from each filter in the
set is obtained from the operation of time-domain-window overlapped data and
transform. In this light the DFT is now a collection of narrowband time domain
processors. We will expand upon this example in Section II and show how to
maintain independent control of bandwidth, center frequency, and sample rate of
the equivalent filter set. The process just described directly convert a frequency-
division-multiplexed signal to a time-division-multiplexed signal and is known as
transmultiplexing.

2 High-Resolution Interpolator

The DFT can be used to synthesize the output of an interpolating filter. In
Chapter 3 we demonstrated how a polyphase interpolating filter could be formed
by lowpass filtering a zero-packed data set. The zero-packing was the process of
multiplexing the input data with a set of zero-valued data samples. The purpose
of the zero-packing was to increase the input sample rate to the lowpass filter.
The effect of the zero-packing was to replicate the signal spectrum at intervals
equal to the input sample rate and to fill the spectral width covered by the output
sample rate. The filter then eliminated the spectral replicates so that the input
spectra became periodic at the (higher) output rate. We can achieve the same set
of effects with DFT processing.

We shall demonstrate the technique by a specific example, say that of 4:1
interpolation. The process starts by selection of an input data block of length N.
We do not zero-pack the block but simply transform it. The resultant N spectral
points cover a bandwidth equal to the input sample rate with a resolution equal
to the sample rate divided by the transform size (fs/N). Had we zero-packed the
data by 4:1 and then performed a 4A/-point transform, we could find four
identical replicates of the original length-JV transform in the 4N output bins.
Remember that the zero-packing replicates the transform by redefining the
sample rate. We really have no need for the replicates. (If we really had need for a
replicated transform, we would replicated the copy of the spectrum we already
have without requiring the use of the extended length transform.) The function of
the time domain (polyphase) lowpass filter was to remove (or attenuate) the
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spectral content in the regions in which the spectral replicates are located. The
composite effect of the zero-packing and lowpass filtering in the time domain was
to increase the spectral distance between the baseband spectra and its first
replicate (i.e., increase the sample rate for a given bandwidth).

We can accomplish the same result indirectly in the frequency domain by
simply zero-extending the N points of spectral data to 4N points. We do this by
splitting the array at address N/2 and inserting 3N zeros between the two halves,
thus extending the transform array to a total length of 4N. The data point at
address N/2 (assuming N is even) is split between two addresses; half is placed in
address 4- N/2, and half in address —N/2 (actually, 4N — N/2). We then perform
an inverse DFT (IDFT) to obtain the interpolated time series. This example,
modified for 2:1 interpolation, is demonstrated in Fig. 8.2.

In Chapter 3 we derived the workload to perform this interpolation by poly-
phase filtering and showed it to be eight multiplications and eight additions
per output point. The workload for the transform-based processing is approx-
imately log(4W) multiplications and log(4JV) additions per output point, so the
transform is computationally more efficient for output blocks smaller than 64
points. Significant computational savings occur when many such processing
tasks are performed simultaneously.

A second example of using the DFT as an interpolator is spectral shifts and
frequency domain multiplexing, which can also be imbedded in the transform-
based processing. We can carry this example to its logical end by viewing it as the
inverse of the first example. We can consider the first example to be applied
analysis and this one to be applied synthesis. The transmultiplexing process of
interpolation, bandshifting, and summation of narrowband signals to form a
frequency-division-multiplexed signal from a set of baseband time domain
signals can also be performed efficiently by using the DFT.

h(n)

rWTvfTTn

h(n/2)

N POINT DFT
,, H(k ;N)

IIK ' . . -ill
0 N/2 N

ZERO

EXTEND

2N POINT IDFT

0 1 2 ... N-l

f > H(k;21

\[\ ...
0 N/2 N 2N-N/2 2N

Fig. 8.2. Bandlimited interpolation with zero-extended spectra.



638 Frederic J, Harris

3 Arbitrary Matched Filter

The DFT can be used to synthesize an arbitrary finite impulse response (FIR)
filter. Applications for such a filter include the matched filter, which maximizes
signal-to-noise ratio (SNR) in communication applications, pulse compressors
for high-resolution (large time-bandwidth) ranging signals in sonar and radar,
and phase-coded sequences used for spread spectrum communication systems.
These applications are examples of the classic problem of detecting known
signals with unknown time of arrival in the presence of (white) noise. The filtering
task is one of searching through the arriving signal for a good match to a copy (or
template) of the known signal of interest. The searching task is performed
by sequentially projecting the signal upon the (set of) template(s). This is often
called a correlation receiver. The search mode requires repeated application of
the inner product processing task. The workload for an JV-tap filter is about N
multiplications and .N-additions per output sample. Thus a search over 2N
samples would require A/-squared operations. For large N (such as 1000 points)
this is a formidable processing task.

The linear correlation required for the matched filtering task can be performed
with a circular convolution. It is reasonable to ask just why we want to do this.
We are willing to imbed the linear correlation in a circular convolution because
the latter can be performed with a sequence of DFTs, which in turn can be
implemented with FFT alogroithms. (The convolution can perform correlation
by simply reversing one of the data (time) series prior to the convolution, and this
reversal can be accomplished in the transform domain as a simple conjugate,)

The DFT is a block process, and the linear correlation is a continuous process.
A technique known as overlap and discard (or overlap and add) is used to
synthesize the continuous process with the block processor. The input data is
partitioned into double-length (2JV) blocks that overlap the previous interval by
length N. In the overlap-and-discard technique, 2N points are circularly
convolved via the DFT with the JV-point matched filter. The first N points of the
output correspond to time-aliased (or circularly wrapped) data and are discarded.
The second N points are alias free and correspond precisely to the output of a
linear convolver; this segment is saved and is appended to successively processed
blocks. This example is demonstrated in Fig. 8.3 where d(s, n) is the overlapped
data sequence, G(/c) is the filter's transform sequence, and r(s, k) is the convolu-
tion output.

4 Overview of Chapter

In the remaining part of this chapter we examine various tasks in which time
domain processing is accomplished with a DFT. We show how a judicious choice
of window, overlap, block size, and circular indexing, coupled with simple pre-
and postprocessing tasks, leads to use of the DFT to perform general time
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Fig. 8.3. Fast convolution by overlap and discard.

domain processing. We site the computational advantages gained by performing
specific time domain tasks with an FFT. These gains are quite impressive when
multichannel processing is synthesized with the FFT. In particular, we examine
how simple pre- and postprocessing tasks significantly enhance the degrees of
freedom available to the designer of multichannel processors. We pay particular
attention to how processing parameters are coupled and to how a choice of
processing parameters impacts important system considerations, such as total
computational burden, and classical fidelity measures, such as channel crosstalk
and noise levels.

The time series obtained from the output of a uniform sampler can be
described as a broadband series formed by the summation of numerous
narrowband signals distributed over contiguous frequency bands within the
analysis bandwidth. Our desired processing goal is the decomposition of this
broadband series into narrowband series by banks of narrowband filters. The
sampling rate for each narrowband time series is reduced (relative to the input
rate) in proportion to the bandwidth reduction. Filters that operate at different
input and output sample rates are called multirate filters (see Chapter 3).
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The narrowband channelization of the input time series can be computation-
ally intensive. The desire to control this processing burden has motivated
searches for channelization schemes with reduced computation load, such as
those centered around the FFT [5-9]. When all of the channel filters have the
same bandwidth and hence the same output sample rate, they can be realized
efficiently (and simultaneously) by windowed and overlapped FFTs. If the
channels have different bandwidths, the filtering task can be performed in a two-
stage multirate process, which is somewhat akin to a dual-conversion communi-
cation receiver. In the initial stage, standard overlapped FFT processing is
used to form a series with a reduced bandwidth at a reduced sample rate. The
second stage performs additional coherent processing either to further reduce
the bandwidth by additional filtering or to increase the bandwidth by merging
the outputs of adjacent filters. Both forms of second-stage processing can
be performed by any suitable signal processing technique, including additional
DFT processing.

The DFT is a block process, and we must take care to control the artifacts that
may arise from partitioning the data into convenient block sizes. The transform
parameters through which we exercise this control are the transform length N, the
data sequence window shape h(n\ the window length L, and the transform
overlap 1 — p/N (or transform shift p). These parameters are interrelated in
various ways. Understanding how they are related is made easier if we first
examines the relationships in an equivalent process. In particular, the process
is the bank of generic narrowband filters we are forming with the DFT. The
correspondence between the parameters of the two processes are listed in
Table II. Note that the transform size and the window length are distinct
parameters. The window can be shorter than the transform, and the difference
in lengths is easily accommodated by zero-extending. We will also show that
the window length can exceed the transform length and that the excess length is
cyclically wrapped (or folded) to the transform size.

TABLE II

Corresponding Parameters of Generic Filter Bank and DFT-Based Filter Bank

Generic filter bank

Number of filters spanning
input bandwidth

Prototype (or baseband)
impulse response

Filter length
(or bandwidth)

Ratio of input to output
sample rates

DFT-based filter bank

Transform size

Data sequence window

Window length
(or resolution)

Data shift

Parameter

N

W(n)

L

P
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The Goertzel Algorithm A

We first demonstrate a simple relationship between the DFT and the
convolution operator, using the initial steps in the derivation of the Goertzel
algorithm. Recall that the definition of the DFT is

F(k) = £ Wmkf(m}, k = 0, 1, 2,. . . , N - 1 (8,1)
m = 0

where W = e~hn/N

We note that W, the kernel of the transform, is periodic in N. Thus Eq. (8.1) can be
written as

F(fc) = £ W'(N~m}kf(m} (8.2)
m = 0

Modifying Eq. (8.2) by replacing the constant N with a variable index n gives
Eqs. (8.3a)-(8.c).

F(k) = Fk(n) = Fk(N) (8.3a)

where Fk(n) is defined by the Goertzel algorithm

or

Fk(n) = f(n) * W~"k (8.3c)

We recognize Eq. (8.3b) as a convolution of the data f(n) with the complex
exponential exp( —j2nk/N). Here the superscript k emphasizes that the frequency
index now denotes the center frequency of a time sequence. The Goertzel
algorithm demonstrates that the DFT can be implemented as a convolution.
Our interest in this demonstration is found "on the other side of the coin;" namely
the DFT output is equivalent to a time sample vector from a bank of narrow-
band filters.

The Generic Filter Bank B

The Block diagram of a generic bank of filters that can dechannelize a
broadband input signal is shown in Fig. 8.4. Also indicated is the spectral
coverage of the separate channel filters. We note that the filtering process is
equivalent to convolving the input series with a matrix (i.e., a set of impulse
responses, one for each center frequency). Note that the number of filters and the
length of each filter's are impulse response not constrained in any way. Thus the
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Fig. 8.4. Bank of generic narrowband filters.

equivalent matrix of filter coefficients is not constrained to be square. We call
attention to this because when we imbed the filter bank in the DFT (which is
described as a square matrix), we have to handle the unequal dimension of the
equivalent filter bank. We shall demonstrate that in DFT-based processing, the
synthesized filter banks have lengths that are two to four times the number of
filters formed.

C FIR Digital Fitter

The basic digital filtering process of the filter bank is described by the finite
weighted summation

N- I

r(fc,«)= E g(k,m)d(n - m),
m = 0

n = 0, 1, 2,...; k = 0, 1, 2,..., K - I (8.4)

where d(n) is the data sequence and

g(k,n] = h(n)ein°(k)

Figure 8.5 suggests one possible structure of this filter. Note that the filter impulse
response coefficients g(k, n) are formed as the product of a prototype lowpass
filter h(n) and a complex exponential exp[ jnQ(k)\ that translates the lowpass
spectral characteristics to the arbitrary center frequency of 6(k) radians per
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Fig. 8.5. Finite impulse response digital filter.

sample. If we explicitly show this form of the filter in Eq. (8.4), we obtain

r(k,n)= % d(n - m)h(m)e+Jme(k)

m = 0

= e +jne(k} £ h(m)d(n -
m = 0

(8.5a)

(8.5b)

The form of the filter suggested by Eq. (8.5b) is shown in Fig. 8.6. In this form, the

.— - L - »~

( k ; s )

+ j s6 (k )
e

Fig. 8.6. Equivalent narrowband carrier-centered FIR filter.
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desired center frequency is heterodyned down to baseband, rather than having
the spectral characteristics of the baseband filter moved up to the center
frequency of the desired channel. The spectrally shifted data is filtered and then
heterodyned back to the original center frequency. The two forms of the process
are indistinguishable! We see, in this form of the filter, that the heterodyne
process and the convolution process occur as distinct operations. From this we
conclude that the center frequency of the filter (established with the heterodyne)
and the bandwidth (established with the convolution) are independent para-
meters. This independence can be preserved when the filter bank is realized
as a DFT.

D Filter Length, Bandwidth, and Desampling Ratio

From the equivalence demonstrated in the last section, we see that the spectral
structure of each filter in a bank of bandpass filters is the same as the spectral
structure of a heterodyned lowpass prototype. Let us examine this prototype to
review the relationship between filter length, bandwidth, and desampling ratio.

The narrowest spectral bandwidth, called a resolution cell, that can be realized
with an M-point FIR filter (or an M-point DFT) is 1/M. This minimum
bandwidth filter is the periodic extension of the cardinal (sin nfM)/nf function
(called the Dirichlet kernel) and is shown in Chapter 1 Section VILE, to have a
sin(7i/M)/sin(7i/) response. The frequency response of this filter, shown in
Fig. 8.7, is the equivalent filter set obtained when the DFT is used for spectral
analysis with uniform (or rectangular) weighting. In the spectral analysis task the
high sidelobes of the Dirichlet kernel lead to an additive bias term known as
spectral leakage. This term reflects the characteristic that the high sidelobes allow
a filter at one spectral location to respond to signals at remote locations,
particularly those outside the mainlobe response interval. Control of this bias
term requires an alternative weighting function, one exhibiting reduced sidelobes.
For weighting terms of fixed lengths, sidelobe reduction is always achieved at the
expense of an increase in mainlobe width. The trade of mainlobe width for
sidelobe level is well understood, and a concise statement of this relationship is
presented in Table III. In this table, as in the rest of this chapter, it is convenient to
borrow the terminology of spectral analysis, in which the minimum width of 1/M
is defined as a resolution bin (or quantization cell). This permits arbitrary
bandwidths to be described with respect to this cell dimension in terms of number
of bin widths (not necessarily an integer).

The primary message to be found in Table III is that mainlobe width must be
increased to obtain reduced sidelobe levels (for a given rate of sidelobe decay).
For desampling operations a sidelobe decay rate between —6 and —12 dB/
octave is desired to minimize the total sum of the sidelobe terms that fold
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TABLE III

Highest Sidelobe Level as Function of Mainlobe Width

Sidelobe assymptotic rate of falloffing dB
Mainlobe

width

2/M
3/M
4/M

0 dB/oct

-48
-75

-102

-6 dB/oct

-46
-72
-98

-12 dB/oct

— 42
-66
-96

-18 dB/oct

-38
-62
-91

back into the mainlobe under desampling. Thus we see that to obtain
narrowband filters with — 70-dB peak sidelobes and good decay characteristics,
the mainlobe width of the filter must be equal to or greater than three resolution
cells. An example of such a filter response is given in Fig. 8.8. We shall soon
show that the processing overlap is controlled directly by the mainlobe width
and, hence, indirectly by the sidelobe levels of the window (or filter).
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GAIN ( d B )

Fig. 8.8. Minimum bandwidth narrowband filter with — 70-dB sidelobe level.

We now address the sample rate required to satisfy the Nyquist criterion for the
time series at the filter output. The spectral characteristics of the input data, of the
FIR filter, and of the filter output data are periodic in the input sample frequency.
The function of the filtering process is to reduce the bandwidth of the output
series. Without loss of information, we are permitted to reduce the output sample
rate (relative to the input rate) in the same ratio as that of the output to input
bandwidths.

We can assume that the input signal to the filter exhibits a white spectrum so
that the filter's response has the same power spectral shape as the filter. In
reducing the output sample rate, we reduce the separation between the filter
response spectral replicates. As this separation is reduced, the filter mainlobe
response starts overlapping the filter sidelobe response. We anticipate this
overlap by specifying the acceptable levels of sidelobes permitted to fold into the
mainlobe interval. Upon further reduction of output sample rate, the filter
mainlobe response starts to overlap its first replicate. This overlap is called
spectral aliasing. We control the amount of aliasing by choosing an output
sample rate sufficiently high to prevent the spectral folding (or overlap) into the
mainlobe bandwidth of interest.

Figure 8.9 shows sketches of the prototype output spectra with possible
spectral replicates formed by selecting different output sample rates. The
resampling operation entails the computation of one output point for every P
input points, which is an input-to-output sample rate ratio of 1/P. This ratio can
be normalized to the filter length of M points as indicated by

L
M

(8.6)

We note that /, the new sampling frequency in multiples of filter resolution
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Fig. 8.9. Spectral replicates of desampled lowpass filter sample rate reductions of (a) A//8, (b) A//4,
and (c) M/3,
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widths, is not constrained to be an integer. For instance, 1:10 resampling (P = 10)
with a 128-point filter (M = 128) results in the spectral replicate being located at
12.8 spectral bins. Keep in mind that although the sketches of Fig. 8.9 show the
spectral replicates at integer multiples of 1/M, this is an arbitrary assignment to
demonstrate a set of relationships.

In the normalized spectral coordinates of Fig. 8.9, the resampling operation of
computing / output filter points for each M input data points shifts the spectral
replicates from unity to the new output rate l/M. We are concerned with the
relationships between this output sample rate and the useful alias-free band
within the mainlobe response. For the specific example presented, the sidelobes
are chosen to be down by — 70 dB and this requires that the mainlobe width be
3/M. A choice of other sidelobe levels would alter the required mainlobe width
and would change the specific numbers but not the form of the relationships we
are discussing. From Fig. 8.9(a) we see that when the sample rate exceeds the two-
sided spectral width of the filter, the entire spectrum is alias free. On the other
hand, when the sample rate is less than the one-sided spectral width of the filter,
there is no alias-free bandwidth. Thus, for this example, an alias-free bandwidth is
available if the output sample rate is lower bounded by 3/M. This means that the
processing overlap must exceed 3:1. Also there is no alias-related advantage to
having the processing overlap exceed 6:1, which would have the output sample
rate exceed an upper bound 6/M. Finally, to realize an alias-free region of one
resolution cell, we would need an output sample rate exceeding 3.5/M, and to
realize an alias-free region of two resolution cells, we require an output sample
rate of 4/M.

Although the higher output sample rates extend the alias-free bandwidth, the
increased attenuation at the limits of the extended bandwidth (called scalloping
loss) restricts the useful bandwidth to approximately two resolution cells. Thus it
appears that an output sample rate corresponding to one output point for each
M/4 input points (a 4:1 processing overlap) is the natural sample rate to
minimize output rate (hence processing load) while maximizing useful output
bandwidth.

F DFT Implementation of a Channelized Filter Bank

The complete channelization and basebanding of the input signal is conceptu-
ally performed with a bank of digital FIR filters. The form of such a system is
shown in Fig. 8.10. The computational burden to perform the filtering task was
presented in Eq. (8.5b) and is repeated here:

M-l

r(k,n) = e->"0(k) £ d(n - m)h(m)e+jme(k} (8.7a)
m = 0
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Fig. 8.10. Channelized system with FIR digital filters.

If we now account for the resampling operation by computing the output at
indices n = s(M/4), we have

= (M/4)s

Af ~ 1

m = 0
(8.7b)

We will next describe how to implement the collection of channeling filters in a
single DFT (performed as an FFT) and to realize significant computational
advantage over the direct implementation of the individual filters. If a data
sequence window (weighting) w(ri) is multiplied point by point with a data
sequence /(«), the DFT computes

Af - l

F(k) = £ w(n)f(n)e~i(2n'N}nk, k = 0, 1, 2,... , N - 1 (8.8)

The transform performs an inner product of the sequence w(n)f(n) with the
complex exponential sequence. The bank of narrowband filters, cast as FIR
filters, also performs a set of inner products with complex exponential sequences.
In this light we can use the block processing of the DFT to accomplish processing
equivalent to the desampled FIR filters by applying the transform to overlapped
intervals of the input time series. This block processing generally requires that
each interval be processed / times; we will refer to this as /: 1 overlap processing.
Figure 8.11 illustrates a 4:1 overlap.
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B L O C K - ]

Fig. 8.11. Block partitions of data stream for 4:1 overlap processing.

We can denote the shifting block partitions with a shift index s, given by
N~i

w(n)f
n = 0

fc = 0,1, 2,..., AT- l;s = 0, 1,2,3,...

Changing the variable of summation to «', where

ri = (N - 1 - n) or n = (N - 1 - n')

yields

s - n'e
+J{2*IN*n'

(8.9a)

(8.9b)

We now define w(N — I ~ n) as h(n\ a flipped and translated version of the
desired prototype lowpass filter impulse response. In doing so we see that the
window used in transform-based channelizing is an arbitrary lowpass filter that
can be designed by one of the techniques presented in Chapters 2 and 3.
Substituting for w(N — I — n) and redefining the index of summation in
Eq. (8.9b), we obtain

n }h(n)e+j(2n/N)nk (8.9c)

Comparing Eq. (8.9c) to Eq. (8.7b), we see that the two summations that
represent the filtering and resampling operations are of identical forms. Denoting
the pair of summations by p(k, s) and q(k,s), respectively, we compare the two
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expressions as follows:

r(fe, s) = e-
J(NI4mk)p(k, s) (8. lOa)

F(k, s) = e+j(2n/N)kq(k, s) (8. lOb)

We note that the primary difference in the expressions is that the transform-based
operation does not include the complex heterodyne. Thus the narrowband
output is not basebanded, and the transform-based filter responses exhibit a
residual phase rotation term that must be removed (or at least accounted for) by
pre- or post-transform processing. Setting d(n) = f(n) and 8(k) in Eq. (8.10a)
equal to the specific 6(k) in Eq. (8.10b) makes the two summations in Eq. (8.7c)
and (8.9c) identical. Then the two expressions in Eq. (8.10) become

r'(fc, s) = e-J(2*f*}kaq(k, s) (8.11 a)

F(k, s) = e+j(2n/N)kq(k, s) (8.11 b)

The prime on the variable r(k,s) distinguishes between the arbitrary center
frequencies and the specific center frequencies implied by integer values of s. After
this section, the prime will be dropped. Furthermore, postprocessing is required
to make the output of the transform-based processing match that of the direct
FIR-filter-based processing. This postprocessing is a phase rotation, so the
phase-corrected (or heterodyned) transform output matches the output of the
filter; in other words,

r'(k, s) = e-JV«M**e-w*F(k, s) (8.12)

The second phase term in Eq. (8.12) is independent of the output time index s;
hence it represents a constant phase angle in the carrier-centered signal. Since the
phase term is arbitrary, it can be ignored. Alternatively, we can remove it by
imbedding it as the initial phase offset of the first phase term in Eq. (8.12), or we
can avoid it entirely by performing a single cyclic shift of the input windowed data
before performing the DFT.

Note that for 4:1 overlap, the apparent shift (in radians per sample) required to
phase correct the feth filter is (n/2)k. Since the phase progression is periodic in 2n,
we can rewrite the apparent frequency as

sfc 1
— modW (8.13a)

For the specific case of 4:1 overlap (i.e., with s — IN/4) the apparent shift is

Vkl 1
2n — mod 4 (8.13b)

Thus, depending on the value of (kl/4) mod 4, the phase rotation (per output time
sample) will be one of four possible values, as shown in Table IV. Note that (for
the processing overlap of AT/4 chosen for this example) the phase-correction
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TABLE IV

Residual Phase Rotation of FFT Bins for 4:1
Overlap Processing

Bin [(kl/4) mod (4)] Frequency (rad/sample)

0
1
2
3

0
71/2

7T

-n/2

terms are trivial and can be performed with simple indexing. For arbitrary
overlap the phase correction is not quite as trivial. In a later section we will
discuss the phase correction required for arbitrary overlap. At that time we will
also present processing options to account for or eliminate the computations
required to apply the phase rotation terms.

As a final note to this section, we observe that the center frequencies of the
channel bank that were identified as 9(k) in Eq. (8.7) have now been constrained
by transform-based processing to be the equally spaced frequencies (2n/N)k—
that is, integer multiples of l/N of the sampling frequency. At this point it
appears that the filter length and the filter spacing are defined by default by the
same integer N, the transform length. This conclusion is not valid, as we shall
soon show.

G Data Folding; Independent Control of Filter Spacing and Filter Bandwidth

To this point the DFT-based channelizer has led to a bank of filters whose
spectral separation is l/N and whose spectral bandwidths are b/N. Here b is the
bandwidth broadening factor which resulted from control of the filter bandwidth
and the sidelobe levels. We are assuming a normalized sampling frequency 1 and
a transform length N. The spectral characteristics of such a filter bank are shown
in Fig. 8.12. Whereas Fig. 8.8 shows the spectral response of a single filter,
Fig. 8.12 presents the spectral response of a bank of contiguous filters. Each
filter in this bank is periodic in the sampling frequency, but the span of frequen-
cies presented is too small to see the periodicity.

Note that for the filter responses selected in this example (a filter with a first
sidelobe peak of —70 dB and with a — 9-dB/octave falloff of sidelobe peaks)
adjacent DFT filter bins cross at their — 1.0-dB points, alternate filters cross at
their — 4.0-dB points, and filters separated by three bins cross at their — 20.0-dB
points. Thus adjacent filters are considerably wider than their separation, and
therefore adjacent filters span overlapping bands of frequencies. As a result, the
time series obtained from adjacent filters are highly correlated. We can reduce
this high degree of correlation by forming filters with narrower bandwidths (at
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Fig. 8.12. Resolution (spectral width) and spectral spacing of an FFT-based bank of narrow-
band filters.

the same center-frequency locations) and/or by using fewer filters and increasing
the separation of center-frequency locations [10,11].

Recall that the transform length N is chosen to establish the spacing between
channel center frequencies. Classically, by default, we accept the bandwidth
obtained for a window (or filter) of the same length as the transform. We do not
have to accept that constraint. If we examine the structure of the generic FIR
filter channelizer (Fig. 8.4), we note that the center frequency of the filter is
selected by the heterodyne and the bandwidth is selected by the lowpass
prototype weights. Thus there is no fundamental restriction that the number of
filters and the number of data points being processed be the same value. From the
perspective of classical Fourier transform analysis, we know that the unweighted
complex vectors of the DFT form an orthogonal basis set that spans the N-
dimensional vector space (in which the data resides). In that case the number of
filters matches the dimension of the space (the number of data points). However,
if the channelization is being performed with filter sets that span the spectrum
but, due to mainlobe spectral overlap, are highly correlated, then we have two
options by which we can reduce the mainlobe spectral overlap and thereby
reduce the correlation (or crosstalk) between adjacent channels. First, we can
keep the filter lengths (hence bandwidths) fixed and increase the separation
between filters. This involves computing fewer filter outputs without reducing the
filter length. Second, we can keep the separation between filter centers constant
but decrease the filter spectral width by increasing the length of the filter. Again,
this involves computing outputs from fewer filters than there are data points. We
shall show that the two options are the same.



654 Frederic J. Harris

G A I N

( d B )
S P E C T R A L S E P A R A T I O N TT

SPECTRAL Wl DTH ~

BANDWIDTH

SEPARATION

Fig. 8.13. Filter specification showing how to reduce spectral width (by control of filter length L)
for a given set of spectral centers (defined by transform size N).

We choose the initial perspective that the filter spacing is 1/N, the spacing of an
N-point transform, and that the filter length L is greater than N, so the bandwidth
b/L is comparable to the spacing 1/JV. The form of the filter bank in terms of the
filter length L and number of filters N, where L < N, is given by

q(k,s) = ~s-n }h(n)e+j{2«/N)k" (8.14)

For our needs, L > N. When L < N, the frequencies dictated by the transform
length are computed by zero-extending the filter length to match the length of the
transform. Zero-extended data is the most common example of the bandwidth
being determined by the data length L while the spectral spacing is determined by
the transform length N. Figure 8.13 shows how the filter center frequencies are
related to the fixed transform length JV and how the filter widths can be altered
by changing the filter length L (relative to N). The processing required to form
the filter bank g(k, s) with spectral spacing i/N and with filter length L, where
L > N, is

L - 1 / 7 \

E d(-s-n)h(n)e+J(2*INVu>

« = o 4
(8.15)

Knowing that the complex exponential in Eq. (8.15) is periodic in N, we can
replace the index of summation n by a mixed-radix integer representation (see
Section III.A) of the form

n = ni + Nn2, nl = 0, 1, 2,..., N - 1; n2 = 0, 1, 2,... , c - 1 (8.16a)

where c satisfies

(c -l)N <L< dV,
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and obtain

p(k,s) - Y ̂  dl^-s- (nt + n2N) /i(«i + n2N)e+j(2n/N)n'k (8.16b)

We know from the sampling theorem that, to avoid aliasing, a function must be
sampled at a spacing that is less than the reciprocal width of its two-sided
spectrum. Violating this constraint results in aliasing of the transform. Likewise,
if the spectra of a signal is undersampled, the time signal will exhibit circular
wrap-around or time folding. Conversely, circular wrap-around of a time
function is always an indication of spectral undersampling. In this light the inner
summation of Eq. (8.16b) represents the intentional time domain aliasing of the
input signal to support the undersampling of the signal's spectrum by the N~
point DFT.

A reasonable selection criterion for choosing the filter length L is that the
adjacent filters have nearly uncorrelated outputs. As mentioned in Chapter 1,
uncorrelated signals with a zero mean are orthogonal. We will assume zero-mean
white noise inputs to the filters and derive conditions under which the filter
outputs are orthogonal. We can achieve precise orthogonality by placing a subset
of the filter's spectral zeros at the center frequencies of the other filters. The class
of filters with equally spaced zeros was presented in Chapter 3 as having impulse
responses that are Nyquist pulses. Standard filters that match this spectral
characteristic are Blackman-Harris windows and Taylor windows. For instance,
a three-term Blackman-Harris window can achieve complete orthogonality
with a triple-length window (which requires 3:1 data folding). Complete
orthogonality requires very narrow filters and results in excessive scalloping loss
(i.e., the reduction in gain for a signal located between bin centers). A reasonable
compromise for the filter length (in terms of scalloping loss and folding length) is
twice the transform length. For a window of length 2N with — 70-dB sidelobes,
the spectral responses of adjacent filters cross at their — 4.3-dB points, have a
gain of — 19.1 dB at adjacent centers, and have zero gain (i.e., infinite rejection)
at the center of all other filters. By comparison, the Dirichlet kernel filters with
— 13-dB sidelobes cross at their — 3.9-dB points and have zero gain at the center
of all other filters.

The processing corresponding to the length-2JV filter with center frequencies at
\/N can be visualized with the aid of Fig. 8.14. The data sequence is d(n) = 1 for
representational purposes; it is windowed and folded. This latter operation adds
the first half of the windowed data to the second half. The data folding simulates
the time domain overlap of adjacent time intervals due to undersampling the
spectral data.

An alternative visualization explains the folding process that occurs when an
N-point transform is applied to 2N data points. First we envision a 2N-point
transform applied in the usual manner to 2N data points as

2N-1

F(k)= £
n = 0
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Fig. 8.14. (a) A length-ZW sequence and (b) folding of the sequence in (a) in preparation for an N-
point FFT.

We now examine the even-indexed frequency bins of this transform as shown in
2JV-1 2N-1

F(2k)= X f(n)e+J(2«l2N)2»k= ^ J-^e+j(2nlN)nk (8. 1 7b)

F(2k) = £ [/(n) + /(n + N)>+J'<2)tW'"£
n = 0

(8.17c)

We note that Eq. (8.17c) is simply the transform of 2:1 folded data. Thus an
alternative perspective of the 2:1 folding operation is that we are computing
alternate spectral points of a length-2Ar-point transform. Note again there is no
loss of spectral or time information in the folded DFT processing provided that
the window has broadened the filter bandwidth to include the alternate (and not
computed) spectral cells. From this perspective, the folded DFT filter bank has
formed reduced-bandwidth filters to realize a closer match between the filter
spacing and the filter width.

A complete DFT-based channelizer has the form in Fig. 8.15(a). Here we have a
2:1 data folding and 4:1 overlap of the windowed time intervals. The overlap
establishes the time sample rate to satisfy the Nyquist criterion for the filter
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Fig. 8.15. (a) Overlapped, windowed, and folded DFT bank of filters, (b) Overlapped intervals,
before and after folding.
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bank, and the folding reduces the filter bandwidth to compensate for the filter
broadening due to the windowing operation. We emphasize that the 4:1 overlap
of the filter impulse response is required independent of the folding; but due to
the folding, the transforms are performed with 2:1 overlap (as opposed to 4:1).
This relationship is presented in Fig. 8.15(b).

H Residual Phase Rotation Term of OFT Channelizer

In Section II.F and particularly in Eq, (8.10) we cited the residual phase
rotation in the time series obtained from the DFT channelizer. We noted that the
amount of phase rotation was bin dependent and the phase angle for any given
bin was time dependent. The residual phase term for the arbitrary transform
length N, filter length L, and filter overlap L/p is given by

e+jO(k,s) _ e+j(2nL/Np)ks (g j g\

When L = N, with p = 4, the phase term for the /cth bin increments by (n/2)k
radians per sample, which agrees with Eq. (8.10). When L = 2N, with p — 4, the
phase term increments by nk radians per sample, which is the phase-correction
term indicated in Fig. 8.15. These phase-angle terms are trivially corrected or
removed from the output data by simple sign reversals and data steering (i.e.,
reversal of real and imaginary components of the output). For the arbitrary case,
the phase correction is not a trivial operation. For instance, if the transform
length N is 32, filter length L is 96, and overlap L/p is 6 (i.e., p = 16, or 1 output
point for each 16 input points), then the phase term for the /cth filter increments by
ITI/C radians per sample. Figure 8.16 presents the filtering process implemented
with these parameters.

We have previously identified the output of the DFT channelizer as the output
of a desampled narrowband filter bank. The phase-incrementing terms in the
DFT output series are the residual phase terms caused by desampling the carrier-
centered narrowband time series. We are, in effect, using spectral replicates
(normally called aliased spectra) to produce an output heterodyne. For some bins
(those for which (L/p)k mod N is zero) the equivalent heterodyning results in a
basebanding to zero frequency. For other bins the equivalent heterodyning
results in a residual carrier. This carrier term can be removed by a postprocessing
heterodyne as indicated in Fig. 8.16.

An alternative to the postprocessing heterodyne correction is a preprocessing
technique that avoids the residual phase rotation by synthesizing the zero-
frequency basebanding for each output channel. Keep in mind that the phase
rotation is related to the overlap processing, not to the data folding. We first
present a graphical description that explains the cause of the residual phase
rotation. The graphical description leads to an intuitive understanding of the
technique that avoids the residual phase. We will then cast the solution in
equation form.
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Fig. 8.16. Overlapped, windowed, and folded DFT channelizer.

Figure 8.17(a) indicates the overlapped partitions of the input data and one
component of a filter vector (i.e., filter impulse response). For illustrative
purposes we set d(n) equal to a constant. Each successive data block is projected
onto the filter vector to obtain the output time samples for that filter. Note that
each successive position of the filter vector (caused by the shifting) overlaps the
same portion of a time-delayed sinusoid. The time delay is equivalent to a phase
shift in the sinusoid. This phase shift is the cause of the residual phase term
removed by the heterodyne at the output of each successive transform. If the
overlapped data blocks were projected onto successive filter vectors that were
phase continuous, the residual phase term would not appear.
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d(n)

(a)

Fig. 8.17(a). Relationship between overlapped and windowed intervals to basis filter of DFT.

We can visualize a set of modified filter vectors of the form indicated in
Fig, 8.17(b). Since the filter vectors exhibit an integer number of cycles in the
data interval, this modified set could be obtained as an end-around shift of the
original filter vector. The problem is that the new vector set does not correspond
to the set defined by the DFT, which always starts at an initial phase angle of
zero. However, this difficulty may be overcome because the transform not only
considers the basis set to be periodic, but it also considers the data set to be
periodic. Thus, rather than perform a cyclic shift of the basis set, we can achieve
the same effect by applying the desired end-around shift (in the opposite
direction) to the data block. This end-around shift of the windowed (and folded)
data results in a linear phase-shift (with frequency index) that just cancels the
residual phase we have been discussing. To preserve phase continuity for
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d(n),

661

(b)

Fig. 8.17(b). Relationship between overlapped and windowed intervals to phase-shifted basis
filters.

successive applications of the filter sets, we must have the end-around shift
applied to each successive data block equal to the total amount of shift between
that block and an arbitrary origin. Since the shift is cyclic, the actual shift is
sp mod N, where s is the output time index, p is the shift distance between
adjacent partitions, and N is the size of the transform. The cyclic shift of the
windowed data prior to the transform is actually performed during the transfer
operation that loads the input memory of the DFT. Thus by simple precessed
indexing of the input memory during the data transfer, the output of the DFT is
converted from a bank of narrowband filters to a bank of basebanded filters.
Incidently, the constant phase-shift term that appeared in Eq. (8.10b) can also be
removed in this manner by a nonprecessing (i.e., fixed) cyclic shift of a single data
point during the data transfer.



662 Frederic J. Harris

d(n)

H X

Cd(l,n-s)w(n-s)]MOD(N

]MOD(N)

(c)

Fig. 8.17(c). Relationship between overlapped, windowed, and circularly-shifted intervals to DFT

basis filter.

The general form of the desired filter output including the filter length L,
resampling shift L/p, and transform length N is given by

r'(M = ~s-n\h(n}e+j(2K/N}kn

P )

,-j(2it/N)(Ls/p-n)]s.

(8.19a)

(8.19b)

L-l

n = 0
g(s,n)e-j(2n/NHLs/p-~n}k (8.19c)

where g(s, n) = h(n)d(Ls/p - n) is the sth windowed data block. Define the sth
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windowed and folded data block as

c - 1

f ( s , n ' ) = X g(s,n' + n"N)
n"=0

Then

r'(M= Z f(s,n')e-i(2*IN)(Lslp~n'* (8.19d)
n ' = 0

Letting n j = (L/p)s — n' yields
(L/p)s-(N-l)

r'(M = £ #M1K
j(2'tWni't (8.19e)

ni=(L/p)s

Since the summation is periodic in N, circularly, shifting the index on g(s,n')
yields

r'(k,s) = ̂  0l>»(wi mod NJ]e-J(2a/N}nik (8.19f)

Thus the desired set of basebanded, filtered, and resampled time sequences is
obtained by taking DFTs overlapped, windowed, folded, and circularly shifted
blocks of data. The kih sequence is equivalent to the demodulated and filtered
output in Fig. 8.6 for 0(fc) = (2nL/Np)s.

Sample Design of DFT-Based Channelizer I

In this section we present a sample design for a DFT-based channelizer. We
start with a set of channel specifications and show the sequence of design steps
required to formulate the final design. The example we choose is the task of
demultiplexing a standard single-sideband frequency-division-multiplexed (SSB-
FDM) collection of 12 voice-grade telephone channels. In the telephone
community, such a bank of 12 channels is called a channel group. Each channel is
4.0 kHz wide, and the FDM group is located between 60 kHz and 108 kHz. The
task is to demultiplex this FDM group to a set of 12 single real baseband channels
each sampled at an 8.0-kHz data rate. Each channel should exceed the spec-
ifications of a C4-channel-conditioned line. The specifications listed in Table V

TABLE V
FDM Channel Demultiplexer Specifications

(300-3000 Hz)

Phase slope deviation < 300 jus
Amplitude deviation < — 0.5 dB
Crosstalk levels < - 55 dB
Quantization noise < — 55 dB
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more than satisfy C4 specifications and represent a simple set of specifications
for our example.

The spectrum of the channel group is presented in Fig. 8.18(a). In this design we
will frequency shift the analog channel-group signal to baseband with a complex
heterodyne. We will also analog filter the heterodyned signal before sampling to
minimize the sample rate. Let the analog lowpass filter require one octave to
achieve — 50-dB attenuation level. The basebanded channel spectrum and the
spectrum of a reasonable analog lowpass filter are shown in Fig. 8.18(b). We see
from the figure that the minimum sampling frequency required to prevent
aliasing into the analysis band is (twice the foldover frequency of 39 kHz) 78 kHz.

We require the sampling frequency to be an integer multiple of the channel
spacing, because the DFT channel centers are spaced at fJN, where N is the
transform size. The minimum sampling frequency to preclude aliasing, 78 kHz,
is not divisible by the 4-kHz channel centers, so the sample rate is changed
to 80 kHz, the next highest multiple of 4 kHz. The channelization can be per-
formed with an 80/4 = 20-point DFT implemented as a (5 x 4)-point mixed-
radix FFT. An alternative is to select a larger transform with a convenient size
and a smaller computational load. For instance, a 24-point DFT [implemented
as a (3 x 8)-point mixed-radix FFT] will demultiplex the desired 12 channels if
the input data is sampled at 24 x 4 = 96 kHz. The slightly higher sampling
frequency also relaxes the transition bandwidth requirements for the analog
antialiasing filters. Choosing the second option, we now must select the filter
length. The filter specification to allow resampling to the 8-kHz output rate from
the 96-kHz input rate is computed from the spectral description in Fig. 8.19.
From the design criterion in Chapter 3 we determine that the filter length is

48

60 108

LOWPASS FILTER

.MSNNNNMSNNKNN
-52 26 52

Fig. 8.18. (a) Spectrum of channel group and (b) heterodyned channel group with minimum
bandwidth lowpass filter.
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LOWPASS- FIRST REPLICATE
! AT OUTPUT RATE

-1,5 0 1,5 6.5 8

INPUT RATE, 96

Fig. 8.19. Spectral description of lowpass prototype filter used to resample DFT-based
channelizer.

48 points:

2.5
96.0

6.5 - 1.5
(8.20)

Thus the filter is specified to be 48 points with a passband between 0.0 and
1.5/96.0 and with a stopband between 6.5/96.0, based on a normalized sampling
frequency of 1 Hz. The Remez algorithm design (using a 1:40 passband-to-
stopband relative penalty weighting) exhibited — 0.43-d.B deviation in the
passband and — 58.0-dB attenuation in the stopband which easily satisfy the
specifications of Table V. Further, to achieve the — 55-dB quantization noise
level (relative to full-scale signal), we would require 10-bit ADC. Finally, the
resampling from 96 to 8 kHz (a 12:1 ratio) requires that a new transform be
performed for every 12 new input points. Thus the processing is performed with a
48-point filter folded 2:1 to fit the 24-point transform. The transform is performed
for every 12 new points, which means a 4:1 overlap of the filter but a 2:1 overlap
of the transform processing. Thus the 24-point transform must finish processing
in the time it takes to bring in 12 new data points. At the 96-kHz rate this time is
125 /is, which by no coincidence is the design output rate of the filter bank.

Note that the transform is of length 24, but the number of required filters is 12.
Hence, only half the output points have to be computed. By forming the FFT as
three transforms of length 8, we can eliminated unused computations (prune) to
avoid the unnecessary computations in the radix-3 "small-jV" DFT.

The 24-point DFT implemented as a pruned prime factor transform (see
Section X of Chapter 7) requires only 28 multiplications. Coupling this workload
with the 96 multiplications of the 48-point filter, we find that the 12 filters can be
implemented with less than 11 multiplications per filter. For the same perfor-
mance using separate FIR filters and input data sampled at 78 kHz, the required
filter length is only 39 points. Using the symmetry of the impulse response and the
complex input data, the workload per FIR filter is 39 multiplications per output
point. Thus, for this sample problem the multiplication rate for the FFT
demultiplexer is less than one-third that of the direct FIR filter implementation.
Note that we chose the complex output rate of the DFT channelizer to match the
final desired 8-kHz output rate. In doing so we have arranged for the complex-to-
real conversion to be trivial. The details of that conversion are presented in
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Chapter 3. Also note that by selecting the complex output rate to be unnecessarily
high, we have increased the rate at which the data windowing and transforming
must be performed. A larger system would call for finer tuning, which would
reduce the input workload at the expense of increasing the output workload by
requiring nontrivial operations in the complex-to-real conversion. The details of
conversion from a 6.0-kHz complex sample rate to an 8.0-kHz real sample rate
are in Section V.D of Chapter 3.

A primary signal processing operation is the decomposition of a signal into
two or more subclasses. The subclasses may be as simple as signal and noise, or
they may be as complex as a 600-channel FDM communication system. The
signal subclasses are separated by a set of distinct parameters, such as center
frequency, bandwidth, and modulation structure. These parameters are usually
imbedded in a minimal set of template signals with which the input signal is to be
compared. The comparison entails the projection of the input signal upon the
template signals. In digital signal processing the input signal is represented by N
data points and can be interpreted as an AT-dimensional vector. From this
perspective the projection is performed by a classic inner product—that is, by a
weighted summation of the input signal samples. This projection process is
known as cross-correlation or as matched filtering (i.e., convolution).

When the input signal is characterized to within a set of unknown parameters,
the signal is projected on a collection of template signals that span the expected
range of these unknown parameters. Examples include signals with unknown
Doppler frequencies or unknown times of arrival (see Chapter 10). Then the
matching process is not a single projection but a collection of such projections.
For instance, a bank of narrowband filters (such as those of a windowed DFT)
resolves the Doppler uncertainty of a signal, whereas a single filter shifted
through successive time increments resolves the unknown time of arrival. The
computational workload required for each inner product (or filter output) is N
multiplications and additions. Thus the workload to compute the output from a
bank of M matched filters is about N x M. In the previous section the matched
filtering required to separate signals of known (and reduced) bandwidth but
distinct center frequencies, was imbedded in a DFT process. This imbedding
offered significant computational advantages. Rather than requiring N x M
operations, we have demonstrated that the (2:1) folding would require about
(/V/4)log(M) operations.

In the next section we demonstrate how the DFT can reduce the com-
putational load for an arbitrary matched filter operating over successive time
intervals. We describe the fast convolution (or fast correlation) technique, which
is applicable to any filtering task. Furthermore, we demonstrate how resampling
can be imbedded in the DFT process.
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Discrete Linear Convolution and Correlation A

The expression for computing the linear convolution of the sequence h(n) of
length L, denoted [h(n): L], and the sequence x(«) of arbitrary length greater than
L is given by

y(n) x(n-m)h(m)

y(n) = x(n) * h(n)

Y(z) = X(z) - H(z)

(8.2 la)

(8.2 Ib)

(8.21c)

Equation (8.2 Ib) indicates the conventional symbolic notation used to denote
linear convolution. Noting the one-to-one correspondence between finite
sequences and polynomials with the same coefficients as the sequence (equivalent
to the finite z-transform), we also indicate, in Eq. (8.2 Ic), the polynomial
representation of finite convolution.

The corresponding expression for computing the linear correlation of two real
sequences is

L - I
y(n) = £ x(n + m)h(m),

m = 0

y(n) = x(n)*h(-n),

y(n) = x(n) ft h(n\

(8.22a)

(8.22b)

(8.22c)

(8.22d)

Equations (8.22b) and (8.22c) indicate the conventional symbolic notation used to
denote linear correlation, and Eq. (8.22d) is the polynomial representation. The
summations indicated in Eqs. (8.22) and (8.23) represent running weighted sums.
The difference in their indexing is best illustrated in Fig. 8.20, in which the indices
of the summations have been indicated on a pair of parallel ribbons.

C O N V O L U T I O N

n-4 n-3 n-2 n-1 n+1 n+2 n+3 x(n)

3 2 1 0 h(-n)

CORRELATION

n-3 n-2 n-1 n n+1 n+2 n+3 n+4 (

' )

x(n)

0 1 2 3 h ( n )

Fig. 8.20. Relationship between the indices for convolution and for correlation.
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Fig. 8.21. Convolution and correlation of sequences.

To demonstrate an important consideration, Fig. 8.21 presents an example of
linear convolution and linear correlation of two sequences. Note in particular
that for both operations the number of resultant terms is one less than the sum of
the number of original terms. That is, the linear convolution (or correlation) of
two sequences of lengths P and Q, respectively, will produce a third sequence
of length F + Q — 1. Also note the location of the zero index for the two opera-
tions of convolution and correlation.

B The DFT and Circular Sequences

As stated in Section VII of Chapter 1, the DFT relationship between two
sequences h(n) and H(k) is

H(k) =

h(n) =

N- 1

n = 0

1 "-1

mn/mnk^ fe = 0,1,2,..., N - 1 (8.23a)

H(k)e+j(2n/N)NK, n = 0,1,2,..., N - 1 (8.23b)
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Note, via the Euclidean division algorithm, that for all k' and ri there are integer
values of /c, r, «, and s that satisfy

k' = k + rN (8.24a)

n' = n + sN (8.24b)

Substituting Eq. (8.24) into Eqs. (8.21) and (8.22) yields

tf(fc') = //(/c + rN), (8.25a)

)« (8.25b)
n = 0

X h(n)e~Jl2*/N}kn (8.25c)
n = 0

or

H(fc') = H(fc + rN) = H(k) (8.25d)

/i(n') = fc(n + sN) (8.25e)

/j(n') = IV H(k)e+J(2«/N)(«+siv)ft (8.25f)
N fe = o

h(ri] = -N^ H(k)e+j(2*!N)nk (8.25g)
N ^ = 0

or

fc(n') = h(n + sN) = h(n) (8.25h)

Equations (8.25) show that sequences H(k) and fc(n) are periodic in N, the size
of the transform. Even if the original data h(n) is not periodic, use of the
transform implies a periodic extension of the data set. It is often convenient to
envision the two sequences as circular sequences — that is, sequences defined on
the perimeter of a circle.

Circular Convolution and Circular Correlation C

The convolution (or correlation) of two continuous functions can be im-
plemented indirectly through the product of their respective Fourier transforms
and an inverse Fourier transform [12,13]. This well-known equivalency is
indicated in Fig. 8.22 for right-sided functions.

Analogously, the convolution (or correlation) of two discrete sequences can be
implemented indirectly by the DFT, as discussed briefly in Section VILE of
Chapter 1. For computational efficiency the DFT is implemented by an FFT
algorithm, which is why the transform-based convolution schemes are referred to
as fast convolution. We must keep in mind, however, that the DFT describes a
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DIRECT CONVOLUTION

x(t)

h(t)
/ x ( t - T } h ( r ) d T y(t)=x(t)*h(t)

INDIRECT CONVOLUTION

x(t). x(t)e-jwtdt
X(u)

h(t) / "h ( t )e~ j a j t d t

Jo

HU)

Fig. 8.22. Equivalency of direct and indirect convolution.

y ( t )

circular sequence (obtained by periodically extending the sequence) so that
discrete convolution realized by a DFT is circular convolution. The expressions
for the circular convolution of two sequences h(n) and x(n), now both of
length L, are

L 1

y(ri) —

Y(z) = X(z) • H(z) mod(zL -

(8.26a)

(8.26b)

(8.26c)

Equation (8.26b) indicates the conventional notation used to denote circular
convolution, and Eq. (8.26c) indicates how the polynomial representation
denotes circular convolution. The L in Eq. (8.26b) is often omitted if the modulo is
understood in context. For notational convenience, after this section, the circle
(about the convolution operator, i.e., the asterisk) will also be omitted. The reader
will understand that circular convolution is implied by the method used to
implement the convolution. The corresponding expressions for computing the
circular correlation of the same two sequences are

(8.27a)

(8.27b)

(8.27c)

y(n) = x(n)®Lh(-n}

Y(z) = X(z) - H(z l ) mod(z1' -
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Equations (8.27b) and (8.27c) indicate the standard notational convention for
circular correlation.

Figure 8.23 emphasizes the circular relationship between the indices of
Eqs. (8.26) and (8.27) by assigning the indices to equally spaced intervals on a
pair of concentric rings.

The indexing required for circular convolution requires that the two sequences
be the same length. If a given pair of sequences is not (of the same length), we
make them so by zero-extending the shorter one to match the longer. In many
cases we choose to zero-extend both sequences to match a third convenient
length (for instance, the length of a convenient circular convolver). Alternatively,
we zero-extend data so that we can perform linear convolution with a circular
convolver.

CIRCULAR CONVOLUTION

CIRCULAR CORRELATION

(n)

Fig. 8.23. Relationship between indices for circular convolution and correlation.
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Fig. 8.24. Linear and circular convolution.

We note in Fig. 8.24 that circular convolution is related to linear convolution
by the summation of end-around shifted data points. This is stated concisely in
Eqs. (8.26c) and (8.27c). These end-around shifted and added points are
equivalent to time domain aliasing described mathematically by

yt(n) - x(n) * h(n)

y2(n) = x(n)®Lh(n)

y2(n) = £ yi(n + rL), n = 0, 1, 2, . . . , L - 1

We denote the zero-extended versions of [x(n): p] and [h(ri): Q]
\h(n}:L}, respectively, and examine the relationships defined by

Q = [*(«): P]

if

(8.28a)

(8.28b)

(8.28c)

: L] and

(8.29a)

(8.29b)

L > P + e- l , yi(n) = y2(n), n = 0,1,2 , . . . ,L - 1. (8.29c)

As noted in Eq. (8.29c), if the zero-extended length L of a circular convolution
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[ x ( n ) : P ] [ y ( n ) : N ]

[ h ( n ) : Q ]

I F N > P+Q-1

y ( n ) I S A L I A S F R E E

Fig. 8.25. DFT-based fast convolution.

exceeds the sum (less 1) of the preex tended lengths, the circular convolution is
identical to the linear convolution of the two sequences. Thus the DFT can be
used to perform the linear convolution of two sequences by zero-extending the
length of each to the next conveniently sized algorithm, say of length L, that
satisfies Eq. (8.29c). This processing is indicated in Fig. 8.25 (see also Fig. 1.8).

Computational Workload for an A/-Point FFT D

A simple upper bound to the computational workload for implementing an
JV-point complex FFT is indicated in (7.60a) and (7.60b). The assumptions made
in deriving (7.60) are that the FFT is a Cooley-Tukey radix-2 algorithm with
a complex multiplication required in all butterflies except those in the first
two passes and that each butterfly requires a pair of complex additions. The
arithmetic operations in (7.60a) and (7.60b) are repeated as

N N
complex multiplications

Nlog2(/V) complex additions

These equations are equivalent to

/V[21og2(JV)-4] real multiplications

N[3 log2(/V) - 2] real additions

(8.30a)

(8.30b)

(8.30c)

(8.30d)

If we assume real data sequences, we have the option of reducing the average
computational workload by using the transform to process two arrays of data
simultaneously. One array goes in the real component of the FFT input and one
goes in the imaginary component (see Table VI in Chapter 1 entry for the DFT of
two real N-point sequences by means of one W-point DFT). The workload per
array in dual N-point transforms, accounting for the extra additions required for
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the odd-even separation, is

N[log2(N) - 2] real multiplications (8.3la)

N[1.51og2(AO+1] real additions (8.31b)

E Computational Workload for Fast Correlation

The computational burden required to perform a fast convolution consists of
two forward transforms, one point-by-point complex product of the transform
output vectors, and an inverse transform (see Fig. 8.25). The workload to perform
this sequence of tasks might be reduced if we have access to a priori information
about the two sequences. As one example, autocorrelation requires one, not two,
forward transforms for the fast correlation method. As another example, if the
sequences have even or odd symmetry, the spectral products become real
products. These examples represent special cases that we will no longer consider.
Hence, we will interpret the following results as tight upper bounds to the
computational workload for the arbitrary signal sets.

Let the two real sequences to be correlated have the same length M, and let 2M
be shorter than the size of an available FFT. The computational workload for
direct computation of the full 2M — 1 points of a cross-correlation is

M2 (real multiplications) (8.32a)

(M - I)2 (real additions) (8.32b)

This workload will result in 2M — 1 output points. The average computational
workload per output point is

M2 M
- (real multiplications) (8.33a)

2M - 1 2

(M- l ) 2 M , , _. x (8.33b)
2M - 1 2

(real additions)

For fast correlation the data length M is zero-extended to N, the next power of 2
greater (or equal) to 2M — 1. The integers M and N satisfy

— <2M<N, N = 2P (8.34)

where we assume that a radix-2 FFT will be used. The pair of zero-extended data
sequences is then transformed, conjugate multiplied, and inverse transformed.
The computational workload for each step in this process, for two real sequences,
is indicated in Table VI. Here we have assumed that dual forward transforms are
performed simultaneously [see Eq. (8.31)] and then separated by the even and
odd parts of the real and imaginary output (see Table VI in Chapter 1). The
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TABLE VI

Multiplications and Additions for Fast Correlation

Task

Forward FFT
Odd -even separation
Forward FFT
Odd- even separation
Spectral products
Odd -even merging
Inverse FFT
Total
Total/array

Real
multiplications

N[21og(N)-4]
_

AT[21og(N) -4]

4N
_

Af[21og(N)-4]
N[61og(AO-4]
N[31og(AO-2]

Real additions

/V[31og(JV)-2]
2N

JV[31og(N)-2]
2N
2N
2N

JV[31og(A^)-2]
jV[91og(N) + 2]
Af[4.51og(N)+ 1]

spectral products are formed over half of the frequencies of each transform and
then merged again by the odd and even symmetries of the real and imaginary
components for a dual inverse (real) transform. The computational workload
indicated in Table VI will result in 2M — 1 output points. Equations (8.35)
indicate the computational workload per output point. The bounds indicated in
Eq. (8.35) result from substituting the bounds of Eq. (8.34).

Number of real multiplications:

[2 log2(2M) - 2] < ̂ 1^1-ZA] < [6 log2(4M) - 4] (8.35a)

Number of real additions:

[4.51og2(2M) + 1] < < [91og2(4M) + 2] (8.35b)

Figure 8.26 is a graph of Eqs. (8.33) and (8.35) for a wide range of sequence lengths
M and the associated transform lengths N. Also shown in the figure are graphs of
Eq. (8.36) that present estimates for the number of calls to data memory per
output data point (per array) for direct and fast correlation. We have assumed 10
calls to memory per full butterfly and 8 calls to memory for the odd-even
separation or merging operation (which is equivalent to a butterfly without any
multiplications).

Number of calls to data memory:

2M2

^ M (direct) (8.36a)
2M- 1

— ~ 3.75 —-log2(Af) (fast) (8.36b)



676 Frederic J. Harris

6000

4000

2000

MULTIPLICATIONS

FAST

DIRECT

CALLS TO MEMORY

1000 ADDITIONS

800

600

400

200

100
80

60

TRANSFORM
LENGTH

1 2 4 6 8 10 20 40 60 100 200 400 1000 2000

SEQUENCE LENGTH, M

Fig. 8.26. Number of multiplications, additions, and calls to memory for direct and for fast
correlations of length M.

The significant results from Fig. 8.26 are the crossover points at which fast
correlation becomes computationally more efficient than direct correlation.
These points are tabulated in Table VII. We note from Table VII, depending on
the particular measure, that fast correlation is computationally more efficient if
the two sequences are longer than 75 to 150 points. If a correlation is to be
performed only once, it probably doesn't matter how it is implemented. On the
other hand, if the correlation is performed regularly as a production task, it may
well be worth optimizing the implementation.
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TABLE VH

Range of Length M for Which Fast
Correlation Is More Efficient than

Direct Correlation

Real multiplications M > 75
Real additions M > 150
Calls to memory M > 130

Fast Convolution with the FFT F

A recurring task in digital signal processing is the filtering of an essentially
unending stream of input data. If the filtering is performed as a direct
convolution with a FIR filter of length M, having a symmetric impulse response,
the computational load is approximately M/2 multiplications and M additions
per output point. By performing the convolution with an FFT, we can
significantly reduce the workload per data point. In the previous section we
performed a correlation by using a transform long enough to avoid circular
convolution. Here we make the assumption that the data length exceeds the
length of any practical DFT algorithm. We still perform the convolution with the
DFT, but we arrange to partition (or block) the problem into a set of smaller
problems that fit into DFT algorithms of computationally practical length.

In performing convolution (which is a continuous process) by the DFT (which
is a block process) we must be careful to avoid artifacts related to the artifically
induced block boundaries. Two block processing techniques totally avoid
boundary-related processing artifacts. The first is known as overlap and add, and
the second is called overlap and discard (often called overlap and save). In both
methods data blocks are processed by an iV-point FFT algorithm. Each
successive block overlaps the previous block by M-l data points, where M is the
length of the FIR filter impulse response.

If the two sequences, of lengths N and M, respectively, are linearly convolved,
the resultant sequence has length N + M — 1. If the same two sequences
(including a required zero-extension of one sequence to length N) are circularly
convolved, the resultant sequence also has length N and exhibits, relative to
the linearly convolved sequence, a circular wrap-around of M — 1 points. Fig-
ure 8.27 demonstrates the relationship between the linearly and circularly con-
volved sequences. We see that the first M — 1 points are circulary wrapped;
consequently, N — (M — 1) points are alias free. Thus each successive block
processed by the N-point DFT gives N + 1 — M good data points. Accordingly,
blocks of new input data should be separated by N + M — I points, the alias-free
distance of the output blocks. The boundaries for each new input block are found
by sliding the previous boundary forward TV + 1 — M points to include these new
N + 1 — M input data points. The two options (discard or add) differ in how they
handle the remaining M — 1 data positions of the length-JV input array for the
transform.
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Fig. 8.27. Alias-free interval for circular convolver performing linear convolution.

In overlap and add processing, we avoid circular wrap-around by using the
remaining M — 1 positions as zero-extending points. Then the resultant circular
convolution exactly matches the equivalent linear convolution [see Eq. (8.29)].
The resultant convolution exhibits two transients; the starting transient, which
corresponds to the data block entering the filter, and the stopping transient,
which corresponds to the data block leaving the filter. Since the transients are
responses to artificial block boundaries, they can be eliminated by adding the
stopping transient from a given block to the starting transient of the next block.
Merging successively processed blocks by adding transient responses in the
overlapped intervals is demonstrated in Fig. 8.28. Note that the name "overlap
and add" describes the processing performed to avoid the artifacts related to
processing the data in blocks.

In overlap and discard processing, the circular wrap-around is not avoided in
the output of the intermediate block processing, but is prevented from
contributing to the final merged output by our recognizing and discarding the
locations at which the aliasing does occur. In this technique the free M — 1
positions are relegated to the left side of the input array, where they overlap the
previous interval by the M — 1 positions. The circular convolution of the tength-
N array with the length-M array produces M — 1 points of circularly wrapped
output data. The locations of these wrapped points in the output array coincide
with the overlapped interval of the input array. Since the end of each processing
block is alias free, the output points associated with the aliased interval in the
current processing block are available from the processing of the previous block.
Hence, the data in the aliased interval is simply discarded, and the merging of
successive blocks is performed by simple juxtaposition of the alias-free intervals.
This is simpler (and less work than) adding the responses in the overlapped
intervals as required by the overlap-and-add technique. This processing tech-
nique is also demonstrated in Fig. 8.28. The name "overlap and discard" describes
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Fig. 8.28. Comparison of overlap convolution techniques.

the processing performed to account for the artificially induced boundaries in the
input data.

The signal-flow diagram for the overlapped fast convolution processing is
shown in Fig. 8.29. If the input data is real, we can more efficiently use the DFT by
having it perform two simultaneous tasks. One such option is to perform the
block process on two successive blocks of data from the same sequence by
treating the blocks from two time intervals as the real and imaginary parts of a
complex input series (see the Table VI entry in Chapter 1 for the DFT of two real
N-point sequences by means of one JV-point DFT). If performed as a real-time
process, this option requires additional input buffering to hold the two input
blocks. Waiting for the last data point in the second block before initiating the

[ x ( n ) : N ]

I h (n ) :M ]

P E R F O R M E D O F F L I N E , O N C E

N O T C O U N T E D I N P R O C E S S I N G L O A D
Fig. 8.29. Fast convolution by overlap and discard.
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processing means there will be additional latency between the arrival of the first
input data point and the delivery of the first output data point. The second option
is to use the same FFT to perform the forward transform for a given interval while
simultaneously performing the inverse transform for the previous interval. In the
first option there is no extra overhead to separate the two arrays being
simultaneously processed, whereas in the second option there is a minor
overhead involved to perform an odd-even decomposition of the two arrays.
The signal-flow diagrams for the two options are shown in Fig. 8.30. The square
box with the plus symbol is not an arithmetic operation but an association of two
real data sets as a complex data set. The same box with the bar over the plus
symbol is the equivalent disassociation that separates a complex data set into a
pair of real data sets.
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l
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Fig. 8.30. Processing two transforms simultaneously.
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TABLE VIII
Real Multiplications and Additions for Fast Convolution Using Dual

Simultaneous Real Input Arrays

Task

Forward FFT
Spectral products
Inverse FFT
Total
Total/array

Real
multiplications

N[21og(N)-
4N

N[2log(N)-
N[4log(N)-
JV[21og(N)-

4]

4]
4]
2]

Real additions

N[31og(AO
2N

N[3log(N)
JV[61og(/V)
N[3log(N)

- 2]

- 2]
- 2]
-1]

Table VIII lists the processing tasks and the computational burden required at
each step to perform the fast convolution using the option of dual simultaneous
input arrays. Table IX lists the equivalent tasks and burdens for fast convolution
using the option of simultaneous forward and inverse transforms.

The computational workload indicated in Tables VIII and IX gives N —
(M — 1) useful output points. The computational workload per output point for
the option of dual simultaneous real array processing is

Number of real multiplications = -- ~1_L_ (8.37a)
N + 1 — M

Number of real additions = (gj7b)
N + \ — M

Figure 8.31 is a graph of Eq. (8.37) for a wide range of filter lengths M and as-
sociated transform lengths N [14]. Also shown are graphs of Eq. (8.38), which
presents estimates for the number of calls to memory per output data point
(per array) for direct and fast convolutions. We have assumed that odd -even

TABLE IX
Multiplications and Additions for Fast Convolution Using Simultaneous

Forward and Inverse Transforms

Real
Task multiplications Real additions

Odd-even separation 2N
(input array)

Odd—even separation 2N
(output array)

Spectral product 4N 2N
Summing arrays — 2JV
Forward FFT N[2\og(N) - 4] yV[31og(/V) - 2]
Total /V[21og(N)] W[31og(N) + 6]
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Fig. 8.31. Number of multiplications, additions, and calls to memory for direct and for fast overlap
and discard convolution.

separation is equivalent to a butterfly without multiplication that requires eight
calls to memory and that a butterfly with multiplication requires 10 calls.

Calls to memory:

2M (direct)

N[101og2(AQ + 2]
(fast)

(8.38a)

(8.38b)

Figure 8,31 has some interesting results. First we note that the transform
technique is relatively insensitive to filter length M till the length approaches half
the transform length, where the workload climbs rapidly. Also note that the
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TABLE X

Range of Filter Length M for Which
Fast Convolution Is More Efficient

than Direct Convolution

Real multiplications M > 25
Real additions M > 32
Calls to memory M > 60

largest transform is not always the best transform for a given length convolution.
For example, for a filter of length 80, a 512-point FFT gives the fewest operations
per output point. The other significant result from Fig. 8.31 is the crossover
points at which fast convolution becomes computationally more efficient than
direct convolution. These points are tabulated in Table X for a 4096-point DFT.

We may be tempted to compare the results in Table X to those in Table VII.
Remember, the tables correspond to different conditions. Here the parameter M
is the filter length, and the transform size N is larger than the filter to allow for an
alias-free data interval. In Table VII M is the data length and N is limited to twice
the data size.

The DFT can be used to increase the sample rate of an input time series.
Interpolation with the DFT is a common signal processing task. Usually the
interpolation is performed in the frequency domain as part of a spectral analysis
or beamforming task. We will review why and how the spectral interpolation
is performed and then apply the technique to time domain interpolation. An
interesting aspect of the DFT-based time domain interpolator is the option of
performing a spectral shift during the interpolation. The attraction of this option
is the ability to simultaneously interpolate and heterodyne a set of input signals.
We will then have an efficient way to convert a time-domain-multiplexed (TDM)
signal to a frequency-domain-multiplexed (FDM) signal. This task is the inverse
of the one we examined in Section II. An extension of this technique is the
formulation of a technique to efficiently generate signals with arbitrary time-
varying spectral parameters.

Interpolation by Zero-Extended DFTs A

Let us return for a moment to the perspective of the DFT as a bank of
narrowband filters. The adjacent filters of the bank exhibit a variation in gain as a
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function of frequency (see, e.g., Fig. 8.4). This variation is called the picket-fence
effect because the computed amplitude of a single sinusoid with a slowly varying
frequency that causes it slide through adjacent filters will vary similar to the peaks
of a picket fence. The reduced amplitude of a sinusoid located between two filters
(or DFT bins) relative to the amplitude exhibited by the sinusoid located at the
filter (or bin) center is known as the scalloping loss. Figure 8.32 demonstrates that
the peak scalloping loss is for a sinusoid located at the bin crossover points of a
DFT. The scalloping loss reduces detection performance when the DFT is used to
detect sinusoids of unknown frequency and amplitude in the presence of additive
noise. This performance loss is minimized by forming additional filters positioned
at the crossover points of the original set of DFT filters, as indicated by the
dotted lines in Fig. 8.32. The increased overlap of adjacent filters (in the enhanced
filter bank) increases the correlation between the outputs from adjacent filters.
Computing the outputs of the additional filters in the set is equivalent to
interpolating between the spectral samples of the original DFT. We actually
form the additional filter outputs by simply zero-extending the input data set
with an equal number of zeros and applying a double-length DFT to the zero-
extended set.

By interchanging the domains in which we perform the zero-extension, we
move the interpolation to the time domain. Thus we can take the DFT of a block
of time data, zero-extend its transform, and then take the inverse DFT to obtain
the bandlimited (circular) interpolation of the original block. This procedure is
very similar to the fast convolution technique described in Section III. The
difference is that the spectral modification, which is equivalent to the time domain
convolution, is not multiplicative but a simple redefinition of the sample rate (i.e.,
the spectral span) by zero-extension.

This technique can also be described in the vocabulary of the FIR interpolator
we presented in Section V in Chapter 3. Assume that the original data is

SCALLOPING LOSS

— i-

. . . k ' -4 k ' -2 k ' k'+2

. . . k ' -3 k'-l k ' + l k ' + 3

Fig. 8.32. Scalloping loss of adjacent filters in DFT.
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transformed and then zero-extended by a factor of M. We now demonstrate that
this is the same as performing a two-step operation simultaneously, and we can
gain insight by separating the two steps. We can visualize the first step as
replicating the original transform M times. This is equivalent to zero-packing the
original data using an M: 1 multiplexer (see Fig. 3.32) and then transforming the
zero-packed data. We eliminate the replicates using the techniques of fast
convolution, which involves multiplying the spectrum with the spectrum of the
interpolating lowpass filter. Since the multiplication is by zero, we couple the two
operations by simply loading zeros in the extended spectral locations. Later we
may choose to actually perform the spectral products, because we may want to
reduce the signal bandwidth (i.e., perform a filtering task) along with the
interpolation.

We now know that the zero-extension in the frequency domain is equivalent
to raising the sampling rate of the input data by zero-packing and filtering. The
increase in sampling rate is the same as the ratio of the output transform size to
the input transform size. For instance, if the input transform size is 256 and the
inverse transform of the zero-extended spectrum is 768, the output time series will
have three times as many data points in the same time span as the original input
data will. Often the interpolation ratio is chosen to be a power of 2 so that the
transform is simply a larger radix-2 FFT. This restriction is arbitrary and not
inherent in the technique. We can interpolate by any ratio of integers by
judiciously choosing transform sizes. For example, we can interpolate by f by
using an input transform of length 512 and an output transform of length 768.

Note that once the transform of the input data has been zero-extended, we are
free to circularly shift the spectrum to an arbitrary position in the longer array.
We know that rotation of the spectrum is equivalent to a complex heterodyne in
the time domain. This manipulation and its equivalent time domain process are
indicated in Fig. 8.33. Since the spectral data has been zero-extended, there is no
spectral wrapping past the half sampling frequency, and the spectral rotation is
equivalent to a spectral shift. This subtlety is equivalent to the zero-extension in
the time domain to perform linear convolution with a circular convolver. If we
require the output time series to be real, we must perform the spectral shift over
equal positive and negative increments. This shifting operation is identical to
heterodyning the original signal with a cosine carrier. If the spectral shift
operation is combined with a ± 90° phase shift, the resultant heterodyned signal
is on a sine carrier.

The heterodyne is accomplished by address manipulations rather than
multiplications. To complete this preliminary discussion, we recognize that we
can perform this operation on signals with the same bandwidth and initial sample
rate. If there were M input signals, we could perform an M: 1 increase in sample
rate and arrange for the spectrum of each signal to occupy nonoverlapping
spectral positions. We then inverse transform each spectral array and add the
resultant interpolated and bandshifted time signals to obtain a FDM output
signal. But wait; we can obtain the FDM spectrum directly by forming a single
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Fig. 8.33. Interpolation and spectral shift in time domain and with DFT.

spectrum containing the sum of the separate nonoverlapping spectra. Then a
single inverse transform will construct the FDM time series. This equivalency is
indicated in Fig. 8.34. Note that we perform the heterodynes and (since they are
nonoverlapped) the spectral summations by simple memory addressing. We still
have to address the problem that the FDM process we are synthesizing is an

r\

Fig. 8.34. Interpolation and frequency-division multiplexing in time domain and with discrete
Fourier transform.
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operation on a continuous stream of input data, but the transform-based process
is a block process. As we did for the fast convolution routines, we have to devise a
method to handle the edge effects generated by the data blocking.

Merging Overlapped and Interpolated Data Blocks B

The time domain interpolation using a zero-extended DFT, described in the
previous section, performs a time domain circular convolution of the zero-
packed data sequence (by a factor of M) with the bandlimited and periodic
sin(rcn)/sin(7in/AT) interpolation function described in Section VILE of Chapter 1,
where the DFT length is MN. This is the default function realized by the inverse
transform of the (implied) sampled spectral rectangle that was used in the fast
convolution spectral product. Thus the resultant interpolation exhibits circular
aliasing, which may not be the desired result. We have access to techniques with
which we can avoid the circular wrapping.

Since we have identified the interpolator as a variant of fast convolution, we
might first examine the solution we derived to avoid circular aliasing with fast
convolution in Section III. There circular convolution was avoided by simple
overlap-and-discard processing. Figure 8.35 presents sketches of the time and
frequency responses for the DFT convolver along with the equivalent time
domain processor whose spectrum would replicate the output of the DFT. We
see that the output of the DFT is the same as that obtained by circularly
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2 N -
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Fig. 8.35. Time domain and DFT-based interpolator.
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convolving a sin(7i/)/sin(7t//iV) filter, which has the same length as the zero-
packed input data, with the DFT spectrum. The zero-packing by the factor M
raises the number of input points N to the number of output points NM from the
circular convolver.

At first glance it would seem we have our solution. To avoid the circular
aliasing, we would zero-extend the filter impulse response by one length, and the
processing would then proceed as normal 50% overlap-and-discard fast con-
volution. A surprise awaits us, however, when we return to the frequency domain
and examine the transform of the equivalent rectangular filter. Before the
zero-extension, the sin(7in)/sin(^n/JV) impulse response of the filter used in the
fast convolver had the very convenient values of unity at just one sample and
zero at all other samples. The spectral description of the double-length version
of the filter is more complicated. The most striking feature of what we now
have is spectral mamlobe broadening and nonzero sidelobe peaks from the
sin(7in)/sin(7in/Ar), which is attributable to the time limiting of the original filter
response. As seen in Fig. 8.36, the sidelobes of this filter do not completely reject
the spectral replicates, hence this is not the appropriate filter to perform the
interpolation.

The form of the proper filter required for the interpolation is shown in Fig-
ure 8.36(b). We could design the impulse response of the filter by using any of
the FIR filter design techniques. Then a DFT of the response supplies the spec-
tral description needed for the fast convolver. A particularly attractive option
for time domain design is to convolve on M-point rectangular interpolator with
the mainlobe samples of a good weighting function (i.e., time domain) window,
such as the Kaiser-Bessel or Blackman-Harris. The resultant interpolator spec-
trum has unity or zero values at all DFT samples except at the transition region
of the filter. Thus the spectral samples in the transition bands are scaled when
forming the filtered spectrum while all remaining DFT data points are zeroed
or are passed with no attenuation. We now have access to a modification of the
fast convolution technique that can simultaneously interpolate, heterodyne,
and form an FDM signal from a set of input signals.

Figure 8.32 shows that there is a marked increase in computational workload
for fast convolution when the length of the filter impulse response approaches
half the size of transform (i.e., there is a 50% overlap in the convolver output
data). This is the processing required for the interpolation technique described in
the last section for 2:1 zero-packing. We can improve the efficiency of the process
by seeking an alternative form of the interpolating filter process. The alternative
technique imbeds the spectral product of the fast convolution in the windowing
operation that precedes the original forward transform. In addition to forming an
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Fig. 8.36. Time domain and DFT-based interpolator zero-extended to avoid time aliasing,
(a) Filter with appreciable sidelobes; (b) filter shaping to minimize spectral sidelobes.

alternative interpolator and FDM synthesizer, this technique is the core of an
efficient arbitrary function generator [15-19].

We first demonstrate the alternative technique of simultaneous interpolation
and spectral shifting for a single channel Let us assume we want to increase the
sample rate for a time series by a factor of 32 and heterodyne the signal to a new
frequency at ̂  of the new sampling frequency. Figure 8.37 presents an initial
naive attempt to interpolate and heterodyne. Here we simply replace each sample
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Fig. 8.37. Boxcar interpolation and heterodyne.

value of the input series with a tone burst of the proper length (32 sample) and of
the proper frequency scaled by that sample. This is equivalent to replicating each
sample 32 times (performing coarse interpolation) and then applying the desired
heterodyne.

The amplitude discontinuities every M data points in Fig. 8.37 suggest the
presence of higher frequencies that must be eliminated. These higher frequencies
can be visualized as the result of a two-step process. In the first step we zero-pack
the input data by M, the desired increase in sampling frequency. This redefines
the sample rate, and the spectrum of the zero-packed data will exhibit M repli-
cates in the band of frequencies defined by this rate (see Fig. 8.38). To eliminate
these replicates, we can pass the zero-extended data through an averager, which
for this initial example has the impulse response of an M-point rectangle. The
MJV-point DFT frequency-response magnitude of the M-point averager is
sin(7r/W)/sin(7i:/). The zeros of this response coincide with the positions of the
spectral replicates, so the spectral product significantly reduces their amplitude.
The residual amplitudes are the high-frequency terms that account for the time
domain envelope discontinuities. We can eliminate these terms by convolving
the DFT of the zero-packed data with a smoother window, say a four-term
Blackman-Harris window. If the duration (or width) of the smooth data
sequence window is confined to the zero-packing interval (of M points)* the
corresponding increased mainlobe spectral width will extend beyond the first
spectral replicate. Thus those spectral replicates outside the mainlobe will be
eliminated, but those within the widened mainlobe will still be present. For
the four-term Blackman-Harris window three replicates on either side of the
primary spectrum will be present. We wish to keep the primary copy and remove
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Fig. 8.38. Time domain and equivalent spectral description of boxcar interpolation.

the three pairs of (attenuated) duplicates. To eliminate the replicas inside the
mainlobe, we must reduce the width at the mainlobe response. We accomplish
this by increasing the duration of the time domain weighting to be four zero-
packed intervals wide. Then the frequency domain width precisely matches
the separation of the spectral replicates. The spectral product between the
zero-padded data spectrum and the lengthened filter effectively eliminates the
spectral replicates within a reasonable fidelity criteria (such as greater than
80-dB attenuation). This is shown in Fig. 8.39.

The equivalent DFT-based operation to perform this same task is to load the
spectral points for a given channel into the address of a quadruple-length IDFT

h(n)

w(n)

LINEAR
CONVOLVE

in
Fig. 8.39. Time domain and equivalent spectral description of 4:1 overlapped window (or

arbitrary filter) interpolator.
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corresponding to the desired output frequency, perform the inverse transform,
and weight the data. For our specific example the transform length is 128 and the
output bin is bin 12, corresponding to ^ of the new sampling rate. This is
repeated for each input data point. The sequence of 128-point windowed time
series is displaced by 32 points and merged by simple addition with a bin-
dependent phase-correction term of the form of Eq. {8.11 a). For the 4:1
processing overlap the phase corrections are combinations of sign reversals and
data exchanges between the real and imaginary components of the data.

This sequence of operations is the reversal of the transmultiplexor example we
examined in Section II.F. There successive blocks of time samples were processed
by a 4:1 overlapped and weighted input to the DFT to obtain successive time
samples from each filter to a bank of narrowband filters. We obtain a single
output point per filter per input data block. Counter to conventional DFT
processing, this operation is characterized by time in and time out. Reversing this,
we sequentially input single time samples into each desired center-frequency bin
of an inverse DFT and obtain a sequence of data blocks associated with 4:1
overlapped intervals. The data from each overlapped interval is weighted (to
control edge effects) and then merged into the desired output series by simple
addition.

The weighting operation applied multiplicatively at the output of the I DFT
can also be applied as a convolution at the input to the transform. This is a
desirable option if the composite bandwidth of the output signal is only a small
fraction of the output sample rate. In that case a spectral convolution with the
few nonzero spectral terms of the window may require fewer multiplications.

D Function Generator with Arbitrary Spectra

In the previous section we described a technique to form a composite output
time series from the spectral components of an input time series. In this section we
describe a related method to synthesize a composite output series with specified
but arbitrary power spectrum [20]. The specified spectrum can be stationary or
slowly time varying, and it can be described with any mix of deterministic and
stochastic attributes. Conceptually, generating stochastic signals with a specified
power spectra (or correlation function) is accomplished by filtering a white noise
time series with a filter exhibiting the desired power spectrum. The filtering can be
implemented with a conventional fast convolution algorithm as indicated in
Fig. 8.40. This approach is characterized by simplicity but suffers from imple-
mentation problems.

The first problem is the task of obtaining the broadband random series to be
filtered. One common solution is to generate the samples with a pseudo-random-
noise (P-N) algorithm. Algorithms exist to generate P-N sequences with a
uniform distribution on (0,1), which in turn can be converted to an arbitrary
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Fig. 8.40. Generating random signals with specified power spectra given specifications in the
(a) time domain and (b) frequency domain.

distribution, such as Gaussian. This method is indicated in Fig. 8.40. Random-
number generators based on modulo arithmetic operations are periodic in a fixed
(possibly large) number of calls. As such, a high data rate from the random-
number generator may inadvertently permit the time series to become periodic in
the observation interval. This happens, for instance, when the central limit
theorem is invoked to effect the transformation of a uniformly distributed
random variable to a Gaussian distributed random-variable distribution. In this
method samples of a Gaussian process are approximated by summing many
independent identically distributed (i.i.d) input samples. The same problem, in a
slightly different form, occurs when the output process exhibits a high ratio of
sample rate to bandwidth, such as for a narrowband process. For this case the
input data to the filtering process is generated at the input (and output) sample
rate rather than at the reduced rate consistent with the reduced bandwidth.
Shortly we will examine a technique in which the DFT performs indirect time
domain interpolation. This will permit calls to the random-number generator to
proceed at the reduced bandwidth rate while outputting time samples at the
higher output rate.

The second weakness of this method for generating random signals with an
arbitrary power spectral is the filtering process. The computational burden for
the filtering process can be very large, particularly when the time series being
generated has high sample-to-sample correlation, such as in a narrowband
process. We minimize this burden by using a fast convolution algorithm to
perform the filtering.

We can lengthen the period of the output series and reduce the overall
generation and filtering work load by recognizing that we have a complete
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statistical description for the DFT of a white noise series. Hence there is no need
to perform the DFT of the input series as part of the fast convolution. We first
assume that the input series is a sequence of i.i.d. samples of a Gaussian random
variable with zero mean and known (say unit) variance. Since the /V-point DFT is
a linear process, we know the output must also be a sequence of complex
Gaussian random variables with zero mean and variance N. The phases of the
complex sequence are independently distributed on (0,2n). (We can also invoke
the central limit theorem to argue that the output of the JV-point DFT is such a
sequence as long as the input is any set of i.i.d. random variables.) Thus rather
than load samples of noise into a DFT and then perform the DFT to obtain the
white noise spectral input to the fast convolution, we simply treat the white
Gaussian noise samples as the spectral samples.

We can now describe the structure of the random-function generator with
arbitrary power spectrum. We compute a spectral set of zero-mean unit-variance
Gaussian random variables to cover the span of the nonzero bandwidth for the
desired output series, and scale these samples by the desired spectral envelope.
This scaling corresponds to the spectral product of a fast convolution routine (or
of the synthesis by an analysis algorithm). The phase of the scaled spectral lines is
then randomized with uniformly distributed phase angles obtained by calls to the
uniform random-number generator. Alternatively, two sets of zero-mean unit-
variance Gaussian data samples can be generated and treated as real and
imaginary components of the complex samples to be scaled by the spectral
envelope. The latter approach avoids the need to randomize the phase of the
shaped spectrum. By either technique we have formed the input spectral data
required by the IDFT in the synthesis section of the fast convolver. By this
technique we are generating the spectral data at the Nyquist rate rather than at
the high sample rate as described earlier, and we are using the IDFT as an
interpolator as we did in the previous section. The resultant synthesized series
from the IDFT is then windowed and merged with other similarly generated
offset intervals, as was also done in the previous section. Again we note that when
the input bandwidth is small compared to the sample rate, the window is more
efficiently applied as a convolution in the frequency domain than as a product in
the time domain.

We also note that the bandwidth and/or center frequency of the spectral
weighting applied to the spectral noise samples can be slowly varying functions of
time. This allows us to generate nonstationary signals with arbitrary spectral
descriptions. For example, we can generate samples of a narrowband time series
with a slowly shifting center frequency by translating the spectral window by an
appropriate interval on successive IDFT inputs. The sample points of the
spectrum in the translating window are fixed at the positions of the DFT
coefficients X(k). The translation of the window is synthesized by positioning the
center of the mainlobe at the desired spectral position and scaling the X(k) in the
window according to the window amplitude at point k. Figure 8.41 demonstrates
the shift and resample operation required to move a narrowband process.
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Fig. 8.41. Samples of a sliding spectral window at times m,m+ 1 , . . . , m + 5.

Bear in mind that the amount of spectral shift per transform must be less than
the effective width of the spectral window. For the 4:1 overlapped (low sidelobe
level) merging windows of total width 4 bins, the effective width (ENBW) is
approximately one bin or fJN. The time interval between inverse transforms for
4:1 overlap is N/4. Thus the maximum rate of spectral shift is bounded by

A/max = fJN = 4/s
sample N/4 N2 (8.39)

The parameter to adjust to obtain higher rates of spectral shift for a given sample
rate is the transform length N. For instance, at a sample rate of 500 Hz a
transform length of 512 would allow synthesis of a slow frequency shift of
7.6 mHz/s, and 256-point and 128-point transforms would allow frequency
shifts of 30.5 and 122 mHz/s, respectively.

Special Function Generators f

In the previous section we described how to form random signals with specified
(possibly time-varying) spectra. We also can use the same technique to construct
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deterministic signals with specific spectral or time domain attributes. One such
signal is a slowly varying sinusoid. The technique described at the end of the
previous section is directly applied to this task. The only modification results
from the need to eliminate the random amplitude and phase due to the Gaussian
random variables that are scaled by the shifting spectral window. To eliminate
the random amplitude, we directly use the amplitude of the window values with a
single arbitrary phase (such as zero phase). A time-evolving (and bin-number-
dependent) phase shift is also applied to the spectral bins to reflect the time shift
of the overlapped time intervals. This evolving phase term must also reflect the
frequency shift of a sliding tone. The spectral description of a sliding tone is
given by

N~I r fN\iF(/c,m) = £ W(n)f\ n + ml — 1 L-J<2«/M«* (8,40a)
t \ / —I

where

N

"4
L_ \

Therefore,

N - 1

F(k, m) — 2_, " \n)C' c (8.40c)

JY- l

where we assume the tone is shifting A/c bins per JV/4 input points, so it appears
to be stationary over each block interval. The overlapped merging operation,
which follows the block generation, modifies the spectra so that they are
nonstationary per sample (as opposed to per block). The first phase term in
Eq. (8.40d) is the bin-dependent phase rotation applied to each bin to reflect
the shifting time origin for successive time intervals. This was described in Sec-
tion II.F, particularly in Table IV. The second phase term is a constant phase
angle (i.e., independent of frequency index k but quadratic with block index m)
applied to each spectral bin to reflect the shifting offset of the spectral peak.
The summation is the DFT of the offset window, from which we obtain the
offset samples shown in Fig. 8.41. Note that the quadratic phase term that
evolves with the block index m is the phase coupling (or correlation) between
successive output blocks to reflect the slowly shifting sinusoid.

We have seen two examples of signal generation for which spectral phase
control is required (e.g., randomized or correlated) to form a desired time series.
We now observe that by using various combinations of random or correlated
phase between adjacent spectral bins as well as between successive spectral
realizations, we can form significantly different time domain envelopes for a given
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power spectrum. As one example, we can generate a broadband time series that
looks like random noise but has an absolutely flat power spectrum. This signal is
called synchronous noise. The magnitudes of its nonzero spectral components are
identical (note that this is much stronger than saying that the expected value of
the magnitudes are identical). To generate this signal, we load a constant (say N)
into an array corresponding to the nonzero spectral bins of an IDFT. The IDFT
of this spectrum is the Dirichlet kernel, which has a high crest factor (ratio of
peak to rms value). To reduce the crest factor, we uniformly randomize the phase
of the spectral terms. This entails calls to a scaled random-number generator
yielding uniformly distributed outputs on (0,1) (scaling factor is 2n) followed by
cosine and sine functions to effect a complex spectral component. The resultant
time series generated by an IDFT has an approximately Gaussian density
function and a crest factor very close to 3.0. This signal is useful as a test signal (to
probe filters, for instance) because it has the structure of a white noise sequence
but does not require the ensemble averaging we usually associate with white noise
testing of systems to obtain low-variance (high-degree-of-freedom) spectral
estimates.

As another example, rather than randomize the phase of adjacent spectral bins
to control the time domain crest factor, we can correlate the phase and actually
achieve tighter control of the crest factor. We can apply a quadratic phase term to
successive spectral bins to synthesize a linear FM sweep over the data interval.
The quadratic phase for the /cth spectral bin for a flat power spectrum is

0(k) - 0(0) + ( ~ }k\ k = -^ + 1,..., 1, 0, + 1,. . . , + ̂  (8.41a)
\NJ 2 2

where 9(0) is an arbitrary phase factor. If the power spectrum is not flat, the phase
terms for each bin must reflect the relative power in that bin, as indicated in
Eq.(8.41b).

0(0) + *£ (* -

If the bin-dependent power p(k) in Eq. (8.41 b) is a constant, then Eq. (8.4Ib)
simplifies (within a linear phase-term) to Eq. (8.4la). The resultant FM signal has
a peak-to-rms ratio of ->/2, which is the crest factor of a sinusoid. The crest factor
of the time function can be varied by replacing the scale factor n in Eq. (8.41) with
a smaller (or larger) angle. Smaller angles move the time series toward the
Dirichlet kernel, and larger angles move the time series toward noiselike
sequences. Control over crest factor for a given power spectrum is useful for
generating the drive signals of random shaker control systems. In this application
large crest factors are avoided to prevent transducer clipping for high input
power levels.
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V SUMMARY

In this chapter we have reviewed ways to use the DFT for time domain signal
processing and signal generation. We have shown how to synthesize the output
of a desampled bank of narrowband filters with the DFT. This processing is
equivalent to converting a frequency-division-multiplexed signal to a time-
division-multiplexed signal; hence it is called transmultiplexing. We took care to
describe those design considerations needed to control crosstalk between
channels, dynamic range of the channels, and aliasing under the resampling
operation.

We then reviewed the process of fast convolution via the DFT and showed how
linear convolution is performed with the circular convolver through overlap
block processing. A slight modification of the fast convolution technique led us to
fast interpolators. As indicated in Chapter 3, the interpolation process is useful
for increasing the sample rate of a data set.

One additional modification of the interpolator and fast convolution method
led us to use the DFT as a versatile and efficient signal generator. Signals with
specified but arbitrary power spectra can be generated by this method. This
includes any mix of stationary, nonstationary, stochastic, or deterministic
attributes in the signal. Further, we showed how certain constraints on the
envelope of the time series could be accommodated by controlling the phase of
the spectrum being processed.
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Chapter 9

Spectral Analysis

JAMES A. CADZOW
Department of Electrical and Computer Engineering

Arizona State University
Tempe, Arizona 85287

INTRODUCTION 1

In such varied applications as radar Doppler processing adaptive filtering,
speech processing, underwater acoustics, seismology, econometrics, spectral
estimation, and array processing, we want to estimate the statistical character-
istics of a wide-sense stationary (WSS) time series. More often than not, this
required characterization is embodied in the WSS time series' underlying
autocorrelation lag sequence as specified by [see (1.117)]

rxx(n) = E{x(m)x*(n - m)} = E{x(n + m)x*(m)} (9.1)

in which the symbols E and * denote the operations of expectation and complex
conjugation, respectively. From this definition the complex conjugate symmetric
property possessed by the autocorrelation sequence [i.e., r*x( — n) — rxx(n)~] is
readily established (see Section IX.B in Chapter 1). We will automatically in-
voke this property whenever negative-lag autocorrelation elements (or their
estimates) are required.

The second-order statistical characterization as represented by the autocorre-
lation sequence may be given an equivalent frequency domain interpretation.
Namely, upon taking the discrete time Fourier transform (DTFT) of the auto-
correlation sequence, that is,

Sxx(e
j<a)= f r^Oi)*-*" (9.2)

n — ~ oo

we obtain the associated power spectral density function (PSD) Sxx(e
jco) where the

normalized frequency variable is denoted by co. The spectral density function
possesses the salient properties of being a positive semidefinite, even (if the time
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series is real valued), periodic function of co (Table VII in Chapter 1). This
function has a Fourier series interpretation in which the autocorrelation lags play
the role of the Fourier coefficients. It therefore follows that these coefficients may
be determined from the spectral density function through the Fourier series
coefficient integral expression

1 ft
Sxx(e

j(a)e'Md(o (9.3)

Relationships (9.2) and (9.3) form a Fourier transform pair, so knowledge of the
autocorrelation sequence is equivalent to knowledge of the spectral density
function, and vice versa. We belabor this point to establish the viewpoint that
spectral estimation and autocorrelation lag estimation are conceptually equiva-
lent concepts. In this chapter we briefly explore issues that are central to es-
timating spectral density functions from time series observations.

II RATIONAL SPECTRAL MODELS

In the classical spectral estimation problem we want to estimate the under-
lying PSD function, with this estimate based on a finite set of time series
observations. Typically, these observations are composed of a set of contiguous
data measurements taken at equispaced time intervals T, as represented by

x(0),x(l),..., x(N - 1) (9.4)

where N is called the data length, in which the sampling period T argument has
been suppressed. Unless some constraints are imposed on the basic nature of the
PSD function,, there exists a fundamental incompatibility in seeking an estimate
of the infinite-parameter spectral function [Eq. (9.2)] (i.e., the infinite set of
autocorrelation lag parameters) based on the finite set of observations [Eq. (9.4)].
Investigators have often resolved this dilemma by postulating a finite-parameter
model for the spectral density function. The time series observations [Eq. (9.4)]
are then used to fix the parameters of this parametric model by an appropriate
estimation procedure.

Without doubt, the most widely used the studied of finite parametric models
are the so-called rational models. When employing a rational model, we are
seeking to approximate the generally infinite series expansion [Eq. (9.2)] by a
magnitude-squared ratio of polynomials in the variable e~j<a, that is.

S(ejto) =
be

(9.5)
I «1 c. I T l*n«-

The finite number of ak and bk parameters in this model then provides the
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mechanism for circumventing the aforementioned parameter mismatch dilemma.
Namely, if the data length parameter N adequately exceeds this rational
function's number of parameters (i.e., N » p + q + 1), then it is feasible to utilize
the given time series observations [Eq. (9.4)] to estimate values for these
parameters. A few words are now appropriate concerning the adequacy of
rational models in representing power spectral density functions. It is known that
if a spectral density function is a continuous function of a>, then it may be
approximated arbitrarily closely by a rational function of form Eq. (9.5) if the
order parameters p and q are selected suitably large [1]. Comforted by this
knowledge, engineers have made rational functions a standard tool in spectral
estimation.

W now consider three classes of rational spectral density functions and give a
brief historical perspective of their usage in spectral estimation theory. The first
two classes are commonly referred to as the moving average (MA) and the
autoregressive (AR) spectral models. An MA model is defined to be a rational
function (9.5) in which all the ak parameters are zero (i.e., it has only numerator
dynamics); an AR model is one for which all the bk parameters are zero except for
b0 (i.e., it has only denominator dynamics). By and large, these two classes of
rational functions have formed the basic modeling tools in contemporary spectral
estimation theory. The more general ARMA model Eq. (9.5), however, is
receiving an increasing amount of attention. A schematic representation of the
types of spectral estimation procedures to be developed is shown in Fig. 9.1.

Weighting
w(n)

X(k)
Periodogram Estimate

Equation (9.51)

Blackman-Tukey Estimate
Equation (9.48)

1 "
rxx(n)

—

».

""

L J

Solve Equations
(9.60) & (9.35)

Solve Equations
(9.75) & (9.35)

Solve Equations
(9.78) & (9.35)

ARMA(p,q) Estimate

SVD ARMA(p , q ) Estimate

SVD ARMA(p.q) Estimate

Fig. 9.1. Various schemes for spectral analysis of an /V-point data sequence.
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A spectral model is said to be an MA model of order q [i.e., M A(g)] if it may be
put into the form

WO = l&o + he-* + ••• + b,e-**\2 = \Bq(e
j(0)\2. (9.6)

The q + I parameters b0, £>15 ...,/?, that identify this M\(q) model are seen to
form a ^fth-order polynomial Bq(e

jta) in the variable e~jta. An MA model is then a
special case of the more general rational model Eq. (9.5), in which the
denominator has been set equal to unity.

If the polynomial constituting the MA model [Eq. (9.6)] is factored, it is
possible to provide additional insight into an MA model's properties. This
factorization leads to the equivalent representation

= \b0\
2 (1 - zke->»)(\ - zke*°) (9.7)

k = l

in which zk are the roots of the polynomial Bq(z). The zeros of an MA spectral
model occur in reciprocal pairs. Due to the basic nature of this factorization, MA
models are also commonly referred to as all-zero models. If any of the roots zk are
close to the unit circle (i.e., zk « ej<ak\ it is clear that SMA(ej(a) will then contain
sharply defined notches at frequencies in a neighborhood associated with these
roots (i.e., at co = cok). Thus MA models are particularly effective when
approximating spectra that contain sharply defined notches (zerolike behavior)
but not sharply defined peaks. Whenever a spectrum contains sharply defined
peaks, it is possible to simulate their effect at the cost of many additional zeros
(i.e., a high MA order) for an adequate representation. With this is mind, MA
models should normally be avoided whenever a peaky-type behavior in the
underlying spectrum is suspected (i.e., narrowband sources).

Fourier analysis has played a primary role in much of the earlier, as well as
more recent, efforts at spectrally characterizing experimentally collected data.
For example, Schuster developed the periodogram method for detecting hidden
periodicities in sunspot activity data at the turn of the century [2]. In a more
recent classical work, Blackman and Tukey presented a generalized procedure
for effecting spectral estimates [3]. This involved the two-step procedure of
(i) determining autocorrelation lag estimates rxx(n) using the provided data and
(ii) taking the Fourier transform of these estimates.* The PSD estimate which
this approach yields takes the form

We shall hereafter use the caret symbol (") to denote a statistical estimate.
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where w(n) is a symmetric data sequence window chosen to achieve various
desirable effects such as sidelobe reduction. This window is often selected to be
rectangular, in which case w(n) = 1, although other choices may be more suitable
for the application. Descriptions of some popular choices for the data window
can be found in signal processing texts (e.g., see [4-6]).

In the Blackman -Tukey estimate, (9.8), only a finite number of summand
terms (i.e., 2q + 1) are involved in the spectral estimate, because only a finite
set of autocorrelation lag estimates are obtainable from the observed data set
[Eq. (9.4)] if standard lag-estimation methods are employed. Due to this finite
sum structure we now show that the Blackman-Tukey estimation method is a
special case of the more general rational MA spectral model [Eq. (9.6)].

To establish the fact that the Blackman - Tukey approach to spectral
estimation is of an MA structure, we can give yet another equivalent represen-
tation to the M A(g) expression [Eq. (9.6)]. This will entail explicitly carrying out
the indicated polynomial product Bq(e

j(a) B*(ejca), thereby giving

SMA(0= I c^e-*™ (9.9)
n = - q

in which the complex-conjugate symmetric cn parameters are related to the
original hn parameters according to

< • „ = Z Mf-n, ~q<n<q (9.10)
fc = 0

where bk is taken to be zero outside the set k e [0, q}. Setting the cn equal to
w(n)fx(n) shows that the Blackman - Tukey estimate [Eq. (9.8)] is a special-form
MA(^) model. This fact is usually overlooked by investigators who have
considered the Blackman-Tukey method as well as the periodogram method as
nonparametric spectral estimators. When viewed from our approach here,
however, we can recognize each of these procedures as a realization of an MA
parametric model.

AR Model B

When we compare the MA(q) spectral model expression [Eq. (9.9)] with the
theoretical PSD function [Eq. (9.2)] being estimated, we see that a serious
modeling mismatch can occur whenever the underlying autocorrelation lags are
such that the rx(n) are not approximately equal to zero for n > q. In recognition of
this potential shortcoming of MA models, investigators have examined alter-
native rational spectral models that do not invoke the unnecessarily harsh
requirement of a truncated autocorrelation lag behavior. Undoubtedly, the most
widely used of such models is the AR model. A spectral model is an AR model of
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order p [i.e., AR(p)] if it may be put into the form

a2e~j2<0 + ••• + ape"jp<0

This AR(p) model has a functional behavior completely characterized by its
p + 1 parameters b0,a1,a2,...,ap. The characteristic pth-order polynomial
Ap(e

jia) influences the frequency behavior of the estimate, and b0 controls the
level.

As in the MA model, we gain valuable insight into the capabilities of AR
modeling by factoring the polynomial Ap(e

jo)). We get the equivalent
representation.

SAR(O - — — • <9-} 2)

where pk are the roots of Ap(z). The poles of this AR spectral model occur in
reciprocal pairs. The AR(p) spectral model is also commonly called an all-pole
model. As such, it is particularly appropriate for modeling spectra with sharply
defined peaks (polelike behavior) but not sharply defined notches. If a spectrum
does possess notches, however, it is possible to simulate their effect at the cost of
many additional poles (i.e., a high-AR order). In terms of parameter parsimony it
is therefore prudent to avoid AR models whenever notches in the underlying
spectrum are suspected.

AR models first were used by Yule [7] and Walker [8] to forecast trends of
economically based time series. These models were employed by Burg [9] in
1967 and Parzen [10] in 1968 to achieve spectral estimates that did not possess
the aforementioned deficiencies of the MA model. The Burg method is of
particular interest, since it offered new insight into spectral modeling and
introduced concepts that are now standard tools of spectral estimation. This
included an efficient lattice-structured implementation of the Burg method,
which has since been examined and advanced by many investigators (e.g., see
[11]). It is not an exaggeration to say that Burg's method gave rise to a literal
explosion in research activity directed toward evolving improved rational
modeling methods.

C ARMA Models

In many applications the underlying spectral density function contains both
notchlike and peaklike behavior. As such, neither the MA nor the AR model is an
appropriate model representation from a parameter parsimony viewpoint. The
more general rational model [Eq. (9.5)], however, is capable of efficiently
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representing such behavior. This most general rational model is commonly
referred to as an ARMA model of order (p, q) [i.e., ARM A(p, q)~] and its frequency
characterization is

h _1_ h t>~J<° _1_ . . . -1- h a~J9<o 2 R faj^\ 2

(9.13)
60 + ble~j'° + • • • 4- fr e-J«w

' q

1 + a,e~j'° + ••- + a e~jpm
1 T Ujc T r MpK

An ARMA model has a frequency characterization that is the composite of an
MA model and an AR model. To further reinforce this interpretation, we have the
following equivalent representation after factoring the polynomials Ap(e

1<a] and
Bq(e

j<a) which characterize its frequency behavior:

ft (l-z^Xl -#?*•)
C / , , . / en_ lk \2k-l /Q i / i \

An ARMA model has q zeros and p poles; therefore it is generally a much more
effective model than are its more specialized MA (all-zero) and AR (all-pole)
model counterparts. These poles and zeros occur in reciprocal pairs. Although
ARMA models are the preferred choice for various applications, many practi-
tioners use the more specialized MA or AR models. There is an increasing
awareness, however, of the general usefulness of ARMA modeling.

RATIONAL MODELING: EXACT AUTOCORRELATION KNOWLEDGE 111

In this section the theoretical autocorrelation characteristics of MA, AR, and
ARMA random processes are examined separately. This characterization, in
turn, enables us to intelligently select the most appropriate rational model that
best represents a given set of exact autocorrelation lags

rxx(Q),rxx(\),...,rxx(s) (9.15)

Moreover, we develop a systematic procedure for identifying the selected model's
parameters from these given autocorrelation lag values. Although our as-
sumption of exact autocorrelation information is highly idealistic and almost
never met in applications, the insight provided is helpful when we consider the
more practical problem of generating rational model estimates from raw time
series observations.

To begin this analysis, we hereafter assume that the time series under
examination is generated (or can be adequately modeled) as the response
associated with a linear operator

x(n) - £ akx(n - k) = £ bke(n - k) (9.16)
fe - 1 k ̂  0
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in which the unobserved excitation time series (e(n)} is taken to be a sequence of
zero-mean, unit-variance, uncorrelated random variables (i.e., normalized white
noise). This excitation-response behavior is depicted in Fig. 9.2. Taking the z-
transform of Eq. (9.16), setting z = ejm, and using the fact that the PSD of white
noise is unity shows that the PSD function associated with the response time
series is given by the ARMA(p,<5f) rational form

% + h.e~j'° + ••• + b e~jl
) T i/j.c ~r T^ 'Jq*-

Thus there is an equivalency between an assumed ARMA(p,q) spectral model
and the response of the recursive linear operator [Eq. (9.16)] to white noise. In
this section we use the required rational modeling to develop the time series
description [Eq. (9.16)] and its associated autocorrelation characterization.
Most available rational spectral estimation techniques are based on such a time
domain characterization.

The mechanism for effecting the required rational modeling is the Yule-
Walker equations, which govern linear relationship [Eq. (9.16)]: multiplying both
sides of Eq. (9.16) by x(n — m) and taking expected values gives the Yule-Walker
equations

p
L ak (9.17)

where a0 = 1. The entity h(n) appearing in this expression corresponds to the
unit-impulse (i.e., Kronecker delta) response of the linear system operator cor-
responding to the system given by (9.16). This unit-impulse response may also be
interpreted as the inverse Fourier transform of the linear operator's frequency
response Bg(e

iat)/Ap(e
j<0). In the following we assume that this linear operator is

causal, which implies that h(n) = 0 for n negative. Although this assumption is
not essential in the analysis, we impose it because most applications are inher-
ently involved with causal operations. Adaption to the case where noncausal
operations are more appropriate is straightforward and is not given. We now
investigate the behavior of the Yule-Walker equations for the special case MA
and AR models.

e ( n )

White Noise
Excitation

x(n)

Response

Transfer Function
Fig. 9.2. Model of WSS rational time series.
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MA Modeling A

The time series {x(n}} is an MA random process if it is generated according to
the linear nonrecursive relationship

x(«)= £ bk€(n-k) (9.18)
fc = 0

where {e(n)} is the aforementioned normalized white noise excitation process.
According to the general Yule-Walker Eq. (9.17), the response's autocorrelation
sequence is therefore specified by

, — q < n < q
(9.19)

otherwise

where we used the facts that ak = 0 for 1 < k < p and h(n] — bn for 0 < n < q.
Thus the autocorrelation sequence associated with an MA process has finite
length (i.e., 2q + 1), with the length identifying the order of the MA(g) process.

We now consider the problem of identifying the MA parameters bk that
correspond to a given length-(2g + 1) autocorrelation sequence rxx(n) for
— q < n < q. We do this by examining the spectral density function associated
with this truncated autocorrelation sequence. After taking the z-transform of the
given length-(2g + 1) autocorrelation sequence given by Eq. (9.19), we have

Sxx(z) = £ rxx(n)z~» = £ £ bkbl-,z-* = £ bkz~k £ b*mzm (9.20)
n -- —q n= —q k = Q k = 0 m — 0

Since the spectral density function Sxy(z) has complex-conjugate symmetrical
coefficients [i.e., rxx( — n) = fxx(n}], it follows that the zeros of this function must
occur in reciprocal pairs. Therefore we can always factor the spectral density
function as

Sxx(z) - a2 f[ (1 - zkz-*)(\ - zlz] (9.21)
k = 1

where a is a real-valued scalar. Comparing Eqs. (9.20) and (9.21), we see that

Bq(z) = £ bkz~~k = a ft (1 - zkz-1) (9.22)
f c = 0 k = l

Thus we obtain the required bk parameter identification by carrying out the
multiplications on the right side of Eq. (9.22) and equating coefficients of equal
powers of z~k. The most critical step of this identification procedure is the
factorization of the known power series Sxx(z) as given in Eq. (9.21).

We caution that, although the factorization of Sxx(z) into its 2q first-order
product terms is unique, the decomposition Eq. (9.22) is certainly not, because the
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roots of Sx(z) occur in reciprocal pairs. Thus 1 — z^z l may be replaced by
1 — z\lz~v in Eq. (9.21) without destroying the required structure [Eq. (9.20)].
This replacement, however, generally leads to a different set of bk parameters.
Since there are typically q different first-order reciprocal pairs in Eq. (9.21), it then
follows that there are 2q different bn parameter sets compatible with the
autocorrelation identity [Eq. (9.19)]. The one normally chosen corresponds to
the minimum-phase selection in which the zk roots used in Eq. (9.22) are selected so
that they all have magnitudes less than 1.

B AR Modeling

The time series {x(n)} is an AR process of order p if it is generated according to
the recursive relationship

x(n)

where (e(n)} is a normalized white noise process. The Yule-Walker Eq. (9.17)
as they apply to this special model indicate that the AR(p) autocorrelation
elements are related by

rxx(n) °
0, «> 1

(9.23)

where we used the facts that /i(0) = b0 and h(ri) = 0 for n < 0.
To derive a direct procedure for identifying the AR(p) model's p + 1

parameters a l 5 a2,. . . , ap, b0 that best represent the set of autocorrelation lag
values [Eq. (9.15)], we may evaluate the first p + 1 of these governing Yule-
Walker equations. In matrix format this evaluation takes the form

rxx(p) rxx(p-\]

rxx(~p)
rxx(-P + 1)

'«(<>)

"1"
aj
a2

ap

=

>ol2"
0
0

0

(9,24)

(9-25)

In Eq. (9.25) Rx is the (p + 1) x (p + 1) AR correlation matrix with elements

Rx(iJ) = ̂ (i - 7) for 1 < /, j < p + 1 (9.26)

and a is the (p + 1) x 1 augmented AR parameter vector with first component
equal to 1 (i.e., it is augmented by a leading 1); that is,

a = [ I , a j , a 2 , . . . , a ]" (9.27)
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where et is the (p + 1) x 1 standard basis vector whose elements are all zero
except for its first, which is 1, and the superscript T denotes transposition. We
obtain the required parameter identification by solving this sytem of p + 1 linear
equations in p + 1 unknowns.* Conceptually, we obtain this solution by solving

a - \b0\
2R~1el (9.28)

in which the normalizing coefficient b0 is selected so that the first component of a
is 1, as required in Eq. (9.27). In this solution procedure we are tacitly assuming
the invertibility of the correlation matrix. If the matrix Rx is singular, however,
this invariably implies that the underlying time series is an AR process of order
less than p. In this case it is necessary to decrease the order parameter p until Rx

first becomes invertible.
From Eq. (9.24), the resultant AR(p) model parameters are seen to be depen-

dent totally on the first p + 1 given autocorrelation lags rxx(Q), rxx(i),..., rxx(p),
Although the associated AR model has an autocorrelation behavior that per-
fectly matches these first p + 1 lags, it may provide a very poor representation
for the remaining given autocorrelation lags rxx(p + 1), rxx(p + 2),..., rxx(s)
(which were not used in the parameter identification). To provide a representa-
tion for these higher lags by the procedure taken here, we may have to increase
the AR model order to s (i.e., p = s). In many applications, however, the under-
lying goal will be that of providing an AR model of relatively low order (i.e.,
p « s) that adequately represents the entire set of autocorrelation lags. We shall
address this issue shortly.

The system of equations (9.25) also occurs when one solves the optimum one-
step predictor problem or uses the maximum entropy principle [4] and [13]. In
the one-step predictor problem we went to select the pth-order linear predictor
filter parameters ak so that the prediction

x(n) = - f akx(n - k) (9.29)
l

best approximates x(ri) in the sense of minimizing the mean-squared prediction
error E{\x(n) — x(n)\2}. We find the optimum prediction parameters by solving
Eq. (9.25) and letting \b0\

2 play the role of the minimum mean-square prediction
error. On the other hand, when applying the maximum entropy principle, we
tacitly assume that the time series {x(ri)} is a zero-mean Gaussian process. The
objective is to then find a spectral density function Sxx(e

J<a) that will maximize the
entropy measure

* \oglSxx(e*>)-}da> (9.30)

* As will be discussed in Section IV of Chapter 10, the Levinson-Durbin algorithm provides an
elegant procedure for sequentially solving these equations as the order parameter p is incrementally
increased [12J.



712 James A. Cadzow

subject to the constraint that this function be consistent with the given set of
p + I autocorrelation lags rxx(Q), rxx(l),..., rxx(p) through the Fourier transform
relationship (9.3). Maximizing Eq. (9.30) yields an AR process of order p whose
parameters are given by Eq. (9.25).

C ARMA Modeling

The time series (x(n)} is an ARMA process of order (p, q) if it is generated (or
can be modeled) according to the recursive relationship

x(n) + £ akx(n - k) = £ bk€(n - k) (9.31)
fc=l fc=0

in which the excitation sequence (e(n)} is a normalized white noise process. Our
task is then to determine values for the % and bk parameters of this model that are
most compatible with the given autocorrelation lags [Eq. (9.15)]. We initially
assume that these autocorrelation lags are perfectly compatible with an
ARMA(p, q) model. The mechanism for identifying the required model param-
eters is the Yule-Walker Eqs. (9.17), which characterize the above ARMA
model. This mechanism yields ARMA parameters that appear in a nonlinear
fashion through the system unit-impulse response h(n). If we want a best least
squares model, then to generate the optimal afc, bk parameters we must solve
the highly nonlinear Yule-Walker equations. This usually involves com-
putationally burdensome nonlinear programming algorithms, difficult initial
parameter value selection, and the possibilities of convergence, or even
nonconvergence, to a local extremum.

If we evaluate the ak and bk parameters separately, however, we have far less
work. This approach provides a linear solution procedure for the ak parameters.
Although suboptimal in nature, it often provides a near-optimal modeling. The
mechanism for this separate parameter evaluation is obtained from the Yule-
Walker equations [Eq. (9.17)], which characterize the ARMA model [Eq. (9.31)].
If this model is taken to be causal, it follows that the Yule-Walker equations
assume a particularly simple form for indices n > q; that is,

rxx(n) + I akrxx(n - *) = 0 for n > q + 1 (9.32)
k= 1

We shall refer to this particular subset of the Yule-Walker equations as the
higher-order Yule-Walker equations. The obvious attractiveness of these
equations lies in that they are linear in the ak parameters.

To determine the ak AR parameters that are most compatible with the given set
of autocorrelation lags [Eq. (9.15)], we first adopt the approach that character-
ized most recent AR and ARMA modeling methods. In particular, this entails
evaluating the first p higher-order Yule-Walker equations (i.e., q + I <n <
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q + p); that is,

rxx(q) t

rxx(q + 1) r

rxx(q + P - 1) r

713

-1)

p-2)

^(^

»•**(« -

rxx(q)

-P)

/•**(<? + P)_
(9,33)

We next solve this linear system of equations for the required % AR parameters,
There is a simple test for determining the appropriateness of this ARMA(p, q)
model selection method: the higher-order Yule-Walker Eqs. (9.32) using the ak

parameters obtained from solving expression (9.33) must be also satisfied over the
additional indices q + p+l<n<s. If they are not all satisfied, then an
ARMA(p,£jf) model is incompatible with the given autocorrelation lags. One
might seek a higher-order ARMA model to rectify this incompatibility.

Once we have determined the AR parameters by solving Eq. (9.33), we then find
the MA coefficients. Let the time series (,x(n)} be conceptually applied to a pth-
order nonrecursive filter with transfer function

Ap(z) az

whose ak coefficients correspond to the solution of Eq. (9.33). This filtering
produces the residual time series (s(n)}, as depicted in Fig. 9.3, and causes it to be
an MA process of order q with a PSD function of | Bg(e

j(a)\ 2, which is evident from
Fig. 9.3. This presumes that {x(n}} is an ARMA(p, q) process. Computing the
length-(2</ -f 1 ) autocorrelation sequence of this residual time series yields

m - k), q < n < q (9.34)
otherwise

With these computed MA(q) autocorrelation lags, it follows from Eq. (9.19) that
the unknown bk parameters must be such that

— q <n<q (9.35)

A spectral factorization along the lines mentioned in this section's MA time series
subsection then yields the desired bk parameters, which completes the ARMA
model.

e ( n >

White Noise
E x c i t a t i o n

B (z)q
A (z)

P

x(n)

Rational
Time Series,

A (z)
P

s(n)

Residual
Time Series

Fig. 9.3. Residual time series generation.
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In determining the AR parameters (i.e., the afe) that govern AR and ARM A
models, we evaluated the higher-order Yule -Walker equations at the fewest
indices n compatible with the model under consideration. To obtain AR
parameters that better represent the entire set of given autocorrelation lags
[Eq. (9.15)], we find it is generally more effective to use more than the fewest
evaluations [14]. To illustrate this approach, let us evaluate the higher-order
Yule- Walker Eqs. (9.32) over the enlarged indexed setq + I < n < q + t where
t > p in which the s in Eq. (9. 1 5) is set equal to t + q. We get the following
pverdetermined system of t linear equations in the AR parameter unknowns.1

rxx(q + 2) rxx(q

rxx(q + t) rxx(q + t - 1)

rxx(q -

rxx(q -

.

rxx(q ~

-p+l)
-p + 2)

- p + t)

"1 "
a i r°

0

[o
-ap-

or

(9.36)

where 0 denotes the t x 1 zero vector, Rx is the t x (p + 1) ARMA autocorre-
lation matrix with Toeplitz-type structure having elements

= rxx(q (9.37)

and a is the (p + 1) x 1 augmented AR parameter vector in which a 1 has been
inserted in it first component position: that is,

a = [ I , f l i , f l 2 , . . . , a ]" (9.38)

Examination of Eq. (9.36) reveals that the ARMA model's ak parameters are
obtained upon solving a system of t overdetermined (assuming t > p) linear
equations. Due to the overdetermined nature of these equations, the fundamental
question of whether a solution exists naturally arises. The following theorem
provides an answer to this question and is a direct result of the higher-order
Yule-Walker equations that govern ARMA processes.

Theorem 9.1. If the autocorrelation lag entries used in the t x (p + 1)
correlation matrix R1 in Eq. (9.36) correspond to those of an ARMA(p1,q1)
process, then the rank of R] is p1, if that p > p1; q > qi, and t > p.

J In certain applications it may be desirable to use evaluations other than a contiguous set of
extended Yule-Walker evaluations.
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Hence the existence of a solution to Eq. (9.36) depends on the rank of R j . We
shall now consider separately the cases in which R j has less than full rank
(Rank[RJ < p) and full rank (Rank[RJ = p + I).

For Rank[R1] < p an augmented AR parametric vector solution a is ensured.
We can obtain an interesting algebraic characterization of this solution by
premultiplying both sides of Eq. (9.36) by the complex conjugate transpose of

i = 0 (9.39)

Equation (9.39) shows that the required augmented AR parameter vector may be
also identified with any properly normalized eigenvector (i.e., its first component
is 1) associated with a zero eigenvalue of the ( p + I ) x ( p + l ) matrix R j R j . As
such, we may then use standard eigenvector-eigenvalue routines when finding
the required ARM A model AR parameters.

The matrix R j has full rank whenever the autocorrelation lag entries used are
associated with either a nonrational random time series, an MA process, or a
higher-order ARM A rational process. Since Rl has full rank, there is no
nontrivial solution to Eq. (9.36). Nonetheless, we still want an ARM A model that
"best fits" these overdetermined extended Yule-Walker equations. Namely, we
seek an augmented AR parameter vector a so that R j a most closely equals the
required ideal zero vector as specified in Eq. (9.36). Although a variety of
procedures may be used for accomplishing this selection, the following two
approaches typify many spectral estimation algorithms.

1. In the first selection procedure we want to find an augmented AR parameter
vector lying on the unit hypersphere that will minimize the Euclidean norm of
Rta. We must therefore solve the constrained optimization problem

min a tRjRja
a*a=- 1

By standard Lagrange multiplier concepts, we easily solve this problem by
selecting an eigenvector of the positive definite Hermitian matrix R i R t

associated with its minimum eigenvalue. If xt corresponds to such an eigenvec-
tor, then the required augmented AR parameter vector with first component 1 is
obtained by the normalization

a° = [^i(l)]~1xi (9.40)

where xj l) denotes the first component of x t . This AR augmented parameter
vector selection procedure characterizes many spectral algorithms that are
variants of the Pisarenko method [15].

2. In the second selection procedure we wish to minimize the Euclidean norm
of R j 3 over all (p + 1) x 1 vectors a with first components of 1:

min a f R|R,a
a( 1) = 1
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Again appealing to the Lagrange multiplier approach, we solve this problem by
solving the linear system

RlR1a° = ae1 (9.41)

where the normalized constant a is selected so that the first component of a° is 1
and et is the standard basis vector.

In using either procedure, we want to best satisfy Eq. (9.36) in the least squares
sense subject to appropriate constraints.* The application dictates which AR
parameter vector selection procedure provides the best performance. It has been
the author's experience that Eq. (9.40) has often provided reasonable modeling
[4]. In terms of computational efficiency and general effectiveness, however, the
linear selection Eq. (9.41) is clearly superior due to the availability of efficient
adaptive algorithms for its computation. Therefore we shall mainly focus our
attention in Section VIII on Eq. (9.41). These ARM A results are also applicable to
the special AR modeling problem, in which case we simply enter q = 0 when
forming the ARM A autocorrelation matrix R, .

The procedures developed in the preceding section are applicable to the task of
generating rational models for the general class of WSS time series. To
demonstrate the relative effectiveness of MA, AR, and ARMA modeling, we now
consider the classical problem of the detection and frequency identification of the
sinusoids in white noise time series. Although this does represent a restricted
application of rational spectral estimation, it provides a meaningful basis for
measuring the relative performance capabilities of MA, AR, and ARMA models.
In particular, the time series now being examined is taken to be the sum of m real
sinusoids in additive noise, as specified by

x(n) = £ 4kSin[27i/kn + 0t] + c(n) (9.42)
k = i

in which the 0k are independent, uniformly distributed random variables on the
interval [ — TT, n), and e(n) is a zero-mean variance a2 white noise process. Recall
that the problem of detecting sinusoids in noise originally gave rise to spectral
estimation theory. The periodogram method was developed for this very purpose
by Schuster in 1898 [2].

The task at hand is to generate MA, AR, and ARMA models from the
autocorrelation lags associated with this time series using the procedures

5 It is possible to generalize the constraints to be a quadratic surface (giving rise to a generalized
eigenvector solution) or a hyperplane, respectively [16].
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outlined in the previous section. The autocorrelation sequence characterizing
time series [Eq. (9.42)] is

m

rxx(n) = £ 0.5,4k
2 cos[27t/kw] + ff2S(n) (9.43)

k = l

in which d(n) denotes the unit-impulse (Kronecker delta) sequence. The spectral
density function associated with this process is composed of 2m Dirac delta
impulses of amplitudes 0.5A\ located at frequencies ±fk riding on top of a
constant value a2. As such, this discontinuous spectral density function may not
be associated with a finite-order MA, AR, or ARMA process. Nonetheless, we
may still use such models to achieve estimates for this spectral behavior.

Numerical Example A

To illustrate the effectiveness of rational models for sinusoids embedded in
white noise, we now consider the specific time series

x(n) = sin(0.47r« + 0t) + cos(0.437i« + 02) + e(n) (9.44)

The white noise series (e(n)} is taken to have a variance of 0.5, thereby creating a
0-dB SNR (signal-to-noise ratio) environment. According to Eq. (9.43), the
autocorrelation sequence associated with this time series is

rxx(n) = 0.5 cos(0.47in) + 0.5 cos(0.437cn) + 0.5<5(n) (9.45)

We shall now use these autocorrelation lags along with the concepts developed in
the previous two sections to generate appropriate MA, AR, and ARMA models.
We briefly discuss the resultant modeling performances in this idealistic situation.

MA Models 1

When using the classical spectral modeling expression

S«(*Jw)= t rxx(n)eJeH> (9-46)xx\
-1

we are, in effect, invoking an MA(g) model. Plots of this expression with entries
[Eq. (9.45)] for model order selections of q = 32 and q — 64 are shown in Fig. 9.4
over the range normalized frequencies 0 < /< 0.5. These results show that a
resolution of the two equal-amplitude sinusoids was not achieved for a thirty-
second-order MA model but was achieved for a sixty-fourth-order MA model.
Thus an artificially high-order MA model was required to resolve the two
sinusoids even when exact autocorrelation lags were used. This example nicely
demonstrates the difficulties that can occur when we invoke an MA model if the
underlying assumption that rxx(ri) — 0 for n > q thereby implied is not satisfied
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Fig. 9.4. MA spectral models using Eq. (9.46) with exact autocorrelation lags: (a) MA(32) with

q = 32; (b) MA(64) with q = 64.

(or approximately satisfied). Clearly, the nondamped nature of the autocorre-
lation sequence [Eq. (9.45)] indicates that the MA modeling of a time series
composed of sinusoids in white noise can be inappropriate unless a sufficiently
large selection of the MA model order q is made.

2 AR Models

We next used the same autocorrelation lag information [Eq. (9.45)] to generate
AR models of order p = 20 and p = 24 after solving the system of AR Eqs. (9.25).
The resultant spectral estimates \/\A (ej(a)\2 are shown in Fig. 9.5(a),(b) for these
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Fig, 9.5. AR spectral models using Eq. (9.25) with exact autocorrelation lags: (a) AR(20) with

p = t = 20; (b) AR(24) with p = / = 24; (c) AR(10) with p = 10, t = 100.
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two AR models. The twentieth-order model was unable to resolve the two
sinusoids, and the twenty-fourth was just able to achieve a resolution. Since the
specific autocorrelation lags rxx(n) for 0 < n < p were required for generating an
AR(p) model, fewer autocorrelation lags were needed to resolve the two sinusoids
when using an AR(24) model compared to the MA(64) model. This simply gives
credence to the previously made suggestion that AR models provide a more
effective instrument for representing peaklike spectra than do MA models.

To illustrate the effect of using more than the minimal number of higher-order
Yule-Walker equations (i.e., t > p) when generating an AR model, we next used
the overdetermined AR modeling Eqs. (9.36) with parameters p — 10, q — 0, and
t = 100. The AR(10) model that we got after solving Eq. (9.41) for this choice of
order parameters has a spectral behavior as depicted in Fig. 9.5(c), This AR(10)
spectral estimate is significantly better than that achieved by the higher-order
AR(24) estimate. Clearly, the process of using 100 (i.e., / = 100) higher-order
Yule-Walker equation evaluations instead of the minimal number 10 produced
this improvement.

3 ARM A Models

We next used the given autocorrelation lag information [Eq. (9.45)] to
generate an ARMA(4,4) model by solving Eq. (9.41) with p = q = t = 4. The
resultant ARMA-based spectral estimate l/\A4(e

jo>)\2 without the MA compo-
nent is plotted in Fig. 9.6. The two sinusoids are nicely resolved, and when we
factored the fourth-order polynomial A4(e

jco), its four roots were located on the
unit circle at e±J2nfk for k = 1,2 in which/i = 0.2 and/2 = 0.215. This should not
be surprising, since it is well known that an ARMA-type model is perfectly

ex
e<

0.00 0.10 0 - 2 0 0.30 0.40 0.50

Normalized Frequency (Hz)
Fig. 9.6. ARM A spectral modeling using Eq. (9.41) with exact autocorrelation lags andp ~ t = 4.
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compatible with a sinusoid in white noise time series [14] (MA and AR models
are not compatible). Only the autocorrelation lags rxx(n) for 1 < -n < 8 were
required to generate the spectral model shown in Fig. 9.6.

MA MODELING: TIME SERIES OBSERVATIONS VI

From a practical viewpoint the situation in which exact autocorrelation lag
values are given to produce a spectral estimate almost never occurs. More
typically, the required spectral estimate is to be generated from a finite set of
contiguous time series observations as represented by

x(0),x(l),..., x(N - 1) (9.47)

In this section we are concerned with achieving MA spectral estimates from this
observation set. The methods to be presented for this purpose are largely
influenced by the theoretical developments in Section III.

Two popular primary MA spectral estimation procedures indirect methods
based on first generating autocorrelation estimates from the given data, as
proposed by Blackman and Tukey [3], and direct methods based on Fourier
transforming the given data. Direct methods are represented by the periodogram
(or the method of averaged periodograms due to Welch [17]). As we will shortly
see, the periodogram is a special case of the Blackman-Tukey approach.

Blackman-Tukey Approach A

In the Blackman-Tukey method one first obtains autocorrelation estimates
fxx(n) from the given observation set [Eq. (9.47)]. These estimates are then
inserted into Eq. (9.8) to give the required spectral estimate. For a variety of
reasons it is often beneficial to introduce a data sequence window w(n) to achieve
the windowed MA spectral estimate of order q:

S(ejl")= £ w(n)fxx(n)e-Jmn (9.48)
n= -q

Considerations to be made in selecting the window sequence are well docu-
mented, and the reader is referred to Chapters 3 and 8 as well as to [4-6]. Two
of the more popular selections are the rectangular window (i.e., w(n) — 1) and
the Bartlett triangle window [i.e., w(n) = (1 — \n\)/(q +1)]. The standard un-
biased and biased autocorrelation estimates are among the most popular candi-
dates to be used in the spectral estimate [Eq. (9.48)] (e.g., see [18] for a
detailed development).
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The periodogram is defined by

Sxx(e
j<0) = \XN(eJ<0)\2 (9.49)

where XN(ejeo) is the DTFT of the time series observations (see Chapter t, Sec-
tion III); that is,

XN(eJm) = £ x(n)e~jHot (9.50)

The subscript N explicitly denotes the dependency of XN(eJf°) on the observation
length parameter. The periodogram is identical to the Blackman-Tukey
approach when the standard biased autocorrelation estimates are used in
Eq. (9.48) with q = N - 1 and w(n) = 1.

The primary advantage of the periodogram approach is computational in
nature. Specifically, the values of the periodogram at the N discrete set of
uniformly spaced radian frequencies cok = 2nk/N for 0 < k < N — 1 involve
evaluating

XN(ej(2nk/N)) = X x(n)e~i(2*kn/N\ 0 < k < N ~ I (9.51)

We easily carry out these evaluations by the A/-point fast Fourier transform
(FFT) algorithm (see Chapter 7). With the FFT algorithm the N sampled
quantities [Eq. (9.51)] may be computed, in which the required number of com-
plex additions and multiplications is of the order N Iog2 N. The computational
saving is considerable when compared to the direct evaluation of Eq. (9.51),
which needs N2 complex additions and multiplications. Hence spectral estimates
of long data sequences became feasible with the FFT's development.

Although the FFT algorithm offers a computationally efficient means for
numerically evaluating the periodogram [Eq. (9.49)], it possesses a potentially
serious drawback. The FFT implementation provides a sampled version of the
periodogram in which the frequency samples are separated by 2n/N radians.
For many applications this sampling may be too coarse in that the detailed
continuous-frequency behavior of the periodogram may be somewhat obscured
through the sampling proce ss. To alleviate this potential difficulty, we may apply
the concept of zero-padding whereby we simply append L zeros to the given
set of time series observations:

x(0), x(l), . . . , x(N - 1), 0, 0,..., 0 (9.52)

where L is a yet unspecified positive integer. If we were to take the Fourier
transform of this padded time series, we would obtain the same transform
[Eq. (9.50)] and therefore the same periodogram function [Eq. (9.49)]. On the



9. Spectral Analysis 723

other hand, if we were to take an (N + L)-point FFT of this padded time series,
the following more finely spaced samples of the Fourier transform would be
generated:

XN(ej(2nkl(N + L») = \l x(n)e~J(2nkn/(N+L}\ 0 < k < N + L (9.53)
n = 0

If these sampled values were then substituted into Eq. (9.49), we would obtain
sampled values of the periodogram at the more finely spaced frequencies
cok = 2n/(N + L) for <k < N + L. The L zero-padding reduces the frequency
sampling interval from 2n/N to 2n/(N + L). By selecting L suitably large, we can
reduce this sampling interval to any degree desirable.

The task of generating AR spectral models from a set of time series
observations has been of primary concern to many investigators over the last
several years. Undoubtedly, the most widely used AR modeling procedure is the
Burg algorithm, as first proposed in 1967 [9]. This algorithm not only provided a
spectral resolution capability that was theretofore lacking, it also inspired an
intense search for improved rational spectral estimation procedures. Much of
contemporary spectral estimation theory has been directly influenced by the
philosophy of the Burg approach. Many of the more recent rational estimation
procedures were developed to oversome some of the deficiencies observed in the
Burg spectral estimates, as typified by line splitting and biased frequency
estimates. Nonetheless, the Burg algorithm still occupies an important position
among contemporary AR modeling methods. Since its operational behavior is so
well documented, we refer the interest reader to the relevant literature (e.g., see
[13, 19]).

Many of the popularly used AR methods (which include the Burg algorithm)
may be interpreted as providing statistical estimates of the fundamental Yule -
Walker Eqs. (9.25) that govern AR processes. These estimates are to be obtained
from the set of contiguous time series observations

x(0),x(l),.. . , x(N - 1) (9.54)

which are made available through some measurement mechanism. More
specifically, it is well known that various contemporary methods either explicitly
or implicitly use these observations to generate estimates of the (p + 1) x (p + 1)
autocorrelation matrix R,,. that appears in the fundamental relationship
[Eq. (9.25)]. Clearly, the elements of the matrix estimate Otx must be such that

Rx(i,j) is an estimate of rxx(i — j ) for 1 < i,) < p + 1 (9.55)

Once these estimates have been computed from the given time series
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observations, the resultant augmented AR parameter vector estimate is, in
accordance with Eq. (9.25), given by solving the system of equations

R,a = \b0\
2
ei (9,56)

in which the normalizing parameter h0 is selected so that the first component of a
is 1.

The quality of the AR modeling approach as embodied in Eq. (9.56) is critically
dependent on the choice of the autocorrelation lag-estimation procedure used.
For many applications the standard unbiased autocorrelation estimates typically
provide the best selection in terms of spectral estimation performance. The
correlation matrix formed from this particular set of estimates is Toeplitz and
complex-conjugate symmetric; properties shared by the actual correlation matrix
being approximated. Moreover, this estimate is consistent in the sense that as N
approaches infinity, we have Rx -*• Rx under the second-order ergodic as-
sumption on the underlying time series. In view of all of these favorable qualities
it is not surprising that the standard unbiased estimator generally provides
excellent AR modeling performance. Since AR models are a special case of the
more general ARM A model, we now direct our efforts toward ARM A model
estimation.

VIII ARM A MODELING: TIME SERIES OBSERVATIONS

The methods for generating ARMA models based upon time series ob-
servations fall into basically two categories: the ak and bk parameters are
evaluated (i) simultaneously or (ii) separately. In the first category, maximum-
likelihood-based techniques are prominent. They include exact maximum-
likelihood approaches (e.g., [19]) and least squares methods that approximate
the exact likelihood function (e.g., [20, 21]). Although promising optimum
modeling, these maximum-likelihood methods involve nonlinear programming
solution procedures. As such, these solution procedures are computationally
inefficient and suffer the obvious drawbacks associated with nonlinear pro-
gramming methods. Other techniques in category (i) have been proposed (e.g.
[22]). These alternative methods also use nonlinear programming solution
procedures.

Because of the obvious shortcomings of nonlinear-programming-based
techniques, methods have been proposed that employ a separate evaluation of
the AR and MA parameters. With this approach it is generally possible to obtain
satisfactory modeling without the drawbacks inherent with nonlinear program-
ming. These techniques usually use the first p higher-order Yule-Walker equa-
tions to obtain the ak estimates in "a'linear fashion as demonstrated in Eq. (9.33).
Unfortunately, the use of the minimal number of higher-order Yule-Walker
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equations (i.e., p) can cause an undesirable parameter hypersensitivity. Therefore
procedures have been proposed for using an overdetermined set of Yule- Walker
equation evaluations to decrease this hypersensitivity (e.g., see [14]). We now give
a detailed development of the overdetermined equation approach to estimating
the ak parameters of an ARMA model. These estimates are based on the finite set
of time series observations

x(0), x(\),...,x(N - 1) (9.57)

In this parameter estimation we seek to incorporate the philosophy embodied
in the higher-order Yule- Walker ARMA model Eq. (9.36) for estimating the
model's ak parameters.

The modeling approach uses the given time series observations to generate an
estimate of the t x (p + 1) autocorrelation matrix R! in Eq. (9.36). Using one of
several available procedures, we first compute the autocorrelation lag estimates

Ki (U) = an estimate of rxx(q + 1 + / — ./), 1 < / < z, 1 < / < p + I (9.58)

Regardless of the procedure used, the net result of this first step produces
the t x (p + 1) correlation matrix estimate Rx. Due to errors inherent in the
autocorrelation estimation process, however, this matrix estimate generally has
full rank [i.e. min(p + 1, t)] instead of the theoretical rank p possessed by the
matrix R j being estimated [even if the time series is an ARMA(p, q) process].
Therefore it is not generally possible to find an augmented AR parameter vector
with first component equal to 1 that satisfies the theoretical relationship Rja = 0
as given in Eq. (9.36). As such, the t x 1 higher-order Yule-Walker equation
error vector

e = R,a (9.59)

is generated. In accordance with the theoretical results of Section IV, a logical
choice for the augmented AR parameter vector a is obtained by solving the
constrained quadratic model error problem

min a fRfWRa
a ( i ) = i

in which W is a t x t positive semidefmite weighting matrix that is normally
chosen to be the identity matrix. Using standard Lagrange multiplier techniques,
we obtain the solution to this constrained minimization problem by solving the
system of (p + 1) x (p + 1) linear equations

0-oce1 (9.60)

where a is a normalizing constant selected so that the first component of a ° is 1, as
required. Equation (9,60) constitutes the so-called overdetermined AR parameter
vector selection [4, 14]. In effect, we have selected a to best satisfy the theoretical
ARMA relationship given by R^ = 0. The real advantage of the overdetermined
equation model approach is achieved when the integer t is selected to be larger
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than p. In this case more than the minimal number of extended Yule-Walker
equation evaluations (i.e., t instead of p) are being used in fixing the model's p AR
coefficients. So it is not surprising that parameter hypersensitivity decreases
when t > p. See the example in Section V. A similar advantage occurs for ARMA
models estimated from raw time series observations. In the situation here the
integer parameter t is typically selected to lie within the range

p < t< N -q- 1 (9.61)

Generally, larger values than the minimum p are preferred for modeling fidelity
and parameter desensitization.

To complete the ARMA modeling, we need to compute an estimate for the
MA component \Bq(e

j(0)\2. A logical procedure is to use correlation lag estimates
in the method outlined in Section III as represented by Eqs. (9.34) and (9.35).
However, regardless of the procedure used, this MA component estimate is
almost always significantly lower in quality than the associated AR compo-
nent estimate \Ap(e

i<a)\2.

IX ARMA MODELING: A SINGULAR VALUE DECOMPOSITION APPROACH

The important issue of ARMA model order determination has yet to be
addressed: in particular, whether we have exact autocorrelation lags or time
series observations for effecting the modeling, how should we choose appropriate
values for the order parameters p and ql This model order information is
implicitly contained in the autocorrelation matrices that characterize ARMA
models [4]. In this section we give a procedure for extracting the prerequisite
model order values that uses a singular value decomposition of an extended
correlation matrix. An important by-product of this procedure is an adaption of
the ARMA modeling procedure of the previous section, which significantly
improves spectral estimation.

A Theoretical Considerations

When the ARMA model order parameters are not known a priori, it is
judicious to select the initial model otder to be much larger than the anticipated
order. In particular, let us consider the extended order ARMA (pe,qe) model for
which pe is selected to be larger (usually much larger) than the eventual model
order. Although we typically do not know p a priori, it is generally possible to
make an educated guess of p to ensure that

Pe > P (9.62)
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From Eq. (9.36) it then follows that the t x (pe + 1) extended-order autocorre-
lation matrix associated with this ARMA(pe,qe) model may be expressed as

R

~rx(qe + 1) rx(qe) • • • rx(qe - pe + I)

rx(qe + 2) rx(qe + 1) • • • rx(qe - pe + 2)

rx(qe + t) rx(qe + t - 1) ••• rx(qe - pe + I)

(9.63)

If the autocorrelation lag entries in Eq. (9.63) correspond to an ARMA(p,g)
process for which qe — pe > q — p, it then follows from the results of Section IV
that the rank of the t x (pe 4- 1) matrix Re is p. In arriving at this result, we
assume that t is selected to at least equal p. To determine the required order
parameter p, we then simply set p equal to the rank of Re for the ideal case in
which exact autocorrelation lag information is available.

To obtain the ARM A model's (p + 1) x 1 augmented AR parameter vector a
from this extended-order autocorrelation matrix, we can appeal to the theoretical
developments of Sections III and IV. In particular, let us consider the set of
submatrices of Re formed from any of its p + 1 contiguous columns. This set of
t x (p + 1) matrices is specified by

R/e — [submatrix of Re composed of its /cth through
p + /cth column vectors inclusively] for 1 < k < pe — p + 1 (9.64)

In accordance with the ARMA model's higher-order Yule-Walker equations, it
is readily established that the required unique augmented AR parameter vector a
satisfies the set of homogeneous relationships

Rfea = 0 for 1 < k < pe - p + I (9.65)

where the first component of a is constrained to be 1. Equation (9.65) provides a
matrix representation for the t higher-order Yule-Walker Eqs. (9.32) defined on
the specific indices qe + 2 — k<n<qe + t+l — k. Note that this conclusion is
valid only if the correlation lag entries used in forming Re correspond to
an ARMA(p,g) process, and the order parameters are such that pe > p and
qe — pe > q — p. How we use Eq. (9.65) to generate an ARMA(p, q) model is
made clear shortly.

We shall now apply this rank characterization of Re to the practical problem in
which the ARMA modeling is to be based only on the time series observations

x(0),x(l),...,x(W- 1) (9.66)

and not an exact autocorrelation lag information. In this case we must first
compute autocorrelation lag estimates from these observations. We then
substitute these estimates into the matrix format Eq. (9.63) to generate the
extended-order correlation matrix estimate Re. Since the autocorrelation lag-
estimate entires will be invariably in error, it follows that Re normally has full
rank [i.e., min(pe + 1, f)] even when the time series under study corresponds to
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an ARMA(p, q) process. Nonetheless, the effective rank of Re still tends to be p.
To better quantify the vague term "effective rank," we introduce the concept of
singular value decomposition (SVD).

B Singular Value Decomposition

In a variety of applications the primary objective is to solve a linear system
of equations. The matrix associated with this system of equations not only
characterizes the desired solution, but it often conveys useful additional
information. Hence, it behooves us to examine the salient properties of this
characterizing matrix. The singular value decomposition of a matrix, as outlined
in the following theorem, serves this role particularly well (e.g., [23]).

Theorem 9.2 Let A be an m x n matrix of generally complex-valued elements.
This matrix may be equivalently represented as the weighted sum of outer
products given by1

A = £ wl (9.67)
k- 1

in which r — Rank [A] and the positive scalars ak satisfy the eigenrelationships

AATut = 0^%, AfAvt = <7fcV f c , 1 < k < r

where uk and vfc are the m x 1 and n x 1 associated orthonormal eigenvectors
[i.e., ufc

fum = vjvm = d(k - m)].

The scalar elements ak are commonly referred to as the singular values of the
matrix A and are ordered as ^ > d2 > • • • > crr > 0. They convey valuable
information about the rank characterization of A, as the following theorem
shows.

Theorem 9.3. The unique m x n matrix of rank k < Rank [/I] that best
approximates the m x n matrix A in the least squares difference (i.e., Frobenius
norm) sense is given by

k

\{k} - £ ffwl (9-68)
i - 1

The quality of this optimum approximation [Eq. (9.68)] is given by

£ a], Q<k<n (9.69)
j = k + 1

where A(fc) = (afj-).
1 The m x n rank 1 matrix uk\l formed from the m x 1 and n x I vectors ut and \k, respectively,

is called an outer product.
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The degree to which A((c) approximates A depends on the sum of the r — k
smallest singular values squared. As k approaches r, this sum becomes pro-
gressively smaller and eventually goes to zero at k = r. To provide a convenient
measure for this behavior independent of the size of A, let us consider the
normalized matrix approximation ratio

| |A<k>|| rai + vl + . - . + aW"
v(/c) = ..... - ~- = — ̂  -- ^- - - ---- -v , 1 < k < r 9.70)

Clearly, this normalized ratio approaches its maximum value of 1 as k ap-
proaches r. For matrices of low effective rank, v(/c) is close to 1 for values of k
significantly smaller than r. On the other hand, matrices for which m must take on
high values (i.e., k % r) to achieve a v(k] near 1 are said to be of high effective rank.

Application of SVD to ARMA Modeling C

To determine the required order for an ARMA model, we shall now make an
SVD of the t x (pe + 1) extended-order correlation matrix estimate of form
Eq. (9.63), that is,

Re= I Wl (9.71)
k= 1

To obtain the required order p, we examine the normalized ratio v(k). We set the
underlying order p equal to the smallest value of k for which v(k) is deemed
adequately close to 1. The terminology "adequately close to 1" is subjective
and depends on the particular application under consideration as well as user
experience gained through empirical experimentation. In any case the net result
of this step yields a rank p approximation of the t x (pe + 1) extended-order
correlation matrix estimation; that is,

Rlp) = t Wl (9.72)
k-= 1

We now give two procedures for using this rank p approximation to obtain AR
parameter estimates.

Method I: ARMA(pe, qe) Model 1

In this approach the rank p approximation [Eq. (9.72)] is interpreted as an
improved estimate of the underlying extended correlation matrix. It is convenient
to decompose Eq. (9.72) as follows:

R(P) = p(P) : R<P>] (9.73)

where f(/" is the leftmost t x 1 column vector of Rj,p) and R(p) is a t x pe matrix
composed of the pe rightmost t x I column vectors of Rj,p). We now seek a
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(pe + 1) x 1 augmented AR parameter vector a (i.e., its first component equals
1) that satisfies the theoretical relationship

R</"a = 0 (9.74)

Since the rank of R*»p) is less than full if p <* pe, there exists an infinite number of
solutions to this problem. From decomposition Eq. (9.73) each solution must
satisfy R(p)a = —r(ip). We here select the minimum-norm solution, which is
specified by [14]

a\

where [R(p)]# denotes the pseudo inverse of matrix R(p).

2 Method II: Lower-Order ARMA(p, q) Model

The best rank p approximation matrix [Eq. (9.72)] contains within its column
structure the characteristics required to estimate AR parameters of a lower-order
ARMA(p, q) model [4,14]. In particular, the submatrices of R|,p) composed of its
columns k through p + k inclusively yield rank p approximations of the t x
(p + 1) correlation matrices Rfc for 1 < k < pe — p -I-1 as specified by Eq. (9.64). We
shall denote these rank p approximations by Rj^. Due to the SVD operation
and errors inherent in generating Re, there generally does not exist a unique
augmented AR parameter vector that satisfies all of the pe — p + 1 homogeneous
relationships [Eq. (9.65)]. Nonetheless, it is still desirable to find an AR
parameter vector for which each of these relationships is almost satisfied. A
functional that measures the degree to which this is accomplished is

/(a) = afS(p)a (9.76)
where

Pe-'P+l ^

S(p) = X R[P)tRtP) (9-77)
fc= i

The (p + 1) x (p + 1) matrix S(p) is nonnegative definite Hermitian.
Upon generating the (p + l ) x ( p + l) matrix S<p), we next wish to select that

augmented AR parameter vector a to minimize quadratic functional Eq. (9.76).
This constrained minimization results in the best least squares approximation of
the theoretical relationships [Eq. (9.65)]. Using standard procedures, we find the
required optimum augmented AR parameter vector by solving the linear system1

S(P)ao = aCj (9<78)

* In those rare cases where S(p) is singular, the required augmented AR parameter vector is set equal
to any appropriately normalized eigenvector associated with a zero eigenvalue of S(p).
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in which the normalizing constant a is selected so that the first component
of a is 1, as required. We show in the next section that these SVD versions of
ARMA modeling procedures can significantly improve modeling performance.

NUMERICAL EXAMPLES X

In this section we investigate the comparative spectral estimation performance
of the ARMA modeling procedures as developed in Sections VIII and IX
with those of popularly used alternatives. The first example treats the problem
of obtaining a rational spectral estimate from a set of observations of an
ARMA(4,4) process. In the second and third examples we examine the modeling
performance for the special case of sinusoids in white noise.

Example 1. We examine the time series as characterized by (see [24])

x(n) = xi(n) + x2(n) + 0.5e(n) (9.79a)

which is composed of the two AR(2) time series generated according to

jc,(n) = 0.4x,(n - 1) - 093x,(n - 2) + e,(n) (9.79b)
i \ / v . ^ . j ^ y - j -̂  j ^ y / ' 1 \ / \ /

x2(n) = -0.5x2(n - 1) - 0.93x2(n - 2) + e2(n) (9.79c)

where e(n), ej(w), and e2(n) are pairwise uncorrelated Gaussian zero-mean white
noise processes with variance 1. A simple analysis indicates that the PSD function
associated with time series [Eq. (9.79)] is

Sx(co) = |1 - Q.4e'Jm + Q.93e~J2<0\~2

+ 1 1 + 0.5e~j<0 + Q.93e-J2<0\-2 + 0.25 (9.80)

and is plotted in Fig. 9.7(c).
Using the time series description [Eq. (9.79a)], we generated 20 statistically

independent realizations each of length 125. These realizations were used to
compare the modeling effectiveness of the overdetermined ARMA method herein
described with the Box-Jenkin maximum-likelihood method [21]. The 20 (one
for each realization) superimposed ARMA (4,4) spectral estimates obtained
using the Box-Jenkin iterative method are shown in Fig. 9.7(b). The number of
iterations required to achieve these estimates ranged from 10 to 700, with 50 being
a typical requirement. Next, we used the ARMA modeling method represented by
Eq. (9.60) with unbiased autocorrelation lag estimates and W — 1 to obtain
the ARMA(4.4) AR parameter estimates. We used a direct adaptation of
Eqs. (9.34) and (9.35) to form the MA component of the spectral estimates.
The 20 superimposed ARMA(4.4) spectral estimates obtained are shown in
Fig. 9.6(c)-(e) for various choices of t. These plots show that progressively
imporved estimates are achieved when t is increased from its minimal value 4 to
8 and then to 20. Moreover, these spectral estimates were of higher quality
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Fig. 9.7. ARMA (4.4) spectral estimates: (a) Exact; (b) Box-Jenkins maximum-likelihood method;

(c) Eq. (9.60) with / = 4; (d) Eq. (9.60) with t = 8; (e) 'Eq. (9.60) with t = 20.

than those obtained with the maximum-likelihood Box-Jenkins method, which
exhibited a larger variance in estimate.

Example 2. We investigated the comparative spectral estimation perfor-
mances of various widely used methods on the classical sinusoids in additive
white noise problem. The particular time series considered is

= sin(2nf1n) + sin(27r/2«) 0 < n < N - 1 (9.81)

where fl = 0.2, /2 = 0.215, and e(n) is a Gaussian white noise process of variance
(7^, = 0.5. This time series was previously examined in Section V, where different
rational models were generated from exact autocorrelation lag information. This
time series is particularly appropriate for testing the resolution capabilities of
spectral estimators, because of the closeness of the sinusoidal frequencies (i.e.,
/a —/ i =0.015) and the prevailing low SNR of 0 dB (individual sinusoid
power to total noise power).
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To gain a reasonably good statistical basis for comparison, we generated 10
statistically independent realizations of the time series [Eq. (9.81)] with each
realization being of length 128 (i.e., N = 128). From these 10 different sets of time
series observations, we made 10 spectral estimates for each rational spectral
estimator being tested. These estimates were then plotted in Figs. 9.8 to 9.11 in a
superimposed fashion (except for the periodogram) to depict consistency of
estimate. The ideal estimate would be two sharply defined peaks at frequencies
0.2 and 0.215. We now briefly describe the different estimators and their per-
formance on these test samples.

The periodogram as implemented by the FFT was first used to generate
spectral estimates for each of the 10 different 128 data length realizations.
Specifically, the FFT [Eq. (9.51)] with N — 128 was incorporated into the MA
spectral estimator [Eq. (9.49)] to generate the sample periodogram estimate

x(n+ 0 < k < N - I (9.82)

Each of the 10 periodograms produced remarkably similar results. A typical 128-
point FFT periodogram estimate arising from one of these trials is shown in
Fig. 9.8(a). From this plot (and the nine others not shown) it was not possible

CQ
13

CQ
-a

0.60

*0.00 0.10 0-.20 0-.30 0.40 0.60

(b)
Normalized Frequency (Hz)

Fig. 9.8. MA spectral estimate using the FFT algorithm implementation of the periodogram:
fa) N = 128 with no zero-padding; (b) N = 256 with 128 zero-padding.
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Fig. 9.9. AR spectral estimates from 128 time series observations: (a) AR(20) with p = 20,

Burg estimate; (b) AR(24) with p = 24, Burg estimate; (c) AR(20) with p = 20, q = 0 using Eq. (9.60).

to unambiguously detect the presence of two spectral peaks at frequencies 0.2
and 0.215.

To ease the potential ambiguity created by the finite-frequency sampling of the
periodogram (i.e., Ao> = 2n/N\ we used the concept of padding (Section VI). The
original time series observation of length 128 was appended with 128 zeros. The
resultant 256-point padded FFT periodogram is shown in Fig. 9.8(b). In this
padded case we are able to unambiguously detect the presence of the two spectral
peaks at 0.2 and 0.215.



0.00 0.60

CQ
-O

"O
P

0.00 0.60

SQ

0.00 0 . 1 0 0.20 0.30 0 .40 0.60

(c)
Normalized Frequency (Hz)

Fig. 9 JO. ARM A estimate using 128 times series observations: (a) ARMA(8,8) model, using
Eq. (9.60) with p = q = 8, t = 70; (b) ARMA(12,12) estimate using Eq. (9.60) with p = q = 12, t = 70;
(c) ARMA(4.4) SVD estimate using Eq. (9.60) with p = q = 14,/> = 4, ? = 50.
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Fig. 9.11. AR spectral models: (a) Eq. (9.75) withp = 35; (b)Eq. (9.75) with p = 96; (c) Kumaresan
Tufts method,/; = 35; (d) Kumaresan-Tufts method—optimum order p = 96.
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AR Estimates 8

In AR modeling, one of the most widely used procedure is the Burg algorithm.
We used it to generate spectral estimates for each of the aforementioned 10
observation sets of length 128. The 10 superimposed Burg AR(20) estimates that
resulted are depicted in Fig. 9.9(a). Although a detection of spectral energy in the
region about / = 0.2 is evident, the appearance of two spectral peaks is absent.
The ordering selection p — 20 was evidently not sufficient for the required
resolution. When the AR order was increased to p = 24, however, the Burg
AR(24) estimates produced two reasonably well-defined peaks about / = 0.2
and / = 0.215 in 9 out of the 10 estimates. These estimates are plotted in
superimposed fashion in Fig. 9.9(b). It was further determined that even more
sharply defined peaks are achieved in all 10 estimates when the order was
increased to 40. The Burg algorithm provides satisfactory resolution perfor-
mance for the time series under study when the AR order is larger than 24.

To demonstrate the effect of using more than the minimal number of extended
Yule -Walker equations in arriving at an AR model (the Burg algorithm uses the
minimal number), we used the overdetermined equation modeling technique as
embodied in Eq, (9.60) with W = / and unbiased autocorrelation lag estimates
with p = 20, q = 0, and t = 50. The 10 AR(20) spectral estimates obtained are
shown in Fig. 9.9(c). A resolution of the two sinusoids was achieved in all 10
estimates. The lower-order AR(20) spectral estimates generated with the
overdetermined equation approach provided more sharply defined peaks than
did the high-order Burg AR(24) spectral estimates. This occurred primarily
because 50 higher-order Yule-Walker equations were used to specify the 20 A R
parameters. The degree of smoothing achieved in applying this approach is
evident from this numerical example.

ARMA Estimates C

We next used the overdetermined equation ARMA modeling procedure as
represented by Eq. (9.60) with W = / and unbiased autocorrelation lag-estimate
entries to generate estimates of the AR coefficients of an ARMA(p,p) model for
p — 8 and p = 12. Using the remarks in Section V, we plotted \Ap(e

jta}\'2 to re-
veal the required spectral information for the sinusoids in white noise case (i.e.,
the zeros are not used). In Fig. 9.10(a) the 10 AR(8,8) spectral estimates that arose
for a choice of t = 70 are shown superimposed. Although spectral energy in the
neighborhood of / = 0.2 is detected, the presence of the required two spectral
peaks is not. Clearly, the order selection p = 8 was not sufficient to achieve the
desired resolution. When we increased the order to ARMA( 12,12), retaining
t = 70, the resultant 10 spectral estimates in Fig. 9.10(b) each achieved the de-
sired spectral resolution with two sharply defined peaks about / = 0.2 and / =
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0.215. These spectral estimates were obtained with only 12 AR parameters and
are superior to the Burg AR(24) estimates, which required 24 AR parameters,
and the overdetermined AR(20) estimate. In terms of spectral estimation fidelity
and parameter parsimony (i.e., effective use of parameters), the overdetermined
equation ARMA modeling method was clearly superior to the other methods.

Spectral estimation performance is significantly improved when we adopt
the SVD approaches to ARMA modeling as outlined in Section IX. After set-
ting pe = qe = 14 and t = 50 we found that the effective rank of the extended-
order autocorrelation matrix estimate Rc was 4. Next, for p = 4 in Eq. (9.78) the
10 SVD derived lower-order ARMA(4,4) spectral estimates that arose are
shown superimposed in Fig. 9.10(c). In all 10 estimates the two sinusoids were
detected, and the spectrum was approximately at the theoretical 0-dB noise level
for most other frequencies. These spectral estimates are not only of uniformly
high quality, but they represent the lowest-order rational model compatible with
the two sinusoids in white noise.

To demonstrate the worthiness of singular values in model order deter-
mination when using the SVD approach, we give the 15 singular values that
characterized the extended-order autocorrelation matrix estimate Re for one of
the 10 observation sets: oi = 18.3, $2 = 18.2, a3 = 5.30, <74 = 4.69, as = 0.85,
<?6 = 0.78,..., <r15 = 0.21. The first four singular values are dominant (i.e.,
v(4) = 0.99), which indicates that the effective rank of Rc is 4. Thus we cor-
rectly choose ARMA order p = q = 4 after examining the behavior of the
singular values.

Example 3. We next consider a time series of form Eq. (9.81) in which the
relevant parameters are ft = 0.2, /2 = 0.21, crj^ = 1.778. This particular para-
meter choice provides a more challenging test of resolution capability because
the frequency spacing /2 — /i = 0.01 is smaller and the SNR of — 5 dB is lower
than that of the time series in Example 2. Again, 10 statistically sample runs each
of length 128 were used for testing four AR-type models. In the first, we used the
overdetermined equation AR model [Eq. (9.36)] with qe — — 1, pe — 35, t = 90
(giving 90 Yule-Walker equation approximations). We then used unbiased au-
tocorrelation estimates to form the 90 x 36 autocorrelation matrix estimate Re.
Finally, we used Eq. (9.75) to generate the optimum AR parameter estimates.
The resultant 10 AR(35) spectral estimates are shown in superimposed plots in
Fig. 9.11 (a), where resolution was achieved in each of the 10 runs. Next, we tested
the overdetermined equation AR model [Eq. (9.36)] with qe = — 1, pe = 96,
t — 96, and unbiased autocorrelation lags. We need Eq. (9.75) with p = 4
to generate the ak estimates of the AR(96) model. A plot of the resultant spectra
is shown in Fig. 9.11 (b), where resolution was achieved for each of the 10 runs.

The pseudo-maximum-likelihood Kumaresan-Tufts (KT) method, which
provides a near maximum-likelihood performance, was next tested on these same
10 sample runs [25]. The resultant AR-type thirty-fifth and ninety-sixth (the
optimum KT order choice) order spectra are plotted in Fig. 9.11 (c) and 9.11 (d),
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respectively. The thirty-fifth-order model was unable to resolve the sinusoids in
any of the 10 runs but the ninety-sixth-order model achieved a resolution in
each case. For this example the overdetermined equation modeling approach
outperformed the pseudo-maximum-likelihood approach.

CONCLUSIONS XI

A philosophy directed toward the rational modeling of WSS time series has
been presented. The method is explicitly based on the Yule-Walker equations,
which characterize the autocorrelation sequence associated with the rational
time series being modeled. In particular, the key concepts were (1) using an
overdetermined set of Yule-Walker equation evaluations and (2) employing a
mode overordering for estimating the parameters of a postulated rational model.
This approach reduced the data-induced hypersensitivity of the parameter
estimates in comparison to many of the more popular parametric approaches
that invoke a minimum set of evaluations for obtaining the parameter estimates.
These latter methods include the Burg algorithm and many LMS methods.
Comparative examples illustrating this reduced hypersensitivity have been given
in which the modeling is based on both exact autocorrelation lag information and
raw time series observations.

The SVD method was next introduced and used to obtain an effective rational
model order determination procedure and provide a novel rational modeling
procedure whose performance has been empirically found usually to exceed that
of more traditional techniques.
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Chapter 10

Deconvolution

MANUEL T. SILVIA
Allied Signal Aerospace Company

Bendix Oceanics Division
Sylmar, California 91342

Many physical phenomena can be described by the methods of linear time-
invariant (LTI) systems theory. When the LTI theory is applicable, the un-
derlying physical process is usually described as the response of an LTI system
to some physical source excitation. The corresponding mathematical model is
composed of an input (the source excitation), an impulse response (the LTI
system function), and an output (the physical process). The process of convolution
transforms the input to the output by the LTI impulse response. For example, let
us consider the physical process of speech. When air pressure is forced from the
glottis to the lips by means of the vocal tract, human sounds (i.e., speech) are
produced [1]. Here, the input or source excitation is the air pressure in the glottis,
the LTI impulse response is derived from the physical properties of the vocal tract
(see [1]), and the output of the LTI system is the physical process of speech.
Figure 10.1 gives a physical description of speech generation. Figure 10.2 gives an
LTI systems theory description of speech. For continuous-time speech processes
the convolution integral

y(t)=\ h(r)x(t-'c)dT = h(t)*x(t) (10.1)
J - oo

transforms the glottis source x(t) into the speech output y(t) by means of the vocal
tract's impulse response h(t). Thus, speech can be modeled as the convolution of
h(t) and x(t).

Given a particular vocal tract or h(t) and a glottis source x(t), convolution
generates the speech waveform y(t). We say that convolution describes the forward
problem. Let us now consider the problem of trying to evaluate h(i) from
knowledge of y(t) and x(t). That is, given the speech output and knowledge of the
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GLOTTIS

SPEECH = ACOUSTIC PRESSURE
WAVE

LIPS

Fig. 10.1. Physical description of speech generation.

(GLOTTIS SOURCE)

LTI IMPULSE RESPONSE
(VOCAL TRACT)

OUTPUT

(SPEECH!

Fig. 10.2. LTI systems theory description of speech.

glottis input, what is the vocal tract's impulse response? This question defines the
inverse problem. From Eq. (10.1) we see that the convolution of y(t) and some
function q(t), that is,

would equal h(i) if

y(t) * q(t) = h(t) * x(t) * q(t)

x(t) * q(t) = d(t)

(10.2)

(10.3)

Here, S(t) is the familiar Dirac delta function (Chapter 1). If Eq. (10.3) exists, then
the convolution Eq. (10.2) gives h(t\ and the inverse problem has a solution. The
quantity q(t) is called a deconvolution filter, since it "deconvolves" the input x(t)
from the speech waveform y(t). Thus, we say that deconvolution describes the
inverse problem. The problem of deconvolution is concerned with the develop-
ment of fast and stable algorithms that produce accurate deconvolution filters.
Once the deconvolution filter q(t) is known, the impulse response h(t) follows
from Eqs. (10.2) and (10.3).

Let us now consider another physical process involving the inverse problem of
deconvolution. In the exploration for oil and natural gas, seismic sources or
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RECORDING GEOPHOIMES

SEISMIC SOURCE

EARTH'S

Fig. 10.3. Physical description of recorded seismic waves.

vibrators (located at or near the earth's surface) excite the earth and produce
seismic waves [2]. Geophysicists record these waves with geophones (for land
exploration) or hydrophones (for offshore exploration). For this discussion let us
consider the case where the geophones or hydrophones are located at or near the
earth's surface. Again, we can use LTI systems theory to describe this physical
process. This time the input or source excitation is the seismic vibrator, the LTI
impulse response is derived from the physical properties of the earth's subsurface
(see [2])» and the output of the LTI system is the recorded seismic waves. Figure
10.3 gives a physical description of the recorded seismic waves that occur in the
exploration for oil and natural gas. Figure 10.4 gives the corresponding LTI
system description. For convenience let us assume that the recorded seismic

(SEISMIC VIBRATOR)

LTI IMPULSE RESPONSE

(EARTH'S SUBSURFACE!

OUTPUT

{RECORDED SEISMIC WAVES)

Fig. 10.4. LTI systems theory description of recorded seismic waves.
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waves represent one-dimensional continuous-time phenomena. Therefore, after
analog-to-digital conversion (ADC) the convolution integral Eq. (10.1) becomes
the convolution sum

y(n}= £ h(m)x(n - m) = h(n] * x(n) (10.4)

In words, the recorded seismic wave samples y(n] are generated by the
convolution of the earth's discrete-time impulse response h(n) and the source
samples x(n). Thus, given h(n) and x(n), we solve the forward problem for y(ri) by
convolving h(n) with x(n). Now given y(n) and x(n), we solve the inverse problem
for h(n) by deconvolving x(n) from y(n). That is,

y(n) * q(n) = h(n) * x(n) * q(n) (10.5)

would equal h(n) if

x(n) * <?(n) = <5(w) (10.6)

Here, <>(n) is the discrete-time impulse function (Chapter 1). The discrete-time
deconvolution filter q(n) is obtained from Eq. (10.6), provided it exists. Once
q(n) is known, the deconvolution problem is solved, and h(n) is obtained from
Eqs. (10.5) and (10.6). The seismic deconvolution problem plays an important
role in the exploration for oil and natural gas, since knowledge of the earth's
impulse response is tantamount to knowledge about oil and gas reservoirs [2].

The deconvolution problem also appears in the sonar signal processing area.
For example, in passive sonar operations a target radiates an acoustic signal into

SURFACE BOUNDARY

Fig. 10.5. Passive sonar receives distorted version of radiated signal.
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an acoustic medium with surface and bottom boundaries. Generally, the
boundaries of this medium produce multipath interference [3]. Consequently, a
passive sensor/receiver could receive a distorted version of the radiated signal
(see Fig. 10.5). Now if we let the input x(t) be the radiated signal, the output or
received signal y(f) can be modeled by (Fig. 10.5)

y(t) = x(i) + Asx(t - TS) + Abx(t - rh)

(10.7)
-$dX = h(t)*x(t)

where the multipath impulse response h(t) can be expressed as

h(t) = S(t) + A,d(t - rj + Abd(t - rh) (10.8)

Here, As and Ab represent surface and bottom signal amplitude parameters, and
TS and ift represent the signal time delays due to the surface and bottom
multipaths, respectively. Hence, the multipath interference or distortion can be
described by the convolution of the source x(t) and the LTI impulse response h(t),
which depends on the physical characteristics of the ocean medium.

Normally, a passive sonar receiver is interested in the radiated signal x(t). As we
have just seen, when multipath distortion is present, y(t) is a distorted version of
x(f). Thus, to obtain x(t), we must deconvolve h(t) from y(t). Mathematically,

y(t) * q(t) = h(t) * x(t) * q(t) = x(t) * h(t) * q(t] (10.9)

equals x(t) if

h(t) * q(t) = d(t) (10.10)

As before, we obtain the deconvolution filter q(t) by solving Eq. (10.10) for q(t).
Notice that the continuous-time Fourier transform of Eq. (10.10) gives

H(F)Q(F)= 1 (10.1 la)

or

(10.1 Ib)

which shows that deconvolution is equivalent to division in the frequency
domain. Although the mathematical solution for Q(F) seems straightforward,
numerical divison on a digital computer must be done with caution. Further,
some Fourier transforms might contain zeros. For these situations exact
deconvolution filters do not exist. As we will soon see, deconvolution algorithms
must be carefully designed in order to handle noisy signals, finite-length 1 6-bit
integer arithmetic problems, and signals with zeros in their Fourier transforms.

Deconvolution plays an important role in the identification of physical
systems. As we have just seen, the deconvolution of a speech signal y(0 can
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provide useful information about the vocal tract [i.e., h(t)]. In seismic signal
processing, the deconvolution of a seismic waveform y(t) can be used to identify
the earth's impulse response h(t). In passive sonar signal processing, the
deconvolution of a received signal y(t) can be used to estimate the target's
radiated signal x(t). In the literature, deconvolution is sometimes called systems
identification [4-6].

The subject of deconvolution is rich in theory and computational algorithms.
The main purpose of this chapter is to briefly review the essential components of
deconvolution theory and a few computational algorithms. In Section II we
consider the deconvolution of LTI systems with no measurement noise. In
Section III we consider the more difficult problem of the deconvolution of LTI
systems that contain measurement noise. In Section IV we discuss the Levinson
or Toeplitz recursion and its relationship to deconvolution. In Section V we
discuss the deconvolution or inverse problem as it appears in speech and seismic
signal processing. The appendixes provide some references where computational
FORTRAN IV algorithms can be obtained, and some useful program source
codes.

A Discrete-Time Linear Time-Invariant (DTLTI) Systems

Deconvolution applies to both continuous-time and DTLTI systems. From
now on we will consider only DTLTI systems. This is done for convenience, since
most deconvolution algorithms are performed on a digital computer.

A DTLTI system can be described by its impulse response h(n). The
corresponding z-transform H(z) is the system transfer function. In general, H-(z) is
a two-sided z-transform (i.e., the sequence h(n) is nonzero for positive and
negative indices «). For our discussion we consider only right-sided or causal
sequences h(n), so h(n) = 0 for n < 0. Further, we assume that H(z) can be
described by a rational function:

= MO) + MDz-' + y-' + - + M<N

1 + aN(l)z * + aN(2)z~ 2 + • • • + aN(N)z-N J

Thus, the coefficients aN(m) (m = 1,2,..., N) and bM(l) (I = 0, 1, 2,... , M)
characterize the DTLTI system.

We further assume that all the poles of Eq. (10.12) are inside the unit circle in
the complex z-plane, so h(n) is a stable sequence. For a right-sided input sequence
x(n) and a right-sided output sequence y(n\ Eq. (10.12) gives rise to the linear
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constant-coefficient difference equation

y(n) + aN(l)y(n - 1) + aN(2)y(n - 2) + • • • + aN(N)y(n - N)

1) + M2)x(w - 2)

), n>0 (10.13)

Thus, a right-sided, stable DTLTI system can be described by its impulse h(n), its
system transfer function [Eq. (10.12)], or its difference equation [Eq. (10.13)].
Here, we have assumed that both the input and output sequences x(n) and y(n\
respectively, are right-sided, stable sequences.

Given the coefficients aN(m) (m = 1,2,..., N), bM(l) (I = 0, 1, 2, . . . , M), and
x(n), we can find the output y(n) from Eq. (10. 1 3). Given h(n) and x(n), we can find
the output >'(«) from the convolution sum

y(n) = £ h(m)x(n - m) = h(n) * x(n), n > 0 (10.14)
m-O

If we define the finite-length sequences

aN(n) = (%(0) - 1 , %(1), %(2), . . - , aw(N)) ^

M») = (MO), MO, M2),-.., bM(M))
with right-sided z-transforms

/Mz) = £ aN(n)z~" = 1 + aN(\)z~l + aN(2)z ..... 2 + ••• + %(AT)^A'
„ = o

M

(10.16)

then Eq. (10.12) becomes

(10.17)
*N(Z)

and Eq. (10.13) can be written in convolution form as

Equations (10,12)-(10.18) are useful for convolution and deconvolution
operations.

Minimum Phase, Minimum Delay, and Deconvolution B

An important concept often encountered in the study of deconvolution is
minimum phase or minimum delay [2,7]. The concept of minimum phase and its
relationship to feedback control systems were introduced by Bode, who worked
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in the domain of continuous-time, linear, time-invariant systems. Working with
the Laplace complex frequency variable s — a + jfi associated with continuous
time, Bode originally stated that a transfer function, derived from a linear
differential equation with constant coefficients, is minimum phase if it contains
no zeros or poles in the right-half s-plane. Systems having poles and/or zeros in
the right-half s-plane are called non-minimum-phase systems. Based on Bode's
original work, we now give the following definitions for right-sided sequences
and DTLTI systems:

Definition of Stability. A right-sided sequence is stable if its one-sided z-
transform has no poles outside or on the unit circle in the complex z-plane. A
right-sided DTLTI system of the forms (10.12) and (10.17) is stable if the
polynomial AN(z) has no zeros outside or on the unit circle in the complex z-plane.

Definition of Minimum Phase. A right-sided stable sequence is called mini-
mum phase if its one-sided z-transform has no zeros outside or on the unit circle
in the complex z-plane. A right-sided DTLTI system of the forms (10.12) and
(10.17) is called minimum phase if the polynomial BM(z) has no zeros outside or
on the unit circle in the complex z-plane

Any right-sided stable sequence or DTLTI system that is not minimum phase is
called non-minimum phase.

The spectrum or frequency content of a right-sided stable sequence s(n) is given
by the discrete-time Fourier transform (DTFT) (Chapter 1)

S(o>) = \S(a))\eJ9'(<o) (10.19)

where \S(co)\ is termed the magnitude spectrum or gain and 0s(co) is the phase
spectrum. One important consequence of a minimum-phase sequence is that if
the gain is specified for — n < (o < n, then the corresponding phase spectrum is
uniquely specified for — n < co < n. Conversely, if the phase spectrum is specified
for — 7i < co < n, then the gain is uniquely specified for — n < co < n. Thus, the
magnitude and phase spectra of a minimum-phase sequence are uniquely
related: they form a Hilbert transform pair. If we assume that Eq. (10.19)
represents a minimum-phase sequence, then we have the Hilbert transform pair

log|S(o))| = s(0) - J-
2n .

(10.20)

0,(a>) = ±(P) I* l o g l S M I c o t r f A
%/ ~ 7T \ *" /

where
or;>

S(z) = log S(z) = £ s(n)z " (10.21)
n = 0

and (P) denotes the Cauchy principal value of the integral [8].



10. Deconvolution 749

Example 1. Consider the right-sided stable DTLTI system in Fig. 10.6. Let us
assume that the input sequence x(n) is a zero mean wide-sense stationary (WSS)
random process with autocorrelation sequence (refer to Section IX in Chapter (1),

rxx(m) = E[x(n)x*(n - m)] (10.22)

Thus, the input power spectral density (PSD) is, for —n<co< n,

Sxx(o>)= I rxx(m)e~Jm«> (10.23)
m = — oo

It follows that the output sequence y(n) is also a zero-mean WSS random process.
The corresponding output PSD is

for — n < w < n. Here, H(co) is the DTFT of h(n) or the frequency response of the
DTLTI system.

Let us now consider the following deconvolution problem. Given the random
WSS input [with PSD Sxx(co) and autocorrelation sequence rxx(m}] and the
random WSS output [with PSD Syy(o}) and autocorrelation sequence ryy(m)~]
associated with the DTLTI system in Fig. 10.6, determine the impulse response
h(n}. To solve this problem, we proceed as follows. The fundamental idea is to
deconvolve x(n) from y(n), as explained by Eqs. (10.4) and (10.5). However, since
we are attempting to determine a nonrandom sequence h(n) from two random
sequences x(n) and y(n\ it makes more sense to deal with the corresponding PSDs
or autocorrelation functions. Thus, let us first proceed to obtain the magnitude of
//(to) from Eq. (10.24); that is,

1/2

(10.25)

provided that Sxx(a>) > 0 for — n < a> < n. (In general, Sxx(a)) is nonnegative for
— n < o) < n [9]. The requirement that Sxx(cu) be positive is not stringent, for it
includes many physical WSS random processes such as white noise.) The next
step is to obtain the phase spectrum 0H((o) associated with H(OJ). If we assume
that //(co) represents a minimum-phase system, then we know that log|H(w)| and
0H(io) form a Hilbert transform pair [Eq. (10.20)]. Thus, H(co) is totally specified
from just the magnitude information, since the phase is uniquely reconstructed by
Eq. (10.20). At this point we have determined the total frequency response //(to).

x(n)
h(n)

V(n)

Fig, 10.6. Right-sided stable DTLTI system.
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The impulse response h(n) follows from the inverse DTFT (IDTFT) (Chapter 1)
of H(w). This completes the solution to the deconvolution problem.

A key assumption in our solution was that H(co) represented a minimum-phase
system. When H(co) is not minimum phase, the phase reconstruction is not unique
[2,7]. Consequently, we cannot obtain a unique answer to the deconvolution
problem. Therefore, we make the important observation that the concept of
minimum phase and the concept of a unique deconvolution go hand in hand.

Let us now discuss the concept of minimum delay [10]. Any right-sided stable
sequence or system can be described by its magnitude spectrum (gain) or its phase
spectrum (a measure of delay). The delay of a system is a measure of the time
delay from input to output. It is possible to have many different right-sided
systems with the same gain but each with a different delay. It is always possible to
have right-sided systems with very large delays, because there is no theoretical
limit to the largeness of a delay that can be incorporated into a right-sided
system. On the other hand, there is a limit to the smallness of a delay that can be
incorporated into a right-sided system. The reason is that it always takes some
finite amount of time for a right-sided system to respond significantly to an input.
Thus, the minimum-delay sequence or system is the one with the smallest possible
delay for its gain. It turns out that the mathematical properties of minimum
phase and minimum delay are identical [2]. For a more detailed discussion of
minimum delay see [2,9].

Example 2. Let us once again consider the right-sided stable DTLTI system
in Fig. 10.6. Let us assume that the input sequence x(n) is a nonrandom right-
sided stable sequence. It follows that the output sequence y(n) is also a
nonrandom right-sided stable sequence that can be derived from the convolution
sum [Eq. (10.3)]. We now wish to solve the following deconvolution problem.
Given the right-sided stable impulse response h(ri) and the right-sided stable
output sequence y(n), determine the right-sided stable input sequence x(ri). Let us
now proceed to solve this problem.

The basic idea is to deconvolve h(n) from the output y(n). In mathematical
terms there exists a deconvolution filter q(n) such that

y(n) * q(n) = h(n) * x(n) * q(n) = x(n) * h(n) * q(n) (10.26)

equals x(n) if

h(n) * q(n) = 5(n) (10.27)

The one-sided z-transform of Eq. (10.27) gives

H(z)Q(z) = I (10.28)

or

2(z) = fl£) (10-29)

which is the one-sided z-transform of the deconvolution filter q(n). This filter
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must be right-sided and stable; otherwise, x(n) = y(n) * q(n) will not be right-
sided and stable. Thus, in order for Eq. (10.29) to yield a right-sided stable
deconvolution filter, Q(z) must have no poles outside or on the unit circle in the
complex z-plane. In other words, H(z) must be minimum phase or minimum
delay. If H(z) is not minimum phase, we cannot recover x(n) from y(n); that is, we
cannot deconvolve h(n) from y(n).

In summary, the above deconvolution problem has solution x(n) = y(n) * q(n)
if and only if h(ri) is minimum phase or minimum delay. Under this condition q(n]
follows from Eq. (10.27) or Eq. (10.29). As we saw in Example 1, the concepts of
minimum phase and deconvolution are intimately related.

We now close this section with the following key points. Let S denote the set of
right-sided, stable sequences. If we assume that x(n), h(n), and y(n) are all
contained in S and y(n) — h(n) * x(n), then

1. In order to deconvolve x(n) from y(n), x(n) must be minimum phase or
minimum delay.

2. In order to deconvolve h(n) from y(n\ h(ri) must be minimum phase or
minimum delay.

3. All deconvolution filters q(n) that are contained in S must be minimum
phase or minimum delay.

4. A minimum-phase sequence can be uniquely reconstructed from only
partial knowledge of its Fourier transform (e.g., from its magnitude or phase
spectrums; see the Hilbert transform pair (10.20) and (10.21).

Oeconvoiution and the Identification of DTLTI Systems with
No Measurement Noise

DTLTI Systems with N on random Inputs 1

In this section we assume that x(n), h(n), and y(n) all belong to the set S of all
right-sided stable sequences. Further, we assume that our DTLTI system transfer
function H(z) has the rational form [Eq. (10.12)], so this DTLTI system can also
be described by the difference equation [Eq. (10.13)]. Thus, the coeffi-
cients %(m)(m = 1,2,...,JV), bM(l) (I = 0,1,2,...,M) in Eqs. (10.12) and (10.13)
completely define or identify the impulse response h(n). Given the input x(n)
and the noise-free output y(n) for n > 0, we will now show how to determine
the %(m) and bM(l) coefficients. That is, we will perform a DTLTI systems iden-
tification [4-6].

The first step is to obtain the impulse response h(n) by deconvolving the
input or source x(n) from the noise-free output y(ri). If we assume that x(ri) is a
minimum-phase sequence, then the deconvolution is proper; that is, we can
uniquely reconstruct /i(«)(see Section ILB). Now to perform this deconvolution in
the frequency domain, we first take the DTFT of x(n) to get X(co). We then take
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the DTFT of y(n) to get Y(co). Next, we perform the spectral division or frequency
domain deconvolution

(10,30)
X(a>)

for —n<aj<n. The IDTFT of Eq. (10.30) gives a stable h(n) for n > 0 (provided
that x(ri) is minimum phase). This completes the deconvolution of the minimum-
phase source x(n).

For n > 0 we note that h(n) satisfies the difference equation

h(n) + aN(\)h(n - 1) + aN(2)h(n - 2) + • • • -f aN(N)h(n

= M0)<3(n) + bu(\)6(n -1)4- bM(2)S(n - 2)

+ • • • + bM(M)d(n - M\ n>0

For n > M we have the difference equation

h(n) + aN(l)h(n - 1) + aN(2)h(n - 2) + • • • + aN(N)h(n -N) =

N)

(10.31)

n > M

(10.32)

Since Eq. (10.32) does not contain any of the bM(l) coefficients, it provides a useful
vehicle for obtaining the aN(m) coefficients. That is, for n = M + 1, M + 2,. . .,
M + N we can use Eq. (10.32) to generate N simultaneous equations in the N
unknowns aN(l), aN(2), . . . , aN(N). Doing so, we get the matrix equation

/i(M
h(M)

~h(M + l)
h(M + 2)h(M + 2-N)

h(M) J|_«\(W)_

(10.33)

which can be solved for the aN(m) coefficients. Once the aN(m) coefficients are
known, we can then use Eq. (10.31) to obtain the bM(l) coefficients. Specifically,
F^q. (10.31) can be written in the convolution form

bM(l) = £ aN(m)h(l «v(0) = 1, / = 0, 1, 2, . . . , M (10.34)

At this point we have solved the systems identification problem; that is, we have
identified the aN(m) and bM(l) coefficients that define the DTLTI system described
by Eqs. (10.12) and (10.13).

Rational DTLTI systems of the form (10.12), (10.13), or (10.17) are commonly
referred to as autoregressive-moving average [ARMA(M, W)] systems [11,12].
An ARM A(M, N) system, with M zeros and N poles, can always be expressed as
the cascade of an autoregressive [AR(N)] or all-pole system and a moving
average [MA(M)] or all-zero system. [In the digital filtering literature ARMA is
usually replaced by infinite impulse response (IIR) and MA is usually replaced by
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X(z) H{z) =
A N ( 2 )

Y(z)

ARMA (M, N)

X(z)
A N (z ) »» BM( Z )

Y(z)

AR (N) MA(M)
Fig. 10.7. ARMA(M, N) system as cascade of AR(Af) and MA(M) systems.

finite impulse response (FIR).] See Fig. 10.7. Thus, if we let p(n) denote the
impulse response of the AR(JV) system and bM(n) denote the impulse response of
the MA(M) system, then the output y(n) can be explained in terms of two
convolutions. Mathematically,

y(n) = x(n) * p(n) * bM(n) (10.35)

Therefore, we can think of our ARMA(M, N) systems identification as a double
deconvolution. That is, first we perform a source deconvolution on y(ri) to remove
the effect of x(n) and obtain h(n). The corresponding deconvolution filter
satisfies the relation

* x(n) = 6(n) (10.36)

Second, we perform an AR(7V) deconvolution on h(n) to remove the effect of p(n)
and obtain bM(n). The corresponding deconvolution filter q2(n) satisfies the
relation

q2(n) * p(n) = 6(n) (10.37)

It turns out that q2(n) — aN(n) (with aN(Qi) = 1) is also the sequence of desired
AR(JV) coefficients. Table I summarizes the double deconvolution algorithm
required for our ARMA(M, N) systems identification.

Note that the double deconvolution algorithm made only one restrictive
assumption—namely, the source x(n) had to be a minimum-phase sequence.
Otherwise, the algorithm is capable of identifying both minimum-phase and
non-minimum-phase ARMA(M, N) systems. A block diagram description of the
double deconvolution algorithm is in Fig. 10.8.
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x(n) = INPUT/SOURCE y(n) = ARMA (M, N) NOISE-FREE OUTPUT
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1 ' 1 »

bM (n) aN (n)

1

SOURCE
» DECONVOLUTION

x(n) = MINIMUM-PHASE

(DESIRED COEFFICIENTS)

Fig. 10.8. Block diagram of the double deconvolution algorithm used in the ARMA (M, N) system
identification.
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TABLE I

Double Deconvolution Algorithm for ARMA(M, N) Systems Identification

Step 3. Take the DTFT of the noise-free output y(n) and the input x(n). We assume that x(n) is a
minimum-phase sequence.

Step 2. Perform the first deconvolution in the frequency domain. That is, perform the spectral
division

Then take the IDFT of this spectral division to yield h(n).
Step 3. Solve the matrix equation (10.33) to obtain the second deconvoiution filter q2(n] = %(«)

(with %(0) = 1). This step yields the desired AR(N) coefficients %( 1), aN(2), ..., aN(N).
Step 4. Solve the convolution equation (10.34) to obtain the desired MA(M) coefficients bu(Q),

b M ( l ) , bM(2), ,.., bM(M). Equation (10.34) is actually the second deconvolution; that is, it is
the deconvolution q2(n) * h(n) that removes the effect of p(n) on h(n).

DTLTI Systems with WSS Random Inputs 2

a. A Power Spectrum Approach. Once again, we assume that h(n) is a right-
sided, stable impulse response with system transfer function [Eq. (10.12)]. This
time we assume that the input x(n) is a real zero-mean WSS random process with
autocorrelation sequence rxx(m) and PSD Sxx(o)). Thus, the output y(n) is also a
real zero-mean WSS random process with autocorrelation sequence ryy(m) and
PSD Syy((t))< Given the input x(n) and output y(n), we will now show how to
identify the system Eq. (10.12). That is, we will discuss an algorithm for
determining the aN(m) and bM(l) coefficients in Eq. (10.12).

Our first approach is to assume that both the input and output PSDs are
known for — n < a) < n. For this case \H(a))\ is obtained from Eq. (10.25), and the
corresponding phase spectrum 0H(ai) follows from the Hilbert transform relation
between log|/f(co)| and 0H(co) (refer to Example 1). Thus, the impulse response
h(n), which must be minimum phase (Example 1), follows from the IDTFT of

H(co) = \H((o)\eje"(to> (10.38)

Given h(n) for n > 0, we can use steps 2 and 3 of the double deconvolution al-
gorithm to complete the systems identification. Note that the systems identifi-
cation algorithm proposed in this section can only identify minimum-phase
systems.

b. An Autocorrelation-Cross-Correlation Approach. In the previous section
we assumed that only PSD information was available. In this section we assume
that only the autocorrelation and cross-correlation information are available.
That is, we assume that rxx(m), ryy(m), and ryx(m) are known for all lags m. Given
this "time domain" information, let us now discuss some system identification
algorithms.
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Example 3, Let us assume that BM(z) = 1, so H(z) is the minimum-phase all-
pole model H(z) = \/AN(z). Under this condition we get the difference equation

y(n) + aN(\)y(n - 1) + aN(2)y(n - 2) + • • • -f aN(N)y(n - N) = x(n) (10.39)

for — OD < n < oo. Further, if we assume that x(n) is a zero-mean white noise
WSS process, then the autocorrelation function rxx(m) becomes

rxx(m) = old(m) (10,40)

Equations (10.39) and (10.40) describe an AR(JV) process of order N. The output
y(n) represents an AR process [12]. By multiplying both sides of Eq. (10.39) by
y(n — m) and taking expected values, we can show that the real AR(N) process
Eq. (10.39) has the autocorrelation model

ry>,(m) + aN(l)ryy(m - 1) + aN(2)ryy(m - 2) + ••- + aN(N)ryy(m - N) = 0

(10.41)

for m > 0. The model [Eq. (10.41)] provides a useful vehicle for obtaining the AR
coefficients aN(l), aN(2),..., aN(N). That is, for m = 1, 2,..., N we can use
Eq. (10.41) to generate N simultaneous equations in the N unknowns—that is,
the AR coefficients. Doing so, we get the matrix equation

ryy(l)

rw(0)

ryy(N - 2)

ryy(N -

-2)

aN(N)

ryy(2)
(10.42)

where we have used the fact that ryy(m) = ryy( — m) for real WSS processes y(n).
The set of equations (10.42) is commonly referred to as the Yule-Walker
equations. These equations were previously discussed in Chapter 9 (Section III)
in conjunction with spectral analysis. In Section IV we shall discuss a fast matrix
inversion algorithm for solving the Yule-Walker equations.

The identification of an AR(AT) process has an interesting interpretation in
terms of linear prediction [2,13]. For example, if y(ri) is the "true value" at time n
and

aN(m)y(n - m} (10.43)

represents the "linear prediction" of y(n] based on the past N samples y(n — I),
y(n — 2),.. . , y(n — N), then the corresponding "prediction error" is

e(n) = y(n) - y(n) (10.44)

Notice that Eq. (10.44) resembles the AR(Af) difference equation [Eq. (10.39)].
The set of aN(m) coefficients that minimize the mean-squared prediction error,
namely,

£[£»] = E[y(») - y(»)]2 (10.45)
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Fig. 10.9. Convolution and deconvolution operations associated with an AR(AO process.

satisfies the set of equations (10.42). In the context of mean-squared error (MSE)
linear prediction, the aN(m) coefficients represent a prediction filter and
Eq. (10.42) is referred to as the normal equations. In the context of AR(JV)
systems identification, the aN(m) coefficients represent the AR coefficients and
Eq. (10.42) are referred to as the Yule-Walker equations. In any event, there is
a one-to-one correspondence between AR(N) systems identification and linear
prediction.

The coefficients q(ri) — (1, aN(l), %(2),..., aN(N)) represent an FIR minimum-
phase deconvolution filter. That is, if y(n) is generated by the convolution

y(n) = p(n) * x(n)

then x(n) is generated by the deconvolution

q(n) * y(n) = x(n)

(10.46)

(10.47)

Notice that the deconvolution Eq. (10.47) resembles the AR(W) difference
equation [Eq. (10.39)]. The deconvolution filter q(n) is sometimes called a
whitening filter, since colored noise y(n) gets convolved with q(n) to produce white
noise x(n). See Fig. 10.9.

Example 4. Here we assume that AN(z) = 1, so H(z) is the all-zero or FIR
model H(z) ~ BM(z). For this case we get the difference equation

y(n) = bM(Q)x(n) + bM(l)x(n 1) + bM(2)x(n - 2) + • • • + bM(M)x(n - M)

(10.48)

for — GO < n < oo. If x(ri) is a white noise source with autocorrelation function
[Eq. (10.40)], then Eq. (10.48) represents an MA(M) process of order M. We say
that the output y(n) represents an MA process.

By multiplying both sides of Eq. (10.48) by x(n — m) and taking expected
values, we obtain

M/) = 0, (10.49)

That is, the MA coefficients are completely specified from the first M lags of the
cross-correlation sequence ryx(m) and o2

x [i.e., the variance of x(n)]. Thus, the
identification of an FIR filter driven by white noise with variance a* is
accomplished by Eq. (10.49). In Section IV we discuss fast algorithms that
perform an FIR filter systems identification.
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The above FIR systems identification algorithm can handle minimum-phase
and non-minimum-phase systems. From the results in Section II.C.2.a we see that
when the input and output information is in the form of power spectra (or
autocorrelation sequences), the systems identification algorithms are limited to
minimum-phase systems. In this example we assumed that we were given the
cross-correlation sequence ryx(m) and input autocorrelation sequence rxx(m).
Under these conditions the phase spectrum of H(w) = BM(a}) is preserved, so in
addition to minimum-phase systems we were also able to identify non-minimum-
phase systems.

Example 5. Let us now assume that H(z) represents a pole-zero model; that
is, H(z) = BM(z)/AN(z). For this case we get the difference equation

y(n) + aN(l)y(n - 1) + aM(2)y(n - 2} + • • • + aN(N)y(n - N)

= M0)x(«) + bM(l)x(n - 1) + bM(2)x(n - 2) + • • • + bM(M)x(n - M)
(10.50)

for — oo < n < oo. If x(n) is the WSS white noise process [Eq. (10.40)], then
Eqs. (10.50) and (10.40) describe an ARMA(M,JV) process of order (M, JV). The
output y(n) represents an ARM A process [12].

The ARMA(M, N) process can also be generated by the convolution

y(n)= £ h(k)x(n-k) (10.51)

Multiplying both sides of Eq. (10.51) by x(n — m) and taking expected values
yields

a2
xh(m] for m > 0

0 for m < 0

Equation (10.52) implies that the right-sided stable impulse response h(n] can be
completely recovered from knowledge of the cross-correlation sequence ryx(m)
and white noise variance a2

x. That is,

/,(n) = !J!*W n>Q (10.53)

Thus, to identify the aN(m) and bM(l) coefficients in Eq. (10.50), we can first use
Eq. (10.53) to generate h(n). Then we can use steps 3 and 4 in the double
deconvolution algorithm to complete the ARMA(M, N) systems identification.
This procedure will identify both minimum-phase and non-minimum-phase
systems,

Let us now discuss another algorithm for identifying the ARMA(M, N)
process. Multiplying both sides of Eq. (10.50) by y(n — m) and taking expected
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values yields

ryy(m) + aN(\)ryy(m - 1) + aN(2)ryy(m - 2) + • • • + aN(N)ryy(m - N)

= bm(0)ryx(-m) + bu(l)ryx(l - m) + bM(2)ryx(2 - m)

+ --- + bM(M)ryx(M -m) (10.54)

for — oc < m < oo. Here we used the fact that rxy(m) = ryx( — m). Now for
m = M + 1, M + 2,..., M + N we can use Eq. (10.54) to generate the matrix
equation

ryy(M

r y y ( M + l )

+ N - 1) ryy(Af + N - 2)

ry,(Af

r,y(M)

rVJ)(M + 1)
rvv(M + 2)

(10.55)

which can be solved for the AR coefficients. The set of equations (10.55) is
commonly referred to as the extended, modified, or high-order Yule-Walker
equations [14-16] which also appear in Chapter 9, Section III.C, in conjunction
with spectral analysis. In Section IV we discuss a fast matrix inversion algorithm
for solving these equations.

At this point we have identified the N AR parameters or coefficients from
knowledge of the first M + N lags of the autocorrelation sequence ryy(m). If we
now consider Eq. (10.54) for m = 0, 1, 2,..., M, we get the matrix equation

r,,(0)

ryx(2)

c(0)

ryx(M)
ryx(M - 1)
ryx(M - 2)

0 0 0 ••• ryx(Q)

MO)
MD
M2) (10.56)

Ryy(m) = ryy(m) + ^ aN(k)ryy(m - k), m = 0, 1, 2,... , M (10.57)

where

The inversion of the upper triangular matrix in Eq. (10.56) yields the M + 1 MA
parameters or coefficients. Equations (10.55)-(10.57) provide the necessary
information for a complete systems identification. This identification procedure
can handle both minimum-phase and non-minimum-phase systems.

We close this section with the following key remarks:

1. The identification of a non-minimum-phase system driven by white noise
requires (i) knowledge of the cross-correlation sequence ryx(m) for all lags m [refer
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to (10.53)], or (ii) knowledge of the first M + N lags of ^(m) and the first M lags
of ryx(m) [refer to Eqs. (10.55)-( 10.57)]. Non-minimum-phase systems cannot be
identified from knowledge of only ryy(m) and rxx(m).

2. Minimum-phase ARMA(M, N) systems driven by white noise can be
identified from knowledge of only the input and output autocorrelation sequence
(or the input and output PSDs). Refer to Section II.C.I.

3. The Yule-Walker equations (10.42) and the high-order Yule-Walker
equations (10.55) can be solved by fast inversion algorithms. Refer to Section IV.

A DTLTI Systems with Nonrandom Inputs

1 Statement of the Deconvolution Problem for Noisy Outputs

As in Section II.C.l we assume that x(n), h(n}, and y(n) all belong to the set
of right-sided stable sequences. This time, we assume that the output y(n) is
corrupted by an additive zero-mean WSS random noise process v(n), n = 0, 1,
2,.. . . With these assumptions let us now state the deconvolution problem for
noisy outputs. Given the DTLTI system in Fig. 10.10,

y(n) = y h(k)x(n - k\ n = 0, 1, 2,...
(10.58)

z(n) = y(n) + v(n), n = 0, 1,2,.. .

the noisy deconvolution problem is to estimate the sequence h(n) from knowledge
of z(n) and x(n).

In general, h(n) and x(n) are infinite-length sequences, so y(n) and z(n} are
infinite-length sequences. To make the problem amenable to the digital com-
puter, we assume that x(ri) (n — 0, 1, 2,..., Lx — 1) is a finite-length sequence
of length Lx and that h(n) (n — 0, 1, 2,..., Lh — 1) is a finite-length sequence

NOISE-FREE
INPUT

DTLTI
SYSTEM
h(n)

-• MEASUREMENT
NOISE

NOISE-FREE
OUTPUT

z(n) = NOISY
OUTPUT
MEASUREMENT

Fig. 10.10. Block diagram showing the output of a convolution model corrupted by additive noise.
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of length Lh, so h(n) * x(n) is the finite-length sequence y(n) (n = 0, 1,..., Lx +
Lh — 2) of length Ly = Lx + Lh — 1. Further, we assume that z(n) (n — 0, 1,
2,. . . , Lx + Lh — 2) is a sequence of length Lz = Lx + Lh — 1. With these finite-
length assumptions, Eq. (10.58) has the matrix representation

z(0)

z(l)

z(2)

z(L2 - 1)

=

"x(0)
x(l)
x(2)

_x(L, -

L, x 1

0

x(0)
x(l)

1) x(Lz - 2)

Lz

0

0

x(0)

vf / T> • •
wV^JLj;, ~/^

x L,

• o 1
• 0
• 0

' x(Lx-i)\

L x 1

v(Q)

v(Lz - i)

Lz x 1

(10.59)

which can be written in matrix-vector notation as

z = Ah + v (10.60)

Here, z is the Lz x 1 column vector of noisy measurements, A is the Lz x Lh

sparse matrix of input data, h is the Lh x 1 column vector of unknown
coefficients, and v is the Lz x 1 column vector of noise samples. Thus, in the
context of the matrix equation [Eq. (10.60)] the noisy deconvolution problem is
to estimate the vector h given the known vector z and matrix A. As we shall soon
see, the noisy deconvolution problem is equivalent to the linear multiple
regression problem [12].

Deconvolution and Linear Multiple Regression 2

In the previous section we saw that the noisy deconvolution problem came
about because z(n) was a noisy observation of y(n). It turns out that in the matrix
form [Eq. (10.60)], the deconvolution problem can be viewed as a linear multiple
regression problem, with the unknown impulse response vector h playing the
role of the multiple regression coefficients [12]. The linear multiple regression
solution of Eq. (10.60) for h is that vector hLS that minimizes the (MSE)

MSE= X |v(n)|2- VTV = (Z- Ah)T(z - Ah)
n = 0

(10.61)

where the superscript T denotes the matrix transpose. The vector hLS that
minimizes Eq. (10.61) is obtained from the least squares normal equations

ATAhLS = ATz (10.62)

We assume that ATA is nonsingular. Thus, the solution to Eq. (10.62),

hLS = (ATA)-1ATz (10.63)

is unique. Further, if v(n) is a zero-mean WSS white noise process with variance



762 Manue! T, Silvia

cr2, then Eq. (10.63) is an unbiased efficient estimator of h [17]. The correspond-
ing error covariance matrix is

P = E[(hLS - h)(hLS - h)T] = <r2(ATA)- -1 (10.64)

As we have just seen, Eq. (10.63) provides a least squares solution to the noisy
deconvolution problem. Our success in performing a noisy deconvolution should
depend on the number of impulse response values Lh, the properties of the input
sequence (or ATA), and the signal-to-noise ratio (SNR). As a quantitative
measure of our success, let us consider the ratio

where Tr(P) denotes the trace of the error covariance matrix [Eq. (10.64)] and

- + h2(Lh - 1) (10,66)

The smaller the value of R, the greater our success in performing an accurate
noisy deconvolution. If

SNR = -!!—= (10.67)
ffv\/Lz

then [18] gives the upper and lower bounds for R:

~ R "

where c = Amax/Amin and p = LJLh. Here, ^max and Amin are the maximum and
minimum eigenvalues of ATA, respectively. The ratio c is often referred to as the
condition number of ATA. If c is small and p and SNR are large, our noisy
deconvolution will be successful (i.e., accurate). We note that a minimum-phase
source tends to have a small value of c; many data points and few regression
parameters will yield a large value of p or "good" least squares fit, and a high SNR
tends to give good results. The quantitive performance bounds [Eq. (10.68)] not
only give us a good measure of deconvolution performance, but they also
quantify our intuitive notions.

If the input x(n) is a bandlimited or non-minimum-phase sequence, ATA will
sometimes be singular (i.e., Amin = 0). Then we cannot perform an exact and
unique deconvolution. However, we can perform an "approximate" deconvo-
lution by considering the modified normal equations

(ATA + <T2I)/*MLS = ATz (10.69)

where a2 is a judiciously chosen parameter that forces ATA to be nonsingular;
that is, cr2 is chosen so that Amin is nonzero. Here, I is the Lh x Lh identity matrix.
In the statistical literature the process of selecting an "optimal" value of a2 is
called ridge regression [19]. Another rationale for selecting a2 is called total least
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squares [20]. In either case the fundamental idea is to load the diagonal elements
of ATA so that /min is nonzero. Since the collection of all the eigenvalues of AT A is
called the spectrum of ATA, the idea of selecting an optimal value of a2 is also
referred to as spectral balancing.

The numerical solution of the normal equations (10.62) and the modified
normal equations (10.69) is a fundamental problem in linear estimation theory.
Chapter 13 discusses the batch and recursive solutions of Eq. (10.62), and [20]
discusses a singular value decomposition (SVD) algorithm for the solution of
Eq. (10.69). (For a brief discussion of the SVD technique, refer to Chapter 9.) In
any event, we have shown that the noisy deconvolution problem can be formu-
lated as a linear multiple regression or linear least squares problem. In this form
many numerical algorithms are available for its solution. More will be said
about numerical deconvolution algorithms in Section IV.

If h(n) represents the impulse response of an FIR filter, then the noisy
deconvolution algorithms discussed in this section are appropriate. However, if
h(n) represents the impulse response of an arbitrary OR filter, then, based on our
discussions in this section, we can only estimate the first Lh values of h(n).
However, if H(z) has the rational form [Eq. (10.12)] and we wish to identify the
sequences aN(m) and bM(l), then we can still use /ZLS to estimate the sequences,
provided that Lh > M + N [see Eq. (10.33)]. That is, we can estimate the first
Lh = M + N values of h(n) from Eq. (10.62) (when x(n) is minimum phase);
then we can use the vector hLS in steps 3 and 4 of the double deconvolu-
tion algorithm (discussed in Section II.C.l) to obtain estimates for the coeffi-
cients %(m), m — 1, 2,..., JV, and bM(l), I = 0, 1,..., M. We must be careful
when attempting to invert the matrix in Eq. (10.33), since the elements of this
matrix come from the vector of random variables hLS. The inversion of noisy
matrices is discussed in [20,21].

When x(n) is a non-minimum-phase input sequence, we can use Eq. (10.69) to
get a least squares approximation to h(n). Then we can use the vector hMLS in steps
3 and 4 of the double deconvolution algorithm to obtain approximate %(m) and
bM(l) sequences. Again, we must be careful when attempting to invert the matrix
in Eq. (10.33).

DTLTI Systems with Random Inputs B

Statement of the Deconvolution Problem for Noisy Outputs 1

As in Section II.C.2, we assume that h(n) is right-sided and stable and that x(n)
and y(n) belong to the set of zero-mean WSS random processes. We now make
the additional assumption that y(n) is corrupted by an additive zero-mean,
WSS random-noise process u(n), so we have the noisy WSS measurement z(n) =
y(n) + v(n) for all integers n (see Fig. 10.11). With these assumptions let us now
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v(n) - WSS MEASUREMENT NOISE

DTLTI
SYSTEM
h(n) WSS OUTPUT WSS NOISY OUTPUT

MEASUREMENT

Fig. 10.11. A DTLTI system with a noisy WSS output corrupted by WSS additive noise.

state the noisy deconvolution problem for randon inputs. That is, given x(w) and
z(n), the deconvolution problem is to estimate h(n).

Example 6. Let us now extend the results of Example 3 to the noisy
deconvolution problem. Recall that the AR(N) noise-free output y(n) satisfied
the difference equation [Eq. (10.39)] and x(n) was the WSS white noise process
[Eq. (10.40)]. We now assume that we have the noisy output z(n) = y(n) + v(n),
so y(ri) is corrupted by the additive WSS white noise process v(n), where

rvv(m) = a2
v (10.70)

We further assume that x(n) and v(n) are uncorrelated and that y(n) and v(n) are
uncorrelated. If we now replace y(n) in Eq. (10.39) by z(«) — v(n) and multiply
both sides of this new Eq. (10.39) by z(n — m), we get the autocorrelation model

(m - 1) - <rld(m - 1)]rsg(m) - a*d(m)

+ flw(2)[r«(ro - 2) - ff*6(m - 2)]

+ aN(N)[rzz(m - N) - a$d(m

for m > 0. The "new" Yule- Walker equations are

= 0

rzz(\)

rgg(N-2)

ra(N-\)

aN(N)

(10.71)

(10.72)

Comparing Eqs. (10.42) and (10.72), we see that for the noisy deconvolution
problem, ryy(m) gets replaced by rzz(m) and the diagonals of the autocorrelation
matrix get incremented by — a^. Thus, the noisy deconvolution of an AR(Af)
process uses the output autocorrelations rzz(m] (m = 0, 1, 2,..., N) and a
diagonal loading factor — a*, which compensates for the effects of the additive
noise v(n). In Section IV we discuss a fast matrix inversion algorithm for solving
Eq. (10.72).

Example 7. In this example we extend the results of Example 4 to the noisy
deconvolution problem. When the MA(M) process y(n) is corrupted by the
additive noise process [Eq. (10.70)], the noisy MA(M) measurement model
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becomes
M- i

z(n) = y(n) + v(n) = £ bM(l)x(n - /) + j,(n) (10.73)
; = o

for all integers n. As before, we assume that y(ri) and v(n) are uncorrelated and that
x(n) and v(n) are uncorrelated. Multiplying both sides of Eqs. (10.73) by x(n — m)
and taking expected values gives

Af- 1

r«(m)= I M0rx>i-/) (10.74)
; = o

for all integers m. Here, we used the fact that rvx(m) — 0. When x(n) is the white
noise process [Eq. (10.40)], Eq. (10,74) yields

r (I)
M/) = - A / = 0, 1 ,2 , . . . ,M (10.75)

which extends Eq. (10.49) to the noisy deconvolution problem.
An alternative approach for identifying the MA(M) parameters bM(l) is to

minimize the MSE
r/ M - I \2-i

MSE = E z(n)- I bM(l)x(n-l)\ (10.76)

Doing so, we get Eq. (10.74). In the context of linear least squares estimation,
Eq. (10.74) is called the discrete-time Wiener-Hopf equation [22]. The orthogo-
nality condition rvx(m) = 0 and the minimization of Eq. (10.76) go hand in hand
(refer to Chapter 13). In Section VI we discuss a fast algorithm for solving the
discrete-time Wiener-Hopf equation [Eq. (10.74)].

Example 8. In this example we assume that we have a noisy measurement
z(n) = y(n) + v(n) (for all integers n) of the ARM A(M, N) process y(n) discussed in
Example 5. Here, v(n) is the measurement noise discussed in Examples 6 and 7.
Given the noisy measurement z(«), we now wish to identify the AR and MA
coefficients.

Since we have assumed the v(n) and y(n) are uncorrelated and v(n) and x(n) are
uncorrelated, it follows that

rzz(m) = ryy(m) + ald(m\ rzx(m) = ryx(m). (10.77)

Thus, the first M + N values of h(n) can be found from Eq. (10.53) with ryx(m)
replaced by rzx(m). Then we can use steps 3 and 4 of the double deconvolution
algorithm to obtain the JV AR and M MA parameters. Alternatively, we can find
the AR coefficients by solving a "new" set of high-order Yule- Walker equations,
namely, Eq. (10.55) with ryy(m) replaced by rzz(m). Then we find the MA co-
efficients by solving Eq. (10.56) with ryy(Q) replaced by rzz(0) — a*, ryy(m) (m —
1, 2, . . . , M) replaced by rrz(m), and r x(m) replaced by rzx(m). This extends the
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results in Example 5 to the noisy deconvolution or systems identification
problem. In Section IV we discuss fast algorithms for the solution of deconvo-
lution problems.

A The Levinson or Toeplitz Recursion: Direct Form

1 A Fast Algorithm for Identifying an AR(N) Process with Known Statistics

An uncorrupted AR(iV) process y(n) satisfies the difference equation
[Eq. (10.39)], which can be schematically described by the direct-form diagram
in Fig. 10.12. From Section II.C.2.b, Example 3, we know that an uncorrupted
AR(W) process y(n) can be completely defined from the first N lags of its autocor-
relation function ryy(m). For known AR(JV) statistics (i.e., known autocorrelation
values) we must solve the Yule-Walker equations (10.42), which are compatible
with the direct-form diagram in Fig. 10.12, to obtain the N AR(AT) parameters.
We now discuss a fast algorithm for solving the Yule-Walker equations.

Example 9. Let us consider the simplest of all AR(N) processes, the AR(1)
process. The Yule-Walker equations become the single equation

rw(0)fl1(l)=-r,,(l) (10.78)

The algorithm for solving Eq. (10.78) is trivial, since it involves only the division

«!(!)=-; (10.79)

Notice that |at(1)| < 1.

Fig. 10.12. Direct-form diagram of an AR(W) process.
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Let us now consider the AR(2) process. The Yule-Walker equations are now

rw(0)fl2(l) + rw(l)fl2(2) = -rw(l)
{lU.oUj

To solve Eq. (10.80) for a2(l) and a2(2), we will proceed according to the Gaussian
elimination algorithm [23]. That is, we first define kv ~ — ryy(l)/ryy(Q); notice that
( f e j | < 1. Next, we multiply both sides of the first equation in (10.80) by k1, and
add the resulting equation to the second equation. This eliminates the variable
a 2 ( l ) and allows us to solve for a2(2). Thus

a (2)= ryy(2) + fcilW1)

which can be rewritten as

fc^l] (iag2)

A little algebra will show that |a2(2)j < 1. The last step in the Gaussian
elimination algorithm is the back substitution. That is, given a2(2), we use the first
equation in Eq. (10.80) to solve for «2(1). Thus

a2(l) = fci +M2(2) (10.83)

We now can use the algorithm in Table II to solve the Yule -Walker equations
(10.80).

Let us now consider the AR(3) process. The Yule-Walker equations are

rw(0)fl30) + r,,(l)fl3(2) + rw(2)fl3(3) = -ry,(l)

ry,(l)fl3(l) + ryy(0)«3(2) + r,,(l)o3(3) = -rw(2) (10.84)

r,,(2)fl3(l) + rw(l)«3(2) + r,y(0)a3(3) = -rw(3)

Using the Gaussian elimination algorithm to eliminate a3(l) and a3(2), we solve
for a 3 (3):

ryv(0)(l - t j

TABLE II
Algorithm for Solving Yule-Walker Equations Given by Eq. (10.80)

Step 1. Define kt = -rvy(l)/r,,y(0). Notice that |/c,| < 1.
Step 2. Given /q and the known autocorrelation values ryy(Q), rw,(l), and ''^(2), solve (10.82) for the

last AR(2) parameter, a2(2). Notice that \a2(2)\ < 1.
Step 3. Given fc, and a2(2), solve (10.83) for the first AR(2) parameter, a2(l)- At this point we have

solved the Yule-Walker equations (10.80) for the AR(2) parameters a2(l) and a2(2).
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(10.86)

k2 = a2(2)= - (10.87)

a2(l) = a t( l) + a1(l)a2(2) (10.88)

The back substitution part of the Gaussian elimination algorithm gives «3(2) and

fl3(2) = a2(2) + «2(l)a3(3)

a3(l) = a2(l) + a2(2)a3(3)

(10.89)

(10.90)

Based on the above simplification of a Gaussian elimination algorithm to solve
Eq. (10.84), we now propose the algorithm in Table III as a fast efficient method
for solving the matrix equation

r (Q\ r (I) r (2\yvV / yyV / yyv /

ryy(l] ryy(Q) ryy(\)

Lryy(2) ryy(\) ryy(Q)

"*3(1)~ >vv(l)"
(10.91)

Recall that we started to solve Eq. (10.91) by the Gaussian elimination algorithm.
However, we used a lot of algebra and simplification to reduce the general

TABLE III
Efficient Algorithm for Solving the Yule-Walker Equations (10.84)

Step 1. Initialization. Set Pt = ryy(Q) and compute kl = «i(l).
Step 2. Compute P2 = Pt(l - fef ). Then compute k2 from [see (10.87)]

? — 2 — ,,
'2

Compute a2(l)fr°m( 10.88). At this point we have defined a2( l )and a2(2)from knowledge of
rw(0),r,,(l),andrw(2).

Step 3. Compute F3 = P2(\ — k\). Then compute fc3 from

Compute aj ( l ) and «2(2) from the relations

At this point we have defined ae3( 1 ), a ,(2), and a3(3) from knowledge of ryy(0), rv>;( 1 ), ry>.(2). and
'-,,(3).

Step 4. Set fl3(l) = a3(l), a3(2) = a3(2), and a3 = k3 ~ a3(3). At this point we have solved (10.84) for
the AR(3) parameters a3(l), a3(2), and a3(3).
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approach of the Gaussian algorithm to the fast efficient algorithm in Table III.
Let us now explain why this simplification was possible.

Without thinking, we could have solved Eq. (10.91) or inverted the matrix

,,(0) r y y ( l ) ryy(2)

,y(\] rvy(0) ryy(l) (10.92)
,y(2) r y y ( \ ) ryy(0)_

by a direct application of the Gaussian elimination algorithm. However, a little
thought reveals the following important point. Gaussian elimination does not
care about the structure or symmetry properties of the matrix [Eq. (10.92)]. The
only consideration is that the matrix be nonsingular. Thus, an N x N matrix
generally has N2 independent elements, and the Gaussian elimination algorithm
would require N2 storage locations and 0(N3) operations in order to invert an
N x N nonsingular matrix. However, the Yule-Walker matrix [Eq. (10.92)]
has only three independent elements, not nine. Further, the elements of this ma-
trix have symmetry; that is, they are the same along any northwest-southeast
diagonal. In mathematics a square matrix with this symmetry property is called a
Toeplitz matrix [2]. The mathematical properties of a Toeplitz matrix allowed us
to simplify the Gaussian elimination solution of Eq. (10.84) to a fast efficient
algorithm.

Since the Yule-Walker equations (10.42) have a Toeplitz structure, it follows
that the fast algorithm in Table III for solving Eq. (10.84) [or Eq. (10.91)] can be
generalized to solve the Yule-Walker equations (10.42). Levinson exploited the
Toeplitz structure of Eq. (10.42) and published the efficient approach to its
solution [24,25] stated in Table IV. Since Eq. (10.94) in Table IV yields |Jcm| < 1
for m— 1 ,2 , . . . ,N (see Example 9), the Levinson or Toeplitz recursion is
numerically stable.

It turns out that the Toeplitz exploitation of the Levinson algorithm reduces
the Gaussian elimination algorithm from N2 storage locations and 0(JV3)
operations to N storage locations and O(N2) operations. The Levinson or
Toeplitz recursion is not only more efficient than the conventional Gaussian
elimination algorithm, but it also has an interesting interpretation. For example,
notice that a t ( l) could be thought of as the AR parameter of some AR(1) process.
The coefficients «2(1) and a2(2) could also be thought of as AR parameters of
some AR(2) process. Similarly, a3(l), a3(2), and oc3(3) could belong to some AR(3)
process, and so on. The Levinson or Toeplitz recursion uses at(l) to generate
ai(l)> a2(2); then it uses a2(l), a2(2) to generate a3(l), a3(2), a3(3), etc. Thus, the
Levinson algorithm recursively generates AR parameters of increasing order
from the parameter of some AR(1) process to the desired parameters of the
AR(W) process. In this sense the fast efficient Levinson algorithm is correctly
named a recursion. It is one of the most important recursive algorithms in digital
signal processing. Although we have explained the Levinson recursion in terms of
the AR(JV) systems identification problem, it is also used to solve the linear
prediction and whitening filter problems (see Section II.C.2.b, Example 3). An
IBM PC-cornpatible BASIC computer program is given in Appendix B.
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TABLE IV
The Levinson or Toeplitz Recursion: Direct Form"

Given the autocorrelation values rw(0), ryy(\), ryy(2), . . . , ryy(N) associated with an AR(N) process of
order N, the Levinson recursion provides a fast efficient algorithm for solving the Yule Walker
equations (10.42). The algorithm gives the N AR parameters %(1), a N ( 2 ) , . . . , %(/V).

Step 1. Initialization. Set m — 1.

rvvO)P, - r,y(0), * , = « , ( ! ) = - -^ ( 1 0.93)
ryy("'

Step 2. Basic recursion (m — 2,3,..., N)

Step 3. a,

r (m} _j- Vm-l a (n\r (m __ n\

km - am(m) - - --- - - — — - -- w -
Pm

am(n) = am_ i(n) + [am_ ,(m — «)]fcm, M = 1,2 , m — 1

V(H) = aN(n), n = 1, 2, . . . , N

(10.94)

(10.95)

" Provides a fast efficient algorithm for solving the Yule -Walker equations (10.42).

2 Identifying an AR(N) Process with Unknown Statistics

In practice, one seldom knows the exact autocorrelation values. Instead, we
usually observe a finite number of data samples, say y(l), y(2),..., y(Ly). Given
these Ly data samples, we now propose a fast algorithm for estimating the AR(AT)
parameters.

The basic idea is to first estimate the autocorrelation values by using the
asymptotically unbiased estimate

1 iy-|m|

fyy(m) = — Z X%(" - m)' lml « L,- m = 0, 1, 2,. . . , N (10.96)
»-*v " = 1

and replacing ryy(m) by ryy(m) in the fast Levinson recursion. To do this
successfully, we must have N « Ly. This will ensure that the variance of
Eq. (10.96) will be small for large lags, so Eq. (10.96) will be a good estimate of
ryy(m) for lags near m = N [2].

B The Levinson or ToepHtz Recursion: Lattice Form

1 The Lattice Structure

Let us consider an arbitrary sequence y(n); that is, this sequence could be either
random or nonrandom, finite length or infinite length. Let us also consider the
idea of passing this sequence through a two-point FIR minimum-phase filter
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V(n)

ARBITRARY
SEQUENCE

MIN(z)
fin)

OUTPUT OF FIR
MINIMUM-PHASE FILTER

Fig. 10.13. Input-output relationship of linear minimum phase filter.

with transfer function

Min(z) = 1 + kz (10.97)

where \k\ < 1. Thus, the input y(n) and output f(n) of this FIR minimum-phase
filter are described by the difference equation

ky(n - 1) = (10.98)

for all integers n (see Fig. 10.13).
In Section II.B we discussed the concept of minimum phase or minimum

delay. It turns out that for every minimum-phase filter, we have a corresponding
maximum-phase filter [11]. The coefficients of this maximum-phase filter are
obtained by reversing the order of the minimum-phase filter coefficients. For
example, the minimum-phase filter [Eq. (10.97)] has the maximum-phase
counterpart

Max(z) = k + z~ (10.99)

Note that Eqs. (10.97) and (10.99) have the same magnitude spectrum.
Let us now consider the idea of passing the arbitrary sequence y(n) through

the two-point FIR maximum-phase filter that corresponds to Eq. (10.97),
namely, Eq. (10.99). The input y(ri) and output fl(ri) of this FIR maximum-phase
filter are described by the difference equation

ky(n) + y(n - 1) = 0(n) (10.100)

for all integers n (Fig. 10.14).
We now come to the fundamental idea behind the lattice structure. That is, if

we combine the minimum-phase system [Eq. (10.98)] and the corresponding
maximum-phase system [Eq. (10.100)], we obtain an overall block diagram that
resembles a lattice configuration (Fig. 10.15).

V(n)

ARBITRARY
SEQUENCE

MAX(z)
OUTPUT OF FIR
MAXIMUM-PHASE FILTER

Fig. 10.14. Input-output relationship of linear maximum-phase filter.
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ARBITRARY
SEQUENCE

f(n) = OUTPUT OF FIR
MINIMUM-PHASE
FILTER

0<n) = OUTPUT OF FIR
MAXIMUM-PHASE
FILTER

LATTICE STRUCTURE

Fig. 10.15. Combination of minimum-phase system and maximum-phase system.

The Lattice Structure and Its Relationship to the
Levinson Recursion

As we saw in Section I V.A.I, the Levinson algorithm recursively generates AR
parameters at each stage of the recursion. For example, at the first stage (m = 1)
we get the parameter a^l). At the second stage (m = 2) we get a2(l), oc2(2). At the
final stage (m = N) we get the desired AR(AT) parameters aN(l), aN(2),..., aN(N)
associated with the underlying AR(N) process. Note that the intermediate
parameters am(n) (m = 1, 2,. . . , N — 1; n — 1, 2,..., m) are simply useful by-
products of the Levinson recursion. Let us elaborate. At stage m of the Levinson
recursion (m = 1, 2,..., N), we generate am(l), am(2),..., am(m) = km. These
parameters can be used to form the FIR minimum-phase filter

Am(z) = am(2)z (10.101)

We obtain the corresponding FIR maximum-phase filter by reversing the order
of the coefficients in the minimum-phase filter [Eq. (10.101)]: Thus

Rm(z) = km + am(m <*m(m- (10.102)

Now let y(n) denote the WSS AR(N) process. If we pass y(n) through the
minimum-phase filter [Eq. (10.101)], we get the output fm(n). The input y(n) and
output fm(n) are related by the difference equation

y(n) + £ am(k)y(n - k) = /„(«) (10.103)

for — GO < n < oo. The output fm(n) is not necessarily white noise, since the ctm(k)
parameters are not the AR(JV) parameters. Thus, only at the final stage (m = N)
does aN(k) — aN(k) and fN(n) = x(n) = white noise.

Similarly, if we pass y(n) through the maximum-phase filter [Eq. (10.102)], we
get the output /3m(n). The input y(n) and output fim(n) are related by the difference
equation

y(n - m) + -k+ \}y(n - k + I) = pm(n) (10.104)
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for __OQ < n < oo. Recall that the minimum-phase and maximum-phase filters
{10.101} and (10.102), respectively, have the same magnitude spectrum. Thus, it
follows that fm(n] and /?m(n) have the same power spectrum.

Let us now show how Eqs. (10.103) and (10.104) can be combined to form a
lattice structure. From our knowledge of the Levinson or Toeplitz recursion [see
step 2, (10.94) in Table 10.4], we know that the a parameters at stage m and stage
m — 1 are related by

m 2,3,...,JV;fc= l,2,...,m- 1
(10.105)

If we now substitute Eq. (10.105) into Eq. (10.103) and rearrange terms based on
the forms of Eqs. (10.103) and (10.104), we obtain

for m = 2, 3,..., JV and —oo < n < oo. Similarly, if we substitute Eq. (10.105)
into Eq. (10.104) and rearrange terms based on the forms of Eqs. (10.103) and
(10.104), we obtain

form = 2, 3, .. . , N and —oo<n< oo. Equations (10. 106) and (10. 107) represent
a set of coupled difference equations that relate the minimum-phase and
maximum-phase filter outputs at the mth stage (m = 2, 3,..., N). A schematic
diagram of the combination of these two equations at stage m gives the lat-
tice structure in Fig. 10.16. This lattice structure contains only the parameter
km = am(m). Recall that |/cj < 1 for m = 1, 2, . . . , N.

The first stage (m = 1) of the Levinson algorithm was the initialization of the

OUTPUT OF FIR
MINIMUM-PHASE
FILTER AT
STAGE m 1

OUTPUT OF FIR
MAXIMUM-PHASE
FILTER AT
STAGE m-1

L.

~1

PHASE FILTER AT
STAGE m

(n) OUTPUT OF

PHASE FILTER AT
STAGE mLATTICE STRUCTURE

Fig. 10.16. At each stage of the Levinson recursion (m = 2, 3,..., N), a lattice structure relates the
minimum-phase and maximum-phase filter outputs at stage m — 1 to the minimum-phase and
maximum-phase filter outputs at stage m.
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Fig. 10.17. Schematic diagram of the lattice recursion, commonly called a lattice filter.

recursion [see step 1, (10.93) in Table IV. For m = 1 Eq. (10.103) reduces to

f(n) = y(n) + k1y(n~ 1) (10.108)

and Eq. (10.104) reduces to

P(n) = y(n - 1) + k! y(n) (10.109)

Comparing Eq. (10.108) with Eq. (10.106) and Eq. (10.109) with Eq. (10.107), we
can say that

(n) = y(n), f0(n) = y(n) (10.110)

Thus we have the lattice recursion in Table V. Figure 10.17 gives a schematic
diagram description of the lattice recursion. The input to this lattice is the AR(N)
process y(n), and one of the outputs is the white noise process fN(n) = x(n). Thus,
this lattice structure acts as a "whitening filter." In the digital signal processing
literature the lattice recursion and its schematic representation in Fig. 10.17 are
referred to as the lattice filter [26], which is also discussed in Section V of
Chapter 12.

We close this section with two key points:

1. The Levinson recursion depends on the numbers kl,k2,..., km,...,kN,

TABLE V
Lattice Recursion

Step 1. Initialization. Set m = 0, — oo < n < oo.

/0(n) = y(n), ft0(n) = y(n)

Step 2. Lattice recursion (m = 1,2,..., N), — oo < « < oo.

/» = /„-,(«)+ /cm^m..!(«-

£m(«) = £ M - i ( n - l ) + *„/,,_!(

Step 3. Final stage (m — N), — oo < n < oo.

fN(n) = x(n) — white noise

(") — white noise

(10.111)

(10.112)

(10.113)



10. Deconvoiution 775

where \km\ < 1. Because of this property, these numbers are commonly referred to
as reflection coefficients (see Section V).

2. We have shown that the Levinson recursion has a corresponding lattice
recursion that depends only on the fcm's. The lattice recursion, or lattice filter, is a
multistage whitening filter.

In the next section we. show how the lattice recursion can be used to identify an
AR(JV) process with unknown statistics.

A Fast Lattice Algorithm for Identifying an
AR(N) Process with Unknown Statistics

We assume that we have only Ly samples of an AR(JV) process, namely,
y(l), y(2),.,., y(Ly). We further assume that N «Ly. We now show how to
identify the N AR parameters by means of a lattice algorithm.

The quantity fm(ri) in Eq. (10.103) was shown to be the output of an FIR
minimum-phase filter. In the context of linear prediction we can interpret fm(n) as
a forward prediction error. Similarly, /?m(n) in Eq. (10.104) was shown to be the
output of an FIR maximum-phase filter. In the context of linear prediction we
can interpret fim(ri) as a backward prediction error. The terms "forward" and
"backward" refer to the problem of predicting y(n) on the basis of m past samples
(forward prediction) and predicting y(n — m) on the basis of m future samples
(backward prediction). In this context we can define the forward-prediction-error
sample variance by

and the backward-prediction-error sample variance by

Ef = T~ £ £«(») (J°-115)
L-'y "I n = m + 1

We chose the summation indices n — m + 1 to n — Ly to avoid going outside the
data window n = 1 to n = Ly. In this way we make no assumption about the data
outside the data window. Now since y(n) was assumed to be a WSS process, the
theoretical forward-prediction- and backward-prediction-error variances are
equal. Thus, we may combine the sample variances [Eqs. (10.114) and (10.115)]
by the standard statistical technique of forming their arithmetic mean. Thus

Es^Ef + Ep) (10.116)

or

1 Ly

T Z [/£(«) + #(»)] (10.117)
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Substituting Eq. (10.112) into Eq. (10.117) gives

i(«) + M.,-i(»-- I)]2
y m n = m+l

+ [A,- i (n- l ) + fcm/M_1(n)]2} (10.118)

for n - 1, 2, . . . , N. Differenting E in Eq. (10.1 18) with respect to km and setting the
result equal to zero gives the coefficient km that minimizes E:

km = am(m) = r^ V* (n)+Y2 (n- - 1 ] (^ ̂

f o r m = 1,2,... , IV.
We are now in a position to give a lattice-filter-type algorithm for identifying

the N AR(IV) parameters. The algorithm in Table VI is basically the lattice form
of the Levinson or Toeplitz recursion and is due to J. P. Burg [11]. In Appendix C
we give an IBM PC-compatible BASIC computer program for implementing the
Burg algorithm.

We note that the direct form of the Levinson algorithm discussed in Section
IV.A.2 and the lattice form of the Levinson algorithm given here are very similar,
since they are derived from the same mathematical assumptions. However, the
direct form explicitly estimates the autocorrelation values ryy(m), whereas the
lattice form implicitly estimates ryy(m). In either case they both handle the case of
unknown statistics.

TABLE VI

Lattice Form of the Levinson Recursion: The Burg Algorithm

Step I. Initialization. Set m — 0, 1 < n < Ly

f0(n) = y(n), fi0(n) = y(n)

Step 2. Recursion for m = 1, 2,..., N.

(i) Compute km from (10.119), \<m<N.

(ii) 3.m = km, 1 < m < N

am(k) = xm-i(k) + L«m~ i(m-k), 2 < m < N; 1 < k < m - 1

(iii) fm = fm-l(n) + kyjn-l(n-l)

j}m = /Jm_ ,(n - 1) + kyjm.,(«), m + 1 < n < Ly

Step 3. After cycling through step 2 for m = 1, 2,.. . , N, we come to the final stage m = N, At this
point we have

aN(m) = a,v(wi), m = 1, 2 , . . , , N

The quantities SN(m) are estimates of the true AR(N) parameters aN(m).
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There are many variations of the lattice filter. In this section we have presented
only one. However, once you master the material in this section, you will
appreciate the numerous results in [26].

Extended Levinson Algorithms C

As we have seen, the mathematics of Toeplitz matrices allows for fast efficient
direct-form or lattice-type algorithms. However, situations do arise (e.g., in linear
predictive least squares analysis [27]) when the matrices are not Toeplitz. To
handle this situation, we use the concept of displacement rank, which is a measure
of how far a matrix is from being Toeplitz [28]. References [28] and [29] provide
a good discussion on fast algrithms for inverting matrices that are not too far
from being Toeplitz.

Linear Least Squares Estimation and D
Kalman Filtering Algorithms

Many deconvolution problems can be cast into linear regression problems
(see Section III.A.2) or Kalman filtering state-space filtering problems. For
these situations we can use the well-known Kalman filtering or least squares
algorithms, which are discussed in Chapter 13.

Deconvolution and Speech Signal Processing A

In our introductory remarks we noted that deconvolution defines the inverse
problem. In speech the forward problem is to produce the speech waveform from
k nowledge of the glottis excitation waveform and the vocal tract shape (Figs. 10.1
and 10.2). The inverse problem for speech is to define the vocal tract shape from
knowledge of the speech waveform and glottis excitation waveform. Let us now
show how the theory of deconvolution is related to the inverse problem for
speech.

To perform deconvolution on a physical process such as speech, we need a
model. That is, to solve the inverse problem for speech, we need a model of the
vocal tract shape. It must be a simple, tractable model of the physical vocal tract
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shape, which is pictorially described in Fig. 10.1. A very useful one is the acoustic
tube model [1], based on the important assumption that the physical vocal tract
shape can be approximated by an interconnected-cascaded network of cylin-
drical sections as illustrated in Fig. 10.18. It is also assumed that each cylindrical
section has the same length / and is of uniform cross-sectional area.

From a purely physical argument we know that when the glottis creates an
acoustic excitation, speech or sound is produced. Further, as the speech is being
uttered, the cross-sectional area of each cylindrical section is changing as a
function of time. Hence, if we knew the glottis excitation waveform as a function
of time and the cross-sectional areas A i, A 2,..., AN of the JV sections as functions
of time (Fig. 10.18), then, in principle, we could produce speech. This idea forms
the basis of speech analysis and synthesis [1].

For any given sound, let the cross-sectional area of the mth cylindrical section
be denoted by Am, where m runs from 1 to N. Let section 1 be closest to the lips,
and let section N be closest to the glottis. For descriptive purposes we speak of
the glottis as being at the left and the lips as being at the right.

Under the preceding assumptions and some additional assumptions involving
one-dimensional plane-wave propagation in a homogeneous acoustic tube, the
acoustic velocity wave in each homogeneous cylindrical section satisfies the one-
dimensional acoustic wave equation

d2Vm(x,t) 2d
2Vm(x,t)

dt2 dx: (10.120)

where Um(x, t) is the acoustic velocity wave in the mth cylindrical section, c is the
speed of sound in the vocal tract, x is the spatial variable (x > 0 is to the right),
and t is time. Since the solution to Eq. (10.120) is of the form

(10.121)

we see that in each cylindrical section of the acoustic tube model we have two
traveling waves. One traveling wave, U^(t — x/c), moves to the right; the other

GLOTTIS
EXCITATION
WAVEFORM

N CYLINDRICAL SECTIONS
Am = CROSS-SECTIONAL AREA OF m™ SECTION

Fig. 10.18. Acoustic tube model for representing physical shape of vocal tract,
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traveling wave, Um(t + x/c), moves to the left. At the interface between sections
m — 1 and m, there is a discontinuity in cross-sectional area; that is, section
m — 1 has cross-sectional area Am^l, and section m has cross-sectional area Am.
Thus, because of this discontinuity in cross-sectional area at each interface be-
tween two adjacent sections, a traveling wave will be partially reflected and par-
tially transmitted at each interface. The division of acoustic energy between the
reflected and transmitted parts of the traveling wave is governed by the reflection
coefficient associated with a particular interface. For example, if Am.l is the
cross-sectional area of section m — 1 and Am is the cross-sectional area of section
m, then, from continuity of pressure and velocity and physical considerations, it
can be shown that the reflection coefficient at the interface between sections
m — 1 and m is given by [1]

km = ̂ ^^-^" (10.122)

After taking into account the boundary conditions at each interface and
performing several mathematical transformations on the dependent and inde-
pendent variables, we obtain [1]

yM = cmV+
m(t + T - U ym(t) = -cmU~(t - i - tm) (10.123)

where

cm = fl (1 + *> m = 1, 2, . . . , JV, c0 = 1 (10.124)
,/=!

tm = 2(m + l)r, and T = l/2c. Performing some additional mathematical trans-
formations on Eq. (10.123), we obtain the coupled equations

y«(0 = y«-i(0 + fc*j>m-i(0
(10.125)

ym(t) = ym~ i(t - T) + kmy+
m^(t - T)

for m — 1 , 2, . . . , N. Here, T = 4t = 21 /c is twice the time needed for a wave to
propagate through a single cylindrical section. If we let t = nT, then we can
convert the continuous-time relations [Eq. (10.125)] to discrete time. Doing so
gives

yM = ym -i(n) + kmym _ t ( n )
(10.126)

ym(n) = ym-i(n- i) + ^mym-i(n- i)
for m = 1 , 2, . . . , N and all integers n.

The coupled equations in (10.126) relate the right- and left-going waves in
section m — 1 to the right- and left-going waves in section m. It turns out that this
traveling wave relationship is described by the lattice structure in Fig. 10.19.
Further, notice that yj(n) is proportional to the sampled speech waveform
and yN(n) is proportional to the sampled glottis excitation waveform. If we let
x(n) = yN(n) and y(n) = y0(n), then we can show that y(n) and x(n) are related by
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RIGHT-GOING WAVE
IN SECTION m-1

RIGHT-GOING WAVE
I IN SECTION rn

LEFT-GOING WAVE
IN SECTION m-1

LEFT-GOING WAVE
IN SECTION m

LATTICE STRUCTURE

Fig. 10.19. The lattice structure relates the right-going and left-going waves in section m i to the
corresponding waves in section m.

the all-pole or AR model [1]

y(n) + aN(\)y(n - 1) + aN(2}y(n - 2) + • • • + aN(N)y(n - N) = x(n) (10.127)

For certain speech sounds y(n) can be approximated by a WSS AR(JV) process,
which implies that x(n) is white noise. Under these conditions we can use the
direct form of the Levinson recursion to estimate the N AR(N) parameters
%(1), ajv(2),..., aN(N). However, the lattice form of the Levinson recursion is
more desirable, since the lattice parameters kl,k2,...,kN are proportional to the
physical reflection coefficients of the acoustic tube model [1]. Once the reflection
coefficients are known, then the vocal tract shape follows from Eq. (10.122).

In summary, we solve the deconvolution or inverse problem for speech by
using the lattice filter algorithms discussed in Section IV.B. The lattice pa-
rameters /C j , / c 2 , . - . , kN turn out to be the physical reflection coefficients asso-
ciated with the acoustic tube model of the vocal tract shape. The relationship
between lattice filters and right- and left-going waves in the acoustic tube model is
important, for it shows how deconvolution algorithms are related to the physics
of the problem.

B Deconvolution and Seismic Signal Processing

In the introduction we discussed the real-world nature of the seismic decon-
volution or inverse problem (see Figs. 10.3 and 10.4). Recall that the speech
inverse problem needed a model of the vocal tract shape. Similarly, the seis-
mic inverse problem needs a model of the earth's subsurface. However, the
mathematical model for the real-world seismic deconvolution or inverse prob-
lem involves a three-dimensional elastic wave equation with spatially variant
coefficients [30]. This three-dimensional subsurface model is quite difficult to
analyze; it is still in the research stages. As a result, we will consider a one-
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dimensional (1-D) subsurface model—that is, a 1-D elastic wave equation, which
is mathematically easier to analyze.

Let us first review the seismic experiment. We will consider the 1-D seismic
system in Fig. 10.20, where z < 0 defines a homogeneous half-space (e.g., air) and
z > 0 defines an inhomogeneous half-space (e.g., the earth's subsurface). A seismic
source located at z = 0 excites the 1-D model in Fig. 10.20 with the waveform x(t)
at t = 0. Thus, x(t) is a right-sided or causal waveform. The response to this
excitation is the seismic signal y(t) = u(z = 0, t), where u(z, t) is the seismic wave
field for all z and t, and u(z = 0, t) is the seismic wave field measured at z = 0.
Hence, the source and receiver are located at the same point, z = 0. This differs
from the speech problem, where the source was located at the glottis and the
measurement was performed at the lips. We now state the 1-D seismic inverse
problem. Given knowledge of the source x(?) and the response y(t) = u(z = 0, i)
for ! > 0 and the 1-D elastic model

r A,,tr, Al

= -<5(z)x(r) (10.128)r' ' dt2 dz|_ dz

find the parameters p(z) and £(z) for z > 0. Here, p(z) is the density, and E(z) is an
elastic parameter; both are known constants for z < 0.

A little thought reveals that there is not enough information to solve the 1 -D
inverse problem. In other words, how can we estimate two independent functions,
p(z) and £(z), from only one measurement or time series, u(z = 0, t)l To obtain a
1-D solution, we can do one of three things: (i) obtain another independent
measurement of the wave field or measure the gradient of the wave field;
(ii) obtain a priori information on p(z) or E(z) that is, assume that one of these
functions is known; or (iii) solve for the ratio or product of p(z) and E(z). It turns
out that the seismic impedance is the square root of p(z)E(z). Since this quantity is
physically meaningful, let us now discuss the digital signal processing functions
required to convert the sampled wave field y(n) into an estimate of the seismic
impedance for z > 0. Doing so, we will have solved the 1 -D seismic deconvolution
or inverse problem.

According to [31], it is often observed that the graph of p(z) and E(z) as a
function of depth can well be approximated by piecewise constant values on the
spatial scales of physical interest. Given that this observation is correct, the 1-D

(z < OS

HOMOGENEOUS HALF-SPACE (e.g., AIR)

d = 0)

INHOMOGENEOUS HALF-SPACE (e.g., THE EARTH)

(7. > 0)

Fig. 10.20. Pictorial representation of a 1-D seismic medium.
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seismic model [Eq. (10.128)] can be analyzed in terms of a layered medium model
[2,32]. This means that the inhomogeneous half-space in Fig. 10.20 for z > 0 can
be replaced by an interconnected-cascaded network of homogeneous sections
or layers, as shown in Fig. 10.21. Therefore each layer has its own constant-
coefficient wave equation, and there are up-going and down-going traveling
waves in each layer. For the nth layer we have the wave equation

pn

32u,(z,t) d2un(z,t)
dt2 " dz2 (10.129)

where pn and £„ are constants. Also, cn = [EB/pB]1/2 is the constant wave
propagation speed for layer n, and Zn = pncn — [pn£J1/2 is the constant seismic
impedance for layer n. In solving the seismic inverse problem, we define, for
convenience, the travel time variable

dx_
o c(x)

for z < 0

for z > 0
(10.130)

For a layered medium the up-going and down-going waves in each layer take a
finite amount of time to travel from one interface to the other. In general, the
waves experience different travel times between interfaces, since each layer has a
different wave propagation speed. References [2] and [32] solved the seismic
inverse problem for layered media with the assumption of layers of equal travel
time and minimum-phase sources. Under these conditions a lattice-filter-type
algorithm relates the sampled wave field y(n) to a set of numbers kn called

< HOMOGENEOUS HALF-SPACE (E.G., AIR)

z = 0
1 1

LAYER 1
I I

LAYERED MEDIUM
MODEL

Fig. 10.21. Layered medium model.
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TABLE VII

Fast Seismic Deconvolution Algorithm for Layers of Unequal Travel Time

Fundamental Assumptions

(a) The impedance of the 1-D elastic medium varies continuously with travel time or depth.
(b) The sampling frequency is high enough so that the sample spacing A is very small.
(c) The source excitation is minimum phase.
(d) The measured backscattered wave field is noise free.

Step 1. Excite the layered medium with a minimum-phase source x(t) at time t = 0 and at depth
z - 0. Record the wave field u(z, t) for t > 0 at depth z = 0. Let y(t) — u(z — 0, t). Convert
y(t) to discrete time; that is, let t — nA for n — 0, 1 , . . . , N — I . Choose A to be "small" and N
to be "large." At this point we have the sampled wave field y(n) for 0 < n < N — 1 .

Step 2. Deconvolve the minimum-phase source from y(ri) to obtain the impulse response of the
medium at z = 0. That is, first convert x(t) to discrete time to obtain x(n) for 0 < n < N -- 1.
Next, compute the DFTs of x(n) and y(n) to obtain X(k) and Y(k), respectively, for
k = 0, I , . . . , AT - 1. (Refer to Chapter 1, Section VII.B). Since y(t) = x(t) * g(i)< where
g(t) is the impulse response of the layered medium at z — 0, it follows that

G(fc) = _-!!, fc = 0, . . . .N - 1
' X(k)'

and g(n) — IDFT[G(/c)], n = 0, 1 , . . . , N — 1 . At this point we have the discrete-time impulse
response g(n) for 0 < n < N — 1 .

Step 3. Perform the initialization for the lattice algorithm. Set n — 0, k0 — A#(l), /0(0) = 1,

/f0(0) = ko, and e 0 = l -*o-
Step 4. Perform the first stage (n = 1) of the lattice algorithm. Compute the auxiliary quantities:

p
n = Z fi(» - 1)A0(« + 1 - /) (10.133)

! = 0

Pn
k „ = —-- (10.134)

Use the lattice equations

/i(n) = ./;-(«- l) + kmpi_t(n- 1)
(10.136)

A(n) = A _ , ( n - l) + fcB/.(n- 1)

for / =- 0, 1, . . . , n. Here, /0(n) = 1, /?0(«) = kn for n = 0, 1, . . . , N - 1 and fn(n - 1 ) = 0 for
n = 1,2, . . . ,N- 1.

Step 5. Proceed to the next stage and repeat step 4 for n — 2, Continue this recursion for
n = 3,4, . . . ,N- 1.

Step 6. At this point we have the N reflection coefficients fc0, & , , . . . , kN,. j . Since Z0 = [p<)E0~]112 is
assumed to be known, the impedance Zn as a function of discrete travel time follows from
(10.132).
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reflection coefficients. The impedance Zn follows from

n 1 _ If
7 — 7 Y\ ' n ft 11 nAi + 1 — ̂ O 1 1 1 TT~ I l u- l J ' '

For this solution the sampling interval A is equivalent to the two-way travel time
in a layer, which is a constant for all layers.

The more general problem of layers of unequal travel time is solved in [31].
Under the assumptions that A is small, the medium impedance varies contin-
uously, and the sources are minimum phase, [31] shows that a lattice-filter-
type algorithm relates the sampled wave field y(n) to a set of numbers kn

called reflection coefficients. Given kn, the impedance follows from

7 n 1 — If
^

The impedances in Eqs. (10.131) and (10.132) are functions of discrete travel
time, not discrete depth. To convert Eq. (10.131) or Eq. (10.132) to a function of
discrete depth, we need to know the wave propagation speed c as a function of
travel time—that is, C(T), where T is the travel time independent variable defined
in Eq. (10.130). Given C(T), we can use Eq. (10.130) to find T(Z). Thus, once the
relationship between travel time T and depth z is known, then Eq. (10.131) or
Eq. (10.132) can be modified to become impedance as a function of depth z. How-
ever, since we have only one measurement, c(r) cannot be found. Hence, with
this restriction, we can only obtain impedance as a function of discrete travel
time.

We close this section with Table VII, which states a fast seismic deconvolution
algorithm that can handle layered media with layers of unequal travel time [31].
Note that the algorithm assumes noise-free measurements. The seismic deconvo-
lution problem when the measurements are noisy is considered in [21,33].

VI SUMMARY

This chapter provided the reader with the necessary tools to understand the
basic theory, physics, and computational algorithms associated with deconvo-
lution. Although deconvolution is a general term, it does have some specific
applications. This chapter showed that it is the core element in speech and seismic
signal processing.

Deconvolution is an inverse problem. Like most inverse problems, it requires a
good understanding of physics as well as signal processing. We hope that the
material in this chapter will give the reader the incentive to probe further into the
study of inverse problems.

The deconvolution of parametric models, such as the AR, MA, and ARMA
models, involves algorithms that appear in many other areas of digital signal
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processing. For example, the deconvolution algorithm for an AR process,
namely, the Burg algorithm, is used in maximum entropy spectral analysis as
described in Chapter 9. Deconvolution is a rich subject full of computational
challenges.

APPENDIX A. REFERENCES FOR OBTAINING
COMPUTATIONAL ALGORITHMS

The Levinson or Toeplitz Recursion: Direct Form A.1

FORTRAN IV programs for solving the Yule-Walker equations (10.42)
are listed in [2,32]. Both references also give FORTRAN IV computer programs
for solving the discrete-time Wiener-Hopf equation (10.74). Appendix B is
a program written in IBM PC-compatible BASIC to solve the Yule-Walker
equations.

The Levinson or Toeplitz Recursion: Lattice Form 4.2

Reference [2] gives a FORTRAN IV program for computing the Burg
algorithm, and [1] gives FORTRAN IV programs that perform speech analysis
and synthesis. Although [26] does not provide computer programs, it gives a
detailed treatment of lattice filters. Appendix C is a program written in IBM PC-
compatible BASIC to solve the Burg algorithm.

Extended Levinson Algorithms and Least Squares Analysis A.3

A FORTRAN IV program for performing FIR systems identification by least
squares analysis is in [27]. A key point is that this computer program gives a fast
algorithm for systems that are not Toeplitz.
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APPENDIX B. IMPLEMENTING THE LEVINSON OR
TOEPLITZ RECURSION

In this appendix we give an IBM PC-compatible BASIC computer program
for implementing the Levinson or Toeplitz recursion (refer to Table IV). This
program solves the Yule-Walker equations. We assume that the autocorrelation
values have already been computed; they are an input to the following BASIC
computer program.

I 00 REI-! ... LEVINSON OR TOEPLITZ RECURSION : DIRECT FORM
110 REM ... ( REFER TO TABLE IV )
1 2O REM ... THIS PROGRAM WAS WRITTEN BY DR. JACK--KANG CHAN
130 REM .... OF NORDEN SYSTEMS
340 REM ... INPUT : AUTOCORRELATION VALUES R(1),R(2),
150 REM „ „ „ OUTPUTS ; AR<N) FILTER COEFFICIENTS A(1),A<2)
loO REM , . ,, REFLECTION COEFFICIENTS KU),K<2),
I/O REM .... MEAN-SQUARED ERRORS P(1),P(2), ...
18O REM ..,
190 REM ...
,..'00 DI M A (N > , AO (N) , K (N) , P (N+ 1 )
21C RF.M ... INITIALIZE ARRAYS
220 F'OR I==t TO N
-,-;30 A < I > = 0
240 K' ( I > =O

,:'SO P f I'<-.1. ) =0

2&O NL-.XT I
270 REM ... BEGIN LEVINSON RECURSION
29O P ( 1 ) ==R ( 1 )
29 O FOR J==l TO N
300 FOR 1=1 TO N
310 A 0 < I > = A < I >
320 NEXT I

34O FOR 1 = 1 TO J--1
•:, ̂ ; (•, (.. r,,-, k; 0 + A O ( I ) * R « J + 1 I )

360 MEXT I
3? u KO==--KO/P < J)
380 K O:! ) =KO
300 A U.i > =KO
4OO P (.1 +1 ) ==P (J ) * < 1 -KO*KO)
43O IF J<2 THEN 45O
420 FOR 1--1 TO j-i
43O A i, I > ~AO ( I ) +KO*AO (J - I )
440 NEXT I
4̂ 0 NEX !' J
4.sO RLTURN
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APPENDIX C.

In this appendix we give an IBM PC-compatible BASIC computer program
for implementing the lattice form of the Levinson recursion. In the literature,
this program is referred to as the Burg algorithm (see Table VI). We assume that
Ly time series values are available; they are an input to the following BASIC
computer program.

10O REM ... LATTICE FORM OF THE LEVINSON RECURSION : BURG ALGORITHM
1 I. > REM ... ( REFER TO TABLE VI )
12') REM ... THIS PROGRAM WAS WRITTEN BY DR. JACK--KAN6 CHAN
133 REM ... OF NORDEN SYSTEMS
14:> REM ... INPUT ; TIME SERIES VALUES Y < i > , Y < 2 > , ...
15;i REM ... OUTPUT : REFLECTION COEFFICIENTS K(i),K(2;
16O REM ...

REM „ . ,.
DIM F '.I Y) ,B (LY) ,K (LY)
REM ... INI TI All 1 Z E ARRAYS
FOR 1=1 TO LY

! i <: F ( I ) ==Y (I )
'2C B (I ) =F: ( I )

NEXT I
REM .„. BEGIN BURG ALGORITHM
FOR J=l TO N
Fi-0
F2=O
FOR I=J+1 TO LY
F1=F1+B<I~l> *F(I>
F2=F2+F < I > *F < I > +B <I- 1 > *B < I -1 )
NEXT I
KO=-2*F1/F2
« < j > =KO
FOR I--J-H TO LY
FO=F(I)+K0*6(1-1)
BO=KO*F(I)+ B(I-l)
B (I - i '< =F i
F ( n =---FO
F J=BO
NEXT I
NEXT J
RETURN
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Chapter 11

Time Delay Estimation

MANUEL T. SILViA
Allied Signal Aerospace Company

Bendix Oceanics Division
Sylmar, California 91342

INTRODUCTION I

The estimation of time delay (or time difference) has become an important
problem in digital signal processing. For example, an ideal active radar or sonar,
which employs a single omnidirectional sensor to transmit and receive signals,
can measure the time difference between the time a signal was transmitted and the
time a backscattered signal was received to estimate the range of a radar or sonar
target. If these active systems employ an array of omnidirectional sensors, then,
in addition to estimating range, the time delays between these sensors can also be
used (i) to focus the transmitted energy in a specified direction and (ii) to estimate
the direction of a radar or sonar target [see Fig. 11.1 (a)]. On the other hand,
an ideal passive sonar or radar generally employs an array of omnidirectional
sensors (at least two) for the sole purpose of receiving acoustic or electromagnetic
radiation from distant targets. When the radiation is received at the passive array,
time delay estimation methods are used to estimate the travel time of an acoustic
or electromagnetic wavefront between the sensors. Wavefront travel time gives
the range and direction of a radiating target [see Fig. 1 l.l(b)]. In either case the
estimation of these time delays is often corrupted by ambient and receiver-
generated noise, and multipath and finite-length observation intervals [1].

In seismology an underground disturbance creates seismic waves. Seismic
detectors, located on the earth's surface, record these waves at different times. By
estimating the time delays associated with the propagation of these seismic waves
to the various detectors, a seismologist can decide whether an underground
disturbance was natural or created (e.g., disturbances that are localized deep
within the earth are more likely to be natural, whereas shallow disturbances are
more likely to be created [2]). In the speech and hearing area time delay
estimation has been explored to measure the travel time of sound waves from the
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Fig. II.I. (a) Active radar system, (b) Passive sonar system.

external ear to the eardrum and other parts of the internal ear. Analyzing these
time delays helps researchers understand the hearing mechanisms of man and
other species [3]. In biomedicine the electroencephalogram (EEG) represents the
spontaneous electrical activity of the brain as measured from electrodes placed
on a patient's scalp. When the patient is subjected to a sensory stimulus, electrical
signals in the EEG are observed. By studying the time delays in these electrical
signals, biomedical researchers can help doctors improve their neurological
assessment of patients [4].

Hyperbolic location systems, commonly referred to as time difference of
arrival systems, locate an active source or transmitter by processing signal
arrival-time measurements at three or more passive stations [5]. The measure-
ments at these passive stations are sent to another station, designated the master
station, that does the time delay processing. The basic idea behind hyperbolic
location systems is as follows. The arrival-time measurements at two stations are
combined to produce a relative arrival time that, in the absence of noise and other
interference, restricts the possible transmitter location to a hyperboloid with the
two stations as foci. The transmitter location is then estimated from the
intersection of three or more independently generated hyperboloids determined
from at least four stations. If the transmitter and the passive stations lie in the
same plane, then the transmitter location is estimated from the intersections of
two or more hyperbolas determined from three or more stations. Figure 11.2
illustrates two hyperbolas, each of which has two branches, derived from the
measurements at three stations. Notice that the two hyperbolas have two points
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Fig. 11.2. Planar hyperbolic location system.

of intersection. We can resolve the resulting ambiguity in transmitter location by
using a priori information about the location or a fourth station to generate an
additional hyperbola.

If we now consider the three or more passive stations to be active sources and
the one transmitter to be a passive station or receiver, then the single passive
receiver can determine its own position by processing the signal arrival-time
measurements from the three or more active sources. Similar to the previous
hyperbolic location system, the position of the passive receiver will be determined
by the intersection of three or more hyperbolas. This simple idea describes
the fundamental principle behind a military and commercial navigation sys-
tem called LORAN C [6]. Today, nearly every yachtsman has a commercial
LORAN C receiver that estimates the signal arrival-time differences or time
delays and converts these measurements into latitude and longitude coordinates,
which are useful for navigational purposes (refer to Fig. 11.3). Thus, time delay
estimation forms the basis of nearly all hyperbolic location and/or navigation
systems.

As we have just seen, the time delay estimation problem spans the fields of
radar, sonar, seismology, speech and hearing, biomedical research, and hyper-
bolic localization, just to name a few. The main purpose of this chapter is to
provide a summary of the basic principles behind time delay estimation. In
Section II we consider the time delay problem for active sensors (e.g., active
radars or sonars). In Section III we discuss the time delay problem for passive
sensors (e.g., passive sonars or radars). In Section IV we concern ourselves with
the statistical theory of correlation and its relationship to the time delay estima-
tion problem. In Section V we consider the implementation of some time delay
estimation algorithms using the fast Fourier transform (FFT). Section VI,
provides a table of various algorithms and some numerical results.
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Fig. 11.3. LORAN C chart showing hyperbolas used for time delay navigation.
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TIME DELAY ESTIMATION FOR ACTIVE SENSORS II

The Time Delay Estimation Problem for a A
Single Omnidirectional Active Sensor

In general, an active radar or sonar system contains an array of omni-
directional sensors, a transmitter, and a receiver. The sole purpose of the
transmitter is to excite the sensors with electrical signals. In radar the sensors
convert these electrical signals into electromagnetic energy and radiate
electromagnetic waves. In sonar the sensors convert these electrical signals into
acoustic energy and radiate acoustic waves. In both cases the radiated waves
eventually strike a target. However, only some of the transmitted energy returns
to the radar or sonar sensors. Since the sensors are assumed to be reciprocal
devices, they convert the returned waves back to electrical signals. The sole
purpose of the receiver is to filter or prepare these electrical signals for further
signal processing.

If the active system employs only one omnidirectional reciprocal sensor, then it
radiates the same amount of energy in all directions and it receives energy in the
same way for every direction. See Fig. 11.4 for a graphical illustration.

In the theory of analog and digital filters the most trival of all linear time-
invariant filters is the one whose frequency response treats all the frequencies of
an input signal in the same way. That is, its frequency response has a constant
gain of unity and a constant phase shift of zero. This filter is sometimes referred to
as the trival all-pass filter. Its frequency response is shown in Fig. 11.5. Thus, we
can think of the single omnidirectional reciprocal sensor as a trival all-pass
spatial filter. That is, this sensor has a spatial response that treats all the angles
<•/> associated with an input signal in the same way. Analogously, its radiation
and receive spatial response has a constant gain of unity and a constant phase
shift of zero. The radiation and receive spatial response of a single omnidirec-
tional reciprocal sensor is shown in Fig. 11.6. Although the spatial gain function
G(4>) can be plotted in either Cartesian or polar coordinates [Fig. 11.6(a), (c),
respectively], a commonly used graphical representation of the spatial gain
function is the beam pattern, as defined in Fig. 11.6(d).

As we have just seen, a single omnidirectional active sensor cannot focus its
transmitted energy in a specified direction. Since we have assumed that the sensor
is a reciprocal device, it cannot tell which direction the returned or backscattered
energy came from. Thus, any radar or sonar that uses a single omnidirectional
reciprocal sensor to transmit and receive cannot estimate the direction of a
reflecting target. However, by estimating the time delay or time difference
between the time a signal was transmitted and the time a signal was received, a
"single-sensor" active radar or sonar can estimate the reflecting target's range.
Hence, the time delay estimation problem for a single omnidirectional active
sensor is equivalent to the range estimation problem. Let us elaborate.
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Fig. 11.4, Graphical illustration, (a) A single omnidirectional active sensor radiates the same
amount of energy in all directions (j>, (b) A single omnidirectional active sensor, which is assumed to be
a reciprocal device, receives reflected energy in the same way for every direction $. That is, this sensor
would receive the same reflected energy regardless of where the target is located (e.g., at points A, B, C,
or D). Thus, it has no spatial discrimination.

Suppose the transmitter creates an electrical signal, say sT(t), which excites a
single omnidirectional sensor. The resulting electromagnetic or acoustic waves
radiate outward [Fig. 11.4(a)] toward a reflecting target. When the waves strike
the target, a complicated backscattering process generates a reflected or
backscattered wave that returns to the sensor. The sensor then converts this
returned wave to an electrical signal, say sR(t). If the ambient noise of the medium
and the noise generated in the receiver can be combined into an additive process,
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Fig. 11.5. Frequency response of a trivial all-pass digital filter: (a) frequency gain function;
(b) frequency phase shift function.

then the electrical signal, as seen by the receiver, is

z(t) = sR(t) + v(t)

where v(t) is the electrical signal that represents the combined additive noise
process. In general, we note that sR(t) depends on the physical properties and
shape of the reflecting target, sT(t), and the spatial response of the sensor. For
example, it could happen that the direction in which the active sensor decides to
focus its transmitted energy may not coincide with the target's direction, which
would cause a reduction in the amplitude of sR(t) (refer to Fig. 11.7). However,
since we are considering a single omnidirectional reciprocal sensor, the amplitude
of sR(t) will not be affected by the spatial response of the sensor.

We are now ready to state the time delay estimation problem for the case of a
single omnidirectional active sensor. That is, given z(t) for tp < t < tp + t0, where
f0 is the length of the observation interval, the problem is to estimate the time
delay between the time sT(t) was transmitted, say t — 0, and the time sR(t) was
received, say t = i. See Fig. 11.8.

In the absence of additive noise [e.g., v(t) = 0], estimating the time delay T is
not difficult, because the onset or leading edge of sR(t) is easily detected when no
interference or noise is present, provided the amplitude of sR(t) is not too small.
For the noise-free case this onset detection problem seems to be independent of
the shape and amplitude of sR(t). However, when noise is present, then detecting
the leading edge of sR(t} becomes more difficult. By examining Fig. 11.8(b), we can
intuitively argue that the level of difficulty increases as the signal-to-noise ratio
(SNR) decreases. That is, the onset of sR(t) becomes more difficult to detect when
the noise amplitudes approach the signal amplitudes. Moreover, this onset
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Fig, 11.6. Spatial response, (a) spatial gain function G(<j>) for a single omnidirectional reciprocal
sensor. Graph is in Cartesian coordinates; (b) spatial phase-shift function for a single omnidirec-
tional reciprocal sensor; (c) spatial gain function plotted in polar coordinates. Graph is for
0 < <t> < n; (d) the function 20 Log [G(^»)/Gmax], plotted in polar coordinates, is commonly called the
beam pattern. Graph is for 0 < <j> < n.

detection problem could be made less difficult if, for example, sR(t) had a large
amplitude and a fast rise time or a sharp leading edge. This implies that our
success in detecting sR(t)'s leading edge, in the presence of noise, depends on
the shape and amplitude of sR(t). In any event, we can intuitively argue [see
Fig. 11.8(b)] that the accuracy of our time delay estimate will be greater if the
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Fig. 11.8. Time delay estimation problem for a single omnidirectional active sensor:
(a) transmitted signal; (b) backscattered signal as seen by the receiver.
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Fig. 11.9. Block diagram of the lime delay estimation problem for a single omnidirectional active
sensor.

rise time of sR(t) is small and the SNR is high. In the following sections we will
quantify these intuitive notions.

We close this section with Fig. 11.9, a block diagram of the time delay
estimation problem for a single omnidirectional active sensor.

B

In the previous section we considered the most trivial of all active systems—
that is, the one with a single omnidirectional reciprocal sensor. This system had
no spatial discrimination capability. In this section we consider a more practical
active system, one that employs an array of omnidirectional reciprocal sensors.
As we will soon see, active systems that use more than one omnidirectional
reciprocal sensor have the ability to perform spatial discrimination or spatial
filtering.

1 Two-Sensor Array

Let us begin by considering the simplest of all arrays—the linear array
containing only two omnidirectional reciprocal sensors separated by a distance /.
Figure 11.10 gives a pictorial description of this array.

To explain how the two-sensor array can provide spatial discrimination, let us
consider the following experiment. We assume that the radar or sonar transmitter
is capable of generating the waveform or pulse

sT(t) =
a(t)cos[2nF0t 0 < t < t,
0 otherwise

(11.1)
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P = (x,y,0)

Fig. 10. A simple array with two omnidirectional reciprocal sensors a distance / apart. The r-axis is
pointing out of the page.

af t ) = ENVELOPE

Fig. 11.11. Description of a radar or sonar pulse whose amplitude and phase are both slowly
varying with respect to the sine-wave fluctuations.

where a(t) is the envelope, F0 is the carrier frequency in hertz, 6(t) is the phase
modulation, and tp is the pulse duration. Figure 11.11 is a graphical description of
Eq. (11.1). At t = 0 the omnidirectional sensor located at x = 0 is excited by sT(t).
After a time delay 6 the omnidirectional sensor located at x = / is also excited
by sT(t). If the two sensors radiate waves into a homogeneous, isotropic, and
lossless medium, then the resulting waveform at point P in Fig. 11.10 has the ap-
proximate form [7]

(11.2)

(11.3)

SP(t)^-ST( t - - \ + - S T ( t -
r V cj r \ c

where c is the wave propagation speed in the medium of interest and

r r, /

c f c
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represents the travel time difference. Equations (11.2) and (11.3) assume that I « r,
the lines r and rt are approximately parallel (e.g., a ~ </>), and point P is "very far"
from the array, so sp(t) is essentially a plane wave.

Notice that A depends on the sensor spacing / and the array angle 0. For fixed I,
A is controlled by <£. Now if the x = 0 sensor is always excited at t = 0, then at
what later time should we excite the x = I sensor? That is, how should we select
the excitation or inter sensor time delay dl Let us proceed to answer this question.

Suppose that the radar or sonar wishes to transmit most of its energy in a
specific direction, say (j> = (f>0. It turns out that sp(t) [refer to Eq. (11.2)]
experiences "constructive interference" along a specific direction <^0 when the
time delay S satisfies the condition

6 = A0 = -cos</>0 (11.4)
c

In other words, the radiated energy will be a maximum along the line <p = </;0

when 8 satisfies Eq. (11.4). To see this let us consider the angular distribution
of radiated energy under Eq. (11.4). Mathematically, the radiated energy at a
"distant" point P for all angles </> is

EP = \\sp(t)\
2dt= \\SP(F}\2dF

J J

= \ST(F)\2\A(F,<i>)\2dF (11.5)

which follows from the Fourier transform of Eq. (1 1.2). Here, the quantity

A (11.6)
n = 0

describes a spatial filter, where

a(0)=l , a(l) = e-'2*FS (11.7)

A is given by Eq. (1 1.3), and 6 is given by Eq. (1 1.4). Since most radars and sonars
transmit narrowband waveforms, most of the energy associated with sT(t) is
concentrated around the carrier frequency F0. Thus, we can say

£PxM(F0,0)|2 (11.8)

From Eqs. (1 1 .3), (1 1.4), (1 1.6), and (11.7) we conclude that the radiated energy EP

is a maximum along the line </> = (f>0 when d = AQ. When <5 = A0, the line 0 = <£0

is generally referred to as the main response axis (MR A) of the array.
The beam pattern, defined by

(11.9)
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where

\A(F0,<j>)\= spatial gain

describes the angular distribution of radiated energy for a given spacing /, analog
carrier frequency F0, and intersensor time delay o. B((f)) is an important quantity
in the design of radar and sonar arrays.

Example 1. We wish to design a two-sensor linear sonar array that will
transmit most of its energy in the direction <^> = 00 = 90°. If F0 = 5000 Hz =
5 kHz and c -— 5000 ft/s, how do we select the intersensor time delay 5 and the
sensor spacing /?

From Eq. (11.4) we see that </> = $0 = 90° gives d — A0 = 0 s for any array
length /. However, (f)0 = 270° also gives 6 = 0 s for any spacing /. This means that
for (5 = 0 s this array will provide maximum radiated energy along two directions
{^o = 90° and <f>0 = 270°), so it has two MR As. Hence, we cannot focus this array
in only one direction. Nevertheless, our design would select 3 = 0 s, so we should
excite both sensors at the same time, say t = 0, with the same narrowband
waveform, say sr(t). Let us now consider the selection of /.

If we let I — 0.5 ft, the resulting beam pattern for 0° < <^> < 180° is shown in
Fig. 11.12(a). [The beam pattern for 180° < <p < 360° is the mirror image of
Fig. 1 1.1 2(a).] The angular sector defined by the — 3-dB point to the left of the
MRA (e.g., consider the MRA at $0 = 90°) and the -3-dB point to the right
of the MRA is called the 3-dB or half-power beamwidth. For / = 0.5 ft the beam-
width is 60°. Thus, this array can focus energy in two main beams or mainlobes;
one 60° wide beam is aimed in the intended direction <p0 = 90°, and the other
60° wide beam is aimed in the direction <^>0 = 270°. Although these main beams
are very wide, this two-sensor array still provides more spatial discrimination
or spatial filtering than the single omnidirectional sensor does [compare
Figs. 11.6(d)and I1.12(a)].

Suppose we increase the sensor spacing to I = 2 ft. The resulting beam pat-
tern for 0° < <j> < 180° is shown in Fig. H.12(b). [The beam pattern for
180° < 0 < 360° is the mirror image of Fig. 1 1.1 2(b).] For this case we still have
two main beams or mainlobes at the MR As (f)0 — 90° and (j>0 — 270°. Notice that
the beamwidth is 14.4°, which is considerably narrower than when / = 0.5 ft. The
/ = 2-ft pattern did produce a narrower beamwidth than the / = 0.5-ft pattern,
but it introduced grating lobes. Here, a grating lobe is defined as a radiation beam
or lobe in any direction, other than the intended MRA directions, that produces
the same maximum radiation levels as the MRAs. Thus, the / = 2-ft array has
grating lobes at <j> = 0°, 60°, 120°, 180°, 240°, and 300° [Fig. 11.12(b)]. Clearly,
these grating lobes are undesirable.

From the above analysis we see that for a fixed wavelength A the beamwidth of
the rnainlobe got smaller as the sensor spacing / got larger. For / = A/2 — 0.5 ft we
had a 60° wide main beam but no grating lobes. For / = IX ~ 2 ft we had a 14.4
wide main beam but several grating lobes. It turns out that the sensor spacing /
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Fig. 11.12. Beam patterns, (a) Plot is for 0° < <j) < 180°; for 180° < ^ < 360°, we get the mirror

image. Note: / = A/2 = 0.5 ft, no grating lobes, (b) / = 2A = 2 ft, grating lobes at <j> = 0°, 60 , 120 ,
180°, 240°, and 300'.
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2C (L-i)e

Fig. 11.13. A linear array with L equally spaced omnidirectional reciprocal sensors: / = sensor
spacing; r ̂  (L — I)/cos <f> + rL^ l.

should be chosen so that / < A/2. For this choice of / the grating lobes will be
eliminated. Thus, this two-sensor linear sonar array should be designed for
<3 = 0 s and / < A/2 ft. The narrowest beamwidth with no grating lobes occurs
when I = A/2 = 0.5 ft. In summary:

1, The intersensor time delay 6 = 0 s gives maximum radiated energy along
two directions, (j>0 = 90° and $0 = 270°. This linear array cannot focus its energy
in one direction, say 4>Q = 90°.

2. The sensor spacing / = A/2 gives the narrowest 3-dB beamwidth with no
grating lobes. This beamwidth is 60°.

Multisensor Arrays 2

In practice a two-sensor linear array with / = A/2 does not provide enough
spatial filtering. Thus, if the sensor spacing is constrained by / = A/2, how can we
achieve narrower beamwidths? One way is to simply add more sensors to the
array. Let us elaborate.

Let us now consider an equally spaced linear array with L omnidirectional
reciprocal sensors (Fig. 11.13). As before, we assume that the x = 0 sensor is the
time reference sensor. That is, we assume that at t = 0 the omnidirectional sensor
located at x = 0 is excited by sT(t). After a time delay ^ the omnidirectional
sensor located at x = I is excited by sT(t). After a time delay <§2 the omnidirectional
sensor located at x = 21 is excited by sT(t), and so on. Finally, the sensor located at
x = (L — 1)1 is excited by sT(t)dL_ t s later. Here, 0 < 6t < <52 < • • • < <5£_ 1? and
all the intersensor time delays <5n (n = 1, 2, . . . , L — 1) are referenced to t = 0. If
all of these sensors radiate waves into a homogeneous and isotropic medium,
then the resultant waveform at a distant point P can be approximated by

sp(t) ~-sTr
t -

(11.10)
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which is a generalization of Eq. (11.2). If the time delays dn satisfy the condition

nA0 (n = 0, 1,2,. . . , L-1) (11.11)

then sp(t) experiences constructive interference at a "distant" point along the line
(fr = (j)0. Hence, Eq. (11.11), which is a generalization of Eq. (11.4), represents the
condition for maximum radiated energy in the direction <j>0. The angular
distribution of energy is still given by Eqs. (11.5) and (11.8). However, for the
L-sensor array we have the corresponding spatial filter

L- i
A(F,(j>) = £ aWeJ2mF& (11.12)

where

a(n) = e~j2*™" (n = 0, 1, 2,..., L - 1) (11.13)

A is given by Eq. (11.3), and dn is given by Eq. (11.11). Equations (11.12) and (11.13)
are generalizations of Eqs. (11.6) and (11.7), respectively.

Example 2. Let us consider the linear sonar array in Example 1. If l/X is
constrained to be 0.5, then the element spacing is / = 0.5 ft, since F0 = 5 kHz and
c = FOA = 5000 ft/s. Thus, for L = 20 omnidirectional equally spaced sensors,
the array length is (L — 1)1 = 9.5 ft. For 4>0 — 90° the timing sequence is <5n = 0 s
for n = 1, 2,..., L — 1, so all the sensors are excited at t = 0. Figure 11.14(a)
shows the beam pattern (for 0° < (f> < 180°) that results when <j>0 = 90°,
I/A = 0.5, and L = 20 sensors. [The beam pattern for 180° < (f) < 360° is the
mirror image of Fig 11.14(a).]

We can easily see the effect of using L = 20 sensors instead of L = 2 sensors,
all other factors being the same, by comparing Figs. 11.14(a) and 11.12(a),
respectively. For the L = 20 case the beamwidth is 5°, whereas for the L = 2 case
the beamwidth is 60°. Although the L = 20 sensor array generates a desirable 5°
beamwidth, it also generates sidelobes. Here, a sidelobe is defined as a radiation
beam or lobe in any direction other than the desired or intended direction
4> = <j)0. The largest sidelobe occurs at about (f> = 82°. It is about 13.3 dB down
from the mainlobe, which occurs at $ = (j>0 = 90°. Although sidelobes are not
desirable, they are not as bad as the grating lobes encountered in Example 1.

Let us now show how we can "steer" this (L = 20) array in a specific direction
by controlling the time delay sequence 5n (n = 1, 2,..., 19). Specifically, suppose
we wish to steer the array or form a beam in the direction (j> = (j)0 = 53°. For this
case

5n — n( -cos ( f ) 0 } — n60 x 10"6 s = n60 /zs

for n = 1, 2,..., 19. That is, at t = 0 we excite the x = 0 sensor with sT(t).
At t — 60 jus we excite the x = / sensor with sT(t). At t = 120 /4S we excite the
x = 21 sensor with sT(t). Finally, at t — 1140 //s we excite the x = (L — 1)1 sen-
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sor with sT(t). The resulting radiation beam pattern for 0° < </> < 180° is shown
in Fig. 11.14(b). [The beam pattern for 180° < <j> < 360° is the mirror image of
Fig. 11.14(b).] Comparing Fig. 11.14(a) (b), we see how steering the array or
forming beams effects the linear array's beam pattern (e.g., beamwidth and
sidelobe structure).

110'
100° 90'

120' 60°

130' 50°

140 40°

0-3 -10 -20 -30 -40 -50 -40 -30 -20 -10-3 0

180°
0-3 -10 -20 -30 -40 -50 -40 -30 -20 -10 -3 0

dB

(b)
Fig. 11.14. Beam pattern for linear sonar array, (a) Plot is for 0° <; 0 < 180°; for 180° < 4> < 360°

we get the mirror image. Note ///I = 0.5, <£0 = 90°(270°) = broadside, 3-dB beamwidth = 5°
(b) III = 0.5, <£0 = 53°(307°), 3-dB beamwidth 5°.
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In the terminology of radar or sonar we can "form a beam" in a specific
direction, say </> = 00, by exciting the sensors according to Eq. (11.11). As we have
just seen, the intersensor or excitation time delays 8H can be used to form beams in
any direction. The ability to form beams in different directions by controlling the
time delay sequence <5n is called beamforming.

In sonar applications l/c is on the order of microseconds, whereas in radar
applications l/c is on the order of nanoseconds, sometimes even fractions of
nanoseconds. Therefore, the accurate control of 3n in radar can be a problem.
Because sT(t) is a narrowband waveform (refer to Eq. (11.1) and Fig. 11.11), we can
change the phase of sT(t) rather than the time delay. Mathematically,

sT(t — 6) = a(t — <5)cos[27rF0(t - 8) + 0(t - <5)]

*> a(t)co$[2nF0t + 0(t) - 27rF0<5] (11.14)

since a(t) and 0(t) are assumed to be slowly varying waveforms. Hence, in radar,
the steering or beamforming can be accomplished by phase shifters^ which vary
the phase, — 2nF08J in Eq. (11.14). By electronically phasing sT(t) at each sensor,
we can effectively control the timing sequence 8n and therefore steer or scan the
beam. This idea forms the basis of phased-array radar [8].

In summary:

1. Adding more elements to the linear array produces a narrower beamwidth
but generates sidelobes.

2. A linear array with L = 20 omnidirectional reciprocal sensors and //A = 0.5
can generate a 5° beam in two directions. It provides good spatial filtering in two
directions but cannot provide spatial filtering in just a single direction.

3. In sonar the beamforming is generally done with time delay controls,
whereas in radar the beamforming is done with electronic phase shift controls.

Example 3. In the design of radar or sonar arrays one usually specifies the
analog carrier frequency F0 (or wavelength A) and a desired 3-dB beamwidth.
These quantities will generally control the physical size of the array. The ratio //A
for a linear array is generally set at 0.5, because / = A/2 is the maximum sensor
spacing allowed by the spatial version of Nyquist's sampling theorem. Moreover,
the choice / = A/2 also prevents grating lobes. Thus, the physical extent of a linear
array will be (L — l)A/2, where L is determined by the design specifications F0

and the 3-dB beamwidth.
Hence an important quantity in the design of linear arrays is the spatial filter

A(F,cf)) in Eq. (11.12). For a fixed analog frequency F0 and / = A/2, Eq. (11.12) can
be rewritten as

L -1
A(co)= £ a(n)ejHto (11.15)

where CD = n cos </>,

a(n) = e-Jl"°° (n = 0, 1, 2,..., L - 1) (11.16)
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and co0 = n cos 4>o • So far we have assumed that

l f o r O < n < L - 1
A • IU7>otherwise

and

— no)0 for 0 < « < L / 4° , . (11.18)
0 otherwise

That is, the magnitude of a(ri) is unity, and the phase angle of a(n) is linear
in n. To properly form beams for a linear array, we want the phase angle of a(n)
to satisfy Eq, (11.18) and the phase spectrum of A(CD) to be linear in co. This im-
plies that the magnitude of a(n) can be any positive sequence that is symmetric
over 0 < n < L — 1. Hence, |a(n)| need not be limited to the positive uniform
sequence Eq. (11.16). It turns out that we can judiciously select the positive
symmetric sequence ja(n)| to obtain reduced sidelobe levels at the expense of a
modest increase in beamwidth. The values of \a(ri)\ that accomplish this are
called the sensor shading factors.

Except for a difference in the sign of co, the spatial filter A(a>) can be viewed as
the discrete-time Fourier transform (DTFT) of the complex sequence a(n\ where
co is the corresponding radian frequency. Refer to Eq. (11.15) and Chapters 1
and 2. Thus, we can use the theory of finite impulse response (FIR) linear-
phase digital filters to select \a(n)\ or, equivalently, to shape |/4(o>)|. Also, the
shading factors |a(n)| produce the same mathematical effects as the "window
functions" used in spectral analysis. Hence, the theory of window functions, as
used in spectral analysis, can be useful in the design of linear arrays.

In summary:

1. The physical size of a radar or sonar array is controlled by F0(or/l) and the
3-dB beamwidth.

2. The sensor spacing of a linear array is generally set at / = A/2 to comply
with the spatial version of Nyquist's sampling theorem. This choice of / also
eliminates grating lobes.

3. The complex sequence a(n) completely defines the linear array. The
magnitude of a(n) must be symmetric over 0 < n < L — 1; we can judiciously
select the shading factors |a(n)| to reduce the sidelobe levels at a modest increase
in beamwidth. The phase angle of a(n) must be linear in n; the intersensor time
delays appear in L a(n) and are used to steer the array.

4. The spatial filter (11.12) can be viewed as the DTFT of a(n). Thus, the
mathematics of linear-phase FIR digital filters and window functions, as used in
spectral analysis, can be useful in the design of linear arrays.

5. In practice, radar and sonar arrays can be different geometrical shapes (e.g.,
planar, spherical, cylindrical, and linear). Thus, the intersensor time delays will
depend on the shape of the array. For a more detailed treatment of array theory
see [9].
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The linear array (and other types of arrays) can focus its transmitted energy in
a specific direction $0. The transmit beamformer is responsible for steering the
array to <j)0;it does so by exciting the sensors according to Eq. (11.11). The waves
radiated outward along </>0 eventually strike a target and return to the array. The
receive beamformer is responsible for delaying (or phase shifting) the back-
scattered waveforms received at each sensor by an amount that would maximize
the received energy along 00. It turns out that the receive beamformer uses the
same intersensor time delays (or phase shifts) as the transmit beamformer,
namely, Eq. (1 1.11). Further, since all the sensors are assumed to be reciprocal, the
receive beam patterns are exactly the same as the transmit beam patterns. The
following example summarizes the basic function of the receiver beamformer.

Example 4. For simplicity let us assume that a stationary point target is
located at some distant range r = R and at some angle $ = </>0 defined by the
point P = (r, 4>, z = 0). See Fig. 11.13. If the transmit beamformer of a linear
array forms a beam in the direction <j> = 4>0, then the waveform at P (just before it
strikes the target) can be expressed as

<„.,„

where

represents the spatial gain of the linear array. The simplicity of Eq. (1 1.19) is due
to the "constructive interference" pattern set up by the transmit beamformer.
Now after sp(t) in Eq. (1 1. 19) strikes the stationary point target, the backscattered
waveform returns to the array. The approximate waveform, as seen by each
sensor in the array, is [10] as follows:

Sensor Backscattered Waveform
Location (relative to t = 0)

AG(4>0) ( 2R
x — i —2 .sr t — + a0

2R
= 21 —^

K \ C

2R

Here, A is a backscattering amplitude factor and A0 = (l/c) cos </>0.
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Due to the assumed reciprocity of the array, the receive beamformer acts
the same way as the transmit beamformer. That is, the backscattered wave-
form received at .x = 0 gets zero delay (or phase shift). The backscattered
waveform received at x = I gets delayed (or phase shifted) by <^ = A0. The
waveform received at x — 21 gets a delay of S2 — 2A0. Finally, the waveform
received at x = (L — 1)1 gets delayed by <5 L _ t = (L — 1)A0. Thus, after sp(t)
strikes the stationary point target and returns to the array, the output of the
receive beamformer can be expressed as

+ (L- l )A 0 -a L .

- • • • + \a(L - 1)|] (11.22)

or

• ( f - T ) (11.23)
K~

Here

TEE?? (11.24)

c

is the time delay we must estimate in order to obtain an estimate of the target's
range R. Once again, the simplicity of Eq. (11.23) is due to the "constructive
interference" pattern set up by the receive beamformer.

In the preceding discussion we made a very important assumption. That is, we
assumed that the transmit beamformer pointed the MRA of the beam directly at
the target. Thus the dominant backscattering is contained in the beam's
mainlobe, the electrical signal out of the receive beamformer has the simple form
[Eq, (11.23)], <j($0) is

 a maximum, and the energy in sR(t) is a maximum. If the
transmit beamformer had pointed the MRA in any other direction, the dominant
backscattering would have probably been contained in the beam's sidelobes, sR(t)
would experience "destructive interference," and the energy in sR(t) would be less.
Thus, the spatial filter A(F, $) is "matched" when the beam's MRA is pointed
directly at the target. Under this matched condition the receive beamformer
signal sR(t) has maximum energy.

Using the notion of a matched spatial filter, we can derive a simple algorithm
for obtaining a coarse estimate of the target's direction. We make the following
assumptions:

1. We consider a stationary point target located in a homogeneous, isotropic,
lossless medium.
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2. We assume that the target is known to exist in the sector 0° < <p < 180 .
3. We assume no background or receiver noise.

For a linear array we propose the following algorithm:

Algorithm for Obtaining a Coarse Estimate of the Target's Direction

Step 1. Given a 3-dB beamwidth of A0°, form 180°/A(/>° beams. In each beam
transmit, receive, and record the detected energy.

Step 2. The beam that has the largest detected energy is the beam that
probably contains the target. The MRA angle associated with this beam gives a
coarse estimate of the target's direction. Here, a coarse estimate means that the
target is somewhere in the A^>° beam.

This algorithm is a "common sense" type. That is, it steers the beam in steps of
the 3-dB beamwidth until the MRA is matched to the target's direction. When
this matching occurs, sR(t) has maximum energy, and we can assume that the
matched beam is the beam that probably contains the target. In practice, many
phased-array search radars use this simple concept to obtain a coarse estimate
of the target's direction. Once a coarse estimate is obtained, these phased-array
radars refine this estimate by using monopulse techniques [11]. Figure 11.15
gives a pictorial description of the algorithm. The "common sense" can be
rigorously justified by the theory of maximum likelihood estimation [12].

We are now ready to state the time delay estimation problem for the case of any
array containing numerous omnidirectional active sensors. We make the
following assumptions:

1. The target is a stationary point target located in a homogeneous, isotropic,
lossless medium.

Fig. 11.5. Coarse estimate of target direction by means of matched spatial filtering.
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2. The target's range R is well within the active system's detection range (e.g.,
the SNR is relatively large — greater than 15 dB).

3. The active system has an array of omnidirectional reciprocal sensors, so it
can perform both transmit and receive beamforming; that is, it can perform
spatial filtering. It transmits sT(t) in Eq. (11.1).
Let the above active system form numerous densely packed beams that fill a
hemisphere. For beam j the receive beamformer output has the form

Zj(t) = sRj(t) + Vj(t) (11.25)

where tp < t < tp + t0 and t0 is the length of the observation interval (Fig. 11.8).
Here, vfo) represents the additive noise process associated with beam j, and sRj(t)
represents the receive beamformer output of beam j when no noise is present. For
some beam j — M the M RA will match (approximately) the target's direction.
Under this condition

AG2

T) + vM(t) (\ 1.26)

where A is a backscattering factor, G is the spatial gain of the array, R is the target
range, and i is the desired time delay (e.g., two-way travel time) given by
Eq. (1 1.24). The problem is to estimate the target direction R/R and target range
R by forming many beams that fill the hemisphere containing the target,
where R denotes the target range vector. As we have seen, the beam with the
maximum received energy (say j = M) gives an estimate of R/R. In the next
section we will show how Eq. (11.26) can be processed to obtain an estimate
of i. The target range R can then be obtained from Eq. (1 1.24).

We close this section with Figs. 11.16 and 11.17, which summarize the process
of beamforming and the time delay estimation problem for an array of omni-
directional active sensors, respectively.

A Time Delay Estimation Algorithm for Active Sensors C

Stationary Point Target Backscattering Model 1

Before we discuss the details of a time delay estimation algorithm, let us
examine the stationary point target backscattering model used earlier. Recall that
when the beam's MRA is pointed directly at a stationary point target, the output
of the receive beamformer, sR(t), has the form of Eq. (11.23). In words, sR(t) is
simply a scaled, time-delayed replica of sT(t). However, in practice, this
assumption is not always true, because the scattering of electromagnetic or
acoustic waves off targets of different shapes is generally a more complicated
process. For example, Fig. 11.18 shows what happens when a continuous wave
(CW) acoustic pulse is incident on a stationary aluminum sphere embedded in
water. Depending on the size parameter ka = 2n(a/X), where 1 is the wavelength
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x=0

x=0 2C

sR(t) = RECEIVE BEAMFORMER OUTPUT

(b)

Fig. 11.16. Block diagram of the (a) transmit beamformer and (b) receive beamformer for a linear
arrary.



11. Time Delay Estimation 813

OUTPUT OF BEAM j

TIME DELAY
ESTIMATE

Fig. 11.17. Block diagram of the time delay estimation problem for an array of omnidirectional
active sensors.

of the incident wave and a is the radius of the sphere, different backscattering
occurs [13]. Figure 11.18(b), (c) shows that sR(t) is not a scaled, time-delayed
version of sT(t).

To properly describe the backscattering that results from probing these
differently shaped targets, we would have to solve the partial differential
equations that describe the backscattering. This requires detailed knowledge of
the target's size and orientation, which are generally not known. However,
suppose that the backscattering process, described in the block diagrams of
Figs. 11.9 and 11.17, could be described by a linear time-invariant filter, say h(t).
Then the noisy beamformer output z(t) could be written as

(11.27)z(t) = sR(t) + v(t) = h(a)sT(t - a) da + v(t)

for tp< t < tp + t0. Thus, given z(t) for t0 s, we could estimate h(t). Once h(t) is
known, the backscattering process is known, and we could estimate the time
delay i. Equation (11.27) is a convolution process. The process of estimating h(t)
from Eq. (11.27) is called deconvolution [14].

Since deconvolution usually involves the estimation of a complete time
function, algorithms that perform deconvolution can be computationally
involved, depending on the nature of h(t). The deconvolution problem is
considered further in Chapter 10.

One attractive feature of the stationary point target backscattering model is
that the time delay T appears in sR(t) as a simple parameter. Since most of the
research on time delay estimation for active systems has focused on the
parameter estimation approach, we will consider that approach here.

Thus, although the stationary point target model is a gross simplification of the
real received echo, it is commonly used to keep the mathematical model of the
receive beamformer output as simple as possible. From a time delay estimation
point of view, this makes the time delay problem mathematically tractable.
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(b)

HIM"'

(c)

Fig. 11.18. Aluminum sphere, incident-backscattered pulse, (a) A 500 microsecond-long trans-
mitted acoustic CW pulse, incident on a stationary aluminum sphere embedded in water, (b) The
pulse reflected by an aluminum sphere when the pulse in (a) is incident for ka = 20.78, where ka —
2n(a/A) is the wavelength of the incident wave, and a is the radius of the sphere, (c) The backscattered
pulse for ka = 21.21.

2 A Least Squares Approach to Time Delay Estimation

We assume that an active system has gone through the beamforming process
and has obtained a coarse estimate of the target's direction. That is, the target is
definitely located in some beam. The corresponding noisy beamformer output
has the form

AG
—
K

(11.28)

for tp < t < tp -f t0. For example, see Fig. 11.8. We now wish to estimate the time
delay i.
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We assume that T is the true but unknown time delay. We further assume that T
can be treated as a time-independent parameter. To estimate T, we form the
quantity

J(T) =
tp

(11.29)

which is a function of the parameter f. We then vary f until J(T ) is a minimum.
The value of f that produces the smallest J is labeled f and is called the least
squares estimate of i. Let us now derive a least squares algorithm for estimating t.

Differentiating Eq. (1 1.29) with respect to f gives

AG
z(t) -——sT(t -

dsT(t - T )
«—-\dt (11.30)

Now we can obtain the minimum of Eq. (11.29) by setting Eq. (11.30) equal to
zero. Thus

dt
" ' 87

AG2 rp+'° cl ,t „ , _i(t c"n At t\ i i\\j-\l — T )j ttl ( I 1.3 1 )

In practice, t0 » tp. That is, the observation interval t0 is much longer than the
transmitted pulse width tp. So if we assume that tp<r< t0, then the right side of
Eq. (11.31) is approximately zero:

~(ET) = Q (11.32)
2 or

where
+ to

ET = s$(t -T)dt= s$(t)dt = constant (11.33)
Jtp JO

is the energy contained in the transmitted signal sT(t). Thus, it follows that
Eq. (11.31) can be rewritten as

"z(t)??I<Ll-L)~Q (11.34)

or

d
) ]^0 (11.35)
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where
tp+to

z(t)sT(t (11.36)

In summary, the value of T, say r = f, that produces a unique global maximum in
Eq. (11.36) also satisfies Eq. (11.35) and therefore minimizes Eq. (11.29). The value
f is called the least squares estimate of i.

Equation (11.36) is a key equation in the study of time delay estimation
algorithms for active sensors. Mathematically y(r) in Eq. (11.36) can be viewed as
a cross-correlation function with independent variable T. That is, under the
ergodic hypothesis an estimate of y(t) can be interpreted as the correlation
between the noise-free transmitted signal s$(t) and the noisy beamformer out-
put z(t). Thus, we can vary the lag r for all T in the interval tp < T < 10. At some
lag T = I the cross-correlation function y(r) achieves a maximum. This maxi-
mum occurs at the least squares estimate of T. Figure 11.19 is a block diagram
of a time delay estimation algorithm that implements Eq. (11.36) as a bank of
cross-correlators.

Let us now consider another way to interpret Eq. (11.36). Specifically, let us
assume that z(t) is passed through a linear time-invariant filter with impulse
response sr( — t). If we sample the output of this filter, say y(t), at t - f, we obtain
the same mathematical result as in Eq. (11.36). The maximum output of this filter
occurs at t = f.

= LEAST-SQUARES
TIME DELAY
ESTIMATE

Fig. 11.19. Time delay estimation using a bank of correlators.
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The preceding interpretation is possible because of the mathematical similarity
of correlation and convolution. The impulse response ST( — t) not only repro-
duces (1 1.36), but it is also the only linear time-invariant filter that produces the
maximum SNR at t = f. For v(t) a white noise process with autocorrelation
function

(11.37)

the maximum SNR at t = f is 2ET/N0, where Er is given by (1 1.33). Here, <5(/i) is

11 z(t) * sT(-t)

Fig. 11.20. Matched filter produces maximum SNR at t = f . (a) Transmitted signal sT(t);
(b) matched filter; (c) receive beamformer output when no noise is present (e.g., v(t) = 0); (d) output of
the matched filter; (c) convolved with (b).
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the familiar Dirac delta function. The filter ST( — t), which corresponds to sr(r), is
called the matched filter for sT(t) [15] (Fig. 11.20). The matched filter not only
produces the maximum SNR at t = f, but it can also be implemented as a
correlator. Matched filters or correlators also play an important role in the signal
detection problem [16].

When the noise process v(t) is Gaussian, Eq. (11.36) can be derived from the
theory of maximum-likelihood estimation. In any event, Eq. (11.36) is a key
equation. In Section V we will consider a practical implementation of Eq, (11,36)
or Fig. 11.19.

In closing this section we refer the reader to Figs. 11.15-11.17 and 11.19,
which summarize the important concepts involved in beamforming and time
delay estimation for active systems.

Ill Time Delay Estimation for Passive Sensors

The Time Delay Estimation Problem for a Passive Array
with Two Omnidirectional Reciprocal Sensors

In general, a passive sonar or radar contains an array of omnidirectional
sensors and a receiver. The purpose of the passive array is to sense the acoustic or
electromagnetic waves that are radiated by a target (refer to Fig. 11.1). The
passive receiver converts these waves into electrical signals and decides if a target
was really present. Further signal processing can ultimately localize the target
(i.e., estimate the target's range and direction).

Let us begin our discussion of passive arrays by considering the simplest of all
passive arrays, the one with only two sensors. See Fig. 11.10. We assume that a
target, located at point P, radiates the signal s(t). Now if the target radiates s(t) at
t = 0, the signal received at the x = / sensor has the form s(t — rl/c)/rl, and
the signal received at the x = 0 sensor has the form s(t — r/c)/r. Here, we have
assumed that the medium is noise free, homogeneous, isotropic, and lossless; c is
the corresponding wave propagation speed. If the sensor outputs are now
combined according to the rule

m.,8,
then we have performed receive beamforming on the sensor outputs [refer to
Fig. 1 1 .16(b)]. Recall that |a(0)| and |a(l)| are the shading factors and D is a time
delay parameter. When D is equal to the intersensor time delay

--- (11.39)
c c
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Eq. (11.38) reduces to

/ AH/ifOU l/imil
(11.40)

D = A

That is, for D = A we experience a "constructive interference" effect, and
Eq. (11.38) achieves its maximum, Eq. (11.40). Thus, we can vary D until sR(t)
achieves a maximum. The values of D that maximizes the receive beamformer
output sR(t) is the intersensor time delay A. Given an estimate of A, can we
localize a radiating target with a two-sensor, linear, passive array? Let us
proceed to answer this question.

From Fig. 11.10 we see that

rf = r2 + l2-2rlcos(f) (11.41)

where r is the target range and $ is the target bearing or direction. Examination
of Eqs. (11.39) and (11.41) reveals that we have two equations but three
unknowns, r, rt, and 0. Hence, given A, we cannot obtain r and ^ for all ranges
and bearings. However, if the radiating target is "very far" from the passive array,
such that 4> — «, then r and r, are approximately parallel. It follows that

(11.42)

and

A~-cos< /> (11.43)
c

Under this special condition (i.e., r -> oo) we can use A to get an approximate
estimate of <j> by means of Eq. (11.43). Hence, the two-sensor, linear, passive array
cannot localize a radiating target. However, when the target is very far from the
array, we can estimate the target's bearing.

The two-sensor, linear, passive-array, time delay estimation problem is
equivalent to the bearing estimation problem for distant targets. The basic idea
is to estimate the intersensor time delay A and use Eq. (11.43) to estimate the
bearing </>.

In the previous section we saw that the two-sensor problem produced one
intersensor time delay (11.39), two equations [(11.39) and (11.41)], and three
unknowns. The end result was that a radiating target could not be localized by a
two-sensor, linear, passive array. Let us now see what happens to the passive
localization problem when we add one more sensor to the two-sensor array in
Fig. 11.10. For example, Fig. 11.21 shows a three-sensor, linear, passive array and
a target located at a range r and bearing </>. If this target radiates the waveform s(t)

B
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SPHERICAL WAVEFRONT

P(x,v,0!

Fig. 11.21. Three-sensor linear passive array.

at t = 0, the waveform received at the x = 21 sensor has the form s(t — r2l/c)/r2/,
the waveform received at the x = / sensor has the form s(t — ̂ /cj/r,, and the
waveform received at the x = 0 sensor has the form s(t ~ r/c)/r. Now

is the intersensor time delay between the x = 0 and x = / sensors and

'21

(11.44)

(11.45)

is the intersensor time delay between the x = 0 and x = 21 sensors. Since the
intersensor time delay between the x = / and x = 21 sensors can be expressed as

A!2 = - - — = A02 - A01 (11.46)
c c

we see that the three-sensor, linear, passive array has only two independent
intersensor delays. Moreover, due to the spherical nature of the wavefronts in
Fig. 11.21, A02 is not, in general, an integer multiple of A01; only when r -> oo
is this approximately true. Therefore, if we attempt to perform beamforming
according to the assumption that A02 ^ 2A01 [see Fig. 11.16(b)], we are
not likely to obtain the correct result. Hence, we should consider a beamformer
that combines the three sensor outputs according to the rule

D01
'21

Df

(11.47)
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where D01 and D02 are two independent time delay parameters. The beamformer
output Eq. (1 1.47) achieves a global maximum when D01 = A01 and D02 = A02 .
Thus, we now have the following "intuitive" algorithm for estimating A01 and A02

under noise-free conditions:

1. Perform the beamforming operation (1 1.47) on the three sensor outputs.
2. Vary D01 and D02 in a two-dimensional fashion until sR(t) in (1 1.47) achieves

a global maximum. The location of this maximum should occur at the intersensor
time delays A01 and A02.

Finally, given A01 and A02, can the three-sensor, linear, passive array solve the
passive localization problem? Let us proceed to answer this question.

From Fig. 1 1.21 we see that

(11.48)

and

r2, = (2/)2 + r2-2r(2/)cos<£ (11.49)

Given that A01 and A02 are known (or can be estimated), we now have four
independent equations [(11.44), (11.45), (11.48), (11.49)] and four unknowns
(r, 4>, rh r2j). Thus, the three-sensor, linear, passive array shows that a solution to
the passive localization problem exists. Doing some algebra we obtain the target's
range

and the target's bearing

4> = cos
'/2-(cA01)

2rl
(11.51)

However, although a solution exists, it is not unique. For example, a target
located at the point (r, — </>, z = 0) (e.g., below the x-axis in Fig. 11.21) would give
the same time delays (and therefore the same localization solution) as a target
located at the point (r, <f),z = 0). Hence, we have an ambiguity in target bearing.
Recall that this ambiguity also existed for the array with active sensors. It turns
out that this bearing ambiguity is directly related to the fact that each sensor has
an omnidirectional spatial characteristic instead of a directional one. Thus, to
resolve the bearing ambiguity, (i) we must have a priori knowledge that the
target exists in the sector 0° < 0 < 180° (or 180° < 0 < 360°), or (ii) we must
use directional or baffled sensors.

In summary, the three-sensor, linear, passive array provides a solution to the
passive localization problem. In the next section we consider various signal
processing strategies for estimating the two independent time delays AOJ and A02.
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C A Time Delay Estimation Algorithm for Passive Sensors

1 An Alogrithm for the Two-Sensor Linear Array

Although we cannot solve the passive localization problem with a two-sensor,
linear, passive array, we can obtain the bearing of a distant target by estimating
the intersensor time delay A01. Let us elaborate.

Assume that the point F in Fig, 11.10 represents a distant, stationary target that
radiates a real, zero-mean, wide-sense stationary (WSS), random process s(t).
Further, we assume that the passive receiving array is stationary and that the
position of the sensors is exactly known. Hence, the signal received at the .x = 0
sensor has the form

v0(t) (11.52)

and the signal received at the x = I sensor has the form

Here, v0(t) and v^t) are assumed to be real, uncorrelated, WSS noise processes. If
we now perform receive beamforming on these two sensor, the beamformer
output has the form

z(t) = M0)|z0(0 + Mt)!^ - DOI) (11.54)

where |a(0)| and |a(l)| are the shading factors and Dol is a time delay parameter.
Since s(t), v0(t), and v^t) are assumed to be real, zero-mean, WSS, random
processes, it follows that z(t) is also a real, zero-mean, WSS random process.

Based on our discussions in Section III. A, we could vary D01 until z(t) achieves
a maximum. However, since z(t) is a random process, this procedure does not
make sense. Rather than maximizing the beamformer output [Eq. (1 1.54)], let us
consider maximizing the mean-squared value of the beamformer output, namely,

J(D01) = E[z(0]2 = E[|a(0)|z0(f) + |a(l)l£i(f - £>oi)]2 (11.55)

The value of £>01 that maximizes Eq. (11.55) will be our estimate of the
intersensor time delay A01. Now Eq. (1 1.55) can be rewritten as

J(D01) = |«(0)|2E[z0(0]2 + 2|a(0)||a(l)|R01(D01) + \a(\)\2E\z^(t - D01)]2

(11.56)

£»oi)] (11.57)

is the statistical cross-correlation function between the real processes z_0(t) and
Zj( t ) . Here, D01 is the correlation or lag parameter. Since z0(t) and zt(t) were
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assumed to be zero-mean, WSS random processes, it follows that

£[z0(f)]
2 = var[z0(£)] = constant

£[z,(f - D01)]
2 = £[z,(f)]2 = var[zi(r)] = constant (11.58)

Consequently, from Eq. (11.55) through Eq. (11.58) we conclude that maximizing
Eq. (11.55) is equivalent to maximizing the cross-correlation function Eq. (11.57).
Hence, locating the peak of the cross-correlation function is equivalent to
estimating the intersensor time delay A01.

Notice that /?01(D01), as defined in Eq. (11.57), requires ensemble averaging.
However, if the zero-mean, WSS processes z0(t) and z_i(i) are ergodic (see Chap-
ter 1) and are observed for lp < t < tp + f0 , then Eq. (11.57) can be approximated
by

rt,, + tn

Jtp
provided that the observation interval t0 is very long. Here, R0i(Dol) denotes an
estimate of K01(D01). Figure 11.22 summarizes a cross-correlation time delay
estimation algorithm for the two-sensor, linear, passive array. Once A01 is known,
the target's bearing follows from Eq. (11.43).

We can also implement the cross-correlation algorithm of Fig. 11.22 in the
frequency domain. For example, the cross-spectral density associated with
Eq. (11.57) is defined by the Fourier transform

G01(F) = RoJDoJe-'2***" dDol (11.60)
J - co

Substituting Eq. (11.59) into Eq. (11.60) gives the estimate

Qol(F) = Z0(F)Zf(F) (11.61)

provided that r0 is very long. Here, Z0(F) and Zt(F) are the Fourier transforms of
z0(t) and z^t), respectively, and G01(F) denotes an estimate of G0i(F).
Figure 11.23 shows the frequency domain implementation of Fig. 11.22. Notice
that the sensor outputs are not prefiltered. That is, the received waveforms at
x = 0 and x = I go directly into a Fourier transform.

Let us now consider prefiltering z0(t) with a linear time-invariant filter h0(t) and
prefiltering zx(0 with a linear time-invariant filter h^t). Since the time delays
show up in the phase spectra, let us assume that both prefilters have the same
phase spectrum. This will prevent any distortion due to prefiltering. Hence,
this idea generalizes the cross-correlation algorithms in Figs. 11.22 and 11.23.
Figure 11.24 shows a time domain implementation of a generalized cross-
correlation (GCC) algorithm, whereas Fig. 11.25 shows a frequency domain
implementation of a GCC algorithm. In either case ROI(®OI) is commonly
called the generalized cross-correlation function.

We have introduced the ideas of prefiltering and GCC (see Figs. 11.24 and
11.25) as natural, intuitive extensions of Figs. 11.22 and 11.23. A more rigorous

justification of the GCC method is given in [17]. Further, there has been a great
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x=0 x=e

CONSTRUCT THE FUNCTION

R0 1(D0 1)BYVARYINGD0 1.

LOCATE THE PEAK,

PEAK OCCURS AT AQ1 = INTER-SENSOR TIME DELAY ESTIMATE,

Fig. 11.22. Estimating A01 by a cross-correlation algorithm.

deal of research conducted on the selection of an "optimal" frequency weighting
function W(F) = |H0(F)| • |//i(F)| for use in the frequency domain implementa-
tion of the GCC method [17]. (See Fig. 11.25.) For example, when the underlying
spectral densities of z0(t) and z^t) are known, when s(t), v0(t), and £,({) are
Gaussian and mutually uncorrelated, and when G01(F) is obtained by averaging
periodogram-type estimates of the cross-spectral density according to [18], then
we can choose W(F) to minimize the variance of the time delay estimate A01. The
resulting frequency weighting function is

I. (11.62)
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x=0

Fig. 11.23. Frequency domain implementation of the cross-correlation algorithm in Fig. 11.22.
The sensor outputs z0 (t) and z, (t) are not prefiltered—they go directly into a Fourier transform.

where

Gol(F)

VG00(F)GU(F)
(11.63)

Here, GSS(F) is the spectral density of s(t), G00(F) is the spectral density of z0(t),
Gtl(F) is the spectral density of zt(t), and G01(F) is the cross-spectral density
between zQ(t) and z,(r). The quantity y0i(^) is called the coherence function
between z0(r) and Zi(t). Under the above assumptions and the assumption that t0
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Fig. 11.24. Generalized Cross Correlation (GCC) method.
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Fig. 11.25. Frequency domain implementation of the GCC method.
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is a very long observation time, we can show that the GCC algorithm (Fig. 1 1.25)
that uses Eqs. (11.62) and (11.63) is the maximum-likelihood estimate of A0)

[17,19],
There are other reasons for choosing W(F). For example, the weighting

function

W(F] = -==L= ( 1 1 .64)~

can be used to desensitize the GCC method to the bandwidth properties of s(t)
[20]. That is, Eq. (11.64) has a prewhitening effect on G01(F). Reference [21]
provides a good discussion on several commonly used weighting functions and
the reasons for their selection.

2 An Algorithm for the Three-Sensor Linear Array

As we saw in Section III.B, the three-sensor, linear, passive array solves
the passive localization problem; that is, we can obtain the target's range r and
bearing (j). However, we do have an ambiguity in target bearing that can be
resolved by using (i) a priori knowledge or (ii) directional, rather than
omnidirectional, sensors. Nevertheless, we are now faced with the problem of
estimating the two independent time delays A01 and A02. The third time delay,
A! 2, can be obtained from Eq. (11.46).

Let us assume that the radiating target and receiving passive array are both
stationary. Further, we assume that the sensor positions are exactly known. We
will also assume that the signal s(t) and the three noise processes vQ(t), vt(i), and
v2(t) are all real, zero-mean, Gaussian, mutually uncorrelated, WSS random
processes. Now the waveform received at the jc = 0 and x = / sensors are given by
Eqs. (11.52) and (11.53), respectively, and the waveform received at the x = 21
sensor is given by

1 / r \
z,(t) = —si t - -2- + v2(t) (1 1.65)

r2l \ C J -

As we discussed in Section III.B, to obtain the target's range, we cannot assume
that A02 ^ 2A01, which is equivalent to assuming that r -* oo. In other words, we
cannot perform the receive beamforming according to Fig. 11.16(b). Thus, we
should perform the beamforming according to the rule

z(t) = |fl(0)|20(0 + l«(l)l*i(* - £>oi) + \a(2)\z2(t - D02) (11.66)

where ja(0)|, |a(l)|, and \a(2)\ are the shading factors and D01 and D02 are the two
independent time delay parameters. The values Dol = A01 and £>02 = A02 that
maximize the mean-squared value of the beamformer output [Eq. (1 1 .66)] will be
taken as our estimates of A0i and A02, respectively.
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Now the mean-squared value of Eq. (1 1.66) is

which represents a surface or two-dimensional function. Expanding Eq. (1 1.67),
we get

J(D01,D02) = !fl(0)|2£[z0(f)]
2 + \a(\)\*E{zi(ttf

+ 2|fl(0)||fl(2)|K02(D02) + 2\a(l)\a(2)\R12(D02 - D01) (11.68)

which follows from the WSS assumption on z0(i), z^t), and z2(t). The statistical
cross-correlation function jR01(D01) is defined in Eq. (1 1.57). The other two cross-
correlation functions are defined by

#02(^02) = E\_z0(t)z2(t - D02)] (1 1.69)

£12(002 - £>oi) = £[2i(f - D01)z2(t - £>02)] (11.70)

where z0(t), z±(t\ and z2(t) are real processes. If these processes are ergodic and
observed over a very long observation interval of length t0, then the ensemble
averages in Eqs. (11.57), (11.69), and (11.70) can be approximated by the time
averages Eq. (11.59),

j t p
and

rtp+t<,
#12(^02 - DOI) = ?.i(t - Dol)z2(t ~ D02)dt (11.72)

respectively. Here, R0i(D01), R02(D02), and ^12(D02 — D01) are estimates of
R01(D01), R02(D02), and R12(D02 - Dol), respectively,

The first three terms in Eq. (11.68) are constants. Thus, instead of maximizing
Eq. (11.68) we could maximize the two-dimensional function

M(D01,D02) = 2|a(0)||fl(l)|/?oi(£>oi) + 2|a(0)| \a(2)\R02(D02)

+ 2|a(l)||fl(2)|/?12(Do2-D01) (11.73)

which is really the last three terms of Eq. (11.68). To locate the peak of Eq. (11.73),
which is equivalent to maximizing the mean-squared value of the beamformer
output, we could use the following algorithm:

Step 1. Select a point (D01, Z)02) from the set of all points in the D01D02 plane.
Step 2. Compute the three cross-correlation estimates (11.59), (11.71),

and (11.72).
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Step 3. Compute (11.73) for a given set of shading factors.
Step 4. Repeat steps 1-3 until (11.73) becomes a surface.
Step 5. Locate the peak of this surface. Say the peak occurs at the point

(A01, A02). Take (A01, A02) as the estimate of (A01, A02).
Step 6, Use (11.50) and (11.51) to convert (A01, A02) into range and bearing

estimates.

In Fig. 11.26 we show how to implement steps 1-6 by using three cross-
correlators. We use the output of these correlators to construct the surface
Eq. (11.73), and after locating the peak of this surface we label it (A01,A02).
Given that (A01,A02) is an estimate of the intersensor time delays (A01,A02),
we can find the target's range and bearing by evaluating Eqs. (11.50) and (11.51),
respectively, at (A01, A02).

The algorithm described in Fig. 11.26 searches, in an unconstrained fashion,
through all possible time delay values (D0i,D02) before selecting the optimum
pair (A01, A02). With(A01, A02), it then transforms these time delay estimates into
range and bearing estimates by Eqs. (11.50) and (11.51), respectively. An
alternative approach to range-bearing estimation would be to constrain the
time-delay values (D01, DQ2) in Fig. 11.26 to follow the range-bearing Eqs. (11.50)
(11.51). That is, we would first pick a range-bearing pair (r, 0), use Eqs. (11.50) and
(11.51) to convert this pair to (D01, D02), and then use Fig. 11.26 to maximize the
mean-squared value of the beamformer output [Eq. (11.68)]. Thus, the time delay
pair that maximized Eq. (11.68) would immediately imply a range-bearing
estimate; that is, we would not have to use Eqs. (11.50) and (11.51) after
performing the time delay estimation algorithm is Fig. 11.26. In the literature this
latter approach is known as the focused beamformer, because it constrains the
time delay parameters (Z)01,D02) to "focus" on a specific (r, 0) pair [22]. The
focused beamformer and Fig. 11.26 provide theoretically equivalent approaches
to range-bearing estimation. However, for practical applications, it is sometimes
more convenient to perform an unconstrained search (e.g., Fig. 11.26), rather than
a constrained search (e.g., the focused beamformer), in the time delay param-
eters [23].

The time delay estimation algorithm in Fig. 11.26 requires a two-dimensional
(2-D) peak detector. Although this represents an optimum algorithm, it would be
convenient for practical reasons to reduce the algorithm to several one-
dimensional (1-D) peak detectors. For example, reference [24] considers a time
delay estimation procedure that processes each sensor pair (e.g., three pairs in
Fig. 11.26) by a GCC algorithm. See Figs. 11.24 and 11.25. The time delay
estimates from each GCC pair are then judiciously combined to produce the
overall time delay estimate (A01,A02) [24]. Thus, this procedure replaces the
2-D peak detection algorithm of Fig. 11.26 by several (e.g., three) judiciously
combined GCC algorithms (i.e., 1 -D peak detectors).

Let us now discuss a conventional time delay estimation algorithm used for
estimating range and bearing with a passive sonar array. As we saw in Section
III.B, the three-sensor, linear, passive array solves the range and bearing
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CONSTRUCT THE SURFACE (11.73) BY
VARING D01 AND DQ2. LOCATE PEAK.

PEAK OCCURS AT (AQr AQ2) = INTER-SENSOR TIME DELAY ESTIMATES.

Fig. 11.26. Optimum 2-D algorithm for estimating intersensor time delays.
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01 -02

Fig. 11.27. Conventional suboptimum realization for estimating intersensor time delays.
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estimation problem. Now instead of using three omnidirectional sensors, let us
consider the idea of using three subarrarys. (Here, a subarray generally contains
several omnidirectional sensors.) First, we will perform receive beamforming on
each subarray. Next, we will perform a GCC algorithm on the beamformer
outputs associated with the first and second subarrays. The resulting time delay
estimate is approximately A01. Then we will perform a GCC algorithm on the
beamformer outputs associated with the first and third subarrays. The resulting
time delay estimate is approximately A02. Given (A01,A02)> we use Eqs. (11.50)
and (11.51) to obtain the range and bearing estimates, respectively. This
conventional time delay estimation algorithm is shown in Fig. 11.27.

Although the conventional algorithm of Fig. 11.27 is not the theoretically
optimum algorithm (e.g., the GCC version of Fig. 11.26 and the focused
beamformer), it is very practical and easy to implement. That is, it can be
implemented at a lower cost than the optimum algorithm and performs almost as
well [1].

Recall that there are only two independent time delays (e.g., A01 and A02). The
remaining time delay, A12, can be obtained from Eq. (11.46). Thus, we need not
perform a GCC algorithm on the second and third subarrays in Fig. 11.27.
However, in practice, this is done for redundancy; that is, it can be used to verify
that the algorithm is working properly.

As we have seen, cross-correlation and time delay estimation go hand in hand.
In the next section we will discuss the theory of cross-correlation and its
relationship to the time delay estimation problem.

CROSS-CORRELATION AND ITS RELATIONSHIP TO THE IV
TIME DELAY ESTIMATION PROBLEM

Cross-Correlation: A Measure of Similarity A

Two geometrical vectors, say x and y, two continuous-time waveforms, say x(t)
and y(t), and two discrete-time sequences, say x(n) and y(n), are commonly
classified as similar or dissimilar. For example, if two geometrical vectors have
the same magnitude and direction, they are similar; specifically, they are
equivalent. Sometimes, two vectors could have the same magnitude but different
directions. Then the vectors are similar but not equivelent. To quantify the term
"similar" for two geometrical vectors, we frequently use the inner product, scalar
product, or dot product. For two geometrical vectors x anu y the dot product is
defined by

x . y = |x||y|cos# (11.74)

where 0 is the angle between the vectors. When two geometrical vectors have the
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same magnitude and are pointed in the same direction, we have x • y = |xj2. For
this case the dot product is a maximum, and the two vectors are identical. When
two geometrical vectors have the same magnitude but are perpendicular (i.e.,
0 = 90°), we have x • y = 0. For this case the dot product is zero, and the
two vectors are dissimilar. In any case the dot product quantifies the terms similar
and dissimilar for two geometrical vectors.

Let us now consider the two real, continuous-time waveforms x(t) and y(t). If
the two waveforms have the same amplitude and time distributions, they are
equivalent. In the time delay estimation problem the two waveforms generally
have the same amplitude distributions but different time distributions; that is, the
two waveforms can be expressed as x(t) and y(t) = x(t — T). To quantify the term
"similar" for two continuous-time waveforms x(t) and y(t), we define the inner
product

x(t)y(t)dt (11.75)

where a < t < b defines the time interval of interest. If y(t) = x(t — r), then

p= x(t)x(t-i)dt (11,76)

When T = 0 the waveforms x(t) and x(t — T) are aligned. For this case the inner
product [Eq. (11.76)] is a maximum, and the two waveforms are similar;
specifically, they are identical. When either the waveform x(t) or x(t — T) does not
partially occupy the time interval [a, b} (i.e., they are disjoint in time), then
Eq. (11.76) is zero. For this case the waveforms are dissimilar. The inner product
Eq. (11.76), plotted as a function of T, is the autocorrelation function of x(t).
Thus, a measure of similarity for two continuous-time waveforms is the inner
product Eq. (11.75).

For discrete-time sequences we define the inner product

<x(n),y(n)y = "% x(n)y(n) (11.77)
n=--0

where 0 < n < N — 1 is the interval of interest. Again, for time delay problems we
have y(n) = x(n — m). For this case Eq. (11.77) can be written as the discrete-time
autocorrelation function of x(n). Hence, a measure a similarity for two discrete-
time sequences is the inner product Eq. (11.77).

The cross-correlation function between ergodic sequences x(n) and y(n) is
defined by

r,,(m) = I x(n)y*(n-m) (11.78)
n = a.;

where x(n) and y(n) are usually complex sequences. Here, the independent
variable m is called the lag variable. Notice that Eq. (11.78) is really the inner
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product <.x(n), y(n — m)>, which is a function of the lag m. Thus, the cross-
correlation function, like the other inner products, provide a general measure of
similarity between two waveforms.

Figure 11.28 shows two different waveforms and the corresponding cross-
correlation function. Notice that the cross-correlation function is, in general, not
symmetrical and not unimodal. Figure 11.29 shows the cross-correlation
function between a waveform x(n) and a delayed version of this waveform,
x(n — D). Here, D is an integer value of time delay. For this case the cross-correla-
tion function is always symmetrical and always unimodal, provided the SNR is
large. Thus, the time delay estimation problem allows rxy(m) to be unimodal.
Hence time delay estimation algorithms that locate the peak of rxy(m) will
always select one maximum or peak, which occurs at the time delay D.

In summary, the cross-correlation function is an inner-product-type func-
tion that provides a measure of similarity between two waveforms. For time
delay estimation problems the cross-correlation function is equivalent to the
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Fig. 11.28. Cross-correlation function, (a) Right-sided waveform x(«); (b) right-sided waveform
v(«); (c) Rxv (m) = cross correlation function between x(n) and y(n).
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Fig, 1 1,29. Cross-correlation function, (a) Right-sided waveform x(«); (b) waveform in (a) delayed
by D = 3 units; (c) cross correlation function rxy (m) = autocorrelation function rxx (m + 3).

autocorrelation function centered at the true time delay. Hence time delay
estimation algorithms that locate the peak of rxy(m) will always obtain a unique
global peak (provided the SNR is large) due to the unimodal, symmetrical nature
of the autocorrelation function.

B Cross-Correlation and Mean-Squared Criteria

The cross-correlation function arises quite naturally when one attempts to
minimize or maximize mean-squared objective functions. For example, in the
active sensor problem we assumed that the optimal time delay estimate was the
one that minimized Eq. (11.29). Equation (11.29) represents the mean-squared
(i.e., average-squared) error between the observation z(t) and the model
(AG2/R2)sT(t — T). The end result was the cross-correlation function Eq. (11.36);
the location of the peak of Eq. (11.36) is the active time delay estimate.

For the passive sensor problem we assumed that the optimal intersensor time
delay estimates were the ones that maximized the mean-squared value of the
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beamformer output. Refer to Eqs. (11.55) and (11.67). The end result was the
cross-correlation functions between the sensor outputs (or subarray beamformer
outputs); the peaks of these cross-correlation functions were related to the
intersensor time delay estimates.

In general, if one has a mean-squared objective function of the form

J(D) = £[x(n) + ay(n - D)]2

= E[x2(n) + 2ax(n)y(n - D) + a2y2(n - /))] (11.79)

if x(n) and y(ri) are zero mean WSS processes, if a is a constant, and if D is a time
delay parameter, then

J(D) oc rxy(D) (11.80)

That is, the cross term in the mean-squared objective function [Eq. (11.79)] gives
rise to a cross-correlation function. Hence, locating the peak of a cross-
correlation function is equivalent to maximizing Eq. (11.79).

In summary, mean-squared objective functions and cross-correlation func-
tions go hand in hand. However, if one chooses to select an objective func-
tion that is not of the mean-squared type, then there is no obvious reason why
cross-correlation functions should appear in the resulting time delay estimation
algorithms. Nevertheless, the mean-squared value of the beamformer output
makes physical sense, so maximizing this quantity is not only reasonable but wise
in terms of the ease of implementation. For the mathematical properties of cross-
correlation functions, see Chapter 1.

From Theory to Implementation A

In previous sections we covered the basic theory and functional flow diagrams
for both the active and passive time delay estimation algorithms. We now discuss
some practical implementation issues.

With the advent of high-speed digital electronics, there has been a steady
transition from analog signal processing to digital signal processing. Today,
many radar and sonar systems are moving toward computer-controlled,
automated software-based systems. Both radar and sonar signal processing have
been heavily influenced by the commerical availability of gate arrays, CMOS
devices, high-speed digital signal processing chips, microprocessors, microcom-
puters, and FFT algorithms. The implementation of many time delay estimation
algorithms rely quite heavily on the FTT. Thus, we will discuss the role of the
FFT in both the active and passive problems.
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B Implementation Issues for the Active Case

The front end of an active radar or sonar receiver generally contains a receive
beamformer, analog filters, amplifiers, and dynamic range controllers [e.g.,
automatic gain control (AGC)]. These devices prepare the radar or sonar analog
signal for digital signal processing. For a stationary point target located in a
homogeneous, isotropic, lossless medium, the analog signal, after front-end
processing, has the form

z(t) = MsT(t - r) + v(t) (11.81)

for tp< t < tp + t0. Here, tp is the duration of the transmitted pulse, t0 is the
length of the observation interval, sT(t) is the transmitted waveform [refer to
Eq. (11.1)], M is a constant, v(t) is a zero-mean, white Gaussian noise process,
and T is the desired time delay.

Equation (11.81) is an analog signal with a corresponding analog spectrum
Z(F). In active radar and sonar z(t) generally has a narrowband spectrum. That is,
Z(F) is centered about some carrier frequency F0 (Hz) and has a bandwidth W
(Hz) that is much smaller than F0 [25]. For example, Figure 11.30 shows a typical
magnitude spectrum of a narrowband process z(t). Let us now discuss the analog-
to-digital conversion (ADC) of this narrowband process.

Suppose z(t) was associated with an X-band radar whose carrier frequency
was F0 = 9 x 109 Hz = 9 GHz and whose bandwidth was W = 1 x 10* Hz =
1 MHz. Naively, we could sample this process at the Nyquist rate of 2(F0 +
W/2) Hz or 18 GHz. However, the current ADC technology cannot support this
sampling requirement. Further, if the observation interval was t0 — 0.75 x
10~3 s, then sampling z(t) at 18 GHz would result in 13.5 x 106 digital samples,
an enormous amount of data.

To circumvent these problems and make the ADC practical, we first translate
the narrowband process z(t) down to baseband (i.e., a lowpass spectrum centered

Fig. 11.30. Magnitude spectrum of a narrowband process z_(t).



11. Time Delay Estimation 839

ACTIVE RADAR OR SONAR RETURN

RECEIVE
BEAMFORMER
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r
z(t), BANDWIDTH = W Hz

1

L_

cos (2ffF t) sin (2-nf t)

T = 1/W SEC.

DIGITAL SIGNAL PROCESSING

Fig. 11.31. Block diagram of the narrowband-to-baseband translation process.

at F = 0), then sampled at a much lower rate. The narrowband-to-baseband
translation, common practice in active radar and sonar, is generally done with
analog multipliers and filters. Figure 11.31 is a block diagram description of this.

Figure 11.31 shows that the narrowband-to-baseband translation, commonly
referred to as mixing, decomposes z(t) into an in-phase (/) component iz(t) and a
quadrature (Q) component qz(t). Mathematically, the mixing process generates a
lowpass complex analog signal

(11.82)
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for tp<t<tp + t0. The magnitude of f(t) is

if(OI = {[4W]2 + fe(0]2}1/2 (H-83)
and the phase angle associated with z(t) is

arg[f(t)] = tan'1 = (11.84)

Since each analog component of ?(t) has a lowpass spectrum with cutoff
frequency W/2 Hz, this means that iz(t) and qz(t] can be sampled at WHz. Thus,
the above X-band radar would require 10 MHz ADCs in the I and Q paths. The
current ADC technology can easily support this sampling requirement. Further,
for t0 = 0.75 ms, the 10-MHz sampling rate generates 7500 1 samples and 7500 Q
samples instead of the 13.5 x 106 z-samples generated by the 18-GHz sampling
rate. This represents a data compression ratio of approximately 100Q to 1.

At this point the active radar or sonar return has been front-end filtered, mixed,
and converted to discrete-time form. We assume that the time origin has been
shifted so that 0 < t < tQ. Hence, if t0 = (N — 1)T, then we have the N complex
samples f(nT) (n = 0, 1, . . . , N — 1). Equivalently, we now have the N in-phase
samples iz(nT) (n = 0, 1, . . . , N ~ 1) and the JV quadrature samples q2(nT) (n ~
0, 1,. . . , N — 1). The radar or sonar return is now ready for digital signal
processing (Fig. 11.31).

Recall the discussion in Section II.C.2. For real data z(t) and a stationary point
target in an ideal medium, we showed that the least squares solution to the active
time delay estimation problem was to locate the peak of the correlator output.
Refer to Eq. (1 1.36) and Fig. 1 1.19. For complex data z(t) [refer to Eq. (1 1 .82) and
Fig. 11.31], Eq. (11.36) becomes

J(T ) = iv(t ) + .%(T ) = z(t)s%t - T Mf (11.85)
J«j .

Here, z(t) and

sT(t) = sTi(t) + jsTq(t) (11.86)

are obtained by mixing z(t) and sT(t), respectively. See Fig. 1 1.31. The quantities
iv(f ) and qy(7 ) are the real and imaginary components, respectively, of the com-
plex correlator output [Eq. (11.85)]. If we implement Eq. (11.85) on a digital
computer than j;(f ) can be approximated by

y(mT) = £ z(nT)st(nT - mT) (1 1.87)
~ n = 0

where f = mT (m = 0, ± 1, . . . , ± M + 1), t - nT (n = 0, 1, . . . , N - 1), and T is
the uniform sampling increment. Generally, the length of sT(nT), say S, is shorter
than N,so M > N > S.
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Many active radars and sonars compute Eq. (11.87) by the FFT. Specifically, if

NL -1
Z(/c)= X z(n)e-J2nnk/NL (fc = 0, 1 , . . . , NL- 1) (11.88)

n = 0

represents the discrete Fourier transform (DFT) of z(n) = z(nT) and
NL - 1

ST(fc)= J sT(n)e~i2mklNL (Jt = 0, 1, . . . ,NL-1) (11.89)
fi = 0

represents the DFT of sr(rc) = sT(nT), then

r(*) = Z(fc)S?(fc) (fc = 0 , l , . . . , JVL- 1) (11.90)

represents the discrete cross-spectrum between z(«) and sr(n), provided that t0 is
'large." The DFT

I ]Vi - 1

y(m) = -Trr T Y(k)ej2imklNI' (m = 0, 1,..., NL - 1) (11.91)
NL it = o

gives the correlator output Eq. (11.87). We note that the size of the DFTs, namely
NL, is usually much larger than N because z(n) and sT(n) are appended with
NL — N and NL — S zeros, respectively. This zero-padding is necessary to
avoid the circular convolution effects that one encounters when using DFTs
to perform convolution or correlation. Refer to Chapter 1, Section VII.D.
Now once the zero-padding and DFT size NL have been established, the FFT
algorithm (see Chap. 1) is used to implement the DFTs (11.88) and (11.89).
Next, the cross-spectrum Eq. (11.90) is computed; then the inverse FFT
algorithm is used to implement the DFT Eq. (11.91). At this point the complex
correlator output y(m) is available for further processing.

The time delay i appears in both the magnitude and phase of y(m). However,
for active radar and sonar the phase of y(m) is a very sensitive function of T; that
is, the smallest change in T produces large phase fluctuations. Therefore the phase
of y(m) is generally not stable, so it is not used for time delay estimation. On
the other hand, the magnitude of y(m) is less sensitive to small changes in ?,
Consequently, the magnitude of y(m) is generally used for time delay estima-
tion. Thus, the FFT processing gives y(m), and the peak location of

\iy(m) + jqy(m)\ = (n - m) (11.92)

gives the final active time delay estimate. Figure 11.32 summarizes the above
discussion.

When no noise is present [e.g., v(t) == 0], the magnitude of y(r) can be written as

(11.93)
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Fig. 11.32. FFT processing.

Under the no-noise assumption, Eq. (11.93) is entirely dependent on the
properties of the transmitted waveform sT(t). Further, y(f) achieves its maximum
value when ? = T (i.e., when f equals the true time delay T). Notice that this
maximum value is proportional to the energy ET in sT(t).

Up to now we have assumed that the active radar or sonar operated against a
stationary point target. For constant-velocity point targets (see [26]), Eq. (11.93)
can be generalized to

Msr(t - r)s*(t -

where Fd is the Doppler shift. If Eq. (11.94) is normalized such that

\M\E,

we obtain

sT(t -

(11.94)

(11.95)

(11.96)

The square of Eq. (11.96) is commonly referred to as the ambiguity function,
which was originally introduced by Ville [27]. The ambiguity function represents
the magnitude squared of the complex correlator output or matched filter output
under the constant-velocity point target and no-noise assumptions. Notice that
A(T, Fd) is a 2-D surface with a global maximum at the point (T, Fd). Thus, we can
perform time delay and Doppler estimations simultaneously by locating the
global peak of Eq. (11.96). Further, since sT(t) controls the shape of the ambiguity
function, one can judiciously select an "optimal" transmitted waveform by means
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of Eq. (11.96). In any event, the ambiguity function plays a major role in radar
and sonar signal processing. References [25] and [28] provide good discussions
on the ambiguity function as well as numerous 3-D pictures.

Implementation Issues for the Passive Case C

The front end of a passive radar or sonar receiver generally contains a receive
beamformer, analog filters, amplifiers, and AGC circuitry. Just like the active case
these devices prepare the analog signals for digital signal processing.

As we saw in Section III.C, the GCC algorithm plays an important role in
the passive time delay estimation problem. Figure 11.25 is a block diagram for
implementing the GCC algorithm in the frequency domain, Since we are
interested in an FFT implementation, our discussion will be centered around
Fig. 11.25.

The analog signals z0(t) and z^t) that experience that front-end processing are
generally broadband. That is, the spectra Z0(F) and Zj(F) are generally spread
out over a fairly wide bandwidth. Although these bandwidths are wide, they are
usually compatible with practical ADCs. Thus, the samples z0(nT) (n —
0, 1, . . . , N — 1) and zt(nT) (n = 0, 1, . . . , N — 1) are usually obtained by direct
analog-to-digital conversion of z0(r) and zt(t), respectively. For example, a
passive sonar receiver with a 0-10 kHz bandwidth would require at least a
20-kHz ADC. For an observation interval of t0 — 25.6 msc, this means that
the length of z0(«T) and z^nT) is N = 512 points. Here, T = -& kHz = 50 fis
is the uniform sampling increment.

Given that
NL-l

?0(k) = £ z0(n)e~j2nnk/NL (k = 0, 1, . . . , NL - 1) (11 .97)
n = 0

is the DFT of z0(n) = z0(nT) and
NL-l

Zi(fc) = I z1(«)«-J'2*"k/JVL (k = 0, 1,..., NL - 1) (11.98)
n = 0

is the DFT of Zj(n) = z^nT), then the cross-spectrum between z0(n) and z^n) is

Gol(k) = Z0(*)Zf(fc) (* = 0, 1,..., NL - 1) (11.99)

For a given spectral weighting function W(k) (k — 0, 1,..., NL — 1), the GCC
algorithm modifies the cross-spectrum according to the multiplicative rule

Gh
01(k)= W(k)G01(k) (fc = 0, 1, . . . ,JVL- 1) (11.100)

Finally, the I DFT

I NL - I

KOI(«)=TTF I Gh
01(k)eJ2«nk<NL (n = 0, 1,.. . , NL - 1) (11.101)
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gives the GCC function. The location of the peak of Eq. (11.101) gives the
"optimal" time delay estimate.

For an FFT implementation of Fig. 11.25, the DFTs Eqs. (11.97) and (11.98)
can be implemented by an FFT algorithm. Similarly, Eq. (11.101) can be
implemented by an I FFT algorithm.

As we saw, Fig. 11.27 can be used to solve the passive localization problem. The
practical aspect of Fig. 11.27 is that it involves two independent GCC algorithms.
Since we have just shown how a GCC algorithm can be implemented by FFTs, it
follows that Fig. 11.27 has an FFT implementation.

In summary, we can use the FFT algorithm to solve the active and passive
time delay estimation problems. When applying the FFT to correlation or convo-
lution problems, be careful to avoid the effects of circular convolution. This is
why the FFT input sequences are zero-padded. That is, the FFT size NL is
composed of N data points and a sufficient number of zeros.

A Performance for the Active Case

In Section II we discussed the time delay estimation problem for active sensors.
Recall that we considered a simple backscattering model (i.e., a stationary point
target model) and an additive white noise model. Although these models
represent a gross simplification of a real-world target echo, they keep the
mathematics tractable, so we can obtain a feel for the problem.

Let us now make the following assumptions:

1. The transmitted signal sT(t) has the form (11.1).
2. The backscattering process is described by a single stationary point target

located in a homogeneous, isotropic, lossless medium. Thus, the noise-free target
echo is simply a scaled time-delayed version of (11.1), there are no other
scatterers, and no multipath.

3. The additive noise model is a zero-mean, WSS, Gaussian white noise
process with autocorrelation function (11.37).

4. The transmitted pulse width tp is much smaller than the observation
interval t0.

5. The MR A of the transmit beam is pointed directly at the target, so the
target's direction is exactly known.

6. The time delay estimate f is obtained by locating the peak of the magnitude
of the cross-correlation function. The phase of the cross-correlation function is
not used.

Based on these assumptions and the additional assumption of a large SNR
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(e.g., greater than 15 dB), the variance of the time delay estimate f is [16,26]

Vftr(f\ — M l 10?^Vd.1 \l f — - r- ^ 1 I . I \J£.}
d p

where

9F F

f^ = A (11J03)
rtp poo

ET= s2
T(t)dt= \ST(F)\2dF (11.104)

Jo J - oo

and

(11.105)
\ST(F)\2dF

Here, Er is the energy of the transmitted signal, N0/2 is the magnitude of the
white noise power spectral density (PSD), and ST(F) is the Fourier (analog)
spectrum of sT(t). It is common practice to interpret d2 as a measure of SNR and
ft2 as a mean-squared measure of transmitted signal bandwidth [16]. Thus, if the
square root of var(f) represents the time delay estimation accuracy, then large
SNRs (e.g., greater than 15 dB) and large bandwidths produce accurate time
delay estimates.

Such results are intuitively pleasing. For example, Fig. 11.8(b) shows a
stationary point target echo in additive white noise. We see that when the signal
amplitude is large compared to the noise amplitudes and when the rise time of the
pulse is small (which translates into a large signal bandwidth), we can intuitively
argue that the time delay estimate f will be more accurate. Equation (11.102) [or
the square root of Eq. (11.102)] quantifies these intuitive notions.

In Section III we discussed the time delay estimation problem for passive
sensors. Recall that to perform target localization by a passive array, we must
be able to accurately estimate the intersensor time delays A01 and A02 [see
Eqs. (11.44), (11.45) and Fig. 11.21].

Let us now make the following assumptions:

1. The passive array receives a radiated signal s(t) from a stationary target.
When appropriate, the radiated signal s(t) belongs to a zero mean, WSS Gaussian
process with power spectral density GSS(F).
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2. The passive array is stationary, and the elements or sensors are all collinear.
3. The additive noise v(t) in the received signal model is a zero-mean, WSS

Gaussian white noise process with autocorrelation function (11.37) and power
spectral density GPV(F).

4. The radiating target and linear passive array are located in a homogeneous,
isotropic, and lossless medium. Further, there is no multipath corruption of the
received signal.

5. The radiated signal and additive noise process are uncorrelated.

Based on these assumptions, the variance of the time delay estimate f between
two sensors is [17]

r r« r iy(F)i2 1 i"1

^HH <2^ iT^r} <IU06)
where

f2 ( F\

(11.107)

and t0 is the length of the observation interval.
For the active case, var(f), given by Eq. (11.102), was self-explanatory.

That is, given a transmitted signal sT(t), d2 and ft2 clearly defined the notions of
SNR and bandwidth. However, for the passive case it is not clear how Eq. (11.106)
relates to SNR and bandwidth. Thus, to make things clear, we will consider
a simple example.

Example 5. Let us assume that both the signal and noise PSDs are constant
over a finite-length frequency band and zero otherwise. Refer to Fig. 11.33. Under
this condition Eq. (11.106) reduces to

3 1 + 2(S0/N0)
- o_2. /o ,*T ^2/rvV" î U (11.108)

Since the signal power S is

f00

S ' r z z l (~r (r\/iT? — St { f? — f \ (\\ 1 AQ^LJ I ^^SSv r ~~~ 0\ "* 1 / \ 1 I * I W7 I

J -co

and the noise power N is

N = f °° Gn(F)dF = N0(F2 - F,) (11.110)

Eq. (11.108) can be rewritten in terms of signal-power-to-noise-power ratios;
that is,

' '+2(5/N) ( ,1.M1)f0 (S/N)2(Fl - F?)
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Fig. 11.33. Assumed PSDs for (a) the signal s(t) and (b) the noise v(t).

For low SNRs (i.e., SNR « 1) we have

i
var(f) ~

1
87r2t0(S/N)2(Ff-F?)

whereas for high SNRs (i.e., SNR » 1) we have

3 2
var(f)

to (S/JV)(Fl - F?;

In summary:

(11.112)

(11.113)

1. Like the active case, large SNRs and large bandwidths produce accurate
time delay estimates.

2. For the low SNR case the accuracy of f [or the square root of (11.112)] is
inversely proportional to SNR.

3. For the high SNR case the accuracy of f [or the square root of (11.113)] is
inversely proportional to >/SNR.

Note that Eq. (11.102) for the active case and Eq. (11.106) for the passive case
represent a lower bound on the variance of the time delay estimate f. That is,
under the given assumptions, Eqs. (11.102) and (11.106) represent the best we can
do. In the theory of maximum-likelihood estimation this lower bound is
commonly referred to as the Cramer-Rao lower bound. The derivation of the
Cramer-Rao lower bound can be found in [12,16,29].
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In terms of the passive localization problem, var(A01) = var(A02) = var(f)
[Eq. (11.106)]. Recall that A01 was the time delay estimate between sensors 0 and
1, and A02 was the time delay estimate between sensors 0 and 2. The variance of
the range r [Eq. (11,50)] and of the bearing 4> [Eq. (11.51)] can be found in [1]. It
turns out that an accurate range estimate requires very accurate time delay
estimates, whereas an accurate bearing estimate is less sensitive to time delay
accuracy.

The performance of time delay estimation algorithms has been the subject of
many research papers. For a good overview of the active and passive cases, see
[30] and the references there.

C A Numerical Example

For the active case we showed that Fig. 11.32 was an FFT implementation of
Fig. 11.19. Let us now show how to compute the necessary quantities shown in
Fig. 11.32 and the time delay estimate f.

First, we compute the complex signal

sT(n) = sTi(n) + jsTq(n) (11.114)

which is the complex demodulated version of the transmitted waveform sT(t).
Figure 11.34(a) shows a ficticious transmitted pulse [i.e., sT(t}] of duration
tp = 678.9 /is and rise time 234.5 jus. The narrowband spectrum of sT(t) is shown in
Fig. 11.34(b). Figure 11.34(c) shows the complex signal sT(n) [see Eq. (1.1.114)].
The narrowband-to-baseband translation of sT(t) [i.e., the complex dernoduation
of sT(t)~] was done digitally, with the FIR linear-phase lowpass filter shown in Fig.
11.35 (see Chapters 2 and 3). The sampling frequency was 512 kHz.

Next, bandlimited Gaussian white noise was added to the waveform in
Fig. 11.34(a) to produce the received noisy echo z(t). Refer to Fig. 11.36(a). The
duration of this noisy echo, or the length of the observation interval t0, was
(0 = 1000 fis, or 1 ms. Figure 11.36(b) shows the narrowband spectrum of z(t),
and Fig. 11.36(c) shows the complex demodulated signal

z(n) = z,(n) + jzq(n) (11.115)

Again, the narrowband-to-baseband translation of z(t) was done digitally, with
the FIR filter in Fig. 11.35; the sampling frequency was 512 kHz.

To form the cross-spectrum,

Y(k) = S$(k)Z(k) (11.116)

we must compute the FFT of the complex sequence sT(n) and the FFT of the
complex sequence z(n). These FFTs must be zero-padded in order to avoid the
effects of circular convolution, as explained in Section V.B. Thus, 1 ms of data
gives 512 data points, so a zero-pad of 512 zeros requires a 1024-point FFT.
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Fig. 11.34. (a) Transmitted pulse, (b) Magnitude and phase spectra, (c) Complex demodulation.
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il
63

(a)

-16500

Fig. 11.35. (a) A 64 tap, linear-phase FIR lowpass digital filter, (b) Frequency response for (a).

Figure 11.37(a) shows a 1024-point FFT of sT(n), and Fig. 11.37(b) shows a 1024-
point FFT of f(n). The cross-spectrum Y(k) is shown in Fig. 11.37(c).

Now that the FFTs have been properly zero-padded, the IFFT of Y(k)
[Fig. 11.37(c)] gives the complex cross-correlation y(m) [Refer to Eq. (11.91)].
The magnitude and phase of y(m) are shown in Fig. 11.38. The peak of j y(m)\ is
located at f = 248.047 /*s, which is the time delay estimate of r.

The SNR for this numerical example was 15 dB. The error in our estimate was
— 1.247 ,us. When the SNR increases, the error decreases.
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Fig. 11.36. (a) Noisy echo; zero-padding for FFT. (b) Magnitude and phase spectra for z(t).
Baseband translation of i(i).
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Fig. 11.37. Spectrum and cross-spectrum, (a) 1024-point FFT of |T(/?); (b) 1024-point FFT of z(«);

(c) cross spectrum Y(k) 0.
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0 127
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Fig. 11,38. (a) The magnitude and (b) phase angle of the complex cross-correlation function.

SUMMARY VII

In this chapter we presented an overview of the time delay estimation problem.
We discussed the active and passive radar and sonar problems, beamforming,
and active and passive localization. We then discussed the theory and algorithms
involved in estimating the intersensor time delays.

In real-world applications we do not have stationary point target models and
simple backscattering; in addition, there are multipath, finite-length observa-
tions, and nonstationary, non-Gaussian noise. However, this chapter will give
the reader a good understanding of the basic principles; then the more difficult
problems will be easier to analyze. For example, a good reading of this chapter
will allow the reader to understand some current real-world problems, namely,
the fundamental limitations of the passive theory when narrowband energy is
present and the problem of tracking a time-variant time delay [31,32].
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Chapter 12

Adaptive Filtering

NASIR AHMED
Department of Electrical and Computer Engineering

University of New Mexico
Albuquerque, New Mexico 87131

INTRODUCTION I

By "filtering" we mean a linear process designed to alter the spectral content of
an input signal (or data sequence) in a specified manner. Filtering is done by filters
whose magnitude and/or phase responses satisfy certain specifications in the
frequency domain. Examples of two magnitude responses are given in Fig. 12.1.
The term "adaptive filtering" implies that filter parameters such as bandwidth
and notch frequency change with time. As such, the coefficients (weights) of
adaptive filters vary with time. In contrast, the coefficients of fixed filters are time
invariant.

Fixed and adaptive filters are usually represented as block diagrams (see
Fig. 12.2). The arrow in Fig. 12.2(b) implies that the filter weights are changing
with time. We will restrict our attention to digital filters, which means that the
input, output, and filter weights are quantized and coded in binary form.

Magnitude Magnitude

0.707 • Bandwidth

Notch
frequency

f(Hz) f(Hz)

Notch filter Bandpass filter
Fig. 12.1. Examples of magnitude responses.
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Input Filter Output

(a) Fixed filter

Input
Adaptive

filter
• Output

(b) Adaptive filter

Fig. 12.2. (a) Fixed and (b) adaptive filter representation.

The input-output equation of an adaptive digital filter is
M

y(n) = X «.-(») x(n - 0 - Z WX" ~ 7). « ̂  °

where x(n) and >>(«) are the input and output samples (values) at time n, at(n) and
bj(n) are the ith and jth filter weights at time n, and N + M + 1 is the total
number of weights. Thus, if a, and fy are used in place of a,-(n) and bj(n),
respectively, then the equation represents the input-output equation of a fixed
filter.

If bj(n) = Q, 1 <:]< M, in the adaptive digital filter input-output equation, then
the resulting class of filters is called FIR (finite impulse response) adaptive. We
shall restrict this chapter to a subset of FIR adaptive filters whose weights are
changed by a technique called steepest descent. This subset of adaptive filters is
widely used and is described in terms of tapped-delay-line (transversal filter) and
lattice models. Our objective is to provide an introduction and working
knowledge of such adaptive digital filters.

II SOME MATRIX OPERATIONS

This section introduces some matrix operations that we will use to derive a
class of optimal least squares filters in Section II.

Let
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and
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A =

011 «12

021 022 (12.1)

denote a vector and matrix, respectively, where the superscript T implies the
matrix transpose operation. Taking the matrix-vector product Ax, forming the
scalar q — xTATAx, and taking the appropriate partial derivatives yield

VA(xTATAx) = (12.2)

where V is the gradient (derivative) operator, and VA denotes the gradient of the
quantity enclosed in parentheses with respect to A. To illustrate, let d = 2. Then

q (12.3)

By definition

dq dq
da12

8q

3021 ^022.

dq
(12.4)

From Eqs. (12.3) and (12.4) it follows that

VA(a) = 2 *i
X1X2

v-^X2

~ A= 2Axx

since

X1X2
Y2X2

(12.5)

The right side of Eq. (12.5) is known as the outer product of the vector x.
Similarly, if VT = [i>i v2 ••• vd~], then

VA(xTATv) = vx1

and

Vx(xTv) = Vx(vTx) = v

The identities in Eqs. (12.2) and (12.6) are summarized as follows:

1. VA(xTATAx) = 2A(xxT).
2. VA(xTATv) = vxx

3. Vx(xTv) = Vx(vTx) = v.
4. VX(VTXXTV) = VVTX.

(12.6a)

(12.6b)
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HI A CLASS OF OPTIMAL FILTERS

This class of filters is optimum with respect to the mean square error (MSE)
criterion. The filters are causal in that their impulse responses are zero for nega-
tive values of time. One may refer to this class of filters as Wiener filters, in the
sense that they are a subset of the general class of filters considered by Wiener.

We shall introduce three configurations. The motivation for doing so is that
adaptive versions of the same will be considered in Sections IV and V.

A Predictor Configuration

A predictor configuration is shown in Fig. 12.3, where the input x(n) is assumed
to be a stationary random process, and w represents the weights {w,-} of a digital
filter in vector form; that is,

WT = [WI w2 ••• WM]

where M is the number of filter weights. The filter output at time n is

(12.7)

(12.8)

where

xj = [JC(H - A) x(n - A - 1) x(n - A - [M - 1])]

is the input vector at time n and A > 1 is an integer. We seek a weight vector w
such that the output g(n) is a least squares approximation to the current (present)
sample x(n), using M of its past values. The special case A = 1 is referred to as a
one-step predictor.

In Fig. 12.3 the error at time n is

e(ri) — x(ri) — wTxn

or

e(n) = x(n)

(12.9a)

(12.9b)

Fig. 12.3. Predictor configuration.
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Defining the MSB

f = F$f>2(n)\ (1 "> I fH^ — i-* t c \iiji \i.6-. i\}}

where £ denotes statistical expectation,1 and using Eq. (12.9) shows that e is
a quadratic ("bowl-shaped") surface in a space whose coordinates are W j ,
w 2 , . . . , w M . Thus we obtain the optimal (unique) value of w by solving the
matrix equation

Vwe = 0 (12.11)

where 0 is a null vector. Equations (12.9)-(12.11) yield

F!?(n}\ } — 0 M? 121Z jl t 'Vv;~n/ — u \it..i£.)

known as the orthogonality principle, which states that the process of minimizing
the MSB E{e2(n)} is equivalent to making the error e(n) orthogonal to each
of the inputs x(n - A - j), 0 < j < (M - 1). Substituting Eq. (12.9b) into
Eq.(12.12)leadsto

w* = S;jc
1px:c (12.13)

where w*T = [wf wf • • • wj^] is the desired optimal solution for w,

Sxx = E{xnxl} is the M x M input autocorrelation matrix

and

pxx — E{x(n)xn} is the M x 1 input correlation vector

In practice, S^ is almost always positive definite; that is, all of its eigenvalues
are positive. This condition ensures that Sxx is nonsingular, so S^1 exists.

To illustrate the matrix form of Eq. (12.13), consider a two-weight, one-step
predictor (i.e., M = 2 and A = 1). Then we can obtain w* by evaluating the
matrix product

w* ^S^p^. (12.14)

where

E{x2(n - 1) E{x(n - l)x(n ~ 2)}'
E{x(n - 2}x(n - 1)} E{x2(n - 2)}

and

= p{x(n)x(n - 1)}
Pxx \_E{x(n)x(n - 2)}

1 When the input is not random, £ is replaced by a time-averaging operation.
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1 Minimum MSE

Substituting Eq. (12.9a) in Eq. (12.10), we get

emin = E{e(n)x(n)} - wT£{e(n)xM}

the second term of which is 0 because of the orthogonality principle in
Eq. (12.12). Thus

emin = E{e(n)x(n)}

which yields the desired result

*min = E{x2(n)} - W*Tp.x, (12.15)

since e(n) = x(n) — w*Txn; see Eq. (12.9a). In Eq. (12.15) E{x2(n)} represents the
total power in the input x(n).

An important property of the predictor configuration is that it strives to
remove correlated (linearly dependent) components in the input x(n). As such, the
output error e(n) tends to be uncorrelated. In fact, as the number of weights tends
to infinity, the output error sequence is completely uncorrelated. This de-
correlation property enables one to achieve data compression. Related schemes
are called linear predictive coding (LPC) and differential pulse code podulation
(DPCM), respectively; see [1] and [2], for example.

Example 1. Consider the sinusoidal input

x(n) = V2sin(neo0r + 0), n > 0 (12.16)

where 0 is a uniformly distributed random variable in the interval (0,2n); co0 is the
radian frequency, and T is the sampling interval. Find w* for a two-weight, one-
step predictor, and evaluate the corresponding value of €min.

Solution It can be shown that x(n) in Eq. (12.16) is an ergodic process in that
its first- and second-order ensemble and time averages are equivalent. Its
autocorrelation sequence rxx(m) is

rxx(m) — E{x(n)x(n — m)} — cos(mo}0T), \m\ < oo

where m is the shift index. Thus

rxx(Q) = E{x2(n)} = E{x2(n - 1)} = 1

rxx(l) = E{x(n)x(n - 1)} = cos(«0T)

and

rxx(2) = E{x(n)x(n - 2)} = cos(2co0r) (12.17)

Substituting Eq. (12.17) into Eq. (12.14) leads to

w*T = [w* wj] (12.18)

where wf = 2cos(co0T) and wf = — 1, which is the desired solution.
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Next, from Eqs. (12.14), (12.15), (12.17), and (12.18) it follows that

863

(12.19)

which means that we can predict x(n) in Eq. (12.16) exactly in a MSE sense, using a
two-weight predictor with A = 1. This is also true for A > 1.

The main results of the above discussion are summarized in Fig. 12.4 where a
tapped-delay-line (or transversal filter) model for the predictor configuration is
also included. In the general case the predictor weights w, are time varying and
are updated from the input and error information.

-j
' •

Delay
A — — « w

9(*)

Block diagram

Notation: WT = [wt w2 • • • WM]

xj = [x(n - &)x(n - A - 1) • • • x(n - A - [M - 1])]

g(n) = x,Jw

Sxx = £{xnxj}; P,x = E{x(n)\,}

Orthogonality principle: E{e(n)\n] = Q

Optimum solution: w* = S~*pxx

Minimum mse: emin = £{x2(n)} — w*Tpj:jc

Tapped-delay-line model
Fig. 12.4. Predictor configuration summary.
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B Filter Configuration

Figure 12.5 shows this configuration where x(n) is the input to a digital filter
whose weights are represented by the weight vector

W =[>0 (12.20)

The sequence y(n) is generally called the desired output of the filter. The object is
to find w so that the actual output g(n) is a least squares approximation to y(n).
Thus we define the error sequence

(12,21)

M)] is the input

e(n) = y(n) - g(n)

where g(ri) = wTxn and xn = [x(«) x(n — 1) • • • x(n
vector.

Next, we minimize the MSB e = E{e2(n)} with respect to w. The procedure is
similar to that for the predictor configuration. The final results are summarized in
Fig. 12.6.

For example, consider a two-weight filter and suppose x(n) and y(n) are such
that

E{x(n)x(n - m)} = am and E{y(n)x(n - /)} = A

where |a| < 1 and \f$t\ < 1, and m and / are shift indices. Then evaluating S^ and
p,,x and substituting them in Eq. (12.23) gives the optimal weights

w* =
1 -a

w

C Noise-Canceler Configuration

The two inputs to the noise-canceler configuration are denoted by (D and (2) in
Fig. 12.7. Input ® consists of the sum of the signal sequence x(n) and the noise
sequence ^I(M), and is usually called the primary input. Input (2) is usually called
the reference input, and consists of the noise sequence v2(

n)-

*(n)

Fig. 12.5. Filter configuration.



12. Adaptive Filtering

Block diagram
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Notation: w1 = [ w 0 W j - - - w M ]

xj = [x(n)x(n- l ) - -x (n- M)]

g(n) — xjw

S,, = E{xnxJ}; p,, = £{>-(n)xn}

Orthogonality Principle: E{e(n)\n} = 0

Optimum Solution: w* = S^p^

Minimum mse:emin = E{y2(n)} — w*Tpj,v

(12.22)

(12.23)

(12.24)

Tapped-delay-line model

Fig. 12.6. Filter configuration summary.

Primary

*(») + 2i(»

Fig. 12.7. Noise-canceler configuration.
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The output g(n] in Fig. 12.7 is

£(») = wTv2>l l = vlfl lw 02.25)

where

WT = [WO wt ••• WM] and vl,H = [v2(n) v2(n) ••• v2(n - M)]

Thus the error at time n is

e(n) = x(n) + v^n) - g(n) (12.26)

We now make the following assumptions, which are valid in many applications.

1. Vi(n) and v2(n) are correlated (linearly dependent), zero-mean noise
sequences; that is, £{yi(«k2(«)} ^ ®> anc* £(^(n)} = ° *°r z = 1»2-

2. The signal x(n) is uncorrelated (linearly independent) with respect to v^n)
and v2(n); that is, JE{y((n)x(n)} = E{u,.(")} £{*(«)} for i = 1,2.

The problem is to choose w so that g(n] is a least squares approximation of vt(n).
As such, the canceler output e(n) in Eq. (12.26) will be e(n] ^ x(n) when noise
cancellation has occurred. We achieve the optimal w by minimizing the MSE
£ {ez(n)} with respect to w. Again, the steps involved for doing so parallel those for
the predictor configuration. The final results are summarized in Fig. 12.8.

IV LEAST-MEAN-SQUARES (LMS) ALGORITHM

The optimal solutions derived in the previous section all involve autocorre-
lation matrices and cross-correlation vectors that are assumed to be known. In
many applications this is not the case. They may be difficult to estimate, or the
data statistics may be changing with time; that is, the data sequences may be
nonstationary. In such cases adaptive filtering techniques are employed. A very
useful algorithm in this regard is the LMS algorithm, and is attributed to
Widrow [3-5]. It is sometimes referred to as the Widrow-Hoff algorithm [6].

The notion of steepest descent plays a key role in arriving at the LMS
algorithm. The steepest-descent technique is ideally suited to deriving adaptive
versions of the fixed filter configurations discussed in Section III, since the related
error surfaces are guaranteed to be quadratic ("bowl-shaped") with respect to the
filter weights w,-. This property of the error surface is illustrated in Fig. 12.9 for
two weights WQ and wt.

Let e(0) represent the value of the sequence e2(n) with an arbitrary
choice of the weight vector w0. Then the boundary of the corresponding cross
section of the bowl-shaped surface in Fig. 12.9 is an ellipse. The steepest-descent
technique enables us to descend to the bottom of the bowl to w* in a sys-
tematic manner. The idea is to leave an ellipse in a direction that is orthogonal
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Primary

Block diagram

Notation: WT = ••w M ]

867

Orthogonality Principle: £{e(n)v2 „} = 0

Optimum Solution: w* = S^p^,^

Minimum mse: emin = £{.x2(«)} + £{uf(n) w * p W

(12.27)

(12.28)

(12.29)

Primary

Tapped-delay-line model
Fig. 12.8. Noise-canceler configuration summary.

to the tangent at that point. We do this by the recursive relation [7]

w« + i =w B + v[-g] (12.30)

where v is a convergence constant that governs the rate of descent to the bottom
of the bowl; the larger v is, the faster is the rate of descent. The term [ - g] denotes
the negative gradient of the error E(e2(n}} with respect to w. In practice, we
usually must estimate g. Widrow's estimate for g is given by g, where

§ = VWn{e2(n)} = 2e(n)V«n{e(n)} (12.31)

In other words, the true gradient g is approximated by the instantaneous
gradient g in Eq. (12.31). Hence the~steepest-descent relation in Eq. (12.31)
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Fig. 12.9. An illustration of the method of steepest descent.

becomes

(12.32)

Equation (12.32) was originally called the "noisy" LMS algorithm to indicate that
§ = VWn{e2(n)} is a noisy gradient. However, it is convenient to simply refer to Eq.
(12.32) as the LMS algorithm.

To illustrate, we consider the filter configuration in Fig. 12.5. Then [see Eq.
(12.21)]

where

Thus

x(n x(n - M)]

From Eqs. (12.32) and (12.33) we obtain

(12.33)

(12.34)

where v = 2v is a convergence parameter.
Equation (12.34) is the LMS algorithm for the filter configuration. With

stationary inputs, if we assume that XB is uncorrelated over time (i.e, that
£{xnxl+j} = 0, V j ^ 0), then the expected value of the gradient estimate equals
the true gradient. As such, the expected value of wn converges to w* = S~j pvx in
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Eq. (12.23) under these conditions, as long as v lies in the range

2
0< v

L

869

(12.35)

where Amax is the largest eigenvalue of Sxx. See [4,8] for details.
We may also write the LMS algorithm in Eq. (12.34) in scalar form to obtain

wt(n + 1) = Wj(n) + ve(n)x(n - i), 0 < z < M (12.36)

where e(n) = y(n) — g(n).
The above results lire summarized in Fig. 12.10. A tapped-delay-line model is

also included. This is the adaptive counterpart of the model in Fig. 12.6.

Example 2. Suppose y(n) is a 25-Hz sinusoid with peak value 1 and phase 18°
(arbitrary). Let x(n) be the sum of two sinusoids: (1) the first has frequency 25 Hz,
peak value 0.5, and phase 75° (arbitrary); (2) the second has frequency 10 Hz, peak

Block diagram

Notation: wj — [w0(n)wi (n) • • • yvM («)]

xj = [x(n)x(n - ! ) • • • x(n - M)]

LMS Algorithm: vv,(n + 1) = vv,(«) + ve(n)x(n - /), 0 < i < M

where e(ri) = _y(«) — #(n) = >'(«) — wjxn.

Tapped-delay-line model

Fig. 12.10. Adaptive filter configuration summary.
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Fig. 12.11. LMS algorithm example; filter configuration: (a) x(n); (b) y(n); (c) e(n); (d) </(n).

(a) Magnitude response
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0.0
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(b) Phase response (radians)
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38.0
Fig. 12.12. (a) Magnitude and (b) phase responses implemented by adaptive filter in Example 2.
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value 1, and phase 63° (arbitrary). With a sampling frequency of 128 samples/s
(sps), the resulting x(n) and y(n) are plotted in Fig. 12.1 l(a),(b), respectively.

The error e(n) and output g(n) that result with the LMS algorithm in Eq. (12.36)
with M = 6 and v = 0.05 are"plotted in Fig. 12,1 l(c),(d), respectively. We observe
that e(n) decays exponentially, whereas g(ri) builds up toward the desired output

£<">•
The magnitude and phase responses implemented by the weights w,(n) at

n = 1000 are displayed in Fig. 12.12. We observe that the magnitude response
is 0 and 2 at 10 and 25 Hz, respectively. Thus the 10-Hz component in x(n) does
not appear in the output g(ri). Also, the phase is adjusted appropriately so that
g(n) is gradually brought in phase with y(n), thus causing e(n) to decay to 0.

Adaptive Predictor Configuration A

Here e(n) is given by Eq. (12.9a) as

e(n) = x(n) - wjxn

where

wj = [wi(n) w2(n) ••• wM(n)]

and

xr
n = [x(n - A) x(n - A - 1) • • • x(n - A - [M - 1])]

Thus

V5n^(n)} = -x. (12.37)

Substituting Eq. (12.37) into Eq. (12.32) leads to

wn + 1 =w(, + w(n)xB (12.38)

where v = 2v is a convergence parameter. Equation (12.38) is the LMS algorithm
for the predictor configuration. In scalar form this algorithm is equivalent to

vv,(n + 1) = wt(n) + ve(n)x(n - A + 1 - i) (1139)

for 1 < i < M.
If the input x(«) is stationary and xn is assumed to be uncorrelated over time,

then [4, 8] the expected value of wn in Eq. (12,38) converges to w* = S~*pxx in
Eq. (12.13), provided v is chosen to lie in the range specified by Eq. (12.35).

Example 3. Let

x(n) = 72 sin \(^~^ n + 30° 1 (1 2.40)
L 128 J

which is a special case of x(n) in Eq. (12.16). Equation (12.40) simply represents a



872 Nasir Ahmed

(a) z(n)A/2

500.0E-3-

I.0E-3 -

0.0 S00.0 H00.0 «

Fig. 12.13. LMS algorithm example; predictor configuration: (a) x(n); (b) e(n); (c) Wj(n) ; (d) w2(n).

25-Hz sinusoid with peak value \A2, phase 30°, that is sampled at 128 sps. Its plot
is shown in Fig. 12.13(a). The corresponding error output of a two-weight one-
step predictor using the LMS algorithm in Eq. (12.39) with M = 2, A = 1, and
v = 0.05 is plotted in Fig. 12.13(b). The initial values wt(0) and w2(0) were set
equal to zero.

From Fig. 12.13(b) it is apparent that the steady-state prediction error is close
to 0, which agrees with the result in Eq. (12.19). The values of the weights vv^n)
and w2(n) are plotted in Figs. 12.13(c),(d), respectively. These weights settle
down at the values wt = 0.673 and w2 — — 1, which agree with the optimal
weights w* and wf given by (12.18), with w0T = (27r)(25)/128.

The adaptive predictor results are summarized in Fig. 12.14.

B Adaptive Noise-Canceler Configuration

Since g(n) = w^v2 „, Eq. (12.26) yields the error sequence

e(n) = x(n) + v^n) - wn
rv2,n

where

wj = [yv0(n) Wi(n) ••• wM(n)]
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Block diagram

Notation: w^ = [w)
1(n)w2(«)---wM(«)]

xj = [x(« - A)x(« - A - 1) • • • x(n - A [M - 1])]

LMS Algorithm: w,-(n + 1) = w,-(n) + ve(n)x(n - A + 1 - i), 1 < i < M

where e(n) = x(n) - g(n) = x(n) - wn
rxn.

Tapped-delay-line model
Fig. 12.14. Adaptive predictor configuration summary.

and

Hence

which on substitution in Eq. (12.32) yields the following LMS algorithm for the
noise-canceler configuration.

w»+i = w n + v^(n)Y2>n (12.41)

The scalar form of Eq. (12.41) is

Wi(n + 1) = w,-(n) + ve(n)t;2(« - 0 (12.42)

for 0 < i < M.
If the inputs are stationary, and4f we assume that v2)W is uncor related over time,

then [4,8] the expected value of wn in Eq. (12.41) converges to w* = S^Pv.vj
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in Eq. (12.28), provided 0 < v < 2/lmax, where Amax is the maximum eigenvalue

Example 4. Let x(n) be a 25-Hz sinusoid with peak value 1 and phase 18
(arbitrary), which is sampled at 128 sps; let Vi(n) be bandpassed noise and v2(n) a
shifted and scaled version of v^n). Plots of x(n), the primary input x(n) + £i(w),
and the reference input v2(n) for n = 800 to 1000 are displayed in Fig. 12.15(a)-(c),
respectively.

The variance of v_i(n) is 0.5. It was obtained by passing white noise through
an eighth-order Butterworth bandpassed filter with lower and upper cutoff
frequencies of 10 Hz and 15 Hz, respectively [9]. The reference vz(n) has a
variance of 0.084. We obtained it by multiplying VI(H) by 0.41 and delaying it by
four samples.

The error output obtained via the LMS algorithm in Eq. (12.42) with M = 16
and v = 0.1 is plotted in Fig. 12.15(d). Comparing Fig. 12.15(a),(b),(d), we see that
a substantial reduction in additive bandpass noise is achieved. We can also come
to this conclusion by examining the power density spectra of the primary input
and error output shown in Fig. 12.15(e),(f), respectively.

Figure 12.16 summarizes the adaptive noise-canceler results.

C On Choosing v

Consider the adaptive filter case whose convergence condition, given by
Eq. (12.35), is 0 < v < 2/x.max, where Amax is the largest eigenvalue of the input
autocorrelation matrix SXJC. In practice it is very difficult to estimate Sxx. Hence
an alternative condition for convergence is

p; (12.43)

In Eq. (12.43) we note that £,-!,- represents the total power in the input signal.
Thus, in practice v is made inversely proportional to the input power. One useful
way of doing so is to modify the LMS algorithm in Eq. (12.36) to obtain [10]

vv,-(n + 1) = wt(n) + -2j-^e(n)x(n - i), 0 < i < M (12.44)

where 0 < a < 1 is a convergence parameter, and o*(ri) is an estimate of the input
average power at time n.

Equation (12.44) is referred to as the modified LMS (MLMS) algorithm for
the filter configuration. A very effective way of estimating ffx(n) is given by [10]

where 0 < fi < 1 is a smoothing parameter. It follows that
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0.0"

-2.0

2.0

0.0
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(c) Reference input

900. 0

(e) Input(priinary) power density spectrum (dB)

16.0

(f) Output(error) power density spectrum (dB)
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n 1000.0

„ 1000.
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Fig. 12.15. LMS algorithm example; noise-canceler configuration: (a) x(n); (b) primary input;

(c) reference input; (d) e(n); (e) input primary power density spectrum dB; (f) output (error) power
density spectrum (dB).
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Primary
x(n)+«, (n) (£

Reference
g)-j ..«(«]

Block diagram

Notation: wj = [w0(n)w1(n)---wM(n)']

ll,» = [^2(^)^2(n ~~ l)"'Vz(n ~ M)]
LMS Algorithm: w,(n + 1) = w,.(«) + ve(n)v2(n - /), 0 < / < M

where e(n) = x(n) + vv(n) — g(n) — x(n) + v^n) — wJy2iB.

Primary

Tapped-delay-line model
Fig. 12.16. Adaptive noise-canceler configuration summary.

which means that (12.45) yields an exponentially weighted average of the squared
input samples. The number of samples (say N), for which f$N = l/e may be
defined as the time constant of the recursion in Eq. (12.45). From fiN == \/e it
follows that

Af~-—- (12.45a)

Thus if a is set equal to 1 — /?, then the above MLMS algorithm becomes

w,.(n + 1) = vv;(n) + ~^7-~e(n)x(n - i), 0 < i < M (12.46)

where ff^(n] is continuously estimated using (12.45).
These MLMS algorithms are very effective for a variety of applications and are

summarized in Table I.
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TABLE I

MLMS Algorithm Summary

Adaptive filter configuration (see Fig. 12.10):

1 - fi
w(n + 1) = u',.(n) + ——e(n)x(n - i), 0 < i < M

0.M
where e(ri) = y(«) — g(n), and

g2(n) = pal(n _ 1) + (l _ fi)x2(n), 0 < /? < 1

Adaptive predictor configuration (see Fig. 12.14):

1 — 8
wAn 4- 1) = wAn) + —~-e(n)x(n - A + 1 - i), 1 < i < M; A = 1, 2,. . . , K, K < cc

ff.;(n)

where f («) = .v(n) — ̂ (H), and

2*(n) = /fff2(B _ i ) + ( i _ /^)x2(n), 0 < /? < 1

Adaptive noise-canceler configuration (see Fig. 12.16):

1 - p
wAn -f 1) = wAn) + ——e(n)v2(n — i), 0 < ; < M

?I,2(n)

where e(n) = x(«) + t'i(«) — g(n), and

Example 5. Consider the problem of improving the signal-to-noise ratio
(SNR) of a sinusoid buried in broadband noise. If the frequency of the sinusoid is
known, then we can use a fixed bandpass filter to improve the SNR. We consider
the case in which the sinusoidal frequency is unknown. Hence an adaptive
approach is used, as depicted in Fig. 12.17. It is apparent that this is simply a
predictor configuration (see block diagram in Fig. 12.14).

<7(n):enhanced
sinusoid

Fig. 12.17. Adaptive configuration for enhancing a sinusoid in broadband noise.



878 Nasir Ahmed

The basic idea in Fig. 12.17 is to choose the delay A to be sufficiently large so
that the noise component in x(n — A) is decorrelated with respect to the noise
component in the input x(n). Then the only correlated component in x(n) and
x(n — A) is the sinusoid. As such, the filter weights adapt to the sinusoidal com-
ponent and implement a bandpass characteristic about the frequency of the sinu-
soidal component. The resulting output g(n) is an enhanced sinusoid.

Figure 12.18(a) shows the input x(n), which consists of a 30-Hz sinusoid with
peak value 1 and white noise with variance 1. This yields an SNR of — 3 dB. The
sampling frequency is 256 sps. Two thousand samples of x(n) were processed
using the MLMS predictor algorithm in Table I with M = 32, A = 32, and
ft — 0.999. To illustrate, we plot x(n) and g(n) in Fig. 12.18(b),(c), respectively,
for sample numbers 1800 to 2000, and an improvement in SNR is apparent. One
can also come to this conclusion by examining the input and output power
density spectra displayed in Fig. 12.19(a),(b), respectively. This SNR improve-
ment occurs because the 32-weight adaptive filter gradually implements a band-
pass magnitude response around 30 Hz, the frequency of the sinusoid. The
bandpass response implemented by the filter at n = 2000 is displayed in
Fig. 12.19(c).

It has been shown that the optimal value a* of the magnitude response at the

H.0

1800.0 1300.0 n 8000.0
Fig. 12.18. MLMS algorithm example; line enhancement: (a) ,x(n); (b) x(n); (c) g(n).
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(a) Power density spectrum of i(n) (dB)

3£. 0 6H-. 0
(b) Power deusity spectrum of g(n) (dB)

/V
0.(3 32.0 64-. 0

(c) Magnitude response of adaptive filter at n=2000

9b.0

64-. O

96.0 HZ 128.0

128.0

Hz 128.0

Fig. 12.19. Input-output power density spectra of (a) x(n) and (b) g(n) in dB and (c) related
magnitude response at n = 2000.

frequency of the input sinusoid is [3]

(SNR)(M/2)
1 + (SNR)(M/2)

(12.47)

where M is the number of adaptive weights. Equation (12.47) shows that at high
SNRs, a* cz 1. At low SNRs a* < 1. The desired condition a* ~ 1 may be
attained at low SNRs if M is increased. However, this may cause the weights to be
"noisy," which could produce a degradation in the overall bandpass response. If
the noise components of the weights are assumed to have the same variance and
to be mutually uncorrelated, then [3] the variance of the noise in each weight is
vemin, where emin is given by Eq. (12.15). Therefore, if M is increased to make
a* cr 1 at low SNRs, the adaptation rate should be reduced; that is, v should be
made smaller for the LMS algorithm, and /? should be made larger for the MLMS
algorithm.

Although one sinusoid was considered in the foregoing example, the approach
can be used to enhance several sinusoids in the input x(n). Since sinusoids have
line spectra, the process of enhancing them is called line enhancement, and the
configuration in Fig. 12.17 is called an adaptive line enhancer (ALE).
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D Miscellaneous Considerations

1 A detailed discussion pertaining to the properties of the LMS algorithm is
available in the literature; see [3-5].

2. During adaptation the squared error e2(n) is nonstationary as the weight
vector wn adapts toward w*. The corresponding MSB can thus be defined only on
the basis of ensemble averages. A plot of the MSB versus n may be referred to as
the learning curve for a given adaptive algorithm.

3. Excess MSE is caused by random noise in the weight vector. If the vector
is noise free and the condition in Eq. (12.35) is satisfied, then wn converges to w*
and the MSE would be emin. However, this usually does not occur in practice
since the weight vector is, on the average, "misadjusted" from its optimal setting.
The misadjustment is due to gradient noise, which is attributed to the gradient
estimate § in Eq. (12.31). This misadjustment (say m€) is defined as [5]

average excess MSEmf =

^mm

It can be shown that me is related to the speed of adaptation via the relation

me = vA8VM

where Aav is the average of the eigenvalues of the pertinent input autocorrelation
matrix, v is the convergence constant for the LMS algorithm, and M is the
number of weights. From the above relation for me it follows that if me is to be
kept at a specified value, then v will have to be decreased if M is increased, and
vice versa. That is, one has to seek a compromise between rate of adaptation and
the number of weights while using the LMS algorithm. This is also the case with
the MLMS algorithm.

4. In certain applications the LMS or MLMS algorithm for the predictor
configuration may result in the so-called no-pass phenomenon [11] that was
observed during long-term field tests of a perimeter intrusion-detection algo-
rithm. Here transient signals (due to human intruders) buried in correlated
noise were enhanced prior to using a threshold-detection scheme. In the absence
of intruder signals the predictor served to reduce the level of background noise,
thereby reducing the number of nuisance alarms. In essence, the no-pass
phenomenon implies that over a period of time, an adaptive predictor with a
surplus number of weights not only removes correlated noise but removes
intruder transient signals as well. A detailed discussion and related analysis of
this undesired effect is given in [11], which shows that a simple modification of
the LMS or MLMS algorithm avoids the no-pass phenomenon. The modifica-
tion involves the introduction of a parameter u, 0 < u < 1, that multiplies the
term w{(n) in the LMS or MLMS algorithm. Thus, for example the LMS algo-
rithm in Fig. 12.14 becomes

wt(n + 1) = uw^n) + ve(n)x(n — A + 1 - i)» 1 < i < M
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where 0 < u < 1 and e(n) = x(n) — g(n). In practice, u is set very close to 1 [e.g.,
0.999878 (=* 1-2"13)].

5. The time taken for the LMS algorithm to produce a steady-state output
component that corresponds to the j'th input component (mode) is called a time
constant. It has been shown that the time constant T, associated with the ith
component is given by [3-5],

v
(12.48)

where v is the convergence constant, and lt is the zth eigenvalue of the input
autocorrelation matrix Sxx.

Equation (12.48) shows that for a specified v the components that correspond
to smaller eigenvalues of Sxx take much longer to reach their steady-state values
when compared to components that correspond to larger eigenvalues. Hence the
overall convergence rate of the LMS algorithm depends on the eigenvalue
distribution of SXJC.

To illustrate, suppose the input to an adaptive predictor consists of two
sinusoids whose frequencies are 5 and 30 Hz, respectively. Let the respective peak
values of the sinusoids be 1 and 10, and the sampling be 128 sps. A plot of this
input for n = I to 1000 is shown in Fig. 12.20(a). Using the MLMS algorithm in

(a) Input to predictor

11.0
0.0 £00.0 400.0

(b) Output of predictor, n=l to 50

600.0 800.0 „ 1000.0

-11.0
20.0

(c) Output of predictor, n=800 to 1000

\ f

-B.
800.3 900.0 „ 1000.0

Fig. 12.20. LMS algorithm example; effect of eigenvalue distribution on convergence rate:
(a) input to predictor; (b) output of predictor (n = 1-50); (c) output of predictor (n = 800-1000).
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Fig. 12.14 with A = 1, M = 6, and fi — 0.999, we obtain the error output e(n) in
Figs. 12.20(b),(c) for n = 1 to 50 and n = 800 to 1000, respectively. We observe
that the input component with peak value 10 is immediately canceled output, but
the component with peak value 1 remains through the 1000 input samples.
Eventually, it will also be removed. The reason that it takes much longer is that
the effective convergence parameter (1 — /?)/gi(n) in the MLMS algorithm is
small as far as the component with peak value 1 is concerned, since a*(ri) is
dominated by the component with peak value 10.

In the next section we consider a very effective LMS type algorithm whose
convergence rate does not depend on the eigenvalue distribution of Sxx.

The previous section shows that the LMS and MLMS algorithms are
implemented with the tapped-delay-line model. We now implement these
algorithms using lattice models. We consider two models: the one-step predictor
model and the filter model.

The lattice model for the one-step predictor is given in Fig. 12.21, where e,(n)
and W((n) refer to the forward and backward prediction errors, respectively; kt

denotes the j'th lattice weight and is occasionally referred to as a "reflection
coefficient." The input to the JV-stage lattice is x(n), and eN(ri) is the final error
output; each z"1 represents a unit delay.

The notions of forward and backward predictions are keys to obtaining the
lattice structure in Fig. 12.21. If x(n) is an estimate for predicting x(«) using the
past samples x(n — 1), x(n — 2),..., x(n — N), then

eN(n) = x(ri) - x(n) (12.49)

Fig. 12.21. Lattice predictor (one-step delay).
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is called the forward prediction error. Again, if we wish to "predict" x(n — N — I ),
given x(n — I), x(n — 2), . . . , x(n — N), then

wN(n) = x(n-N -I)- x(n - N - I) (12.50)

is called the backward prediction error, where x(n — N — I) denotes an estimate
of x(n — N — 1). The £,-(«), 1 < i < N, and w,-(n), 0 < j < N, are the intermediate
forward and backward prediction errors, respectively.

Details for deriving the lattice model are available elsewhere [12, 13]. If the
input x(n) is stationary, then the respective steady-state values of e2(n) and <?#(«)
for the tapped-delay line (Fig. 12.14 with A = 1) and lattice models are the same.
See references [12,14] for a discussion of some interesting properties of the
lattice model.

Adaptive Considerations 1

If the input to the lattice predictor in Fig. 12.21 is nonstationary, then the
lattice weights are time varying. Several strategies for updating the weights are
discussed in [14]. We consider the approach in [15] that employs the method
of steepest descent, introduced in the last section. As such, we update the lattice
weights using the relation [see Eq. (12.30)]

kt(n + 1) = kt(n) - ttRlr^l 1<1<N (12.51)

where r?(n) = ef (n) + wf(n) is the total prediction error at stage / and time n,kt(n)
denotes the value of fc, at time n, and u is a convergence parameter.

The recursive equations that describe the lattice model in Fig. 12.21 are

*(«) = £o(w); WO(H) = x(n - 1)

*i(«) = &- 1(«) ~ */(«)*!- 1(«) (12.52)

WJ(H) = w,_ t(« - 1) - ^(n)e,-i(n - 1), 1 < / < N

Using Eq. (12.52) in Eq. (12.51) yields

k,(n + 1) = k,(n) + 2S[e,(w)w,_1(«) + w,(n)^,_,(n - 1)] (12.53)

for 1 < I < A/.
It can be shown that the power in the forward and backward error sequences

decreases as the number of stages in the lattice is increased. Therefore, a
normalized convergence parameter has to be used in Eq. (12.53) in place of 2w,
and Eq. (12.53) is modified to obtain [15]

kt(n + 1) = kt(n} +-2—[e]t(n)Y,l_ ,(«) + w^e^^n - 1)] (12.54)

where 0 < a < 1 and fff(n) is the input power estimate at the /th stage. It can be
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computed recursively as [see Eq. (12.45)]

(12.55)

where 0 < /? < 1 is a smoothing parameter. As with the MLMS algorithm, a
convenient choice in Eq. (12.54) is a = 1 — /?. Then we have the update equation

kt(n kt(n)
I - /?

i - i(« - 1)1 (12.56)

for I < I < N, which we refer to as the LMS lattice equation for a one-step
predictor, where cr?(n) is updated via Eq. (12.55).

Example 6. An important property of the LMS lattice algorithm in Eq.
(12.56) is that its convergence rate is independent of the eigenvalue distribution of
the input autocorrelation matrix SXJC. To illustrate, we repeat the experiment
related to Fig. 12.20. The input to a six-stage one-step LMS lattice predictor is the
same as that plotted in Fig. 12.20(a); that is, the sum of 5- and 30-Hz sinusoids of
peak values 1 and 10, respectively, sampled at 128 sps. With j$ = 0.999 and
N = 6 in the LMS lattice algorithm in (12.56), the output that results is shown

(a) Predictor output, n = l to 50; LMS lattice algorithm

e0.0
(b) Predictor output, n=800 to 1000; LMS lattice algorithm

0.0

-2.0
800,3 900.0

(c) Predictor output, n=l to 50; MLMS algorithm

" 1 i . 0

4-0.0 n

0.0 20.0
(d) Predictor output, n=800 to 1000; MLMS algorithm

900.0

Fig. 12.22. LMS lattice algorithm example; predictor configuration. Predictor output for
(a) n = 1-50, LMS lattice algorithm; (b) n = 800-1000, LMS lattice algorithm; (c) n = 1-50,
MLMS algorithm; (d) n = 800-1000, MLMS algorithm.
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in Fig. 12.22(a),(b) for n = I to 50 and (c) for n = 800 to 1000, respectively. From
this output it is apparent that both sinusoidal components in the input x(n) are
removed. In contrast, the larger component was removed quickly by the MLMS
algorithm, but the smaller component was not; see Fig. 12.20(b),(c), which is
repeated for convenience as Fig. 12.22(c),(d), respectively.

Filter Model B

Figure 12.23 shows the lattice model for the filter configuration whose
equivalent tapped-delay-line model is given in Fig. 12.6. See [13] for a detailed
derivation of this lattice model. If the inputs x(n) and y(n) are stationary, then the
respective steady-state values of e2(n) and s^(n) for the tapped-delay-line and
lattice models are the same.

The filter model in Fig. 12.23 consists of N stages. Its upper half (solid lines) is
simply the predictor model considered earlier; see Fig. 12.21. The lower portion
(dashed lines) consists of N additional weights k't, 1 < / < N. The basic idea
involved in obtaining an adaptive algorithm is to continuously adjust the lattice
weights k((ri) and k'i(n). The kt(n) are adjusted to minimize the instantaneous error
e.i(ri) + w?(n) by the one-step predictor LMS algorithm in Eq. (12.56). Next, the
k\(n} are adjusted to minimize the filter error sf(n) by the steepest-descent
technique [15], where ^(n) = y(n) — yN(n), and yN(n) is an estimate of y(n) using
an JV-stage lattice. Thus we have

'^n + 1) = k\(ri) — u
dk',(n)

1 < / < N, (12.57)

Fig. 12.23. Lattice filter model.
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where u is a convergence parameter. Again from Fig. 12.23 it follows that

s/00 = SI-I(H) - fc|(»)wj-i(« + 1) (12.58)

with s0(n) = y(n). Substituting Eq. (12.58) into Eq. (12.57) gives

k'i(n + 1) = &(«) + 25si(n)w, i(« + 1) (12.59)

for 1 < / < N. As in the predictor case, the constant convergence term 22 is
replaced by a normalized convergence parameter [15]. The final result is

k't(n + 1) = fei(n) + -=^Y[SJ(W)W/_ t(« + 1)] (12.60)

where

where /?, 0 < /? < 1, is a smoothing parameter and 1 < / < N.
The LMS lattice algorithm for the filter configuration is given by Eqs. (12.56)

and (12.60). This algorithm can also be used for prediction with A > 1 and noise

TABLE II
LMS Lattice Algorithm Summary

One-step adaptive lattice predictor model (see Fig. 12.21)

1 — B
kt(n + 1) = /c,(n) + -__[&(n)w,_ ,(n) + w,(n)e,- ,(n - 1)]

where

<r,2(n) = /???(« -!) + (!- /?)[!?-,(«) + w,2_ ,(«)], 0 < /J < S,

for 1 < / < N; e0(n) = x(n) and w0(n) = x(n - 1 )

Note: et(n) and w,(«), 1 < / < N, are denned in Eq. (12.52).
Adaptive lattice filter configuration (see Fig. 12.23)

The above predictor algorithm and the following:

k't(n + 1) = fcj(n) + 4^r[si(n)wi-i(» + 1)]
??(n)

where

for 1 <1<N; w0(n + I) = x(n)

Note: S;(n), 1 < / < N, is defined in Eq. (12.58).
Prediction with A > 1 .

Replace x(n) by x(n — A) and y(n) by x(n) in Fig. 12.23
Noise cancellation

In Fig. 12.23 replace y(n) by the primary input x(«) + v^n), and x(n) by the reference input v2(n).
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cancellation as follows:

Prediction with A > 1: Replace x(n) by x(n — A) and y(n) by x(n).

Noise cancellation: Replace x(n) by the reference input v2(n) and y(ri) by the
primary input x(n) + Vi(n). We assume that vt(n) and v2(n) are correlated zero-
mean noise sequences and that the signal x(n) is uncorrelated with respect to v3 (n)
and v2(n).

The above lattice algorithms are summarized in Table II.

Example 7. We repeat the noise-cancellation experiment of Example 4. For
convenience, Fig. 12.15(a)-(c) is repeated as Fig. 12.24(a)-(c).

A 16-stage lattice was used. The resulting output s16(n) is plotted in
Fig. 12.24(d) for n = 800 to 1000. We obtained this output using the LMS lattice
algorithm in Table II with N = 16 and jff = ft = 0.99. Clearly, the output in Fig.
12.24(d) provides a good approximation to the original 25-Hz sinusoid in Fig.
12.24(a), indicating a significant improvement in SNR. This SNR improvement is
also evident from the corresponding input and output power density spectra
shown in Fig. 12.25,

(«)*(«)

J V

809, 3
(b) Primary input

900.®

0.0

(c) Reference input

0.0
.A A / \ r\

-I 1 I

800. 0 900.'
(d) Lattice filter output, <iie(n)

800, (5 900.0

Fig. 12,24. LMS lattice algorithm example; noise-cancellation: (a) x(n); (b) primary input;
(c) reference input; (d) lattice filter output, s16(n).



888 Nasir Ahmed

(a) Input power density spectrum (dB)

16.0 4-8. HZ 64-. 0

„ ~ (b) Output power density spectrum (dB)
£>, 0 T—. c—i r—r~. , r—i r-, _^-, r—, r—i—

7. C1 ! b. v oc. '• - *y • v HZ b1*-, C

Fig. 12.25. (a) Input and (b) output power density spectra related to Example 7.

Adaptive filter algorithn

Steepest-descent Recursive least-squares Sequential Frequency domain Gram-Schmidt
algorithms algorithms for regression algorithms orthogonalization

Fig. 12.26. A broad classification of adaptive algorithms.

VI CONCLUDING REMARKS

We have studied a class of steepest-descent algorithms that are relevant to
tapped-delay-line and lattice models of FIR filters. These algorithms are widely
used since they are efficient and easy to implement in hardware. This class of
algorithms is one of several that are available in the literature. The available
algorithms may be broadly classified as indicated in Fig. 12.26.
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Recursive least squares (RLS) algorithms for lattice as well as transversal filter
models have been developed [16-18]. RLS algorithms converge very rapidly
compared to steepest-descent algorithms and are especially suited to applications
where rapid convergence is required, such as fast start-up channel equalization
[19,20]. Faster convergence is achieved at a relatively modest increase in
computational requirements compared to corresponding steepest-descent al-
gorithms; see [18, Table I].

Sequential regression (SER) algorithms [21-23] also have superior conver-
gence properties compared to the steepest-descent algorithms. However, they are
computationally inefficient.

Several frequency domain adaptive algorithms for FIR filters have been
presented in the literature [24,25]. The main objective of this class of algorithms
is to exploit the computational advantages of performing convolutions via the
fast Fourier transform (FFT). In addition, the steepest-descent approach is used
to update weights in the frequency domain. In this regard, the LMS algorithm for
complex data sequences [26,27] is used.

Additional adaptive configurations that are intriguing from a theoretical point
of view have also been studied. These configurations [28,29] are pertinent to the
Gram-Schmidt orthogonalization method.

More recently there has been a growing interest in the development of adaptive
algorithms for IIR filters. The main difficulty in this area is that the related MSE
error surfaces are not guaranteed to be quadratic (bowl-shaped) with respect to
the filter weights. Therefore, the related analysis is much more difficult than that
for FIR adaptive filters. See [30-34] for details of the approaches that have
been undertaken.

APPENDIX: FOUR FORTRAN-77 PROGRAMS

Listings of four FORTRAN-77 programs are presented in this appendix.
Program 1 implements the LMS and MLMS algorithms for the predictor, filter,
and noise-cancellation configurations. Program 2 implements the LMS lattice
algorithms for the predictor and filter configurations.

Programs 1 and 2 are interactive. Either program enables us to store the
adaptive filter weights at any desired sample point (iteration).

Input and output data files are read and written via subroutines LREAD and
LWRITE, available as Program 3 and Program 4, respectively.

Solutions for several of the examples in this chapter were obtained from these
programs.
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Program 1

purpose
This program implements the LMS and MLMS algorithms for
the predictor, filter, and noise-canceler configurations,

description of i/o files

input: * predictor configuration:
input x(n) file

* filter configuration:
de s i red o ut pu t y(n ) file
input x(n) file

* noise-canceler configuration:
primary input file
reference input file

output: error e!n) file
out put g(n) file
weights fi le

parameter ( mem=20000, eps=0.0000001 )
rea 1 pr i ( mem > , ref ( -255 : mem ) , err ( mem ) , est. ( mem ) , coef ( 256
character*! icon

c ** read in parameters **
c

write!*,*) 'do you want predictor mode 11]'
write!*,*) ' filter mode [2]'
write<*,*) ' noise-canceler [3]'
write!*,110 )
read(* , * ) iqp

LI0 format(2x,'enter the mode number [1,2,3]
write! * , 1.11)
read < * , * ) beta

111 format(2x,'the value of smoothing parameter
write!*,112)
read(* , * ) icon

112 format(2x,'Do you want MLMS [y] or LMS i n ]
if (igp.eq.l) then

write!*,113 )
113 format ( 2x ,'enter the predictor delay! 0-1.28 ) = ',$>

read(* , * ) id
el se

id = 0
end if
write!*,114)
read(*,*) nco

114 format(2x, 'number of filter weights (1-256) = ',S!
write!*,115)
read(*,*) idata

115 format<2x,'enter the number of iterations - ',$)
var = l.0
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Program 1, cont.

if < J i* o n . eq . ' y ' . o r . i c o ri. eq . ' Y ' ) va r - 0 . 0
write!*,I 16)
read(*,*! idump
fornat<2x, 'iteration * to dump out weights = ' , S >

* * read input files **

i. f ( iqp. eq .1) then
<:-al.L I read! ' predictor input file name = ' , pri,isl)
do 20 ii=l,idata

ref(id^ii)=pri ( i i)
continue

end if
i £ ( iqp.eq.2! then

ca 1 I I read( ' desired output v(n) file name = ' ,pri,isl)
ca 1 J 1 read ( ' input x ( n ) f i. 1 e name = ' , ref ! 1 ) , i a 2 )

end if
if (iqp.eq.3) t hen

call 1 read ( ' primary input file name = ',pn,isl!
call 1 read< ' reference input file name = ' ,ref(1) ,is2i

end if
do 1000 i=l,idata

f • s t ( s > = o . n
do 50 i i --.1 , nco

<-st ( i ) -est ( i ) i-coef ( i i ) *ref ( i-ii +1 )
cont inue
e r r ( i ) - pr i ( i ) - e s t ( i )
i f ( icon . eq.'v' .or.icon.eq.'Y' ) then

var-=beta*var ^ ( 1 . -beta ) *ref ( i ) * ref ( i)
endi f
if(var.1e.eps) goto 70
do 5 1 ii = l,nco

< ;o(--f ( i i ) =:coef ( i i ) + ( 1. -beta ) *er r ( i ) * ref ( i -i i -<-l ) /var
cont in lie
i£ (i.ne.idump) goto 1000
wr11 e(* , 117 ) idump
f orniat ( I. x , / , 2x r ' The values of weight at',i5,' iteration',/)
do 5 2 ii = l,nco

wr 11 e(*,* ) ' weight(', i i ,')=',coef f ii)
contj nue
w r 11 e ( * , * )
ca 1 1 twritel ' weights output file name -- ' ,coef ,nco)

cont .rnue
ca.l L iwrite! ' error e(n) file name = ' ,err,idata)
<;al.! Iwritef' output g(n) file name = ' , est , idata )
end
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Program

purpose
This program implements the lattice algorithm for
one-step predictor and filter configurations, as
given in Reference [101.

description of i/o files

11] one-step predictor configuration

input: input x(n) file
output: forward prediction error e(n) file

[2 ] filter mode

input: input x S n ) file
input y(n) file

output: forward prediction error e(n) file
filter error v(n) file

parameter ( nern=50000 , eps = 0 . 0000001 >
real pri(mem),ref(mem) ,f(256 ) ,b<256) , bb< 256),del(256)
real kk(256) , err ( 0:256) , g ( 256 ) ,gam (256) ,for( riem ) , f il ( mem !
character*! ip,iqv

** read in parameter **

wril:e( * , 1.11 )
read(*,* ) i p
format(2x,'predictor(yJ,fi1ter[n ] routine = ',$)
write!*,112)
read(* , * ) 1 stage
format<2x,'the number of stage (1-256) = ',$)
write(*,113 )
read(* , * ) beta
format(2x,'smoothing parameter beta = ',$)
write!* ,114 )
read(* , * ) iqv
forrnat(2x,'time varyingly], fixedln] var. = ',$>
write(*,115)
read(* , * ) idata
format(2x,'the number of iteration[def:0 I = ',$)

** read in input files **

.i. f ( ip . eq . ' y ' . or . ip. eq . ' Y ' ) then
call Ireadl' input x(n) file name = ',ref,is>

else
call Ireadl' input x(n) file name = ',pri,is)
call Ireadf' input v(n) file name = ',ref,isl)
i f ( i s 1.11 . i s ) i s = i s 1

end if
if( idata.le . 0.or.idata.gt.is) idata = i s
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Program 2 cont.

c * * memory initialization **

alpha=l.-beta
do 21 i=l,256

bb(i)=0.
q ( i ) = 0 .
kk(i)= U .
if(iqv.eq.'y'.or.iqv.eq. ' Y ' > then

del(i)=0.
gam(i ) =0 ,

else
del(i ) =1.
gam(i)=1 .

endi f
21 cont i.nue
c
c ** compute one-step predictor **

do 100 j=l,idata
f(1» =ref(j )
b(l)=ref(j)
do 34 i = l,1 stage

f< i + 1)=f(i)-kk(i)*bb< i )
b(i+l)=bb(i)-kk(i)*f(i)
i f (iqv.eq. 'y' .or.iqv.eq. 'Y' ) then

del(i)=del(i)*beta+(1.-beta!*(bbli)*bh(i)+f(i ) *f(i ) )
if (del(i).It.eps) del(i)=eps

end if
kk(i)=kk(i)+alpha*(f(i+l)*bb<i)+b(i+l)*f<i))/del(i)

34 continue
do 35 i = 1,1 stage+ 1

bb(i)=b(i)
35 continue

for(j)=f(lstage+1 )
c
c ** compute filter output **

if i ip.eq. 'n' .or.ip.eq.'N' ) then
err(0)=pri(j)
do 54 i = 1,1 stage + 1

err(i)=err(i-l)-g(i)*b(i)
if(iqv.eq.'y'.or.iqv.eq.'Y') then

gam(i)=gam(i!*beta^-(l.-beta)*b(i)*b( i )
if (gam(i).It.eps) gam(i)=eps

endif
g(i)=g(i)+alpha*err(i)*b(i)/yarn!i)

54 continue
fil( j ) =err( 1 stage*!)

endi f
100 continue

iff ip.eq.'y'.or.ip.eq.'Y' ) then
call lwrite(* prediction error e(n> file = ',for,idata>

else
call lwrite(' prediction error e(n) file = ',for,idata)
call 1write!' filter error v(n) file = !,fil,idata)
end if
end
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Program 3

suhrout i.ne Iread ( prompt , array , dat: len !

Definit ions:

Prompt for filename.
Data length (number of values read)
At present, max data length is 20,000 values,
datlen is returned to the calling program.
The name of the array into which the values
will be read. The array name must he
dimensioned in the calling program.

Subroutine Iread accepts a prompt and an array name, prompts f<
a data file name, opens the file, reads each 4-byte floating-
point value into the array, closes the file, and returns the
number of values read in the variable datlen.

sub rout me 1 read ( prompt , array , dat J en )
i nt eger dat; len
rea1 array <1 )
charaeter* 80 fname
c ha r ac t. e r * ( * ) p r omp t.
w r i t e f 6 , 1 0 ) prompt:
format. ( ' ' , a , S )
read(5,12)fname
format(a!
open ( unit --• 3 , f i le= fname , access = ' direct' , stat us = ' old ' ,
forn='unformatted' ,3 ost at ~ ierro,ree1=4 )
rewind (unit = 3 )
do 100 1=1,20000

read(3,rec-i,end = 2 00 1 a rray(i )
continue
datlen --- i -1
<-• lose (unit - 3 )
ret urn
en u
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Program 4

sub rout i ne 1 write < prompt, array , dat len )

This subroutine writes a f loating— point, data file from an array.
The file will contain real values in a form corresponding
to FORTRAN direct, access unformatted mode.
Definit ions;
prompt CHARACTER Prompt for filename.
datJen INTEGER Data length (number of values to be written;

datlen is received from the calling program.
-i.rr.ay REAL The name of the array from which the values-wil

be read. The array name must be furnished and
dimensioned by the calling program.

Operation:
Subroutine Iwrite accepts a prompt and an array name, prompts
for a data file name, opens the file, writes 4-byte floating-
point values fron the array to the file, and closes the file.
The number of values to be written is specified by the variable
datlen.

subroutine Iwrite(prompt,array,datlen)
character*80 fname
character*! answer
character*!*) prompt
integer datlen, length
rea.l a r ray ( 1 : dat len )

B write(6,10) prompt
10 format!' ',a,S)

read{5,12) fname
12 format(a)

length = datlen*4
open(unit=3,file=fname,access='direct',status='new',

ix form- ' unformatted ' , reel = 1 ength , lostat - ier rw )
if < ierrw .eq. .11. 7 ) then

write(6,14)
14 format!' ','F1LE EXISTS ',/
& lx,'DO YOU WISH TO OVERWRITE?',$)

read(5,12) answer
i f(answer.eq.'n' . or.answer.eq.'N' ) then

write(6,16)
16 format*' ','PICK ANOTHER FILENAME'!

go to 8
else

open(unit = 3,file = fname,access-'direct' ,
& status=" old',form--' unformatted ' ,
& reel--length, a ostat = ierrw2>

close(unit=3, status = 'delete')
open ( unit = 3 , f i le =-fname , access = ' d i rect ' ,

& status='new" , forra= ' unformat ted ' ,
& rec .1 = length , iost.at = ie r rw2 )

end if
el se
end i f
write' ( i , rec -1 ) array
r e t u r n
end
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Chapter 13

Recursive Estimation

GENE H. HOSTETTER
Electrical Engineering Department

University of California, Irvine
Irvine, California 92717

In 1795 Karl Friedrich Gauss (1777-1855) invented the method of least
squares estimation in the course of calculating planetary and comet orbits from
telescopic measurement data [1]. Six precise measurements would suffice to
determine the six parameters characterizing each orbit, but individual measure-
ments were likely to be quite inaccurate. More measurements than the minimum
number were used, and the "best fit" to an orbit was found, in the sense of
minimizing the sum of squares of the corresponding parameter measurement
errors. Gauss's approach was to develop the method, then argue eloquently that
it yielded the "most accurate" estimate. Adrien Marie Legendre (1707-1783)
independently developed least squares estimation and published the results first,
in 1806.

Through the years least squares methods have become increasingly important
in many applications, including communications, control systems, navigation,
and signal and image processing [2,3]. The next section develops the funda-
mental ideas of least squares estimation. The solution involves a linear
transformation of the measurements to obtain the optimal estimate. Then a
recursive formulation [4,5] of the least squares solution is derived in which the
measurements are processed sequentially. The digital processing for recursive
least squares constitutes filtering of incoming discrete-time measurement signals
to produce discrete-time outputs representing estimates of the measured system
parameters. Several illustrative examples are given. The section concludes with
discussion of probabilistic interpretations of least squares and an indication of
how recursive least squares methods can be generalized.

In 1960, building on the work of others, Rudolph E. Kalman published his first
paper [6] on linear minimum mean square (MMS) estimation. The approach was
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a fundamental departure from that of Gauss in that it began with a stochastic
formulation rather than giving stochastic interpretation to an already developed
procedure. The result, now known as the Kalman filter [7-10], is an elegant
generalization of recursive least squares that nicely unifies and extends many
earlier results. It is especially convenient for digital computer implementation.

With the ideas of recursive least squares established, we formulate the basic
linear MMS estimation problem in Section III and derive the recursive Kalman
filter equations. Measurements to be processed are represented by a state-
variable noise-driven model that has additive measurement noise. As each
measurement is incorporated, the Kalman filter produces an optimal estimate of
the model state based on all previous measurements through the latest one. With
each filter iteration the estimate is updated and improved by the incorporation of
new data. If the noises involved have Gaussian probability distributions, the filter
produces minimum mean-square error (MSE) estimates. Otherwise, it produces
estimates with the smallest MSE obtainable with a linear filter; nonlinear filters
could be superior.

Section IV begins with a summary of the matrix Kalman filtering equations
and a block diagram of the filter, which includes a replica of the state-variable
model for the measurements. A BASIC language computer program for
demonstrating first-order Kalman filters is given, and important considerations
in the programming of multivariable filters are discussed. The next section
introduces extensions of the Kalman filter to situations involving noise coupling
matrices, deterministic inputs to the model, nonzero mean values, known initial
conditions, correlated noises, and bias estimation.

Section VI is concerned with some of the computational aspects of Kalman
filtering [11-14]. Insufficient care in modeling can lead to unrealistic confidence
in the estimation accuracy, to the point where additional measurements are
effectively ignored by the filter—a situation called divergence. The effects of
computational inaccuracies can be reduced by using alternative arrangements of
the computations, such as square-root filtering. Examples [15-22] are given to
illustrate key concepts.

The final section is a short bibliography that includes references to other
material on optimal smoothing [23-28], to filtering for continuous-time
systems [26-28], and to several papers describing applications of Kalman
filtering.

II LEAST SQUARES ESTIMATION

A Direct Least Squares

The basic least squares problem [29,30] involves estimating an n-vector
quantity x from an m-vector [31-33] of linearly related known measurements

z = Hx + y (13.1)
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where the matrix H has the dimensions m x n with m > n, and where v is an
m-vector of unknown measurement errors. Every estimate of x, denoted by x,
corresponds to some error (or noise) vector v in

z = Hx + v (13.2)

We want to find, using the measurements z, the estimate x that minimizes the
performance measure, which is the sum of squares of errors

I = XTI = v i + £ 2 + ' ' ' + v; (13.3)

The solution is found by expressing v in terms of x then setting the derivatives
of J with respect to each component of x to zero:

VTV = (z - Hx)T(z - Hx) (13.4)

8J\
afy

~dJ~

dJ

dx2

dJ
j)xn_

-HT(z - Hx) = 0

HTHx = HTz

x = (HTH)-1HTz

It turns out that the matrix of second derivatives of J,

(13.5)

1̂dx

(13.6)

(13.7)

(13.8)

is positive definite if H has full rank, so the solution is unique and is a minimum.
Since HTH is positive definite, (HTH)"1 exists. Equation (13.7) shows that the
least squares estimate x is linearly related to the measurements z. This is not
surprising, since derivatives of quadratic functions are linear functions.

Scalar Least Squares Example. Suppose that a scalar quantity x to be
estimated and three measurements z are related by

Zl = 3 = 2x + £>!,

z2 = 0= -x + v2, (13.9)

£3 — ~ 2 = — 2x + v 3

or

V2 = hx + v (13.10)

— 2 Ll;3j
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The least squares estimate of x is

x = (hTh)-1hTz

= [2 -1 -2] [2 -1 -2]
10

(13,11)

Vector Least Squares Example. Suppose we want to estimate the vector
quantity

from the measurements

Zj = 3 = —x, + x2 + u,

Z_2 = — 5 = 2x± — X2 + V_2

(13.12)

(13.13)
— / — v* ,,,.L- v 1 112 — ^ — ^^ -f~ _^2 n^ 1/3

z4 = 6 = — 2xj + 2x2 + y4

or

3]

z - ~~5 -
2

6J

"-1 f
2 — 1

1 1
— 2 2

"121"

[Xil y71 U -2 = Hx + v
*2j 123

_»4_

The least squares estimate of x is

g = (HTHr1HTz

/

f-1 2 1 -21

L ! -1 ' 2J
\

"-1 f
2 -1
1 1

_-2 2_

\- j r 3~
f — 1 7 1 9l S1 2 1 2 5

L 1 -1 1 2J 2

/ L 6

I" 10 -6TT-231 1 p 6ir-23l T-0.8531

~ L ~ 6 7J L 22J~34[6 10JL 22J"~L 2-41 J

(13.14)

(13.15)

B Recursive Least Squares

Computationally, Eq. (13.7) is difficult to implement when m, which is the
dimension of z and one of the dimensions of H, is large. If new measurements are
accumulated so that a sequence of least squares solutions x each based upon



13. Recursive Estimation 903

additional measurements is desired, each solution of Eq. (13.7) involves a
progressively higher dimension m. In the recursive least squares solution [4, 5],
the solution x is a linear transformation of the measurements z, so a solution
based on the first k + 1 measurements may be expressed as a linear transforma-
tion of the solution based on k measurements plus a correction term based on the
(k + l)st measurement alone.

Denote the number of measurements used by arguments of the various
quantities; then the least squares solution based on k measurements is

\(k) = [HT(fc)H(fc)] ~ 1HT(fe)z(fe) (1 3. 1 6)

Then

\(k +l) = [HT(fc + l)H(fe + l)]'1^^ + l)z(fc + 1) (13.17)

where H(k + 1) is H(/c) with an additional row, hT(& + 1):

,,3,8,

Let the vector of measurements z(fe + 1) be the measurement vector z(k) with one
additional scalar measurement, zk+l:

z( /c+l)H^- : - | (13.19)

Now

- h ( f c + I ) h 1 ( f c + 1 ) (13.20)

Defining

p()A = [HT(fc)H(A:)]^1 (13.21)

P(k + 1) = [HT(fc + l)H(fc + I)]'1

= [H(fc)TH(fc) + h(fc + l)hT(fc + I)]'1

= [P'1^) + h(fc + l)hT(^ + l)]^1 (13.22)

and applying the matrix inversion lemma [5, pp. 56-57]

(F + uv1)"1 = F^1 - I-^LL- (13.23)

gives an update equation for P(k + 1) in terms of P(/c) and the next measure-
ment equation coefficients h(k + 1):

P(k + 1) = P(Jfe) - P(fc)h(fe + l)[hT(fe + l)P(fc)h(* + 1) + l]-^7^ + l)P(fe)

- P(fe) - P(fe)h(fe + l)c(fc + l)hT(fc + l)P(k) (13.24)
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where

c(k + 1) = [hr(k + l)P(k)b(k + 1) + I]"1 (13.25)

is a scalar. The inversion involved is then simply a division.
The least squares estimate at step k + 1 is

x(k + 1) = P(k + l)HT(fe + l)z(k + 1) - P(k + 1)[HT(/0 h(fe + 1)]

= P(k + l)[HT(/c)z(/c) + h(/c + l)zk+1]

= [P(fe) - P(fc)h(fc + l)c(fe + l)hT(/c + l)P(fc)][HT(fc)z(fc)

+ h(/c+ l)zk + 1]

= P(/c)HT(/c)z(/c) + P(/c)h(/c + l)zk+1

l)c(fc + l)hT(Jk + l)P(k)HT(k)z(k)

l)c(k + l)h"r(fe + l)P(k)h(k + l)zfc + 1

= x(/c) + P(k)h(k + l)c(k + l)[zfc + 1 - hT(/c + l)x(/c)] (13,26)

This remarkable result is that the least squares based on k + 1 measurements is
the previous estimate, based on k measurements, plus a gain

K(k + 1) = P(k)h(k + l)c(k + 1) (13.27)

times the difference between the new measurement zfc + 1 and the predicted
measurement hr(k + l)x(fe) based on the previous estimate.

The equations for recursive least squares calculation are collected in Table I.
To apply them for the estimation of the «-vector x, we first obtain an initial
estimate based on the first n measurements:

x(n) = [HT(«)H(n)] ~ l HT(«)z(«) ( 1 3.28)

TABLE I

Collected Recursive Least Squares Equations

Measurement model (for scalar measurements)

zk + l =h T ( /c+ l )x( fc+ l) + » t + ,

Predictor - corrector

\(k + 1) = x(/c) + K(k + \)[zk+ i - hj(k + l)x(/c)]

Corrector gain

K(k + 1) = P(k)h(k + \)c(k + 1)

Gain quantities

c(k + 1) = [hT(fc + l)P(/c)h(fc + 1) + l]^1

P(k + 1) = P(k) - P(k)h(k + l)c(k + l)hT(fc + l)P(k)

= [ I - K ( k + l ) h ' r ( f c +
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At the same time the initial P matrix

(13.29)

is obtained. Thereafter, the least squares estimate is updated with each new scalar
measurement.

Figure 13.1 is a block diagram of the recursive least squares estimator. The
filter processes one scalar measurement at a time and generates the least squares
estimate based on that and all preceding measurements.

Scalar Recursive Least Squares Example. For the equations and measure-
ments (13.9) considered previously, a recursive solution is

initialization

x(l) =

update with measurement 2

c(2) = [/iT(2)PO)M2) +

K(2) -

P(2) -

)z, = (i)(2)(3) = f

[(- l)(i)(- 1) + I]"1 =1 _ 4

(13.30)

(13.31)

update with measurement 3

c(3) - [

P(3) - [1 - X(3)/iT(3)]P(2) = [1

x(3) = x(2)

(13.32)

The process could be continued if there were more measurements.

IF
x(0)

x(k)

Fig. 13.1. Block diagram of the recursive least squares estimator.
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Vector Recursive Least Squares Example. A recursive solution of the vector
estimation problem [Eq. (13.13)] considered previously is

initialization

P(2) = [HT(2)H(2)]"^
-1

5 -31- T2 3
3 5

2 31F-1 2

sJL i -i
update with measurement 3

x(2) = P(2)HT(2)z2 =

i r
2 -1

(13.33)

= = 0.071
2 3iP¥-^ r°-357
3 5 1 114

= [I-K(3)hT(3)](P2)

0

_ [0.215 0.1451

~|_°-145 0.432 J

x(3) = x(2) + K(3)[z3 - hT(3)x(2)]

-21 [0.357"

J + [o.571_

-0.9291

2.714J

update with measurement 4

0.145 0.432
0.412

-0.05771

0.236 J

(13.34)

(13.35)
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P(4) = [I - K(4)hT(4)]P(3)1 °i_ r~o'o577ir-2 2-Ar°-215 °-K~
0 1J [ 0.236 JL J/[o.l45 0.432

_ [0.206 0.1781
= [0.178 0.296 J

x(4) = x(3) + K(4)[z4 - hT(4)x(3)] (13.35)

- 0.9291 [ - 0.05771 / _ I" - Q.929'
2.714 + 0.236 \ - ~ [ ~ ] 2.714

[-0.8531

L ™l J
as we found earlier. If there were additional measurements, they could be
incorporated into the estimate in a similar way.

Probabilistic Interpretation of Least Squares C

If the least squares estimate is interpreted as yielding the "best" or "most likely"
value of the estimated quantity, probabilistic assumptions are being made about
the measurement errors v t , v2,. . . , as was known to and discussed by Gauss. For
the basic least squares problem considered so far, equal weightings of the squares
of the measurement errors in the performance measure J to be minimized imply
that each measurement has equal likelihood of error and that the errors are
independent of one another.

A more general least squares problem minimizes

J = vTWv (13.36)

where W is a symmetric, positive definite, weighting matrix. Then J is a quadratic
form in the measurement errors. When we have more confidence in the accuracy
of some measurements than of others, we can choose the elements of W to weigh
them more heavily than others. In this case the solution for the least squares
estimate is

x = (HTWH) 'FTWz (13.37)

This, too, can be expressed recursively.
If the errors v are zero mean,

E[v] = 0 (13.38)

with known covariance R,

£[YYT] = R (13.39)
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it is natural to choose

(13.40)

Indeed, for a constant vector x to be estimated, this gives the same estimate x as
the more general results to follow.

Recursive least square methods can also be designed to incorporate vector,
rather than scalar, measurements at each step and to estimate a quantity X(M) that
itself changes with the step number n in a known way.

Ill LINEAR MINIMUM MEAN SQUARE ESTIMATION

A Kalman Filtering

Rather than adopting a least squares criterion and arguing that the resulting
estimate is most probable, Kalman began with a stochastic formulation,
including a probabilistic performance index to be minimized. As did Fisher,
Kolmogorov, Wiener, and others before him, Kalman sought estimates that were
linearly related to the measurements such that the expected sum of squares of the
errors between the actual and estimated states,

J = E[(x - x)T(x - x)] (13.41)

was minimized. The state to be estimated could vary in a known way with the
step, the state as well as the measurements could be influenced by noise, and the
initial state could be described stochastically. The result is now called a Kalman
filter [6-10].

In general, an estimate linearly related to the measurements may not minimize
J; a nonlinear relation might be superior. Kalman found the linear estimator that
minimizes (13.41) for any (reasonable) noise statistics. If the noises involved have
Gaussian probability distributions, it can be shown that the linear estimator is
optimum; it is the best that can be done.

The problem of linear MMS estimation is straightforward to solve but
involves a good deal of detail. Consequently, we will first develop the solution
to the basic problem, then indicate how to generalize those results to more
complicated situations.

B Stochastic System Model

A sequence of vector measurements z(l), z(2),... is modeled as the output of
a discrete-time stochastic system [34-38] of the form

\(k + 1) = F(fc)x(fc) + w(fc)

z(fc + 1) = H(/c + l)x(fc + 1) + y(fc + 1) (13.42)
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The state equations of the model are

3C2\ ' / J21 \ / J22\ ) x2(k)

*-(*)

H>2 CO

*.(*)

(13.43)

where w(fc) is a white noise sequence with zero mean and known step-by-step
covariance matrix. That the sequence w(/c) is zero mean is expressed by

£[w(fc)] = 0 (13.44)

where £ denotes the expected value. Whiteness of the sequence means that

E[w(;)wT(fc)] = 0 (13.45)

unless j = k. That is, w(/c) is uncorrelated with itself at any other step. At the
same step

where Q(k) is a symmetric, positive semidefinite, covariance matrix.
The effects of known inputs can be computed separately, so they are omitted

from the model. The measurement equations are

u ( f c + l ) hl2(k + 1) ••• hln(k + 1)

2 1 ( fc+ 1) h22(k+ 3) • • • h2n(k+ 1)

hml(k+\) hm2(k+]) ••• hmn(k

x2(kH)

_xn(k

v2(k

(13-47)

where v(k) is a white noise sequence with zero mean, known covariance matrix,
and is uncorrelated with w(/c):

£[y(/c)]=0, £[v(j)vT(/c)] = 0, ./ * *

= 0
(13.48)

where R(/c) is symmetric and positive semidefinite.
The initial system state x(0) is probabilistic, with zero mean, known positive

semidefinite covariance matrix, uncorrelated with vv(k) and v(/c):

£[x(0)] = 0, £[x(0)xT(0)] = P0
~ ~ (13.49)

The relationships between the signals in the stochastic model are shown in
Fig. 13.2.

Example of Stochastic System Response. For a probabilistic initial condition
.x(0), a typical response of the first-order stochastic discrete-time system

x(k + 1) = 0.9x(/c) + vv(/c), z(k) = x(k) + v(k) (13.50)

is plotted in Fig. 13.3 for the white noise sequences w(k) and v(k) shown.
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V
x ( k + l ) INITIAL

STATE
x{0)

w ( k ) v ( k + l )

Fig. 13.2. Block diagram of the stochastic signal model.

w(k)

v(k)

x(k)

z(k)

Fig. 13.3. Noise inputs and response of an example stochastic discrete-time system.

C Problem Statement and Notation

As measurements are received in time sequence, we want to estimate the state x
of the stochastic system model, using all measurements presently available. At
each time step the system state x changes, and a new measurement z becomes
available.
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For the stochastic system model described by Eqs. (13.42)-( 13.49) involving
zero-mean uncorrelated white noise sequences driving the state and corrupting
the measurements, we want to find, at each step k, the linear MMS estimate of
x(fe) based on the measurements from step 1 through the present step k.

The notation used here, which is common, is that the estimate of a quantity
such as x is denoted by a "hat" over the symbol for the quantity (i.e., x). The
arguments for estimates are written in the form (i/j), where the first index i is
the step of the quantity estimated, and the second index j is the number of
measurements used in making the estimate. Some examples follow:

x(/c + 1 | k) is the linear MMS estimate of \(k + 1) based on
z(l),z(2),...,z(/c).

x(k + 1 k + 1) is the linear MMS estimate of x(fc + 1) based on
~ z(l),z(2),.. . ,z(/c+l).
z(/c 4- 11 k) is the linear MMS estimate of z(k + 1) based on

z(1),z(2),...,z(/c).

Similar definitions are made for estimates w(fc | k), v(k + 1 j /c), etc. Some other
useful definitions are the following:

Ax(/c | k) = x(k) — \(k | k) is the state estimation error.
Ax(/c + 1 k) = \(k + 1) — x(/c + 11 k) is the state prediction error.

4- 1 | k) = z(/e + 1) — z(/c + 11 k) is the measurement prediction error.

Four results for linear MMS estimation are keys to the development to follow:

Solution in Terms of Expected Values. If x and z are zero-mean random
vectors, the linear MMS estimate of x based on z is

x = £[xzT]{£[zzT]}-1z (13.51)

Orthogonality of Estimate Error and Data. This result, known as the
orthogonality principle, is that if x, z, and x are as above, then

£[?(x-x)T] = 0 (13.52)

The collection of measurements z and the estimate error x — x are orthogonal.

Estimate of a Linear Composition. If

x - A y + Bw (13.53)

the linear MMS estimate of x based on z is

x = Ay + Bw (13.54)

where y is the estimate of y and w is the estimate of w.
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Incorporation of Orthogonal Data. If x, z t , and z2 are zero-mean random
vectors, with Z j and z2 orthogonal,

E[?i?!] = 0 (13.55)

the linear MMS estimate of x based on zt and z2 is

x = x 1 + x 2 (13,56)

where x, is the estimate of x based on zt and x2 is the estimate of x based on z2 .

E Prediction and Correction

The derivation of the Kalman filter is now outlined, and key results are
highlighted with asterisks by the equation numbers. Using the linear composition
result [Eq. (13.54)], we obtain the optimal estimate of \(k + 1) given data
through the /cth step:

x(k+ l | f c ) = F(fc)x(fc|fc) + w(fc|fc) (13.57)

Since w(fc) and z(/), j = 1, 2, . . . , k, are uncorrelated,

w ( / c | f c ) = 0 (13.58)

and

\(k+l\k) = F(fc)x(fc|fc), x(0|0) = 0 (13.59)

The best prediction of the state at the next step is to pass the previous step's
estimate through the system state coupling matrix F.

Similarly, applying the linear composition result (13.54) to the stochastic
system output equation

z(fc + 1) = H(fc + l)x(k + 1) + \(k + 1) (13.60)

gives

z(k + 1 1 k) = H(fc + l)x(k + 1 1 k) + v(/c 4- 1 1 k) (1 3.61)

Since v(/c) and z(j) are uncorrelated for k =£ j,

v(k+l\k) = 0 (13.62)

so

z(k + 1 1 k) = H(fc + l)x(k + 1 1 k) (13.63)*

The best prediction of the next measurement is to pass the predicted state
through the measurement coupling matrix H.

The measurement prediction errors

Az(/c + 1 | k) = z(fc + 1) - z(fc + 1 1 k) (13.64)*
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are also termed the measurement residuals. Rather than using the original
measurements z( 1), z(2), . . . , z(fe), . . . , it is expedient for us to use the measurement
residuals Az(l j 0), Az(2 1 1), . . . , Az(/c | k — 1), ... as the measurements. The two are
equivalent, since either may be found deterministically from the other. Collecting
the residuals through step k into a single vector of measurements,

Azt =
~M2T)~' (13.65)

_Az(fc k - 1)

we have that the quantity x(/c 4- 1 \k) denotes the linear MMS estimate of
x(/c 4- 1) based on Azfc. Using the orthogonality principle [Eq. (13.53)], we see
that the measurement and the estimate error are orthogonal:

+ 1) - \(k + 1

Postmultiplying by HT(/c + 1), we get
T(fc + 1)} = £{Azfc

(13.66)= 0

(13.67)

Since the collection of measurements through step k, Azfr, and the step fc + 1
measurements, Az(fc + 1 j fc), are orthogonal, any linear MMS estimates based on
Azfc and Az(fe + 1 1 k) are, according to Eq. (13.57), the sum of the two individual
estimates:

x(k + 1 k+ l) = x(fc + l | f c )

-f [linear MMS estimate of \(k + 1) based on Az(7c + 1 k)]
(13.68)

Incorporation of new data in the form of the residuals only involves making
additive corrections to the previous predictions, not complete recalculation.
Applying Eq. (13.55) and defining the Kalman gain K(k + 1) as

K(k E[\(k + l)Az_T

yields the result

\(k l\k+ l) = \(k+ l \ k ) + K(k+ -f

(13.69)

(13.70)*

Kalman Gain and Error Covariances F

The most involved part of Kalman filtering is the calculation of the sequence
of Kalman gains K(l), K(2), K(3),.... We now derive formulas for recursive
calculation of the gain sequence. The result is a set of three coupled matrix
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equations, from which the Kalman gains can be computed. Using

Az(fc + 1 1 k) = z(k + 1) - z(fc + 1 1 k)

= H(k + l)x(fc + 1) 4- v(fe + 1) - H(k 4- l)x(fc + 1 | fc) (13.7!)

and the fact that v(k 4-1) and Ax(/c 4- 1 1 fc). are uncorrelated,

£[Ax(/c 4- 1 1 k)\T(k + 1)] = E[y(fc + l)AxT(£ + 1 | fc)] = 0 (13.72)

yields the result that

£[Az(k + 1 1 k)\zT(k + 1 1 fc)] = H(k + l)P(k + 1 1 k)HJ(k + 1) + R(fc + 1)

(13.73)

where

1 \k) = £[Ax(/c + 1 1 fc)AxT(fc + 1 fc)] (13.74)

is the state prediction error covariance.
Similarly, since v(fc + 1) and Ax(fc + 1 1 k) are uncorrelated,

fc + 1 |/c)vT(fc + 1)] = 0 (13.75)

it follows that

E[x(k + l)AzT(/c + 1 | k)] = P(fc + 1 1 fc)HT(/c + 1) (13.76)

so the Kalman gain [Eq. (13.69)] is

K(fe + 1) = P(k + 1 1 fc)HT(fc + l)[H(fc + l)P(fc + 1 /c)HT(fc + 1) + R(fc 4- 1)]'1

(13.77)*

We can also express the state prediction error covariance in terms of the state
estimation error covariance,

P(k | k) = E[\x(k | k)\xT(k | fc)] (13.78)

using the fact that Ax(/c | k) and w(/c) are uncorrelated:

£[Ax(fc fc)wT(fc)] = £[w(/c)AxT(fc)] = 0 (13.79)

The result is

P(k + 1 1 k) = F(fc)P(fc | fc)FT(fe) + Q(fc), P(0 1 0) = P0 (13.80)*

Since Ax(/c 4- 1 1 /c) and v(/c 4- 1) are uncorrelated,

£[v(/c 4- l)AxT(/c 4- 1 | fe)] = £[Ax(fc 4- 1 | k)vj(k + 1)] = 0 (13.81)

the state estimate error covariance is expressible as

P(k + 1 k + 1) = [I - K(k 4- l)H(fe 4- l)]P(fe + 1 | fc)[I - K(fe 4- l)H(Jt 4- 1)]T

4- K(k + l)R(k + l)KT(fe + 1) (13.82)

which, using Eq. (13.77), simplifies to

P(k+\ k + 1) = [I - K(fc + l)H(fc 4- l)]P(fe +l\k) (13.83)*
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DISCRETE KALMAN FILTERING EXAMPLES IV

The Basic Filter A

The equations connected with Kalman filtering are collected in Table II. The
Kalman filter for an nth-order linear discrete-time stochastic system is another
wth-order linear discrete-time system. The filter input is the system measurement,
and the filter output is the optimally estimated system state, as indicated in
Fig. 13.4.

Figure 13.5 is a block diagram showing the relationships between the signals in
the Kalman filter. The filter consists of a model of the system with zero noise
inputs replacing the actual (unknown) system noise inputs and initial conditions
determined by the measurement residuals through the Kalman gain K.

System
L, ^ I I

Estimated system
state, £ ( k | k )

Fig. 13.4. Kalman filtering a system output to optimally estimate the system state.

TABLE II

Kalman Filter Equations

System model

\(k+ 1) = ¥(k)\(k) + w(k)

z(k + 1) = tt(k + l)\(k + 1) + \(k + 1)

Predictor

\(k + 1 | k) = f(k)x(k | k), x(0|0) = 0

z(k + \ \ k } = H(k + l)\(k + \ \ k )

Corrector

Az(fc + 1 1 k) = x(k + 1) - z(k + 1 | k)

Kalman filter gain

K(k + 1) = P(k + 1 |fc)HT(Jt + 1)[H(A- + l)P(/c + 1 \k)HT(k + 1) + R(k + I)]'1

Covariances

P ( k + l \ k ) = ¥(k)P(k | k)FJ(k) + Q(k), P(010) = P0

P(k + I \k + 1) = [I - K(fe + l)H(/c + l)]P(fc + 1 \k)
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z ( k - H )

A z ( k - H I k)

v\_y-i
t

~^ DELAY V

4f l(klk)

INITIAL
STATE

= 0

r \ r \ i \/\J ^ n*

"t" /\Tl|"i.(ktiik)

NOISE
ESTIMATE

= 0

-r | / tX\ /

A
f

NOISE
ESTIMATE

= 0

-M| k}

V
j«(k + l I k + l)

Fig. 13.5. Block diagram of the Kalman filter.

Some of the advantages of the recursive solution are

1. The filtering is readily performed by a digital computer.
2. A fixed amount of computer memory is required.
3. The required matrix inversions are of fixed order.
4. The algorithm is in a feedback configuration.
5. The P matrix computations constitute a built-in error analysis.
6. Kalman filtering is a cornerstone to a general estimation and control design

philosophy.

B First-Order System Example

Consider the first-order stochastic system model

x(k + 1) = 0.5x(fc) + vv(/c), z(k + 1) = 3x(k + 1) + v(k + 1) (13.84)
with

E{x2(0)} = />0 = 10

E{w2(k)} = Q = 4 for each step k

E{v2(k)} = R = 5 for each step k

(13.85)

A block diagram of the system is given in Fig. 1 3.6(a). The Kalman filter predictor
equations for the system are

x(0|0) = 0

The corrector equations are

x(k + 1 k + 1) - x(k + 1 | k) + K(k + l)Az(k + 1)

Az(fc +\) = z(k + \)-z(k+\\k)

A block diagram of the filter is given in Fig. 13.6(b).

(13.86)

(1 3.87)



13. Recursive Estimation 917

v(k-H)

z (k + l)-

A z { k + l | k ) ( k l k ) x ( k -H l k ) z ( k + l | k )

INITIAL
STATE =0

,x(k + l| k-H)

(b)

Fig. 13.6. Block diagrams for an example first-order stochastic system and the corresponding
Kalman filter: (a) stochastic system model; (b) Kalman filter for the system.

In the general case, calculation of the sequence of Kalman gains, K(0), K(.l),.,.,
which may be computed and stored in advance, involves repetitive cycles of three
computations:

1. estimate error covariance P(k \ k\ beginning with P(010) = P0

2. prediction error covariance P(k + 11 k)
3. Kalman gain K(k + 1)

For the scalar example,

first
cycle

second
cycle

P(0|0)= 10

3P(1|0)
= 0.307

"9P(1|0)

P(l !) = {!-3K(1)}P(1|0) = 0.512

(13.88)

"9P(2| l) + 4 "

third fP(2|2)= {1 - 3X(2)}P(2| 1) = 0.49
cycle 1 :

Computer-generated calculations of these quantities are given in Table III.
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TABLE III
Computer-Generated Covariances and Kalman Gain for the Example System

Step/c

0
2
3
4
5
6

:'}

P(k\k)

10
0.511811024
0.489655817
0.489577790
0.489577515
0.489577514

P(k + 1 1 fc)

6.5
4.127952756
4.122413954
4.122394448
4.122394379
4.122394379

No change from the line above

K(k+ 1)

0.307086614
0.293793490
0.293746674
0.293746509
0.293746508
0.293746508

w(k)

1 , 1 . . 1 1 1 1" I ' l l " '1 , 1 1I I II I ' l M I

v(k)

' ' '

x(k/k)

Mil

Fig. 13.7. Typical system and filter responses.

Typical white noise sequences w(k) and v(k\ the corresponding actual system
state x(/c), and the Kalman filter estimates of the system state x(k \ /c), from the
noise-corrupted measurements, are plotted in Fig. 13.7.

C Scalar Kalman Filters in BASIC

Table IV gives the listing for a digital computer program, written in BASIC, for
generating first-order stochastic system states and measurements, then Kalman
filtering the measurements to estimate the states. Data for the example of the
previous section was obtained with this program.
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TABLE IV
BASIC Program to Compute First-Order Stochastic Model States and Measurements

and Kalman Filter Estimates of the Model States from the Measurements

100 PRINT "FIRST ORDER KALMAN FILTER"
110 REM SET SYSTEM PARAMETERS
120 F = 0.5
130 H = 3
140 P = 10
150 Q = 4
160 R = 5
170 REM XE IS STATE ESTIMATE X(K/K)
180 K = 0
190 XE = 0

200 REM SET INITIAL STATE X OF MODEL
210 C = 0
220 FOR I - 1 TO 12
230 C = C + RND
240 NEXT I
250 X = P * P * (C-6)

260 REM PRINT TABLE HEADING
270 PRINT "STEP K", "STATE X", "NOISE W", "NOISE V", "MEAS Z",

"P(K/K)", "P(K + 1/K)", "K(K + 1)", "EST XE"

300 REM COMPUTE MODEL STATE X
310 C = 0
320 FOR I = 1 TO 12
330 C = C + RND
340 NEXT I
350 W - Q * Q * (C-6)
360 X = F * X + W

400 REM COMPUTE MEASUREMENT Z
410 C = 0
420 FOR I = 1 TO 12
430 C = C + RND
440 NEXT I
450 V = R * R * (C-6)
460 Z = H * X + V

500 REM COMPUTE PREDICTION COVARIANCE PI
510 P1 = F * P * F + Q
520 REM COMPUTE KALMAN GAIN A
530 A = (PI * H)/(H * PI * H + R)

550 REM COMPUTE STATE PREDICTION XI
560 XI = F * XE
570 REM COMPUTE MEASUREMENT PREDICTION Zl
580 Z 1 = H * X 1

600 REM COMPUTE STATE ESTIMATE XE
610 XE = A * ( Z - Z 1 ) + X1

(continued)
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TABLE IV (Continued)

650 REM PRINT RESULTS
660 PRINT K, W, V, X, Z, P, PI, A, XE

700 REM UPDATE ESTIMATE COVARIANCE
710 P = (1 - A * H ) * PI

750 REM INCREMENT STEP K AND LOOP
760 K. = K + 1
770 GO TO 300

STOP
END

The program uses the RND function, which supplies random numbers in the
range (0,1). Some BASIC compilers instead recognize RND1 or RND(l) as this
function. Twelve such random numbers are added, and their mean of 6
subtracted to give a nearly Gaussian probability distribution with unit covar-
iance.* A typical sequence of program steps ending with X being zero-mean
Gaussian random with covariance P are 200-250 in the table.

D Multivariable Kalman Filter Programs

Programming a second-order Kalman filter in a language such as BASIC or
FORTRAN is probably easiest if we code the individual scalar equations. For
Kalman filters of third and higher order it is expedient to organize the
computations in matrix form. Below is an outline of the program steps that may
be used to perform Kalman filtering according to the equations summarized at
the beginning of this section:

1. Set the step index k = 0.
2. Initialize the state estimate vector x(010) = 0.
3. Initialize the state estimate error covariance matrix P(010) = P0.
4. Compute the next state prediction error covariance P(k + 1 k) =

V(k)P(k fc)FT(fc) + Q(k).
5. Compute the matrix S = H(fc + l)P(fc + 1) | k)UT(k + 1) + R(k + 1).
6. Compute the matrix inverse S"1.
7. Compute the next Kalman gain K(fc + 1) = P(k + 11 /c)HT(/c + 1)S '.
8. Compute the next state estimate error covariance P(k + 1 k + 1) =

[I - K(k +' 1)H(* + 1)]P(* + 11 k).
9. Compute the next predicted state x(/c + 1 1 k) = ¥(k)\(k \ k).

10. Read the next measurement z(k + I).

J R. W, Hamming, Introduction to Applied Numerical Analysis, McGraw-Hill, New York, 1971,
Chap. 14.
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11. Compute the measurement residual

Az(fc + 1 1 k) = i(k + 1) - H(fe + \)\(k + 1).

12. Compute the state estimate

\(k + 1 k + 1)= \(k + 1 |/t) + K(fe + l)Az(fc + 1 |fc).

13. Increment k by 1.
14. Output the state estimate.
15. Return to step 4.

The complexity of the operations in these steps is relatively high if matrix
operation commands are not available to the programmer. Each matrix
multiplication, for example, if programmed in terms of scalar elements, involves
three nested program loops or the equivalent number of individual scalar
assignments.

Some measure of the computational requirement is given below, where each of
the above steps is implemented in a straightforward way, as one might do in hand
calculation. Some savings are possible through clever combination of some of the
operations and through exploiting the symmetries of Q(k), R(k), P(k + 1 1 k), and
P(k | k). However, it is evident that the computations are not trivial. Clearly, a
careful and systematic approach is needed.

In the following analysis of the arithmetic operations to accomplish Kalman
filtering, n is the order of the stochastic system model (and of the Kalman filter)
and m is the dimension of the system measurement vector:

1. Assignment of zero to scalar
2. Assignment of zero to an n-vector
3. Assignment of zero to an n x n matrix
4. Two n x n matrix multiplications and one n x n matrix addition
5. Multiplication of an n x n matrix by an n x m matrix, multiplication of an

mr x n matrix by an n x m matrix, and addition of two m x m matrices
6. Inversion of an m x m matrix.
7. Multiplication of an n x m matrix by an m x m matrix, and multiplication

of an n x n matrix by an n x m matrix
8. Multiplication of an n x m matrix by an m x n matrix, subtraction of two

n x n matrices, and multiplication of two n x n matrices
9. Multiplication of an n x n matrix by an n-vector

10. Acquisition of an m-vector of measurements
11. Multiplication of an m x n matrix by an n-vector, and subtraction of two

m-vectors
12. Multiplication of an n x m matrix by an m-vector, and subtraction of two

^-vectors
13. Addition of unity to a scalar
14. Transfer of an n-vector
15. Performance of a program jump
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The matrix inversion needed in step 6 is m x m, where m is the dimension of the
measurement vector. It is common to deal with systems of order n up to perhaps
18, but with the measurement dimension m only up to about 6. If the number of
model outputs m is 1, then the matrix inversion needed is simply division by a
scalar. If m is 2, the inverse of the resulting 2 x 2 matrix is

si2\ * 1 , -zz ~!z (B89)

2 S22j SUS22 ~~ S12S21

For m larger than 2 a numerical matrix inversion routine, such as Gauss-
Jordan pivoting,* is used. The existence of the inverse is guaranteed if R(fe + 1) is
positive definite (i.e., if some measurement noise is modeled).

If the model system is step-varying so that F(fc) and H(fc + 1) are not constant,
or if its statistics Q(/c) and R(fc) vary with step, then these quantities must be
stored in advance or calculated at each step from formulas.

V EXTENSIONS

A Noise Coupling Matrices

If the system model has a matrix L(k) coupling the noise w(/c) to the state
equations

\(k + 1) = F(fe)x(/c) + L(fc)w(fc) = F(fc)x(fc) + w'(fc) (13.90)

the previous Kalman filter equations apply, but the state noise covariance Q(/c) is
replaced by

Q'(fc) - £[w'(/c)w'T(/c)] =

fc) (13.91)

Similarly, if the system model has a matrix coupling of the noise v(k) to the
measurements,

z(fc) = H(fc)x(fc) + M(/c)v(7c) = H(fc)x(fc) + v'(k) (13.92)

The measurement noise covariance R(/c) is simply replaced in the filter equa-
tions by

R'(fc) = £[v'(/c)y/T(/c)] =

fc) (13.93)

* M. L. James, G. M. Smith, and J. C. Wolford, Applied Numerical Methods for Digital
Computations, 2nd ed. Harper and Row, New York, 1977, chap. 3.
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1?
x ( k )

INITIAL
STATE x ( 0 )

V
x ( k + l )

s"*"c^6=>

w ( k ) v.{k + l)

+ ,

u ( k )

(a)

V
x ( k + l | k+ l ) u ( k )

(b)

z k+ l l k )

Fig. 13.8. Incorporating deterministic inputs into the Kalman filter: (a) stochastic system model;
(b) Kalman filter.

Deterministic Inputs B

If the system model has deterministic inputs u(k),

x(k+l) = ¥(k)\(k) + w(/c) + G(k)u(k) (13.94)

they are incorporated into the system model portion of the Kalman filter, as
shown in Fig. 13.8. In essence, the filter is adding the known effects of the inputs to
the estimates while removing them from the measurement residuals. Only the
Kalman filter predictor equation is changed; the term involving the input u(lc) is
added as follows:

\(k + 11 fc) = F(fc)x(fc | k) + G(k)u(k) (13.95)

Nonzero Noise and Initial Condition Means C

If a noise source, say w(/c), has known nonzero mean,

E[w(*)] = b(/c) (13.96)
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a new zero-mean noise signal

w'(fc) = w(fc) - b(fc) (13,97)

is defined, and the system is considered to have zero-mean noise input w'(fc) plus
the deterministic input b(k). The covariance of w'(/c) is

b(fc)bT(fe)]

Q'(fc)

b(/c)bT(/c) -

b(/c)bT(/c)

This quantity should replace Q(/c) in the Kalman filtering equations.
For a known nonzero measurement noise mean,

define

v'(7c) = v(fe) - a(fe)

with a(/c) a deterministic input to the measurements. Then let

R'(fc) = R(fe) - a(/c)aT(/c)

replace R(k) in the Kalman filtering equations.

If the initial system state has nonzero mean,

£[x(0)] - c

the Kalman filter is simply begun with the initial state

x(0 1 0) = c

rather than with a zero initial condition.
Incorporation of known means into the Kalman filter is shown in

(13.98)

(13.99)

(13.100)

(13.101)

(13.102)

(13.103)

Fig. 13.9.

z ( k + l f k )

V
.x(k-Hl k-H)

Fig. 13.9. Incorporating known noise and initial condition means into the Kalman filter.
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The system model is described by

x(k + 1) = F(fc)x(fc) + w(fc), z(k) = H(fc)x(fc) + v(fc), (13.104)

where

£[*(£)] = b(fc), £[v(fc)] = a(fc), £[x(0)] = c (13.105)

and

E{[y(j) - b(7)][w(/c) - b(/c)]T} =0, j * /c

£{[w(k) - b(/c)][w(/c) - b(/c)]T} = R'(fc)

k) - a(/c)]T) =0, ,' * *

/c) - a(k)]T} - Q'(fc)

b(./)][v(/c) - a(/c)]T) = 0 for all ./, k

£{[x(0)-c][x(0)-c]T} = P'0

k) - b(fc)]T} = 0 for all k

K { [x(0) - c] [v(fc) - a(k)] T } = 0 for all fc (13.1 06)

The Kalman filter predictor equations are then

\(k + l \ k ) = ¥(k)x(k | k) + b(fc), x(0 1 0) = c

z(/c + 1 k) = H(k + l)x(fc + 1 | fc) + a(k)

The corrector equations are unchanged. The prediction error covariances,
estimation error covariances and Kalman gains are calculated as in the basic
problem, with Q'(k) replacing Q(/c) and R'(fc) replacing R(/c).

Known Initial Conditions D

If the initial conditions of the stochastic model system are known,

x(0) = c (13.108)

then

£[x(0)]=c (13.109)

and

£{[x(0) - c][x(0) - c]T} = P'0 = 0 (13.110)

The Kalman filter is begun with the known mean

x(0|0) = c (13.111)
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initially. The initial variance from the mean is zero, so the Kalman gain
calculations begin with

P(0|0) = P0 = 0 (13.112)

E Correlated Noises

It may happen that the noise sequences w(/c) and v(/c) are not white and are
possibly correlated with one another. That is, one or more of the following may
hold for some or all j and k:

£[wU')wT(/c)] * 0, £[v(j)lT(fc)] * 0, £[W(;)VT( j)] * 0 (13.1 1 3)

In this event the basic results for uncorrelated white noise sequences can be
applied, provided that a filter can be found that turns uncorrelated white noise
sequences w'(/c) and v'(/c) into sequences that accurately model the correlations of
w(/c) and v(/c):

B(/c)w'(/c)

w(fe) = C(k)t(k)

v(/c) = D(k)S(k) + v'(fc) (13.114)

Figure 13.10 is a block diagram of such a shaping filter.
The system consisting of the original nth-order stochastic model plus an rth

order shaping filter is then described by the (n + r)th-order model

~- -B(*)

~~ + v'(/c) = H'(W(fc) + i'(k) (13.1 15)

This combination system is of the type for which the basic Kalman filter applies
(with input noise coupling matrix D') and for which the (n + r)th-order Kalman
filter will generate optimal estimates of ty(k\ that is, of both x(fe) and £(fc). The
fundamental problem here is the determination of a shaping filter that will model
the actual correlations sufficiently accurately.

Example of Correlated State Noise. When scalar, zero-mean, Gaussian
white noise w'(k) with constant covariance R is passed through the first-order
filter

|(fe + 1) = 0.8£(/c) + w'(k), w(k + 1) = f(fc + 1) (13.116)

the resulting filtered noise w(k) is Gaussian, since Gaussian noise passed through
a linear, step-invariant filter remains Gaussian. It is no longer white, however,
since £(k) = w(k) depends on all past values of the filter input w'. Suppose that the
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w ' ( k )

L^ UNIT — ̂ A f k l — ̂ >rv -*>

n i it\

r(m

v ( k )

DELAY

£ ( k ) + Tf2.

INITIAL
STATE
5(0) 1

w ' ( k )

Fig. 13.10. Block diagram of a shaping filter,

shaping filter's initial condition is also zero mean with covariance F, uncorrelated
with w'(/c).

The shaping filter output at step k is

(0.8)*-V(0) + (0.8)k-V(l)

+ • • • + 0.8vv'(fc - 2) + w'(k - 1) (13.117)

Making use of the fact that |(0) and w'(j) are uncorrelated for all steps j and that

£[vv'(0vv'(7)] = 0, i*j (13.118)

give

+ (0.8)k+J'~4E[vv'2(l)]

[(0.8)*+'~2 + •••]« (13.119)

Suppose that the covariance structure of this filtered white noise accurately
models that of the correlated state noise w(k) in the scalar stochastic system
model

x(k+ l) = 0.5x(fc) + w(k), z(k+ l) = 3x l) + v(k + 1) (13.120)

Combining the shaping filter and original system model into a second-order
model with white noise inputs yields

x(k 0.5 1

0 0.

x(fc)-

k+ 1)

z(V = V 0]|;;,;| + .(/c) (13.121)

which fits the basic Kalman filter form with a noise input coupling matrix.
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F Bias Estimation

In practice, it often happens that we wish to estimate unknown constant
signals, termed biases, ii» a system. In navigation systems, for example, there are
constant or slowly varying component alignment errors that must be modeled. A
constant signal is modeled by a scalar difference equation of the form

xt(k xt(k) (13.122)

An equation of this form is used for each bias.
Care must be taken when simultaneously modeling several system biases,

because biases on top of biases may result in an unobservable system. For
example, if a system's outputs depend only on the sum of two cumulative
unknown constants (say two different additive alignment errors from different
sources), it is not possible to estimate the two unknowns separately; only their
sum is observable.

Example of Bias Augmentation. A stochastic system is described by

+ 1)1 = p.5

x2(k + 1)J ~ L°-25

~x, (*+!)'
z(k +!) = [! 0] v(k+ 1) (13.123)

where b is an unknown constant bias of the measurements. Modeling b as

b = x3(k + 1) = x3(k) + vv3(/c) (13.124)

we collect the three state equations and form a resulting model of the standard
form:

0.5 1 0"
0.25 0 0
0 0 0

z(k + !) = [! 0 1]
1)

v(k+ 1) (13.125)

The previous methods for constructing a Kalman filter then apply, with the
measurement bias becoming an additional state variable to be estimated.

G Extended Kalman Filtering

Many of the most successful applications of Kalman filtering have been in
areas such as navigation and trajectory determination, where the system model is
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nonlinear and typically of the form

\(k + 1) = f [fc,x(fc)] + w(fc), z(k + 1) = h[fc,x(fc)] + v(/c) (13.126)

where f and h are known deterministic functions depending on the present state
of the system, \(k). Possibly, the noise covariances of w(fc) and of v(k) also depend
on \(k). In this situation the system state is not known exactly; it is the quantity
being estimated. In the extended Kalman filter [39-41] the estimated state \(k k)
is used to obtain an approximate linearized discrete-time system model of the
form

\(k + 1)
(13.127)

, x(k | kj]x(k) + v(k)

that is used in place of Eq. (1 3. 126) in the Kalman filter. For a discrete-time model
of a continuous-time system this amounts to linearizing the inherently nonlinear
equations about the current estimated state trajectory.

In the extended Kalman filter the system model for the next step is not
determined until the state estimate at the present step has been computed, so the
Kalman gain depends on the estimated state at each prior step. It is therefore
usually necessary to compute the Kalman gain sequence on-line as the mea-
surement data and state estimates are processed. The approximation involved
in using Eq. (13.127) in place of Eq. (13.126), if too crude because of large state
changes between measurements, can cause poor, even unstable, filter behavior.

Steady-State Solutions A

If the stochastic system model is step invariant and completely observable, the
solutions for the prediction error covariance, estimation error covariance, and
Kalman gain will converge to unique steady-state values after a sufficiently large
number, /c, of steps. If P(k + 1 k), P(k \ k), and K(/c + 1) reach limiting values for
large k,

limit P(k + 1 | k) = P!
k -+ oo

limit P(k | k) = P (13.128)
fc-»oo

limit K(k+ 1) = K
fc-*»

then the gain and covariance equations become, for large k and constant
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system matrices,

P = [I -

P 1 =FPF T + Q (13.129)

K = P1HT[HPJHT + R] *

Example of Steady-State Covariances and Kalman Gain. For the previous
scalar system, with

x(k + 1) = 0.5x(fc) + vv(/c), z(k+\) = 3x(k + 1) + v(k + 1)

Q=4 R = 5

the steady-state solution is
30

(13,13!)

Substituting gives

4) 5P + 80

\ + 5 9(0.25P + 4) + 5 9P+164

9P2 + 159P-80 = 0 (13.132)

- (36X80)
18

The positive solution is the value previously found by iteration (see Table III).
The limiting values of Pl and K are

P! = 0.25P + 4 = 4.122, K= ̂ — '-r = 0.2937 (13.133)
9Pj + 5

Example of Steady-State with Zero Measurement Noise. For the same
system, but with Q = 4, JR = 0, the steady-state solution is

P = (1-3K)P1, P1=0.25P + 4, K=^- = i (13.134)
9Pj 3

Substituting then gives

P = [1 - (i)(3)]Pj =0, P, = 0.25(0) + 4 = 4 (13.135)

Each prediction has an error covariance equal to Q = 4. Once the measure-
ment is received, the estimate is perfect, however, since P = 0. The Kalman gain
simply undoes the output gain H = 3 to obtain the system state.

Example of Steady-State with Zero-State Noise. For the same system, but
with Q = 0, R = 5, the steady-state solution is
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P^(l-3K)Plt ^=0.25?, K = g^-5

Substituting gives

\ 5^ "L 5^ =
 5(°-25/J) =

 5P
 (13136)

9Pt + 5J 9PX + 5 9(0.25P) + 5 9P + 20 v '

9P2+15P = 0; so P = 0, —^ (13.137)

The physical solution is P = 0. Then Px = 0 and K = 0.
If this filter should reach its limiting behavior, for all practical purposes the

Kalman gain is zero and all future measurements will have no further effect upon
the estimate. Were the system to undergo an unexpected disturbance, the filter
would not respond to it. If there are slight modeling errors of the system
(especially if it is unstable), huge errors can occur as the Kalman gain goes to zero.

In practical filters, even when there is negligible state noise, Q is taken to be
nonzero so that the Kalman gain will not go to zero. Alternatively, the Kalman
gain may not be allowed to drop below a threshold value.

Divergence B

Insufficient care in modeling the system can lead to the following unacceptable
result: after an extended period of filter operation, the estimate errors have values
entirely out of proportion to those predicted by the filter covariance [42-44].
The calculated covariance matrix becomes unrealistically small so that undue
confidence is placed in the estimates, and subsequent measurements are
effectively ignored.

Causes may be classified as follows:

1. System model errors
2. Noise model errors
3. Biases
4. Numerical errors

The errors due to numerical roundoff or truncation may be modeled as noise, and
their effects may be incorporated into the filter.

Example of System Model Error. For the system

x(k + 1) = 0.9x(fc) + w(k), z(k + 1) = x(k + 1) + v(k + 1) (13.138)

with

P0=10, 0 = 0.01, R = 5 (13.139)
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the steady-state error covariances and Kalman gain are

P = (1 - K)Pi, PI = 0.81P + 0.01, K = —i— (13.140)

Substituting, we get

P= 1- P, =
5(0.81 P 4-0.01)

\ +5J'1 P! + 5 6^TP~TaoTf5

0.81P2 + 0.96P-0.05 = 0, P-0.0494

taking the positive solution. Then

Pa = 0.05, K = 0.0099

If the true system is, instead,

typical noise sequences give states and estimates as in Fig. 13.11.

x(k)

(13.141)

(13.142)

(13.143)

x(k/k>

K(k)

In

P(k/k)

Iliint.

Fig. 13.11. Divergence due to system model error.
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Example of Noise Model Error. For the system

x(k + 1) = 0.9x(fc) + w(fe), z(k + 1) = x(fc + 1) + v(k + 1) (13.144)

with

P0=10, 6 = 0.01, R = 5 (13.145)

the steady-state error covariances and Kalman gains were found in the previous
example to be

P = 0.0494, 0.05, K = 0.0099 (13.146)

If the true covariance of w(k) is Q = 4, typical noise sequences give system
states and estimates as in Fig. 13.12. Actual steady-steady error covariance is far
larger than P above. Hence P can be very misleading if the noise statistics are not
accurate.

Example of Bias Error. For the previous system and noise models suppose
the true system involves a bias on the measurements (e.g., v is biased):

z(k+ l) = 1)+ (13.147)

x(k)

x(k/k)

K(k)

P(k/k)

111
Fig. 13.12. Divergence due to noise model error.
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x(k/k)

K(k)

P(k/k)

x(k)

Fig. 13.13. Results of measurement noise bias.

x(k/k)

K(k)

P(k/k)

Fig. 13.14. Results of state noise bias.
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Typical noise sequences give system states and estimates as in Fig. 13.13. Actual
steady-state error covariance is far larger than that assumed, namely, P = 0.0494.

If, instead, the state equation is biased (e.g., w is biased),

x(k + 1) = 0.9x(/e) + vy(fc) + 1 (13.148)

the results in Fig. 13.14 are obtained.

Suboptimal Filters C

If the noise statistics Q(k) and R(/c) are accurately known, the filter error
covariance will accurately assess filter performance. However, if Q(fc) and R(/c)
are inaccurate, the error covariance may not be correct.

The error covariance is determined by the previous equations for the optimal
Kalman gain K(/t + 1). If either purposely or because of numerical error K is not
optimum, then the state estimate error covariance is still given by Eq. (13.82),
which holds for any gain K and which is repeated here as

P(k + 1 k + 1) = [I - K(fc + l)H(fc + l)]P(fc + 1 fc)[I - K(fe + l)H(fe + 1)]T

+ K(k + l)R(fc + l)KT(/c + 1) (13.149)

This relation is particularly useful when the steady-state Kalman gain is used for
a (suboptimal) filter.

Square-Root Filtering Using Covariance D

Use of the usual Kalman filter equations for calculation of the error covariance
can produce a matrix that fails to be positive semidefinite due to numerical errors,
particularly for small ||Q|| (i.e., relatively accurate measurements). If P is positive
semidefinite and symmetric, it may always be represented as [38, pp. 307-308]

P = MMT (13.150)

where M is square but not necessarily positive semidefinite and symmetric. M is
generally not unique, but MMT is always positive semidefinite and symmetric.
Matrices M are termed square roots of P.

Forming the error covariance equations in terms of M has the following
advantages:

1. Since MMT is always positive semidefinite and symmetric, P = MMT will
not give a matrix that fails to have these properties as a result of numerical errors.

2. Numerical errors in M are generally of much less consequence than in the
direct calculation of P. Only half as many significant digits of M need to be
accurate, compared to P, to give freedom from numerical difficulty.
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If the Kalman filtering equations are expressed and implemented in terms of
square roots M instead of P, the result is termed a square-root filter. Generally,
square-root filters require more computations than the ordinary type do. Square-
root filters give improved performance with a fixed number of digits in the
computations, but they by no means give the "double precision" improvement
that would be possible if the number of computations was the same for the two
types.

Since the square root of a symmetric matrix is generally nonunique, there are
many different possibilities for these filters. Most popular are methods involving
upper triangular square roots, M.

Example of Scalar Square-Root Filter. For a first-order stochastic system
model (see Fig. 13.5) with Q = 0, the Kalman filter covariance and gain equations
are

P(k + 1 1 k) = F2P(k | fe), P(0 1 0) = P0

P(k+\\k)H

P(k + 1 \k + 1) = [/ - K(k + l)H]P(fe + 1 |/c) (13.151)

Letting

M(k + 11 fc) = VP(k + 11 k), M(k \ k) = ^P(k \ k), (13.152)

We can rewrite these relations as

M(k + 1 1 k) = FM(k | k), M(0|0) = V^

M2(k+ l\k)H
H2M2(k+ l \ k ) + R

K(k+ i) =

M(k + 1 k + 1) = Vl - K(k + l)HM(k + 1 |/c) (13.153)

E Information Matrix Filters

The information matrices for a Kalman filter are defined to be the matrix
inverses of the corresponding state estimate error covariances:

(13.154)

These matrices exist for positive definite P. When the Kalman filter equations are
expressed and implemented in terms of the information matrices, the filter is
termed an information filter. The advantage of using the information filter
formulation is that, as ||P|) nears zero, ||O|| becomes large. It is the nature of finite
word-length digital computation that the information contained in matrices with
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small nonzero norms is more accurately conveyed through computation by the
inverse matrix.

Example of Scalar Information Filter. For a first order Kalman filter with
Q — 0, the filter covariance equations are (13,51). Letting

l\k)=P~l(k + l | f c )

Q(fc | fc) =?-'(*!*) ==-5701* (13-155)r(K K)

these equations become

K(k +
O(/c + 11 k)[(H2

__L__Q(fc+i|*) (13.156)
I — K(/c + l)H

The inverse of a symmetric positive definite matrix is also symmetric and
positive definite, so positive definite covariance matrices have corresponding
symmetric, positive definite information matrices. Using square roots of the
information matrices will, as with the covariances, maintain positive definiteness
in the face of numerical error and, for a fixed computer word length, offer im-
provements in accuracy:

+ 1 \k) = P~*(k + 1 \k) = N(k + 1 |fc)NT(fc + 1 1 fc)
(13.157)

k) - P " l(k | k) = N(k | k)Nr(k \ k)

Example of Scalar Square-Root Information Filter. For the first-order
Kalman filter with Q — 0, the corresponding square-root information filter
equations are

N(k+ l\k) = (l\F)N(k\k)
LI

K(k* l}^W^M^T\\k]

N(k+\ fc+l) = - =J—7777#(*+l|* + l) (13-158)
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VII SUMMARY

An introduction to recursive estimation was presented in this chapter. We
began with a derivation and examples of least squares estimation. We then
derived and demonstrated recursive least squares methods in which new data is
used to sequentially update previous least squares estimates. Generalizations of
the basic least squares problem and probabilistic interpretations of the results
were discussed.

The basic linear MMS estimation problem, which can be viewed as a
generalization of least squares, was then formulated. The recursive Kalman filter
equations were derived, and computer programming considerations were
discussed. Several extensions to the basic Kalman filter were developed. The
chapter concluded with a discussion of some of the computational aspects of
Kalman filtering, including alternative algorithms, such as square-root filtering,
that can improve computational accuracy.
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Chapter 14

Modernization of Digital
Signal Processors

LESTER MiNTZER
Rockwell International Corporation

Anaheim, California 92803

INTRODUCTION

The field of digital signal processing is too young to talk of conventional
mechanizations and too dynamic to expect them to emerge at some point in the
future. Nonetheless, this chapter shall present a body of basic knowledge that will
enable the reader to recognize and assess the various digital signal processing
resources at his or her disposal and to fashion by selection, design, or adaptation
the appropirate digital signal processing mechanization for a specific application.

Digital signal processors (DSPs) are basically digital machines that differ from
the more pervasive digital data processors in the following ways.

1. DSPs are primarily involved in computationally intensive ("number
crunching") operations where the same arithmetic operations are applied to large
data streams. The processors are vector-like and are for the most part data
independent.

2. DSPs often operate under real-time requirements; that is, they are data
driven.

3. The processes are arithmetic intensive, and the algorithms are limited. Thus
convolution, filtering, and FFT (fast Fourier transform) algorithms account for a
large part of the digital signal processes.

4. Speed-cost considerations have favored fixed-point data representation.
However, applications requiring a large dynamic range as well as very-large-
scale-integration (VLSI) economies in memory and arithmetic elements have
fostered the use of the floating-point and/or large-word (double-precision) data
format.
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This chapter will present the fundamentals underlying all digital machines [1]
and then show how the sum of products [see, for example, (7.1)] that is basic to
many important signal processing algorithms is mechanized. Machine behavior
at fundamental levels is important for efficient mechanization and micropro-
gramming which can offer both flexibility and efficiency is illustrated. The
translation of signal processing requirements into efficient hardware mechaniza-
tions requires the ability to partition and size the algorithms (i.e., turn them into
data flow and computation loads and then select the appropriate architectural
and hardware realization [2-4]). Designers are largely on their own, for there are
really no cookbook solutions available.

VLSI developments are shaping the digital signal processing design process by
offering more powerful processing elements, of which the single chip DSP and the
systolic array are outstanding examples [5-10], and are encouraging new
algorithmic approaches.

II DIGITAL MACHINE FUNDAMENTALS

A The Digital Machine

A digital machine of arbitrary size and complexity may be distilled to a basic
digital machine whose essence is shown in Fig. 14.1. This basic machine,
sometimes referred to as a sequential network, consists of two elements: a

X2(n)

X j ( n )

qm(n-1)

COMBINATIONAL
ELEMENTS

Y,<n)

Y,(n)

MEMORY

qm(n)

Fig. 14.1. The sequential network.
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combinatorial or combinational network of gates, and a set of memory elements
[1]. Ideally, the gates (or switching circuits) perform functions that can be fully
described by Boolean equations. Zero time delay is implied. The memory
elements provide a historical record of past conditions or states of the machine.
Since memory size in a real machine is finite, these machines are sometimes
referred to as finite state machines. The behavior of such a machine is described
by the expression

yt(n) = F lXl(n), x2(n),..., x/n), q,(n - 1),..., qm(n - 1)], i = 0, 1, 2,. . . , k

where ,x, y, and q are two-state Boolean variables representing input, output, and
internal states, respectively. Each output, ^,-(n), is a function of all present and
previous inputs, x^n),..., x/(n), which are reflected in the current state of the
machine, qv(n — 1),..., qm(n — 1).

Switching Circuits B

Switching circuits or gates are circuits that perform well-defined logic or
arithmetic operations on binary variables. Binary variables are two-valued
variables expressed as 1's or O's in algebraic form, or true or false in syllogistic
forms, or as high or low voltage, positive or negative remanence (magnetic flux),
etc., in circuit forms. The logic behavior of a gate network is fully characterized
by Boolean equations. The resulting gate response is ideal in the sense that
propagation time through the gates is not included, nor are variations in circuit
behavior (e.g., change of thresholds) covered. Arithmetic and control functions
are developed from the basic switching circuits that are described next.

Basic Switching Circuits C

The logic functions performed by a switching circuit are fully described by
Boolean equations. Boolean algebra is a branch of mathematics that is a well-
defined discipline with a set of basic postulates and theorems that serve as the
foundation and justification for all Boolean relations (equations). The two
fundamental logic or Boolean processes that link two binary variables are the
AND and OR operations. The AND gate will provide a true output when both
input (binary) variables are true. When either or both outputs are false, the AND
gate will provide a false output. In Boolean form we write

C = A-B (14.1a)

where A and B are Boolean input variables and C is the Boolean output variable.
Very often the dot linking the two input variables is not included, and the
expression, which will be used in this chapter, becomes

C = AB (14.1 b)
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The OR gate provides a true output when either or both inputs are true. The plus
symbol denotes this relationship, as

C = A + B (14.2a)

Boolean expressions (14.1) and (14.2) look like ordinary algebraic equations
describing multiplication and addition operations. Where the notation can cause
confusion, it is possible to fall back on an archaic notation used by logicians:

A+B = AvB (!4.2b)

AB = A A B (14.Ic)

These two operations are expressed in tabular or truth table forms as shown
in Table I. The table describes the AND and OR operations for all possible
combinations of the input variables. This exhaustive description is sometimes
referred to as perfect induction. The Boolean equation is a more succinct way of
expressing the same relation.

These two operations are not sufficient to describe all relations between two
variables. It is obvious that more functional relations are possible. Trivial
examples are an output that is 0 (or 1) for all combinations of the input variables.
A more significant relationship is the exclusive-OR (EXOR), ©, which generates
a true (1) response when either input is true (1) but not when both are true.

An additional operation, the complement, completes the set of operations to
realize any Boolean relationship. The complement is an operation on a single
variable that negates its value. Thus for a true variable, the complement gate
would produce a false output, and vice versa. The EXOR gate can now be
expressed as

A@B = AB' + A'B (14.3)

where the prime denotes complement.

TABLE I

Truth Tables for Boolean Equations with Variables
Expressed as either True and False or 1 or 0

B C: = AB

F
F
T
T

A

0
0
1
1

F
T
F
T

B

0
1
0
1

F
F
F
T

C = AB

0
0
0
I

F
T
T
T

C = A + B

0
1
i
1
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Other functional relationships involving two variables are possible. There are
16 relationships (Table II), among which are the AND, OR, EXOR, null (0), and
unit (1). As the number of variables grows, the number of relationships increases
exponentially—that is, 22" where n is the number of variables. Nonetheless, the
important relationships among two variables are extendable to more. This is
illustrated by the multivariable expression

F = ABCD + AB'C + BCD'E' (14.4)

Among the important two-variable relationships are the NAND and NOR
functions. They are important because they are universal logic elements; that is,
they can be configured to realize any arbitrary Boolean equation and, fortu-
nately, are most easily realized in circuit form. Also, NAND and NOR functions
are duals of one another; one function is transformed into the other by comple-
menting the input and output variables or simply by interpreting 1 as 0, and vice
versa. Thus, a physical NAND gate can become a NOR gate by reversing
the interpretation of high- and low-level signals. With this understanding we
can focus our attention initially on the NAND gate without really neglecting
the NOR.

The NAND gate is represented in logic schematic form in Fig. 14.2. The

>

Fig. 14.2. (a) NAND and (b) EXOR gate designs of binary full adder.
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Boolean expressions for the NAND are

C = (AB)' or C = A' + B' (14.5)

The equivalence of these expressions can be established by applying DeMorgan's
theorem, which states that

(x + y)' = x'y', (xy)' = x' + y' (14.6)

where x and y are Boolean variables.

Just as there are fundamental equations that speak for an entire body of
knowledge— for example, F — ma and E = me2 — so too there is a fundamental
equation that covers many important signal processes. The difference equation
describing the filter response y(nT) plays this role [see Eq. (4.6)]:

y(nT) = a0x(nT) + a^x^n - 1)T] + a2.x[(« - 2)T]

+ • ' • + biy[{n - 1)71 + b2y[(n - 2)T] + ••• (14.7)

Here the filter response at time nT, where T is the sample period and n is a
running index, is the sum of product terms of past responses, y[(n — I)T], etc.,
and past and present inputs, x(nT) and x[(n — 1)T], etc., respectively. With fixed
coefficients the equation describes a linear, time-invariant system. With all the a
and b coefficients beyond a2 and b2 set to zero, the equation describes a second-
order recursive filter with the a and b coefficients defining the zeros and the poles,
respectively [see Eq. (4.10)].

With all 6's set to zero and with a, = e-i
2nkliN^ the equation expresses the

discrete Fourier transform (DFT) for the feth spectral element. This sum of
products equation has many extensions in digital signal processing.

The dependence on present and past values is reminiscent of the state equa-
tion describing the sequential network. Memory elements are involved. However,
we are dealing here with the algebraic sum of product terms that require fur-
ther resolution into their Boolean representations. The very high-speed computa-
tion of sums of product terms is commonly referred to as number crunching.
Therefore, it is appropriate to discuss numbers and their representation in
Boolean variables.

NUMBER REPRESENTATIONS IV

Numbers are a systematic representation of the counting process. Large
numbers are efficiently represented by a weighted number system wherein a few
symbols are used repeatedly with different weights. Thus, in our well-known
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decimal system there are the 10 symbols 0 through 9, forming a radix-number
system. The digits in a number have weightings of one, ten, hundred, thousand,
etc., in each decimal (radix) position. The advent of computers has made us
aware of other number systems with radices different from 10 (see Section III. A
of Chapter 7). Historically, other radices have been known to the Egyptians
(binary), Babylonians (radix 60), Mayans (radices 1 8 and 20), etc.

The radix-2 or binary number system fits nicely with circuits that handle
logic using two levels (expressed by the symbols 0 and 1). Any integer can be
represented in binary notation as

where the coefficients a, assume the binary values 0, 1, and the zth power of 2
denotes the weight at the zth position. Conversion from decimal to binary
representation proceeds from this expression by dividing the decimal number by
the radix 2 and observing the remainder:

If n M

£ = ̂ +5>,2'-' (14.9)
/ £ 1=1

The fractional component (if one exists) of the result has numerator a0 = 1. The
integer component is the second term of the expression. The process is repeated in
the integer until only a fraction term is left.

Example. Convert 579 to a binary number.

579 i
= - + 289; therefore a0 = \, 2° = 1

289 1
-^r- = - + 144; therefore a, = 1, 21 = 2
2 2 '

144 0
— —* = - + 72; therefore a2 — 0

Likewise, a3 = a4 = as = a~, = a8 = 0. However, a6 = 1 and a9 = 1; 26 = 64
and 29 = 512.

9 8 7 6 5 4 3 2 1 0 <- powers o f 2

therefore (579)10 = 1 0 0 1 0 0 0 0 1 1

A Fractional 2's Complement Representation

Number values are unbounded; computer representation of them is not.
Conventionally, computer word size grows in increments of 8-bit bytes. The 16-
bit word has been the computer standard for two decades. Extensions beyond this
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require economic justification since hardware cost in both logic and memory is
proportional to word size. Today, with decreasing circuit costs due to advance-
ments in LSI technology, 32-bit word machines are becoming prevalent.
Nonetheless, arithmetic operations do increase the word size, and it becomes
necessary to maintain constancy of word size by restricting the outcome of all
arithmetic operations. A fractional number representation scheme serves this
purpose.

The 2\s complement fractional number representation is the form found in
most computers. As discussed in Section II of Chapters 5, 2's complement
numbers must be scaled to be representable by the expression

k= -5+ £ a,.2-< (14,10)
i = i

where s is the sign bit and is 1 for negative numbers. This is followed by the binary
point and then a positive component made up of a decreasing order of b binary
weighted fractions. Two important features of this form are (a) the number 0
is represented unambiguously with all coefficients (a,-) equal to 0; and (b) sub-
traction is easily realized by complementing the subtrahend bit by bit, doing a
binary addition of the two operands, and then adding 1 x 2~b, to the results, i.e. 1
in the Isb (least significant bit) position. The latter may be done by a single
addition step with an input carry. The range of values represented by the 2's
complement is indicated in Fig. 14.3. Note that the range is not symmetric about
the origin. This has important implications; for example, the offset that occurs
when full-scale limiting is effected can cause undesirable artifacts in the output
signal. Clamping to symmetrical end points 1 — 2~M and — 1 + T~M eliminates
this problem.

The Significance of a Bit in Digital Signal Processing B

Signals are subject to losses and gains in the path from source to destination.
The operations affecting signal level are expressed in logarithmic form (spe-
cifically, decibels) so that cascaded gain changes may be added rather than
multiplied when converted to decibels (dB). The change in signal level As in one
stage of the data path may be expressed as

is \
As = 20 log - dB (14.11)

where S0 is the output signal and S-t is the input signal. Now consider expressing
these signals as binary numbers. If the input signal range requires M bits for
representation and if the signal level is scaled up by a factor of 2 at the output of
the stage, then M + 1 bits are required to represent the output signal. The signal
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0.111111 1.2-M M = Number of bits
in fraction

0.0000..,

1.00000...
Fig. 14.3. Range of values that can be represented in 2's complement fractions.

change in conventional terms is

20 log(f) = 20 log 2 = 6.02 dB

Thus, each bit added to a binary word extends the signal representation range by
approximately 6 dB. An 8-bit word has a 48-dB signal range, and a 16-bit word
has a 96-dB signal range. For most applications a 6-dB-per-bit rule of thumb
applies.

The first consideration in the mechanization of digital processors is available
components. In this section we discuss adders, multipliers, registers and memory,
and serial-to-parallel forms.

A The Binary Full-Adder

The general digital computation contains only two arithmetic operations:
multiplication and summation. The latter, the simpler of the two, will be
discussed here. A single stage of a binary full-adder requires three operands: an
addend bit a, an augend bit b, and a carry-in bit c-t. The results are a sum bit s and
a carry-out bit c0.

The behavior of a single stage of the full-adder is described by the truth table in
Table III. The table lists all possible combinations of the three operands and the
corresponding responses for the addition algorithm. The sum is true whenever an
odd number of operands is present, and the carry is true whenever two or more
operands are present.
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TABLE III
Single-Stage Binary Full Adder

a b c.: Sum s

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
I

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Implementation with NAND gates [Fig. 14. 3 (a)] requires the conversion of
Table III to Boolean equations as follows:

s = a'b'Cf + a'bcl + ab'c\ + abci (14.12a)

c0 = a'bCi + ab'Ci + abc't + abc^ = ab + act + bct (14.12b)

The sum expression may be transformed into simple EXOR operations, which
may be implemented with EXOR gates as shown in Fig. 14.3(b).

s = a'b'ci + a'bc'i + ab'c'i + abc(

= (a'b1 + ab)Ci + (a'b + ab')c\

= (a 0 b)'Ci + (a® b}c'i

®Ci (14.13)

Parallel addition is achieved by replicating the adder stage M times for an M-bit
word length. The carry-out of one stage serves as the carry-in to the next higher
stage. The long propagation path involved in generating the outputs of the final
stages can be reduced by using additional gates that generate fast carries that
span several stages.

Subtraction is performed as addition with the bits of the subtrahend
complemented, and for 2's complement numbers the carry-in to the least
significant stage is set to a 1. Where the same circuit is used for both addition and
subtraction, the complementing is done with EXOR gates preceding the adder.
An add/subtract control line is the second input to the EXOR gates and is set true
for subtraction.

Multiplication is familiar to most as the generation of partial products—that
is, multiplying the multiplicand with each of the product digits, and then scaling
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(shifting) and adding the partial products to obtain the full product. The same
process holds for binary arithmetic; there are, however, a number of different
algorithms for achieving the final product. The algorithms extend from a serial
shift-and-add technique to a fully parallel approach. The former is circuit efficient
but takes longer; the latter is circuit intensive but offers very high-speed results.
The very regular structure of the multiplier array, like that of a storage array,
lends itself to VLSI implementation. Single-chip multipliers producing 1 6 x 1 6
bit products within 200 ns are common. The application of array multipliers
predominates, and by focusing on this algorithm we are covering the most
important multiplication technique and also providing insight to other
approaches.

Array multiplication will be described by an 8 x 8 array example. Assume 2\s
complement fractional numbers X and 7.

X = -x0 + £ x,2-', V = -y0 + Z y,2-' (14.14)
i=l i = l

The multiplier array with its partial products is shown in Fig. 14.4. The pattern of
partial products is similar to that encountered in the standard multiplication
process. Here we are working with binary elements and simple logic, and binary
arithmetic operations produce the partial products and the final sum. The logic
expressions for the partial products are

al — Xiyi a2 = X2y1,...f
 al — -X7,V7

bi=Xiy6 b2 = x2y6,..., b1 = x7 v6

KVS, c2 = x2ys,..., c1 = x7ys (14.15)
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Fig. 14.4. 8 x 8 multiplier array.
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Each partial product term is the output of a two-input AND gate; however, in the
last partial product the multiplicand bits are complemented if the multiplier sign
bit is negative. The resulting bit values are summed within each column with
binary carries passed to the next higher (left) column. With the binary full-adder
discussed earlier, this involves adding the resulting partial product bit to the
result of previous additions of the bits above it in the same column. A building
block consisting of a full-adder, with one addend the output of a two-input AND
gate (Fig. 14.5), can be replicated in an array pattern (Fig. 14.6) to implement the
summing of partial products to obtain the final product. Although this building
block can be used exclusively in the array, two additional circuits—a two-input
AND and a half-adder—serve to reduce the component count. Nevertheless, a
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very regular configuration suitable for VLSI implementation remains. Variations
of this simple multiplier array are discussed in [11-13]. Even with earlier VLSI
technology a 24 x 24 single-chip array multiplier was commercially available.

The array in Fig. 14.6 handles 2's complement number formats. Each partial
product is expressed in fractional 2's complement form with the binary point set
at the final product position. This requires all partial products to include sign
extension to the output sign bit (i.e., one position left of the binary point). The
additional sign extension bits account for the departure from the rhomboid array
for magnitude-only multiplication. In addition, a final product value of + 1 is
possible (— 1 x — 1). Since it is beyond the fractional 2's complement range, the
final product is augmented by an additional bit to the left of the binary point. The
bit weights are indicated at the bottom of Fig. 14.6.

The final multiplier bit is the sign bit y0. If true, the last partial product must be
complemented before the adder. Furthermore, a 1 must be added at the Isb
portion to restore the 2's complement format. An additional stage of half-adders
provides this function. The final product is a 16-bit number ranging from —2 to
+ 2 — 2 14. If the input condition ( — 1 x — 1 ) is precluded, then the 2's
complement final product may be obtained by discarding P2 and interpreting P1
as the sign bit, — 1.

If the product is accumulated in the same VLSI chip, the input restriction is
removed, since accumulation produces several bits above the binary point. The
TRW 8 x 8 multiplier-accumulator (MAC) chip (TDC 1008) provides a 5-bit
extension above the binary point (i.e., 3 bits above PI). If the accumulated result
serves as an operand in subsequent computations in 2's complement, it must be
scaled down or clamped to fit within the 2's complement range.

C Registers and Memory

A practical array multiplier requires more than the combinational elements
shown in Fig. 14.6. The two factors must be held constant while their values rip-
ple through the array; the final results must again be held constant for the
combinational circuits that may follow. Flip-flop memory elements will capture
input data values and present them as constant output values until they are
triggered to respond to new input conditions. The flip-flop memory elements are
basically two NAND gates connected in tandem.

The NAND gate pair in Fig. 14.7 constitutes the primitive SR (set/reset) flip-
flop. With no input signal (i.e., both S' and R' are false) the output Q remains in
either a true or false state, which was determined by an earlier input. The coupling
between the two NAND gates ensures a stable response with Q true and Q' false,
or vice versa. The flip-flop functions as a single-bit memory that indicates what
the previous excitation had been.

Linear groupings of flip-flop stages serve as registers and counters, and large
two-dimensional arrays serve as random access memories (RAMs). Variations in
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Fig. 14.7. SR flip-flop.

response are available in different flip-flop types. Two important types are the D
flip-flop, which captures the state of a single input line, and the JK flip-flop, with
two inputs for set, reset, or toggle. In register configurations the D flip-flops serve
as data buffers and shift registers, and the JK flip-flops serve as counters.

The flip-flops change state in response to the input only after the triggering
edge of a clock has occurred. The behavior of these flip-flop types is indicated in
Table IV, which indicates the response Q + after the clock trigger due to input
conditions preceding the clock. Note that the response depends not only on the
input but also on the present stage Q of the flip-flop.

Flip-flops in linear arrays controlled by a common clock are called registers or
synchronous counters. The two-dimensional register array in Fig. 14.8 is the basis
of a random-access memory (RAM). The flip-flops or cells are linked by common
address lines (horizontal) and bit lines (vertical). One of In address lines is
selected for either reading (observing the cell output) or writing (setting the cell).
Selection for reading or writing requires two AND gates with the address lines as
input to both. A third input on the input AND gate is the write control. The write
control is distributed to all cells of the array.

The selection of address lines is made in an address decoder that includes
2" AND gates, each with n coded address inputs. These gates represent a
considerable amount of hardware and control lines. By factoring the selection
logic into two levels of gating, we obtain significant reductions. This tends to

TABLE IV

Flip-Flop Truth Tables

(a) SR (b) D

S

0
0
0
0
I
1
1
1

R

0
0
i
1
0
0
i
i

Q

0
i
0
1
0
i
0
1

Q+

0
1
0
0
1
1

Undefined
Undefined

D

0
0
1
1

Q

0
]
0
1

Q*

0
0
1
1

(cj JK

J

0
0
0
0
1
1
1
1

K

0
0
1
1
0
0
1
1

Q
0
1
0
1
0
1
0
1

Q+

0
1
0
0
I
1
1
0
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Fig. 14.8. Two-dimensional register array used as the basis of RAM.

increase the propagation delay through the address decoder and thus extends the
time needed to write into and read from these arrays. As word size increases so
does the delay or memory read or write cycle time.

D Serial-to-Parallel Multipliers

It is possible to trade off speed for economy in multipler design. The
opportunity for processing bit serially (slow and economical) versus bit parallel
(fast but requires more components) occurs often in digital designs. The
multiplier array described in Section V.B represents an all-parallel approach
where the operands are captured in two 8-bit registers and are then applied to the
array building blocks. The data propagate through all the combinational circuits,
and when the final product bit paths have settled they may be captured in an
output product register. The total propagation delay is the sum of the switching
time of the operand registers, the delay through the longest path of the array,
and the setup time of the final product register. This effectively defines the
multiplication time. Parallel 8 x 8 multipliers in bipolar technology offer mul-
tiply times of 60 ns.

We may derive a serial-to-parallel multiplier by observing how the partial
products are linked in the multiplier array. If a row of 16 building blocks
(Fig. 14.6) is arranged so that the sum outputs are loaded into register stages
whose contents serve as augends to the next lower stage (to the right), and if the
registers are clocked as each multiplier bit is advanced (Isb first), the final sum
would reside in this register after the eighth clock. The 8 x 8 version of the
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Fig. 14.9, 8 x 8 serial/parallel multiplier.

serial-to-parallel multipler in Fig. 14.9 uses nine building blocks of the array
multiplier. There are also 16 />-type flip-flops to hold the running sum as the
partial products are added. The offset of the partial products to the left is ac-
counted for by the data flow to the right. The sign extension only requires one
stage beyond the sign bit. The multiplier is loaded bit parallel into a register and
then applied bit serially to generate the partial products.

There are at least five additional design solutions for the serial-to-parallel
multipler [14]. Indeed, the number of design approaches, particularly for the
more complex algorithms, should challenge rather than frustrate the new
designer. Let us consider another serial-to-parallel multipler design (Fig. 14.10)
and show a systematic way of describing how the partial products and final sum
are developed. This technique serves as an analysis tool and as a design tool for
the microprogram development discussed in the next section.

The functional blocks of Fig. 14.9 have already been defined. The register
transfer nature of the processes is apparent. Signals flow from sources to
destination register with, in some instances, combinational circuits sandwiched in
between. Each register through which data flow is being traced is labeled as well
as the sum output port of the full-adder circuit. A single phase clock (not shown)
causes all flip-flops to switch to the state present at the input. The process flow is

1 1
8-Stage

Para Itel-Serial
Reg.

Fig. 14.10. Alternate 8 x 8 serial/parallel multiplier.
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described in Table V. The tabulation starts with all flip-flops reset and the least
significant multiplier bit, y1, being shifted out of the eight-stage parallel-to-seriai
(PSR) register. The table entries denote the computation results that would be
observed at the indicated points once the clock trigger has been applied and the
flip-flops switched to their new states. For the columns of the output sum the
result takes into account the switching of the source flip-flops and the prop-
agation delay through the adder.

There are three additional flip-flops per stage in Fig. 14.10. However, the carry
propagates through only one stage before it is reclocked, whereas in Fig. 14.9 the
carry propagates through all eight multiplicand stages. If the same circuits are
used in both designs, it is apparent that considerably greater speed is obtained at
the cost of three additional flip-flops per stage—an example of the speed-cost
tradeoffs possible in digital design. The speedup is achieved by essentially
reclocking the data after passage through combinational paths embracing a
few functions. Although the reclocking causes the data to be delayed (causing
latency), the data flow rate (i.e., multiplication rate) is increased.

The breakup of long combinational delay paths into short sections with
intermediate reclocking registers is commonly referred to as pipelining, which is
often used in digital design. An M x M multiplier with pipelined stages patterned
after Fig. 14.10 will offer a speed improvement factor of M over a design based on
Fig. 14.9, but the product appears only after 2M clock intervals. The final product
is generated after eight clocks. However, a higher clock frequency than that for
the array may be used.

A revision of the sequential network organization of Fig. 14.1 offers another
perspective of the digital machine. If the memory is split into source and
destination memories, as in Fig. 14.11, a basic data path can be defined as a
register transfer process from source to destination registers via combinational
elements. Register transfer descriptions, notations, and even languages have been
used to describe this aspect of machine behavior. Again, all data paths can be
articulated in this form. For example, a simple binary counter can be described
as a single register that serves as both source and destination register with
combinational elements that provide the binary counting logic.

A more significant example is the array multiplier discussed earlier. Two
registers holding the multiplier and multiplicand are the source of data for the
combinational elements of the multiplier array. Some time after the source
registers have been loaded, the final product value can be captured in a
destination register.

The data transfer process, in general, involves the selection of source register(s),
enabling the desired switching functions to achieve arithmetic or logic opera-
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Fig. 14.11. Basic register transfer network with microprogram control.

tions, and destination register(s). The transfer takes place within one clock
period, wherein all controls are held fixed for the duration of the period. If the
source of all control signals is a control store or memory, as shown in Fig. 14.11.
in effect, a microprogram control is realized. The microprogram approach
[15,16] to controls is used extensively in signal processing applications, since it
provides control of processes at the lowest functional level. This is necessary to
ensure that processing resources (i.e., adders and multipliers) are being used
most efficiently.

A Microprogramming the FFT Butterfly

The microprogram process is illustrated by a radix-2 FFT butterfly. (See
Section IV in Chapter 7 for a discussion of radix-2 FFTs and Section XIV of
Chapter 7 for FFT word length and dynamic range considerations.) The data
path resources are given in Fig. 14.12. A RAM holds a block of complex data for a
storage-in-place FFT computation. The data from the real and imaginary blocks
are multiplexed before loading the X input register of the MAC chip. The second
operand is obtained from a sin/cos programmable read-only memory (PROM)
and loaded into the Y input register of the MAC. The single-precision most
significant half accumulation of final products is captured in the most significant
product (MSP) register. Any auxiliary register buffers the MSP from the data bus
that loads the RAM.



14. Mechanization of Digital Signal Processors

DATA BUS
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Fig. 14.12. Data paths for FFT butterfly.

The computations for the radix-2 butterfly shown in Fig. 14.13 are

+ XRJ cos 9k + Xu sin 0k

Aycos0fc -

±{XRt - (XRjcos9k +

+ j[Xu - (Av cos Ok - XRj sin 0kj]}

(14.16a)

(14.16b)

A computation strategy is necessary to ensure efficient microprogramming.
From the butterfly equations we observe that four real products are computed
and that two pairs of products are added together and two are subtracted.

W = cos 9, -j sin 8,

Fig. 14.13. Radix-2 butterfly.
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Although the product pairs are used in both equations, the addition and
subtraction need be done only once. Further, there are two additions and two
subtractions of the real and imaginary terms; finally, to prevent overflow in the
next stage of this 2's complement fractional representation, all terms are scaled
by j before they are stored back in memory. (See discussions in Section XIV of
Chapter 7.)

The MAC is the single arithmetic resource and must handle all the operations
indicated above. The scaling must therefore be done as a full multiplication. The
subtrahend in subtraction resides in the MAC. With these constraints the
microprogram steps are listed in Table VI. Note that the contents of the PROM
are already scaled by |.

The listings in the RAM column indicate the data variables being accessed. The
addressing of the RAM and the PROM will be discussed later. One clock period
is allowed for simultaneous access of both RAM and PROM; the operands XRi

and \cos 0k are loaded into the Xin and Yin registers of the MAC. Although these
registers are not accessible, their contents are shown in the Xin and Yin columns.
One clock period later the accumulated products appear in the output MSP
register. The accumulator has initially been cleared so the first accumulated
product is XRj(^co$6k). The next operands are accessed from the two memories
and loaded into the MAC input register. One clock later the sum a of the two
products appears in the output register.

The real component ARi of the first output term is next computed by adding
another product, ^XRi, to the accumulator a. The result ARi is passed on to the
buffer register. To restore the accumulator to a for the next subtraction, the

TABLE VI
Process Steps for Microprogramming the Radix-2 Butterfly

Clock

1
2

RAM

XKJ
xu

PROM

\ cos Ok

1 sin Ok

Xia

XKj

y.n

•j cos Ok

MAC MSP Reg.

0
0

Reg.

3 XRi I* Xu \smOk \XRJcosOk

4 XRi \ p
5 XRi 4 a -
6 W ARi XKi \

XRj \ sin Ok
Y ! * YA/i 2 -Afj

W ARJ X,,

12 W A,, Xlt

13
14 W A,,

* |cosO' = i
W = Ram write
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accumulated value ARi is subtracted from the input product, still jXRi. The result
is — a, which is then added to the same product from ARj, the real component of
the second butterfly output. The computation of the imaginary components is
similar and may be observed in the table.

The accessing of RAM data to keep the MAC utilized has the highest priority.
Any time data are not being read, the RAM may be written into. The buffer
register provides flexibility in choosing the write period. Once data are loaded
into this register, and with no real access, the data may be written into the RAM
as indicated in lines 6, 10, 12, and 14.

The microprogram controls for this data flow involve the following:

1. Addressing the RAM for reading and writing and also for generating the
write pulse

2. Addressing the PROM
3. Generating the clocks to load Xin and l^n

4. Setting the multiply-accumulate for one of the following modes:

a. Multiply only
b. Multiply and add
c. Multiply and subtract

5. Clocking the data into the output, MSP, register

Table VI has been set up based solely on data flow requirements. A 14-clock cycle
is indicated. The MAC is actively engaged for 10 cycles; that is, it operates with a
duty factor of 71%. This is reasonably good use of the computing resources;
indeed, duty factors of 50% are common. In any microprogram design the raw
power of the processor (multiply-accumulates peer second) must be derated in
assessing performance.

Performance is further reduced by the architectural constraints that necessi-
tated a nonoptimal butterfly algorithm. Except in dedicated processors one
cannot expect to find an optimal match of hardware and algorithm.

KEEPING THINGS IN PERSPECTIVE VII

Designers have characterized the performance of an FFT circuit by the speed
of its multiplier, because until the advent of LSI technologies it was the pacing
element. Now, multipliers and adders are of comparable speed, and attention has
shifted to the six additions required in the butterfly. However, for these six
additions there are four accesses of complex data (eight memory cycles) and two
accesses of table (ROM) data. Indeed, the memory access times may now be the
limiting factor.

In addition to the arithmetic operations and memory accessing, there are the
procedures to generate the memory addresses and FFT pass controls and other
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system interfaces. A review of the FFT flow diagram indicates that addressing is
more than simply sequential. Separate address generation circuits operating in
parallel with the FFT butterfly computation are often provided to restore
balanced processing wherein the speed potential of the arithmetic number
crunching circuits can be approached.

An implementation known variously as distributed arithmetic (DA), inner
product, or Peled-Liu multiplier [17, 18, 19, 20] offers an interesting alterna-
tive to the dedicated hardware multiplier. The DA is a direct implementation of
the sum of products (see Section III) that describes many input and signal pro-
cessing algorithms. One essential restriction is that data are represented in fixed
point formats. Consider the general sum of products expression.

r=L^*i , (14.1?)
i = 0

where Ai is a constant term and X{ is an input variable. Let Xt be a fractional 2's
complement number.

Substituting Eq. (14.18) into Eq. (14.17) yields

Y = f ' At(-xto + t' V' (14J9a)
i=o j = i

i=0 i = 0 j = l

and writing out the product terms within each summation yields

Y = (^00^0 ~t~ ^-10^1 + ^20^2 + " " + XN()AN)

+ 2~l(x0iA0 + XuAt + x2iA2 + -•• + xNlAN)

+ 2 (•^02^0 "t" ^12-^1 ~^~ ^22^2 + '"" + -*-N2''*#)

+ ••• + 2-b(x0bA0 + xlbAl + x2bA2 + ••• + xNbAN) (14.19c)

Whereas Eq. (14.17) accomplishes a sum of the products of coefficients and data,
Eq. (14. 19c) distributes the arithmetic to products of coefficients and single bits of
data; hence the name distributed arithmetic (DA). That is, the terms within each
group of parentheses are the sums of all the coefficients or constants weighted by
the binary (bit) values, that is, the jth bit of all the input variables. There are
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TABLE VII
The Coefficient of T> in Eq. (I4.19c) as Determined

Bit pattern
Parenthesis value

3 • • • 0
;) - - - o
) • - - 0
3 • • • 0
3 - - - 1
3 • • • 1
;) • • • i
3 - - • 1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
AO
AI
A i + A0

A 2

AZ + AV
A2 + Al

A2 + A} + A0

I + A0

2M 4- 1 combinations of jth-bit patterns that translate into a corresponding
number of different values within the parentheses; these are tabulated in
Table VII. The table can be represented as a RAM or PROM that is addressed
by the bits and with the address contents in memory indicated by the table. The
contents within each set of parentheses of Eq. (14.19c) can be represented by the
same table. In the final summation each parentheses is simply binary scaled in
the manner indicated and the results are added. The summation of the partial
products is effectively a distribution of the arithmetic process as opposed to a
summation of all partial product terms. We have converted the multiply and
accumulate process in Eq. (14.17) to a table look-up, shift accumulate process.
The table look-up is possible because the coefficient values in Eq. (14.17) are
fixed.

The implementation in Fig. 14.14 calls for a PSR to convert each input variable
to bit serial data for addressing the memory (either PROM or RAM). The address

SCALING ACCUMULATOR «-j

Fig. 14.14. Distributed arithmetic processor (PSR = parallel to serial register).
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bits are sequenced with the Isb first. The memory output is scaled down by j and
stored in an accumulator register. The next Isb then addresses the memory whose
contents are added to the accumulator with the sum, which is again scaled by |
and stored in the accumulator. The process repeats until the sign bit addresses the
memory. Now the memory contents are subtracted from the accumulator, and
the difference is the complete sum of products, which is now passed on to the next
processing stage.

The bit-serial nature of the process tends to preclude high-speed processing.
However, this is partially compensated by processing all inputs in parallel. The
regularity of the memory array and the simplicity of the surrounding circuits
(registers and adders) make the DA algorithm an attractive candate for VLSI
implementation.

Unlike conventional hardware multipliers and MACs, the DA allows for
different word sizes for input variables and stored constants. The input word
(variable) length sets the speed of operation; the number of shift periods (clocks)
matches the number of bits in the input word. To the hardware to accomplish
this, we must add a few clocks for pipeline effects. By using two or more bits per
word at a time to address memory, the number of shifts is reduced and the speed
is thereby increased. However, this comes at the expense of increased memory
size.

The number of words of memory is set by the number of input variables and
the number of bits per word. The latter is set by the desired coefficient accuracy,
which does not have to match the dynamic range of the input variables. The size
of the parallel adder must match the memory word size. The accumulation of
sums of partial products yields a double-precision result that may be rounded or
truncated to the desired bit length of the output result.

A FIR Filters in Distributed Arithmetic

The finite impulse response (FIR) filter is a simple realization of the sum of
products (see Section HI) and is easily configured in distributed arithmetic. An N-
tap FIR filter is shown in Fig. 14.15 in both functional flow form and as it would
be designed in DA form. Input samples are loaded in bit-parallel format into a
PSR and thereafter sequenced serially through N — 1 serial shift registers. With
the loading of each input word, the data are shifted by the b bits that represent
the input word length. The precomputed combination of coefficient sums (see
Table VII) are stored in a 2N+1 word PROM.

The PROM size becomes a limiting factor for FIR DA designs. For example, a
20-tap FIR filter (not extraordinarily large) requires 220(b + 1) or over 106b
words of PROM. Fortunately, very significant reductions in PROM size can be
achieved for symmetrical FIR filters. If the outputs of symmetrical tap pairs are
added bit-serial before addressing the PROM, the number of address lines is
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Fig. 14.15. An JV-top FIR filter using distributed arithmetic.

halved. Thus in the example above, there are effectively 10 coefficients so that the
PROM shrinks to 2l°(b + 1), or a little over I03b words, which can be satisfied
by standard PROM chips. A DA memory size of IK words by 16 bits requires
only two IK x 8 PROM chips.

MR Filters in Distributed Arithmetic B

The infinite impulse response (IIR) filter difference equation can be written as a
pair of sums of products expression:

y(n) = £ X(n - i)At
i=0

(14.20)

There are several ways of implementing Eq. (14.20). If the two summing nodes
are processed separately, then two separate DA circuits are employed and their
outputs are added. The two summations may be incorporated into a single
summing node with a single DA circuit. A single DA two-pole, two-zero IIR filter
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Fig. 14.16. IIR two-pole, two-zero filter implemented in distributed arithmetic.

is shown in Fig. 14.16. The input samples are loaded bit-parallel into a PSR just as
in the FIR filter. The samples are then sequenced through a pair of serial shift
registers. The output samples are similarly loaded bit-parallel and sequenced
through one serial shift register. With a 20-MHz shift clock, an input sample rate
of 1 million samples per second is possible.

Only five data lines address the PROM and, therefore, only 25 (b + l)-bit
words are prestored. The additional memory capacity available in standard
PROM chips may be used to hold several different filter coefficient sets (i.e.,
filters with different transfer characteristics).

C The Radix-2 Butterfly in Distributed Arithmetic

The computations of the radix-2 butterfly [see Eq. (14.16)] can be partially
implemented in DA. The pair of terms denoted by a in Eq. (14.16a) is a sum of
products. The prestored coefficients are cosdk and sin0fc, and these will extend
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over N/2 values (see, e.g., Figs. 7.9 and 7.10), where N is the FFT size. The PROM
address lines are now 2 + Iog2 N/2 lines where the two lines are for the radix-2
butterfly data inputs. Thus, for a 4096-point FFT the number of address lines is
13; an 8K word PROM is required. As each radix-2 butterfly is computed, the
index k, 0 < k < Iog2 N/2, is incremented in accordance with the FFT pass
number.

The same PROM may serve for the computation of /? of Eq. (14.16). The data
input lines are swapped, and the line addressing the sin Ok port is complemented.
The implementation may be realized by time sharing a single PROM and scaling
accumulator over two cycles or by using a pair of PROMs and scaling
accumulators over a single cycle.

An ingenious scheme offers the possibility of halving the DA memory at the
cost of additional controls in the address lines [18,19]. The scheme is predicated
on a 2's complement number representation and follows a development similar
to our earlier expressions (14.17)-(14.19). We start with an almost trivial identity

X = — fX- — ( X ^1 (14^11

In 2's complement notation a negative value is obtained by complementing bit by
bit and then adding an Isb. Substituting the 2's complement number of Eq. (14.18)
into Eq. (14.21), we obtain

/ * \1
- - * ; <>+ I*i/2~' + 2-fc (14.21a)

\ J= 1 /J

(14.21 b)

where prime means complement (see Table II). Substituting Eq. (14.21b) in the
product terms of Eq. (14.19c) yields

y _ 7-1 r/Y Y' \ -4 -i- (\- — Y' \ A _L .. • _i_ TY — Y' } A ~]1 — ^ LA-^OO A00/'^10 ' VA10 "^lO/^l ^ <^ VANO AJVO/^1]VJ

+ 2 L(x0b ~ xob)Ao + (xib ~~ xib)A\ + "' + (xNh ~ XpibfAft]

1)(A0 + AI+- + AN)-j (14.21c)

Note that xtj — x -j is either + 1 or — 1 for all i, j values. Thus, a coefficient table
similar to Table VIII will contain all possible ways in which the coefficients may
be added or subtracted, as shown in Table VIII for N = 2. A single-cycle
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TABLE VIII

Coefficients of 2~J for N = 2

Bit (address) pattern

X2

0
0
0
0
1
1
1
]

*.
0
0
1
1
0
0
1
1

*0

0
1
0
1
0
1
0
1

Memory content

-A2

— A-,
-A,
-A-y

+ A2

+ Ay
+ A2

+ A2

-A, -A,
-^ j + /j0

+ AI -A0
+ Al +A0

~AI +AO
- AI +A0

4/1, -A0

+ Al +A0

implementation of the radix-2 butterfly of Fig. 14.13 is shown in Fig. 14.17. Since
this is a block process, the computations can be pipelined to include serial
addition to obtain the complete butterfly result.

Note that only half the memory contains independent values; the other half
may be obtained by a sign change of the contents. A simple algorithm for

*Ri

'li

^ ///-1 /
1 *" '

,K

,N/22

— *•

— *•

— *•

\ — ».

1 *.

/K •.

a
PROM

2(2 + IC) WORDS

ft
PROM

2(2>K) WORDS

.̂ SCALING
ACCUMULATOR

*, SCALING
ACCUMULATOR

* R j '

• A I j

Fig. 14.17. Radix-2 butterfly implemented in distributed arithmetic.
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TABLE IX
Address Translation and Add/Subtract Control

Original address Modified address

X2

0
0
0
0
1
1
1
1

*,

0
0
1
1
0
0
1
1

X0

0
1
0
1
0
1
0
1

XX2

0
0
0
0
0
0
0
0

XXj

0
0
1
1
1
1
0
0

XX0

0
1
0
1
I
0
1
0

A IS

A
A
A
A
S
S
s
s

realizing this involves an address modification and slightly more elaborate
control of the add/subtract functions of the scaling accumulator. The address
modification and add/subtract control are illustrated in Table IX for N = 2. The
table may be summarized by the Boolean relations

— X- X, = X- (14.22)

Here x2 serves as a control bit; this is an arbitrary assignment, and any variable
may serve this purpose. Note that one less bit is required to address the memory;
that is, half the original memory is used. The add/subtract control must not only
conform to the table but must also provide the subtract function when the sign
bits are accumulated at 71:

T• *s> = A'

The modified DA functional block diagram is shown in Fig. 14.18. Note that
the accumulator register is initially set to the initial condition —(N+ l)(A0 +
Al + ••• + AN). This method may be extended by separating the input words

Fig. 14.18. Distributed arithmetic processor that halves the DA memory (PSR = parallel to
serial register).
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into equal-length segments (e.g., bytes) and applying each segment to replicated
circuitry [20]. This increases multiplier speed at the expense of increased DA
hardware. DA offers a wide range of configurations to satisfy many system
requirements.

IX SUMMARY

The rapid pace of hardware development in DSP tends to render any material
obsolete before the printer's ink dries. We have thus attempted to present
hardware concepts that are fundamental and invariant under any future changes.
Boolean algebra, switching circuits, and memory elements provide the basis for
all digital mechanizations, whether they be dedicated processors, programmable
processors, or networks of processors. An input design principle is the
desirability to maintain appropriate balance among arithmetic speed, data
movement, and system control.
The expression that characterizes many of the important signal processing
algorithms is the sum of products. Multiplication is the pervading arithmetic
operation and is covered by a discussion of both parallel (array) and serial
multiplier circuits. Microprogramming, whether user accessible or embedded in
the hardware, provides efficient control of the arithmetic functions.

An alternative to the hardware multiplier is the memory-based distributed
arithmetic direct realization of the sum of products. The simplicity and regularity
of this structure makes it attractive for VLSI implementation.
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Addendum to Chapter 3
Window Generation Computer Program

Program author: Fred Harris

Inquiries concerning this program are directed to:

Fred Harris
Electrical & Computer Engineering Department
San D'iego State University
San Diego, CA 92182

This program generates classic data windows, of arbitrary length,
to be applied multiplicatively in the time domain. The program is
menu driven and controlled by prompts. In addition to the window,
the program computes and presents standard figures of merit (see
F. Harris, "On the use of Windows for Harmonic Analysis with the
Discrete Fourier Transform", Proc. of IEEE, Vol. 66, No. i, Jan.
1978, pp. 51-83) for the particular window.

A TYPICAL PROMPTED INTERACTION HAS THE FOLLOWING FORM

***** SELECT WINDOW
1. TRIANGLE
2. HANN
3. HAMMING
4. GAUSSIAN
5. DOLPH-TCHEBYSHEV
6. KAISER-BESSEL
7. TAYLOR
8. EXACT BLACKMAN
9. MIN 3-TERM BH
10. GOOD 4-TERM BH
11. MIN 4-TERM BH
12. RECTANGLE
13. HARRIS FLAT TOP

ENTER CHOICE (1-13)

TYPE FROM MENU *****
(-27 DB SIDELOBE)
(-32 DB SIDELOBE)
(-43 DB SIDELOBE)

(SELECTABLE SIDELOBE)
(SELECTABLE SIDELOBE)
(SELECTABLE SIDELOBE)
(SELECTABLE SIDELOBE)

(-68 DB SIDELOBE)
(-71 DB SIDELOBE)
(-80 DB SIDELOBE)
(-98 DB SIDELOBE)
(-13 DB SIDELOBE)
(-80 DB SIDELOBE)

-> 2

SELECT WINDOW SIZE (1 < N < 2049) -> 20

COHERENT GAIN
ENBW

.5000
1.5000 (BINS)
1 .7609 dB

-1 .4235 dB
.6592
. 1667
1.4398 (BINS)
2.0000 (BINS)

WRITE A WINDOW FILE? (Y,N)
DO YOU WANT ANOTHER WINDOW? (Y,N)

HANDBOOK OF DIGITAL SIGNAL PROCESSING

975
Copyright ©1987 by Academic Press, Inc.

Ail rights of reproduction in any form reserved.
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PROGRAM WINDOW

DIMENSION WW(2048),alist(10)
DIMENSION T2(2),T3(2),T?(20),T8(3)
DIMENSION T9(3),T10(4),T11(4),T13(4)
CHARACTER*10 FNAME,QANS
DATA T2/0.5,-0.5/
DATA T3/0.54,-0.46/
DATA T870.42659071,-0.49656062,0.076848677
DATA T970.4243801,-0.4973406,0.07827937
DATA T1070.3780294,-0.4940071,0.1221416,-0.00582197
DATA Til 70.3635819,-0.4891775,0.1365995,-0.01064117
DATA T13/0.3066923,-0.4748398,0.1924696,-0.02599837

WRITE(*,*)' '
WRITE(*,*>' ******* SELECT WINDOW TYPE FROM MENU ********

1 .
2.
3.
4.
5.
6.
7.
8.
9.
10.
1 1 .
12.
13.

TRIANGLE
HANN
HAMMING
GAUSSIAN
DOLPH-TCHEBYSHEV
KAISER-BESSEL
TAYLOR
EXACT BLACKMAN
MIN 3-TERM BH
GOOD 4-TERM BH
MIN 4-TERM BH
RECTANGLE
HARRIS FLAT TOP

(-27 DB SIDELOBE)
(-32 DB SIDELOBE)
(-43 DB SIDELOBE)

(SELECTABLE SIDELOBE)
(SELECTABLE SIDELOBE)
(SELECTABLE SIDELOBE)
(SELECTABLE SIDELOBE)

(-68 DB SIDELOBE)
(-71 DB SIDELOBE)
(-80 DB SIDELOBE)
(-98 DB SIDELOBE)
(-13 DB SIDELOBE)
(-80 DB SIDELOBE)

WRITE(*,*)'
WRITE(*,*>'
WRITE(*,*)'
WRITE(*,*)'
WRITE(*,*)'
WRITE(*,*)'
WRITE(*,*)'
WRITE(*,*)'
WRITE(*,*)'
WRITE(*,*)'
WRITE(*,*)'
WRITE(*,*)'
WRITE(*,*)'
WRITE(*,*)' '

5 WRITEC*,'(A\)')' ENTER CHOICE (1-13) -;
READ(*,*> ISLCT
IF(ISLCT.LE.0.0R.ISLCT.GE.14) GO TO 5
WRITE(*,*)' '

8 WRITE(*,J(A\)')' SELECT WINDOW SIZE (1 < N < 2049) -:
READ(*,*) NWNDO
IF(NWNDO.LE.0.0R.NWNDO.GE.2049) GO TO 8

GO TO (10,20,30,40,50,60,70,80,90,100,110,120,130), ISLCT

I CALL TO TRIANGLE WINDOW
10 CALL TRNGL(NWNDO,WW)

GO TO 200

C CALL TO TRIG WINDOW WITH HANN COEFFICIENTS
20 CALL TRIG(NWNDO,WW,T2,2)

GO TO 200

C CALL TO TRIG WINDOW WITH HAMMING COEFFICIENTS
30 CALL TRIG(NWNDO,WW,T3,2)

GO TO 200

C CALL TO GAUSSIAN WINDOW
40 WRITE(*,'(A\)')' SELECT DESIRED SIDELOBE LEVELS ->

READ(*,*) SLL
SLL=ABS(SLL)
CALL GAUSS(NWNDO,SLL,WW,ALPHA)
WRITE(*,45) ALPHA

45 FORMATC GAUSSIAN PARAMETER ALPHA - ',F6.4)
GO TO 200

CALL TO DOLPH-TCHEBYSCHEV WINDOW
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50 WRITEC*,'(A\)')' SELECT DESIRED SIDELOBE LEVELS -> '
READ(*,*> SLL
SLL=ABSCSLL)
CALL TCHEBY(NWNDO,SLL,WW)
GO TO 200

C CALL TO KAISER-BESSEL WINDOW
60 WRITEC*,'CAN)')' SELECT DESIRED SIDELOBE LEVELS -> '

READC*,*) SLL
SLL=ABS(SLL)
CALL KAISERCNWNDO,SLL,WW,ALPHA)
WRITEC*,65) ALPHA

65 FQRMATC KAISER-BESSEL PARAMETER ALPHA = ',F10.4)
GO TO 200

C CALL TO TAYLOR WINDOW
70 WRITEC*,MAN)')' SELECT DESIRED SIDELOBE LEVELS -> '

READC*,*) SLL
SLL=ABSCSLL)
NBAR=1
CALL TAYLORCNWNDO,SLL,T7,NEAR)
CALL TRIGCNWNDO,WW,T7,NBAR)
GO TO 200

C CALL TO BLACKMAN WINDOW
80 CALL TRIGCNWNDO,WW,T8,3)

GO TO 200

C CALL TO MINIMUM 3-TERM BLACKMAN-HARRIS WINDOW
90 CALL TRIGCNWNDO,WW,T9,3)

GO TO 200

C CALL TO 4-TERM 80 DB BLACKMAN-HARRIS WINDOW
100 CALL TRIGCNWNDO,WW,T10,4)

GO TO 200

C CALL TO MINIMUM 4-TERM BLACKMAN-HARRIS WINDOW
110 CALL TRIGCNWNDO,WW,T11,4)

GO TO 200

C CALL TO RECTANGLE
120 CALL RECTCNWNDO,WW)

GO TO 200

C CALL TO HARRIS FLATOP
130 CALL TRIGCNWNDO,WW,T13,4)

GO TO 200

C WINDOW TEST PARAMETERS
200 CONTINUE

CALL TESTCnwndo,ww,al1st)
write<*,220) alistC 1)

220 formate/,10x,' COHERENT GAIN = ',£7.4)
writeC*,221) alistC2),alistC3),alistC6)

221 formatC 10x,' ENBW = ',f7.4,' CBINS)',/,25x,
c ' = ',f7.4,' dB',/,9x,'MAX SCALLOP LOSS = ',f7.4,' dB')

writeC*,222) alistC4),alistC5)
222 formatC' CORRELATION N CC75%) = ',f7.4,/,

c ' COEFFICIENTS / CC50%) = ',f7.4)
CALL DBTESTCnwndo,ww)
WRITEC*,*)' '
WRITEC*,'CAN)')' WRITE A WINDOW FILE? CY,N) ~>Y
READC*,'CA)') QANS
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IFCQANS.EQ.'N'.OR.QANS.EQ.'n') GO TO 320
WRITEC*,'CA\)')' NAME OF OUTPUT FILE ? ->
READ<*,309)FNAME

309 FORMAT(A)
OPENC20,FILE=FNAME,status='NEW')

DO 310 1=1,NWNDO
WRITEC20,*) I,WWCI)

310 CONTINUE
CLOSE(UNIT=20)
WRITEC*,*)' '
WRITEC*,*)' THE WINDOW COEFFICIENTS HAVE BEEN WRITTEN.1

WRITEC*,*)' '
320 WRITEC*,'CAN)')' DO YOU WANT ANOTHER WINDOW? CY,N) ->Y

READ<*,'(A)') QANS
IF(QANS.NE.'N'.AND.QANS.NE.'n') GO TO 1
WRITEC*,*)' '
WRITEC*,*)' BY'
END

CCC
C SUBROUTINE TRNGL FORMS TRIANGLE WINDOW

SUBROUTINE TRNGLCNWNDO,WW)
REAL WWC1)
integer nwndo

NN=CNWNDO+l)/2
STEP=0.0
DSTEP=1.0/FLOATCNN)

WWCNWNDO/2+l)=l.0

DO 10 I=1,NN
WWCI)=STEP
WWCNWNDO+2-I)=WWCI>
STEP=STEP+DSTEP

10 continue

RETURN
END

CCC
C SUBROUTINE TRIG FORMS WINDOW FROM SHORT COSINE SERIES

SUBROUTINE TRIGCNWNDO,WW,COEF,NTRMS)
DIMENSION WC20)
REAL WWC D.COEFC 1)
integer nwndo,ntrms

DO 10 1=1,NTRMS
C WCI)=COEFCI)/SUM

WCI)=COEFCI)
10 continue

TWOPI=8.0*ATANC1.0)
THETA=0.0
DDTHETA=TWOPI/FLOATCNWNDO)
NN=CNWNDO/2)-H

DTHETA = DDTHETA
DO 15 J=1,NN
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WW(J)=W(1)
15 continue

C WW<NWNDQ/2+l)=l.0

DTHETA=DDTHETA
DO 25 I=2,NTRMS
THETA=0.0
DO 20 J=1,NN
W W C J ) = W W < J > + W U > * C Q S < T H E T A >
THETA^THETA+DTHETA

20 continue
DTHETA=DTHETA+DDTHETA

25 continue

DO 30 J=1,NN
WW<NWNDO+2-J)=WW<J)

30 cont inue

RETURN
END

ccc
C SUBROUTINE GAUSS FORMS GAUSSIAN WINDOW

SUBROUTINE GAUSSCNWNDO,SLL,WW,ALPHA)
REAL SLL,WW<1>,ALPHA
integer nwndo

ETA=-(SLL-19.0>/20.0
STA=10.0**ETA
ALPHA=-2,0*ALOG(ETA)
ALPHA=SQRTCALPHA)

FN=FLOAT<NWNDO)
NN=(NWNDO/2)+i
FNN=FN/2.

WW<NWNDO/2+l)=l .0

ALPHA=ALPHA/FNN
DO 10 K=1,NN
FK=FNN~FLOAT(K-1)

ARG=ALPHA*FK
ARG=-0.5*ARG*ARG

WW(K)=EXP(ARG)
WW(NWNDO-K+2)=WW(K)

10 continue

RETURN
END

CCC
C SUBROUTINE TCHEBY FORMS DOLPH-TCHEBYSHEV WINDOW

SUBROUTINE TCHEBY(NWNDO,SLL,WW)
REAL SLL,WW<1)
integer nwndo
DOUBLE PRECISION A,B,C,D,FK,FI,FJ,FN,SCL
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FN=FLOAT(NWNDO)fl .
NN=<NWNDO+2)/2

3=10.0**<SLL/20.0>
AA = ALOG<S-fSQRT<S*S-l .
BB=EXP(AA)
BBI-1 -0/BB
A=(BB - BBI)/(BB + BBI )
A = A*A

DO 35 K=2,NN
FK=FLOAT(K)
KK=K-i

DO 30 J=1,KK
FJ=FLOAT(J)
JJ=J-1
C=l .0
D=l .0
IF(J-l) 1,3,1

1 DO 25 I=1,JJ
FI=FLOAT(I)
C=C*(FK-1 .0-FI

25 continue

3 DO 20 1=1, J
FI=FLOAT(I)
D = D*(FN-FK+1 .0-FD/FI

20 continue
B=B+C*D*(A**FJ>

30 continue
SCL=(FN-1 . >/<FN-FK>
WW<K)=B*SCL

35 continue

WW( 1)=1 .0
WW(NWNDO)=1 .0
SCL=WW<NN)
DO 15 K=i,NN
WW(K)=WW(K)/SCL
WW(NWNDO+2-K)=WW(K)

15 continue

RETURN
END

CCC
C SUBROUTINE KAISER FORMS KAISER-BESSEL WINDOW

SUBROUTINE KAISER(NWNDO,SLL, WW, ETA )
REAL SLL, WW( 1),ETA
integer nwndo
DOUBLE PRECISION X,EXPX,EXPX1 , Y, YDOT,DX

PI=4.0*ATAN< 1 .0)
SCL=0.75*PI
ETA= 10.0** (SLL/ 20.0)
X--1 . 14*ALOG(ETA)

10 EXPX=EXP(X)
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EXPXI=1.0/EXPX
Y=SCL*< (EXPX-EXPXI ) XX) -ETA
YDQT=--SCL*( (EXPX-t-EXPXI )-«EXPX-EXPXI ) /X) ) /X
DX=Y/YDOT
!F (ABS(DX) .LT. 0.000001 .OR. A B S C Y K L T . 0 .001) GO TO 20
X=X-DX
GO TO 10

20 E T A ^ X
FN=FLOAT<NWNDO)+1 .0
NN=<NWNDO+2)/2
FNN=FLOAT(NN-1)

DO 101 K=1,NN
FK=FLOAT(NN-K)
B=l .0
ADD= 1 . 0

ARG=0.5*ETA*SQRT( 1 .0 -CFK/FNN>**2 . 0)
ARG=ARG*ARG
FJ-1 ,0

30 ADD=ADD*ARG/(FJ*FJ)
B=B+ADD
FJ=FJf 1 .0
IFCADD. LE. 0.000001 .OR. FJ.GE. 40.0) GO TO 40
GO TO 30

40 WW(K)=B
101 continue

SCL=WW<NN)
DO 15 K=1,NN
WW(K)=WW(K)/SCL
WW(NWND0^2-K)=WW(K)

15 continue

RETURN
END

ccc
C SUBROUTINE TAYLOR FORMS TAYLOR WINDOW

SUBROUTINE TAYLOR(NWNDO, SLL, T7,NBAR)
REAL SLL,T7( I)
integer nwndo,NBAR

PI=4.0*ATAN( 1 .0)

ETA=10.0**<SLL/20.0)
AS9=ALOG<ETA+SQRT(ETA*ETA- 1 . 0) ) /PI
ASQ=ASQ*ASQ
ENBAR=1 .0

10 CONTINUE
SGMA2=(ENBAR*ENBAR)/(ASQ+<ENBAR-0.5)*<ENBAR-0.5))
IF(SGMA2.LT.SGMA1) GO TO 20
ENBAR=ENBAR+1 .0
SGMA1=SGMA2
GO TO 10

20 ENBAR = ENBAR-1 .0
NBAR=IFIX(ENBAR)
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DO 101 M=1,NBAR-1
FM=FLOAT(M)
RMM=FM*FM
PRODI=1. 0
PROD2=1 .0

DO 15 N=1,NBAR-1
IF(N.EQ.M) GO TO 50
FN=FLOAT(N)
RNN=FN*FN
PROD1=PROD1*(1.0-RMM/RNN)

50 CONTINUE
15 continue

Q=0.5/PROD1
DO 201 N=1,NBAR-1
FN=FLOAT(N)
ZNSQ=SGMAl*<ASQ+(FN-0.5)*<FN-0.5>>
PROD2=PROD2*<1.0-RMM/ZNSQ)

201 continue

SM=PROD2*<-1.0>**<M+1>
T7<M+1)=2.0*Q*SM

101 continue

T7(1 ) = 1 .0
SUM=0.0
DO 25 1=1,NEAR
SUM=SUM+T7(I)

25 continue

SIGN = -H .0
DO 30 1 = 1,NEAR
T7CI)=SIGN*T7<I)/SUM
SIGN=-SIGN

30 continue

return
end

C SUBROUTINE RECT
SUBROUTINE RECT(NWNDO,WW)
REAL WW<1>
INTEGER NWNDO

DO 10 1=1,NWNDO
WW(I)=1.0

10 continue
RETURN
END

CCC
C SUBROUTINE TO COMPUTE PARAMETERS OF WINDOW

subroutine test(nwndo,ww,alist)
real ww<1>,alist<1)
dimension trns(2049)
integer nwndo

fn=float(nwndo)
suml=0.0
sum2=0.0
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do 10 i=-l,nwndo
sum 1 =sum1+ww(i)
sum2~sum2-iww< i)*ww( i )

1 0 cent inue

ali st(1)-sum 11 in

C COMPUTE SCALLOP LOSS
call xformCnwndo,ww,.5,al1st(6)>
alist<6)=alist(6)/suml
alist(6)=20*alog!0(al1st(6))
al ist<2) = fn*sum2/(suml*suml)
alist(3)=10.0*alogl0(alist<2))
SMSQ=SUM2

c 75% (j.i-.. correlation
sum 1=0.0
sum2=0.0
nl=NWNDO/4

do 15 i=l,nwndo-nl
suml=suml+ww( i >*ww< i -t-nl)

15 continue
suml=suml/SMSQ

do 20 i=i,nwndo~nl-1
sum2=sum2+ww< i)*ww<i +n1 + 1 >

20 continue
sum2--sum2/SMSQ

c75=suml -(suml-sum2)*(float(nwndo-4*(nwndo/4)))/4.0

c 50% O.L. correlation
sum 1=0.0
sum2=0.0
n2=nwndo/2

do 25 i=l,nwndo-n2
suml=suml+ww(i)*ww(i +n2)

25 continue
suml=suml/SMSQ

do 30 i = 1 ,nwndo-n2-1
sum2 = sum2+ww( i)*ww< i+n2-H)

30 continue
sum2=sum2/SMSQ

c50=suml -<suml-sum2)*(float(nwndo-2*(nwndo/2)))12.0
alist(4)=c75
alist(5)=c50

RETURN
END

CCC
C SUBROUTINE DETEST FINDS THE THREE DB AND SIX DB POINTS OF THE
C WINDOW.

SUBROUTINE DBTEST(nwndo,ww)
REAL WW(l),x<2)
integer nwndo,j
real dc,half,1x,hx,f1x,fhx
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real error,bound
real dx ,dy,de1 tax,deltay

c find dc value
call xform(nwndo,ww,0,dc)

c find half power point
c x(2) is 6 db po int
c x( 1) i s 3 db po int

x(2)=dc/2.0
x( l)=dc*(sqrt(2.0)/2.0)

do 100 j=1,2
half=x(j)

c box the 6db region with Ix and hx
hx=l .0
flx=dc
lx = 0

10 continue
call xformCnwndo,ww,hx,fhx)
if(fhx.It.half)goto 15
1 x = hx
hx=hx+l .0
flx=fhx
goto 10

15 bound=10e-3

c find slope
60 deltax=hx-lx

de1tay= f1x-fhx
dy=flx-half
dx=dy*(deltax/deltay)
lx=lx+dx
call xformCnwndo,ww,1x,fix)
error=fIx-half
if(error.le.bound)goto 55
goto 60

55 if(j .eq.2)write<*,99)1x*2
if(j.eq.l)write(*,98)lx*2

98 formate10x,' 3 DB WIDTH = ',f7.4,' (BINS)')
99 format(10x,' 6 DB WIDTH = ',f7.4,' (BINS)')
100 continue

re turn
end

subroutine xform(nwndo,ww,k,fk)
integer nwndo,i
real ww(l),twopi,k,fk,fnwndo.cl,c2,w0,wl,w2
real phi,dphi,re,im

twopi=8*atan(1.0)
fnwndo=float(nwndo)

take DFT at specific points

phi=(twopi/fnwndo)*k

cl=-2.0*cos(phi)
c2=l .0
w0=0.0
wl=0.0
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w 2 -- 0 . 0

do 10 i = 1,nwndo
w0=ww(i)-cl*wl-c2*w2

w 1 - w 0
1 0 cont inue

w0=-cl*wl-c2*w2
re=w0-wl*<cl/(-2.0))
i m= ~w1*s in(phi >
fk=sqrt(re*re+im*im)

return
end



This page intentionally left blank



Acoustic tube model, 778
for deconvolution, 778
reflection coefficients, 779

Acoustic wave equation, 778
model for speech signal processing, 778

Active linear two-sensor array, 798, 799
Active radar and sonar, 837
Adaptive filtering, 857

See also adaptive filters
frequency domain, 889
channel equalizer, 889
finite impulse response, 858
forward prediction, 882
infinite impulse response, 889
lattice structure, 882
learning curve, 880
least-squares configuration, 864
line enhancer, 879
misadjustment of weighting vector in, 880
modified algorithm for, 874
noise canceler configuration, 864, 872
predictor configuration, 871, 882
noisy gradient's impact on design of, 868
no-pass phenomena, 880
signal-to-noise ratio, 878
steepest-descent design technique, 866
time constant, 876

Aliasing
See spectral aliasing

All-pass filters
basics, 453
gray and marked structure, 454
structures for, 454
structures based on, 444
trivial all-pass filter, 793, 795

Alternation theorem, 73
Ambiguity function, 842

Amplitude-change function, 110
And gate

See gates
Angle estimation, 810

by means of matched spatial filter, 810
algorithm for, 810

Arithmetic operations
See complex bandshifting, fast Fourier

transforms, and operations per output
point

Array multiplication, 951
Assembly language prime factor algorithm,

621
Attenuation, 60, 305
Autocorrelation, 45, 702, 749, 770

See also correlation
unbiased estimate of, 770

Autoregressive (AR) system
See also spectral analysis
deconvolution, 766
fast algorithm for, 766
lattice filters for, 774
identification

with known statistics, 766
with unknown statistics, 770

models, 766, 780
speech signal processing, for, 780
process, 766

direct form block diagram, 766
linear prediction, and, 756

Autoregressive-moving average (ARMA)
systems, 752

See also discrete-time linear time-invariant
systems and spectral analysis
process, 758

deconvolution, 753
double deconvolution algorithm, 754

identification, 758
relationships to AR(N) and MA(M)

systems, 752

987

Index
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B

Backscattered signal, 797
Backscattering model, 811

sphere, for a, 814
stationary point target for, 811

Backward prediction, 775, 882
relationship to linear prediction and lattice

filter, 775
BASIC programs, 785-787

Levinson or Toeplitz recursion, direct form,
786

Burg algorithm, lattice filter, 787
Beamforming, 806, 818
Beam pattern, 793, 796, 797, 800

for two-sensor array, 802
for 20-sensor array, 805

Bessel filters
See infinite impulse response filters

Bias estimation using Kalman filters, 928
Bilinear z-transformations, 337

warping effect, 339
Binary adder, 950
Binary Fourier transform (BIFORE), 503
Binary numbers, 361, 589, 948

fixed-point, 362
floating-point, 362
negative number representation of, 363
one's complement, 365
quantization of, 366, 591

magnitude-truncation, 368
rounding, 368
truncation, 367

two's complement, 364, 948
Bit-reversed order, 553

for an eight-point DIT FFT, 556
Blackman-Tukey spectral analysis method,

705, 721
Boolean

algebra, 943
functions of two variables, 946

Box-Jenkins, spectral analysis method, 731
Brick-wall filter characteristics, 301
Broadband signals, 843
Bessel filters

See infinite impulse response filters
Burg algorithm, 706, 776

lattice form of Levinson or Toeplitz
recursion, 776

computer program, 787
Butterworth filters

See infinite impulse response filters

C matrix transform, 500
Cardinal function

dirichlet kernel, 644
in signal reconstruction, 235

Carrier frequency, 799
Cascade realization of IIR filters, 299
Cauchy

integral theorem, 18
residue theorem, 19

Channel equalization, 889
Chebyshev filters

See infinite impulse response filters
Chebyshev polynomials

FIR filters applied to, 101, 130
Chinese remainder theorem (CRT) integer

respresentation, 571
Circular convolution

See convolution
Complex analytic signal, 839

in mixing, 839
Complex bandshifting, complex

demodulation, complex hetrodyning
See frequency shifting

Complex-to-real data conversion, 177, 24!
Computer programs

See BASIC programs and FORTRAN
programs

Condition number, 762
Congruence

See modulo
Constant-Q spectrum analysis, 175, 228
Convolution

aperiodic, 32
circular, 32, 638, 655, 668, 670, 672, 678,

688
discrete-time sequences, of, 10, 290, 744
fast, 638, 666, 677, 687

arithmetic operations for, 674, 675, 681,
682

forward problem describing, 741, 744
frequency domain, 14, 23
integral, 741
linear, 667, 672, 678
model for DTLTI system corrupted by-

additive noise, 760
relationship to backscattering powers, 813
z-plane, 22

Correlation
See also autocorrelation, cross-correlation,

674
arithmetic operations, for, 674, 681
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matrix used in AR modeling, 710
properties, 47
vectors, 861

Coupled form structures, 417
conventional, 418
modified, 415

Covariance sequence
autocovariance, 46
cross-covariance, 46
properties, 47-49

Covariance matrix, 485, 512
Cramer-Rao lower bound, 847

relationship to time delay estimation
performance, 847

Cross-correlation, 46, 513, 822, 833
approximation of, 823
Fourier transform of, 823
locating peak of, 823
mean-square criteria relation to, 836
measure of similarity, 833
relationship to time delay estimation

problem, 833
time delay estimation algorithm

time domain implementation, 824
frequency domain implementation, 825

Cross-spectral density, 823
Fourier transform of cross-correlation

function, 823
Cuttoff frequency, 302

Butterworth filter, 309
Chebyshev filter, 317

Decimation of a data sequence
DTFT relationships before and after, 13
z-transforrn relationships before and after,

21
Deconvolution, 741, 751, 757, 762, 813

approximated by modified normal
equations, 762

ridge regression, 762
spectral balancing, 763
total least squares, 762

AR(N) process, of, 757
double, 754
filter, 742

discrete-time, 744
frequency domain, performed in, 751, 752
inverse problem, 742, 744
measure of effectives R, 762
minimum phase sources, of, 752

minimum phase and minimum delay,
relationship to, 751

rational DTLTI systems, of, 751, 752
relationship to backscattering process, 813
seismic, 744

Deconvolution and LTI systems with no
measurement noise, 746

Deconvolution and identification of DTLTI
systems

with measurement noise, 760
with no measurement noise, 451

Deconvolution and linear multiple regression,
761

least-square normal equations, 761
Delta function

See Dirac delta function, discrete-time
impulse, Kronecker delta function

Demodulation
See frequency shifting

Desampling, 173, 205
See also multirate filters
arithmetic operations for, 214
sampling rate reduction using cascaded FIR

filters, 215
Differentiators

See finite impulse response filters
Digit-reversed order (DRO), 535
Digital filter

See also finite impulse response and infinite
impulse response digital filters,
adaptive filters, Kalman filters,
recursive filters

design specifications, 59, 181, 300
frequency response, 57, 290
infinite impulse response filter building

blocks, 295
magnitude response specifications

ideal, 59, 301
practical, 57, 303
phase response, 57

Dirac delta function
acting as a sampling function, 8
convolution yielding, 742

Direct form structures
See also infinite impulse response filter

realizations
quantization effects in FIR filter, 460

signal-to-noise ratio in second order IIR
filter, 383

Discrete cosine transform (DCT), 486
even, 517
inverse, 499
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Discrete cosine transform (DCT) (cont.)
N-point DCT by a N-point IDFT, 500
N-point DCT by a 2N-point FFT. 518

Discrete Fourier transform (DFT)
See also fast Fourier transform
channelization of signals using, 634, 639,

644, 648, 651, 658
channelizer residual phase rotation, 658
computing a 1-D DFT with 2-D operations,

537, 538, 551
with multidimensional processing, 549

discrete cosine transform developed from
DFT, 519

Goertzel algorithm relationship with, 641
inverse 1-D, 30
matrix representation of, 529, 541
multidimensional, 41
one-dimensional, 31
properties, 32-40
systems use of for time domain processing,

634
time delay estimation using, 841
two-dimensional, 532
Winograd's small-N, 565, 596, 616
zoom transform for linear spectral analysis,

174
2-point, 539
3-point, 543
4-point, 547, 551
6-point, 539, 545
8-point, 553
15-point, 577

Discrete sine transforms, 493, 494
inverse DSTs, 499

Discrete-time Fourier transform (DTFT)
definition of 1-D, 9
inverse 1-D, 9
properties, 10-14
relationship to linear arrays, 806, 807
spectral analysis with, 701
two-dimensional, 15

Discrete-time impulse, 18
deconvolution using, 744
discrete-time Fourier transform of, 11

Discrete-time linear time-invariant (DTLTI)
systems, 746

with nonrandom inputs, 751, 760
deconvolution problem for noisy

outputs, 760
with random inputs, 763

deconvolution problem for noisy
outputs, 763

with WSS random inputs, 755
output autocorrelation and cross-

correlation, 755
output power spectrum, 755

Discrete-time random sequence (DTRS), 41
jointly distributed sequences, 44
stationary, 44
wide-sense stationary, 45

Discrete-time spectra
See power spectral density

Discrete W-transform, 486
Discrimination factor, 309
Distributed arithmetic (DA), 964

halving the DA memory, 969
Divergence of Kalman filters, 931
Dolph-Chebyshev polynomials

See Chebyshev polynomials
Doppler

processing, 701
shift, 842

Dot product, 833
relationship to cross-correlation, 833

Double deconvolution algorithm, 754
Doubly-terminated LC structures, 420
Dynamic range

analysis, 588
constraints in filters, 373

Eigenvalue
distribution in adaptive lattice filter design,

881
maximum and minimum, 762

Elastic wave model, 781
for seismic signal processing, 781
for seismic deconvolution, 781

Elliptic filters
See infinite impulse response

filters
Energy packing efficiency (EPE), 511
Equiripple filters

See finite and infinite impulse response filters
Equivalent noise bandwidth (ENBN), 256, 695
Ergodic

process, 862
sequences, 47

Error covariance matrix, 762
trace of, 762

Error spectrum shaping (ESS), 387, 399
Agarwal-Burrus approach, 394
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compromise between single and double
precision, 393

in cascade forms, 400
in first order sections, 388
in second order sections, 391

Euler's approximations, 333
Expectation (expected value), 44, 45
Extended Kalman filtering, 928

Fast convolution
See convolution

Fast algorithms for deconvolution problems,
766

Levinson or Toeplitz, 770
Burg or lattice recursion, 776

Fast Fourier transform (FFT)
See also discrete Fourier transform
arithmetic operations

comparison of algorithms, 580
for a radix-2 FFT, 527, 556
for a six-point FFT, 543

butterfly, 540, 555, 960, 969
butterfly-like structures, 558

efficient microprogramming of, 961
in distributed arithmetic, 968

by means of matrix transpose, 548
Chinese remainder theorem algorithm, 572
computed in nonorthogonal coordinates

six-point, 561
3L-point, 561
6L-point, 564

computer programs available, 600
decimination-in-frequency (DIF) algorithm

eight-point, 557
four-point, 547
reason for nomenclature, 540
six-point, 539, 545
2L-point, 557

decimination-in-time (DIT) algorithm
eight-point, 554
four-point, 547
reason for nomenclature, 540
six-point, 539, 545
2L-point, 556

fast convolution use of, 677
frequency domain adaptive algorithms use

of, 889
Good's algorithm, 573
in-order computation, 549

of a four-point FFT, 552
of a twelve-point FFT, 550
that is also in-place, 552

in-place computation, 549
matrix factorization, 530

for a four-point FFT, 531, 548
for a six-point DIT FFT, 541
for a six-point DIF FFT, 542, 545
for an eight-point DIT FFT, 555

mixed-radix integer representation (MIR)
algorithms, 532, 664

nested operations, 577
polynomial transform algorithm, 579
prime factor algorithm (PFA), 573, 605

computer programs, 605
in FORTRAN, 606
in assembly language, 621

quantization noise, 591
radix-2, 553, 602
computer program, 602
radix-3, 558
radix-4, 564
radix-6, 558

recursive cyclotomic factorization
algorithm, 564

ruritanian correspondence (RC) algorithm,
567

six-point, 570
split-radix algorithm, 558
time delay estimation use of, 842
Winograd's algorithm, 576
word length requirements, 587

Filter configuration
in a least squares approximation, 864

Finite impulse response (FIR) digital filter
architectural models for, 245
bandwidth reduction using, 180
bounded real structures, 465
building-block extractions, 134
coefficient quantization effects, 460

accuracy estimate, 462
low sensitivity using passivity, 465

complex-to-real data conversion, for,
177

cutoff frequency, 60
deconvolution, used for, 753, 757, 771
desampling using, 215
design specifications, 59
desired response, 61
differentiators, 83
design charts, 147-148
distributed arithmetic mechanization, 966
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Finite impulse response (FIR) digital filter (cont.)
equiripple approximations, 71
extraripple solution, 76
four basic types, 71
flat-passband equiripple stopband filters,

132
frequency transformations in, 100
halfband filters, 141
Hilbert transformers, 85, 233

design charts, 149
interpolated FIR (IFIR) design approach,

119
interpolating, 173, 234, 241

beamforming, for, 179
length, 68, 76, 77, 183, 210
linear programming approach to design, 95
linear-phase, 57
Sow noise, low sensitivity, 359
magnitude response, 57
maximally flat response design, 91

implementation, 94
McClellan-Parks (MP) algorithm, 79, 180,

183, 210
FORTRAN program, 152

minimum phase, 136, 748
multirate for interpolating and desampling,

173

narrowband filter bank, 642
numerical gain, 202
optimal
equiripple, 71
maximally flat, 90
order estimate for

window design, 68
quiripple design, 76, 77

phase response, 57
prefilter-equalizer design approach, 125
recursive running sum (RRS), 123
response sharpening, 108
roundoff noise

in direct form structures, 460
in cascade form structures, 561
impact of section ordering, 462

scaling, 191
sidelobes, 183, 644
transmission zero placement, 88
two-dimensional, 112

design with McClellan's transformation,
113

weighted error, 71
weighted error function, 78
window design, 61

limitations of, 71

Finite word length
See quantization

Flip-flop memory elements, 954
Focused beamformer, 830

for time delay estimation, 830
for passive localization, 830

FORTRAN programs
See also specific topic
McClellan-Parks FIR filter design, 152
prime factor algorithm FFT, 605
radix-2 FFT, 602
window generation, 975

Forward prediction error, 775
relationship to linear prediction and lattice

filters, 775
Fourier series

one-dimensional, 2
representation of periodic spectra, 7
two-dimensional, 5
used by Gauss, 528

Fractional octave spectrum analyses, 175, 210
Frequency

normalized variables/and w and analog
variables F and 0, 9

Frequency division multiplexing (FDM), 636,
663, 683, 685, 689

Frequency response, 57, 290, 749
Frequency shifting, 10, 174, 223, 229

See also interpolating filters
active radar and sonar using, 839
arithmetic operations for, 225
DFT, accomplished with, 686
in-phase component, 839
relationship to complex analytic signal, 839

Frequency transformation
See spectral transformations

Frequency weighting functions, 824, 828
for time delay estimation, 824

Frobenius norm, 728
Function generator, 683, 692, 695

Gates, 943
Gauss, Carl Friedrich

algorithm for Fourier series, 527
development of least squares estimation,

899, 907
Gaussian

density and distribution function, 43
elimination related to Levinson or Toeplitz

recursion, 676
function,43
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process, 382
Generalized cross-correlation (GCC)

algorithms
time domain implementation, 826
frequency domain implementation, 827
function, 832

Geometric series
summation formula, 17

Gibbs phenomenon explaining
overshoot in a square wave Fourier series

representation, 4
ripple in a filter response, 62

Goertzel algorithm, 641
Good's algorithm

See fast Fourier transform
Gradient operator, 859
Gram-Schmidt orthogonalization, 889
Grating lobes, 801
Gray and Markel structures

See all-pass filters
Group delay, 302

H

Haar
function, 505
matrices, 505
rationalized, 506
transform, 504

Hadarnard or natural ordered transform, 502
Half-band filters

See finite impulse response filters
Half-power beamwidth, 801
Hermann's method, 74
Hetrodyning

See frequency shif t ing
Hilbert transform pair, 748

transformers
See finite impulse response filters

Hybrid transform, 508
Hyperbolic location systems, 790

time difference of arrival systems, 790, 79!
Loran C navigation, 792

I

Identification of FIR filters, 757
moving average MA(M) processes, 757

Impulse function
See Dirac delta function, discrete-time

impulse, Kronecker delta function
Impulse-invariant transformation, 334
Infini te impulse response ( I IR) digital filter, 289

See also digital filter, low sensitivity filters
Bessel design, 330
Butterworth design

cutoff frequency, 309
factored polynomials, 308
magnitude response, 307
pole location, 307
transfer function, 308

Chebyshev design
Chebyshev polynomials, 312
magnitude response, 314
order, 317
pole location, 315
tables of characteristic polynomials, 319

comparison with FIR filters, 289, 290
elliptic design

magnitude response, 326
transfer function, 327
pole-zero calculation, 327
equiripple magnitude response

both in passband and stopband, 324
passband, in, 311
stopband, in, 323

internal signal appearance, 388
inverse Chebyshev design

transfer function, 323
poles location, 324
zeros location, 324

limit cycles, 469
low-noise low-sensitivity design, 359
maximally flat design

magnitude response, 306
mechanized using distributed arithmetic, 967
order

Butterworth, 309
Chebyshev, 316
elliptic, 327
Inverse Chebyshev, 323

realizations, 295
cascade, 299
direct-form 1, 296
direct-form 2, 297
direct-form 2, canonic, 298, 360
parallel, 298

signal-to-noise ratio in, 378
transformations converting analog filters to

digital
bilinear, 337
impulse-invariant, 334
matched z-transform, 335

Information Kalman filters, 936
In-order and in-place

See FFT
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Inner product, 834
See also DOT product
continuous time waveform for, 834
discrete time waveform for, 834

Integer representations
See also binary numbers
Chinese remainder theorem, 571
mixed-radix integer representation, 534
Ruritanian correspondence, 567

Interpolating filters, 234
changing sample rate by a rational

fraction, 241
increasing the data rate by a given factor,

234
Interpolation, 173

See also desampling and interpolating
filters

complex-to-real data conversion, for, 177
DFT, using the, 636, 683
merging overlapped data blocks after, 687

by inverse synthesis, 691
time domain beamforming, for, 178
upsampling, 173

increasing data rate by an integer factor,
234

by a rational fraction, 241
Intersensor time delay, 800, 818

for two-sensor array, 818
Inverse problems in

See also deconvolution
speech, 777
seismic signal processing, 780

Jury's
array, 293
stability test, 293

K

Kaiser window, 68
Kalman filtering, 908

advantages of, 916
bias estimation using, 928
computer programs for, 918
divergence of, 931
examples of, 916
extended, 928
extensions of, 922
filter equations table, 915
information formulation, 936

linear estimation properties, 911
prediction and correction, 912
relationship to deconvolution, 777
shaping filters for modeling colored noise,

926
square root formulation, 935
steady state, 929
stochastic model, 908
suboptimal, 935

Karhunen-Loeve transform, 483
advantages, 484
disadvantages, 484

Kronecker
delta function, 2
product, 503, 575

Kumaresan-Tufts method for spectral
analysis, 738

Lagrange multipliers, 725
Laplace transform

definition, 24
pairs, 28, 29
properties, 26
representation of IIR filters, 307, 313, 323,

327, 330, 332
Lattice recursion, 774

algorithms for AR(N) decimination, 774
Lattice structures, 455, 770

adaptive filtering, 882
related to

Levinson or Toeplitz recursion, 772
minimum and maximum phase filters,

773
tapped cascaded to implement arbitrary

transfer functions, 457
Layered media

model for 1-D seismic deconvolution, 782
Leapfrog structure, 345
Least-mean-square (LMS)

algorithm, 866
filter model, 885
lattice algorithm, 882
modified algorithm, 874
predictor model, 882

Least-squares estimation, 814, 900
approach to time-delay estimation, 814
direct, 900
examples of, 901, 905
probabilistic interpretation of, 907
recursive, 902
time delay of, 814
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weighted, 907
Least-squares normal equations, 761

relationship to deconvolution, 761
Legendre, Adrein Marie, 899
Levinson aigorithms, extended, 777

non-Toeplitz system, 777
displacement rank, 777

Levinson or Toeplitz recursion, 766
direct form, 766
relationship to AR(N) process, 766-770
fast algorithm for Yule-Walker equation,

770
Sattice form, 770

Limit cycles, 469
granular or roundoff type, 469
overflow type, 470

limit cycle-free structure, 472
closed form for, 475

Linear array
design of, 804
beam pattern, 805

prediction in AR(N) processes, 756
system output in response to a DTRS

input, 48
Linear time-invariant system, 741

impulse response, 741, 742
Loran C navigation, 792

hyperbolic location system, 792
Lossless bounded real (LBR) filter design,

434
reduced-order remainder, 438
two-pair, 438

Lossless discrete integrator (LDI), 346
Low noise filters, 359

cascade form, 396
error spectrum shaping, 387, 399
state-space optimized designs, 402

Low sensitivity filters, 359
allpass-based structures, 444
FIR filters, 465
FIRBR filters, 465
lossless bounded real (LBR) design

approach, 434
orthogonal filters, 458
second order sections, 416
structural losslessness, 443
wave digital filters, 419

filter, 816, 817
for course angle estimation, 809, 810

z-transform, 335
Maximally flat filter response

See finite and infinite impulse response
filters

Maximum entropy, 711, 712
Maximum likelihood theory, 810

for angle estimation, 810
Maximum phase filter, 771
McClellan's transformation to convert 1-D

filters to 2-D, 113
McClellan-Parks' algorithm, 76

FORTRAN program, 152
Mean-squared

criteria, 836
relationship to cross-correlation, 836

error, 513, 756, 761, 765, 860
value of beamformer output, 822, 828

Measurement residuals, 913
Memory in a digital system, 954
Microprogramming, 959
Minimum-norm structures, 473
Minimum

delay, 750
phase, 748

filter, 136, 748
Misadjustment of adaptive filter weighting

vector, 880
Mixed-radix integer representation (MIR), 534
Mixing

See frequency shifting
Modified LMS algorithm, 874
Modified normal equations

See deconvolution
Modulo

congruence modulo an integer, 27
representation of an integer mod N, 27

Moving average (MA) systems
See also finite impulse response filters and

spectral analysis
MA(M) process, 757

Multirate filters, 173
See also desampling, interpolating filters,

and interpolation
Multisensor linear array, 803
Multipath impulse response, 745

M

Main response axis (MRA), 800
Markov-1 model, 510
Matched

N

Narrowband signals, 838
Narrowband-to-baseband translation, 839

relationship to
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Narrowband-to-baseband translation (cont.)
complex analytic signal, 839
mixing, 839

Natural order (NO), 535
Nested operations

See fast Fourier transform
Noise

due to quantizing digital words, 591
transfer function, 371, 407

Noise-canceler adaptive filter configuration,
864

Noisy gradient in adaptive filter design, 868
Nonminimum phase systems, 748, 763
Non-orthogonal coordinates, 560
No-pass phenomenon in adaptive filters, 880
Norm

L2, 375
Lp, 375
of a matrix, 473

Normal form digital filters, 473
Normalized frequency, 9, 60
Normalized structures, 378, 455
Number representations, 361, 947

See also binary numbers, integer
representations

Nyquist theorem/rate, 209

DTFT, 13, 21
Passband, 59

attenuation, 305
edge frequency, 302

Picket fence
See scallop/loss

Passive localization, 819
with three-sensor array, 819

Passive sonar, 744, 790
Periodogram, 722, 733, 734
Pole stabilization, 294
Pole-crowding, 413
Poles of a function, 17
Polynomial transforms

See fast Fourier transform
Polyphase filter, 180, 217, 250
Power spectral density (PSD), 50, 701, 749

convergence conditions, 50
cross-power spectral density, 50
properties, 52

Phase modulation, 799
Phased-array radar, 806
Predictor

approximation, 348
configuration for adaptive filtering, 860

Prime factor algorithm
See fast Fourier transform

Omnidirectional sensor, 794
for active case, 794

Operations per output point, 214, 225, 239,
673, 681

Or gate
See gates

Orthogonal
Complex exponential functions, 2
discrete-time random functions, 48
filters, 458

Orthogonality principle, 861, 911, 913
Outer product, 859
Overdetermined equation modeling, 714
Overflow, 374, 382
Overlap processing, 214, 638, 646, 651, 665,

677, 679, 687

Parallel realization of an IIR filter, 298
Partial sum filters, 179, 250
Parseval's theorem

DFX 37

Q

Quadratic sections, 299, 300
Quadratic component, 839

relationship to complex analytic signal, 839
Quadratic mirror filters, 73, 228, 233, 244
Quantization

of binary numbers, 366, 591
magnitude-truncation, 368
rounding, 368
truncation, 367

of filter coefficients, 202, 359
of internal signals, 359

R

Radar system, 790, 837
Radii of convergence

See z-transform
Rapid transform, 507
Random variables

binomial distributed, 42
definition, 41
Gaussian distributed, 42
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Rate distortion and maximum reducible bits,
514

Rate distribution function, 515
Rational spectral models, 702
Receive beamformer, 808

linear array, 812
Recursive cyclotomic factorization algorithm

(RCFA)
See fast Fourier transform

Recursive least squares (RLS) algorithm, 889,
899

See also Kalman filtering and least squares
estimation

Reflection coefficients, 775
relationship to lattice filters, 775
acoustic tube model, 779
seismic model, 782

Region of convergence
See z-transform

Remez exchange procedure, 79
Residual

correlation, 512
time series, 713

Ridge regression, 762
Ripple factor, 302
Ruritanian correspondence (RC) integer

representation, 567

Sample variance, 775
prediction error

backward, 775
forward, 775

Sampling frequency, 6
See also desampling, interpolation
changed by a rational fraction, 173
increased by an integer factor, 13, 21, 37, 173
reduced by an integer factor, 13, 121, 173

Scallop loss, 257, 648, 684
Scaling, 373

conservative scaling, 376
L2, 375, 407
Lp, 375
state space structures, 408
transfer function, 374, 407
types of policies for, 376

Seismic
deconvolution algorithm, 783

for layers of unequal traveltime, 783
detectors, 789
model, 781

one-dimensional, 781
layered-medium, 782

signal processing, 780
relationship to deconvolution, 780

waves, 743
Selectivity parameter, 309
Sensitivity measures for filter design, 414
Sensor shading factors, 807
Sequential regression (SER) algorithms, 889
Serial-to-parallel multipliers, 956
Shaping filters for modeling colored noise in

Kalman filtering, 926
Sidelobes of sensor arrays, 804, 806
Signal-to-noise ratio (SNR)

adaptive filter, in an, 878
deconvolution, impact on, 762
digital filter structures, in, 395
FFTs, in, 588

due to roundoff errors, 591
filter output, at, 372
matched filter, relationship to, 817
roundoff noise in an IIR filter, due to, 378
time delay estimation, impact on, 795, 844
Wiener filter design, in, 514

Simultaneous transforms, 675, 680
Sinusoidal detection, 588, 716
Singular value decomposition in ARMA

modeling, 726-731
Slant transform, 506
Sparse matrices, 530
Spatial filter, 793, 794, 797, 800, 804

beam pattern, 793, 796, 797, 800
Spectral analysis, 701

autoregressive (AR) model, 703, 705, 710,
718, 723, 737

overdetermined equation modeling, 714
parameter vector, 710, 714

autoregressive moving average (ARMA)
model, 703, 706, 712, 720, 724, 737

Blackman-Tukey method, 705, 721
Box-Jenkins maximum-likelihood ARMA

method, 731
Burg autoregressive model, 706
DFT and FFT, use of, 701, 722
fractional octave, 175, 210

system with AGC, 588
moving average (MA) models, 702, 709,

717, 721, 733
periodogram approach, 722, 733

Spectral aliasing
cause of, 6
description of, 211
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Spectral aliasing (cont.)
elimination using complex narrowband

filtering, 223
resampling after single and two-stage, due

to, 216
Spectral

balancing, 763
leakage, 39, 644
transformations

lowpass to bandpass, 343
lowpass to bandstop, 344
lowpass to highpass, 343
lowpass to lowpass, 343

transformations (in situ)
lowpass to highpass, 349
lowpass to bandpass, 349

Speech
generation, 742
glottis, 741
vocal tract, 741
signal processing relationship to

deconvolution, 777
Square root Kalman filters, 935
Stability, 291, 748

converting poles outside the unit circle to
inside, by, 294

tests, 292
State space structures for low-noise filters, 402

analysis, 404
complexity of, 405
impulse response, 404
K and W matrices, 407
minimum noise, 409
roundoff noise, 406
similarity transforms, 405

Stationary sequences
See discrete-time random sequence

Steady state Kalman filter, 929
Steepest-descent adaptive filter design

technique, 866
Stopband, 60, 302

attenuation, 60, 305
edge frequency, 60, 302

Structural boundedness, 435, 443
losslessness and passivity, 443, 448

Subband coding, 143
Switching circuits, 943
Synchronous noise, 697
System

identification, 746
AR(N), 756
ARMA(M,N), 758
MA(M), 757

transfer function, 746

impulse response, 746
rational function, 746

Tempered scale, 176
Three-sensor array, 831

time delay estimation algorithm
optimal, 831
suboptimal, 832

Three-sensor linear array, 819
Time delay estimation, 789

active sensors, for, 793, 811
algorithm performance, of, 844
omnidirectional array of, 813
omnidirectional single, 793, 795, 798
omnidirectional, two, 798

algorithms, 824, 831, 837, 844
FFT implementation, 837
numerical example, 848
performance of active sensor, 844
performance of passive sensor, 845
three-sensor array, 831
two-sensor array, 822, 824

correlators, using, 816
least squares, 814-816
linear time-invariant filter, 823, 826
passive sensor for, 818

two-sensor array, 818
three-sensor array, 819

Toeplitz matrix, 510
Total least squares, 762
Transfer function, 24, 56, 290, 291
Transform pair

discrete-time Fourier transform, 8
Transition bandwidth, 59, 181, 182, 209
Transmit beam former, 808

linear array, for, 812
Transmitted pulse, 797

narrowband signal, 800
Transmultiplex, 636
Travel time difference, 799, 800
Truth table, 944
Twiddle factor, 537, 544

in nonorthogonal coordinates, 560
Two-dimensional FIR filters, 112
Two pairs, 437

constrained, 436
Two-sensor linear array, 798, 799, 818

bearing estimation, 819
design of active array, 801
passive time delay estimation, 818
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Unit circle, 16
Upsampling

See interpolation

W

Walsh-Hadamard function, 501
Walsh-Hadamard transform

cal-sal ordered, 500
Hadamard or natural ordered, 502
Paley or dyadic ordered, 503

Warping phenomena using bilinear
z-transform, 338

Wave digital filters, 419
Weighted DFT input, 39, 40
Whitening filters, 757

and AR(N) deconvolution, 757
lattice filters, 774
computer program, 787

Wide-sense stationary
See also discrete-time random sequence
definition, 45
error sequences in filters, 371
sequences in spectral estimation, 701

Widrow-Hoff algorithm, 866
Wiener filtering, 513, 860
Wiener transfer function, 513
Wiener-Hopf equation, 765
Windowed DFT output, 40
Windows, 39, 61, 203, 253, 704

Blackman, 66
Blackman-Harris, 264, 286, 655, 688, 690
Dolph-Chebyshev, 278, 286, 975
Hamming, 66, 262
Hann, 66, 259

Kaiser, 68
Kaiser-Bessel, 264, 280, 286, 688
rectangular, 61, 66
Taylor, 279, 286, 655
triangular, 63

Window folding, 652, 655, 658
Winograd Fourier transform algorithm

(WFTA), 576
Winograd small-N DFTs

See discrete Fourier transform

Yuke-Walker equations, 708, 714, 756
extended, high-order, or modified, 759

Zero extending data sequences, 637, 684
Zero packing data sequences, 237, 636, 687,

689
Zero-padding, 841

for cross-correlation by means of FFT, 841
Zoom transform, 174
z-transform

definition of 1-D, 16
inverse 1-D, 18
properties, 20, 21
radii of convergence, 16
region of convergence, 16
right- and left-sided sequence pairs, 20
right-sided sequence pairs, 28, 29
two-dimensional, 23

Zeros of a function, 17
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