NEC

User’s Manual

RA75X ASSEMBLER PACKAGE

PC-9800 Series (MS-DOS™) Based
IBM PC/AT™ (PC DOS™) Based
Version 5.xx Operation

Target Devices
75X Series
75XL Series

Document No. U12622EJ6VOUMJ1 (6th edition)
(Previous No. EEU-1346)
Date Published January 2001 N CP(K)

© NEC Corporation 1990
Printed in Japan

[MEMO]

FIP is a trademark of NEC Corporation.

EEPROM and V30 are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machine Corporation.

Pentium is a trademark of Intel Corporation.

The information in this document is current as of September, 1997. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific'". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).
MSE 00.4

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

» Device availability
« Ordering information

« Product release schedule

« Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

» Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Madrid Office

Madrid, Spain

Tel: 91-504-2787

Fax: 91-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore

Tel: 65-253-8311

Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP Brasil

Tel: 55-11-6462-6810
Fax: 55-11-6462-6829

J00.7

Major Revisions in This Edition

Page Description

General RA75X Assembler Package Version 4.5X changed to Version 5.XX

General Programs included in the RA75X Assembler Package were changed.
* A macro function added to the assembler program. Accordingly, the macro processor was eliminated.
e A library converter program was added.

General Target devices were added:
uPD750064, 750066, 750068, 75P0076, 750104, 750106, 750108, 75P0116, 753012A, 753016A, 753017A,
75P3018A, 753036, 75P3036, 753204, 753206, 753208, 75P3216, 753304N°te, 754202, 754144, 754244,
754264, 75F4264N°te, 754302, 754304, 75P4308

General Development of target devices which were under development was completed.
uPD750004, 750006, 750008, 75P0016, 753012, 753016, 753017, 75P3018, 753104, 753106, 753108,
75P3116

p.36 1.2.8 Library converter was added.

p.38 1.3.4 Other limitation items was added.

p.44 Table 2-2 List of Host Machine Applicable Models (PC-9800 Series) was changed.

p.46 Applicable OS were added and versions have been changed:
2.2.1 (2) PC-9800 series OS
2.2.2 (2) 1BM PC/AT OS

p.46 Assembler Package 5 inch FD was eliminated.
2.2.1 (3) and 2.2.2 (3) Assembler package supply media

p.48 3.1.1 Assembler package installation procedure was changed.

p.94, 102- Assembler option types were added:

197, 117 4.4.4 (6) -GA/-NGA, (11) -CA/-NCA, (12) -S/-NS, (13) -D/-ND, (19) -Y

p.180 A linker option type was added:
5.4.4 (15) -Y

p.194, 197- | Object Converter option types was added:

200 6.4.4 (2) -R/-NR, (4) -O/-NO, (5) -E/-NE, (6) -F, (7) -Y

p.249-251 List Converter option types was added:
8.4.2 (3) -R, (4) -E/-NE, (5) -F

p.253 CHAPTER 9 LIBRARY CONVERTER was added.

p.259 CHAPTER 10 OPTION SETTINGS FROM PROJECT MANAGER was added.

p.273 11.1.1 Assembly list was changed.

p.322 13.6 Library Converter Error Messages was added.

p.327 A.6 List of Library Converter Options was added.

Note Under development

The mark * shows major revised points.

[MEMO]

PREFACE

The purpose of this manual is to give users a clear understanding of the function and operation method of each of the
programs comprising the RA75X Assembler Package (referred to in the text simply as “assembler package”).

This manual does not cover source program writing: the RA75X Assembler Package User’s Manual — Language
(Document No. U12385E, referred to in the text simply as “language”) should therefore be read this manual.

This manual applies to assembler package version 5.XX products.

Structured Assembler Program |

Assembler Program |

Linker Program |

RA75X Assembler Package Object Converter Program |

Librarian Program |

List Converter Program |

Library Converter Program |

[Readers]

This manual is intended for users who are familiar with the functions of and method of writing source programs for the
microcomputer (75X series and 75XL series) subject to development.

[Target devices]

The assembler package can be used for software development on the microcomputers shown below (75X Series).

<75X Series>

Series

Title

Target Devices

Evaluation chip

uPD75000, 75000A

General-purpose series

General purpose

uPD75004, 75006, 75008, 75P008

General purpose, + A/D converter

uPD75028, 75036, 75P036, 75064, PD75066, 75068,
75P068

General purpose + A/D converter +
EEPROM™

uPD75048, 75P048

Control series

Control

uPD75104, 75106, 75108, 75112, 75116, 75104A,
uPD75108A, 75P108, 75P108B,75P116

Low-voltage high-speed control

uPD75108F, 75112F, 75116F

F product + low voltage capability

uPD75116H, 75117H, 75P117H

FIP drive series

FIP™ drive

uPD75206, 75208, 75212A, 75216A, 75217, 75218,
uPD75P216A, 75P218, 75268, 75CG208, 75CG216A

FIP drive + A/D converter

uPD75236, 75237, 75238, 75P238

LCD drive series

LCD drive

uPD75304, 75306, 75308, 75304B, 75306B, 75308B,
uPD75312, 75316, PD75312B, 75316B, 75P308,
uPD75P316, 75P316A, 75P316B

LCD drive + A/D converter

uPD75238, 75P328

LCD drive + A/D converter +
high-level functions

uPD75336, 75P336

Slave series

uPD75402A, 75P402

Control (on-chip A/D
converter) series

Control (on-chip A/D converter)

uPD75512, 75516, 75P516

Control (on-chip A/D converter) +
high speed

uPD75517, 75518, 75P518

Telephone series

LCD drive + DTMF + D/A converter

uPD75352A

LCD drive + DTMF + D/A converter
+ A/D converter

LPD75617A

<75XL Series>

Series Title Target Devices

General-purpose series General purpose uPD750004, 750006, 750008, 75P0016

General purpose, + RC oscillator uPD750104, 750106, 750108, 75P0116
circuit

General purpose, + A/D converter uPD750064, 750066, 750068, 75P0076

LCD drive series LCD drive uPD753012, 753012A, 753106, 753016A, 753017,
753017A, 75P3018, 75P3018A
LCD drive + A/D converter uPD753036, 75P3036
For driving a LCD (small) uPD753104, 753106, 753108, 75P3116

uPD753204, 753206, 753208, 75P3216

LCD drive + RC oscillator circuit UPD753304Note
(small)
Keyless entry uPD754202
uPD754144, 754244, 754264
UPD75F4264Nete
General purpose small uPD74302, 754304, 75P4308

[Organization]
The configuration of this manual is shown below.

CHAPTER 1. GENERAL DESCRIPTION
Describes the role of the assembler package in microcomputer development, etc., together with a general outline of
its functions.

CHAPTER 2. PRODUCT SUMMARY
Gives the file names of the programs provided in the assembler package, and describes the program operating
environment, etc.

CHAPTER 3. ASSEMBLER PACKAGE EXECUTION
Describes the actual execution procedure for each of the programs in the assembler package, using sample pro-
grams .

CHAPTER 4. ASSEMBLER, CHAPTER 5 LINKER, CHAPTER 6 OBJECT CONVERTER, CHAPTER 7
LIBRARIAN

CHAPTER 8. LIST CONVERTER, CHAPTER 9 LIBRARY CONVERTER

Explain in detail the functions of each program in the assembler package (assembiler, linker, object converter, librar-

ian, list converter, library converter) and how to run them.

CHAPTER 10. SETTING OPTIONS FROM THE PROJECT MANAGER
Explains setting of options from the Project Manager, used when running the Assembler Package in Windows™.

CHAPTER 11. PROGRAM OUTPUT LISTS
Describes the format of the various lists output by the assembler package programs.

CHAPTER 12. EFFECTIVE USE OF THE ASSEMBLER PACKAGE
Introduces way of using the assembler package effectively.

CHAPTER 13. ERROR MESSAGES
Describes the error messages output by the assembler package programs.

APPENDIX
The appendices include a list of program options, sample program list, maximum performance table, and list of points
for attention.

[Reading the manual]

Readers wishing to actually use the assembler package should read Chapter 3 “Assembler Package Execution”.
Readers who have a general understanding of assemblers of who have already read the RA75X Assembler Pack-
age User’s Manual Language Volume can skip Chapter 1.

Appendix A “List of Options™ can be used once the reader is familiar with the operation of each program.

[Legend]

The meanings of symbols and abbreviations used throughout this manual are shown below.

: Continuation of same format
: Item in square brackets may be omitted

-,_,_
. —

)

: Actual characters enclosed in

“« » 7]

: Actual characters enclosed in

Characters in heavy type: The characters themselves

10

— :Important item (Underlining in examples indicates input characters)
— : One or more spaces
: Abbreviated form of program description
{) :Actual characters enclosed in ()
/ : Delimiter symbol
CR : Carriage Return
LF :Line Feed
: Line feed key input
@-A:Frometo A

[File Name Rules]

(1) Disk type file specification

[Drive name:] [\] [directory name\] primary name [.file type]

Specifies name of drive containing file. If omitted, the current drive is assumed to be specified.

Max. 3 characters
Max. 8 characters
Specifies name of directory containing file. If omitted, the current directory is
assumed to be specified.

Remarks 1. Spaces cannot be specified before or after ', *.’, and V.
2. No distinction is made between upper- and lower-case characters.
3. If the file type is omitted, the following default values are used for each type of file.

File Default
File Type

Source program file .ASM
Object module file .REL
Load module file .LNK
HEX format object file .HEX
Assemble list file .PRN
Link map file .MAP
Symbol table file .SYM
Error list file .ERA
Library file .LIB
Library Converter Output Library File| .CNV
Library list file .LST
Absolute assembly list file P
Assembler parameters file .PRA
Linker parameter file .PLK

4. When a file without a file type is specified, ‘file name.’

Example:

B>RA75X ABC ; In this time, the file name is interpreted ‘ABC.ASM’.
B>RA75X ABC.; In this time, the file name is interpreted ‘ABC’.

5. Not only an absolute path Nete 1 put also a relative path N°t¢ 2 can be used in the directory name.

Notes 1.

Using the root directory (‘\') as the starting point

Example: | \YBIN\75X’, etc.

Using the current directory or parent directory (‘. .’) as the starting point

Example: | ‘SRC\HDR’, ‘.. \DOC\75X’, etc.

6. Directories are not supported for libraries.

11

(2) Device type file specification
The following can be specified as logical devices .

CON ... Console (output: CRT, input : Keyboard)
PRN ... Line printer (output only)

AUX ... RS-232-C

NUL ... Null device

However, in some cases these cannot be specified or a meaningless result is obtained if specified. This is
explained in the text.

Remark A ‘CLOCK’ device cannot be specified.
[Related documents]

Documentation related to this manual is shown below.

Document Title Document No.
RA75X Assembler Package User's Manual Version 4.5X - Language Volume U12385E
RA75X Structured Assembler Preprocessor User’'s Manual U12598E
RA75X Structured Assembler Preprocessor EEA-1203

12

CONTENTS

CHAPTER 1. GENERAL DESCRIPTIONooiiiiicieriessscerrrssssserrssssmsesssssssmssssssssnmessesssanmsssssssmnsseas
1.1 OUutline Of ASSEMDIEKcoiiiieiriir i an s e an s e sann e amn e nnmn s
1.1.1 The function of an aSSEMDIETcoiiiiiiii e

1.1.2 Function of a relocatable assembIer............cooiiii e

1.2 Outline of Assembler Package FUNCHIONScccuciimiicmmnniininsmsnsss s ssses s e
1.2.1 Source module file creation USING €dItOrooiiiiiiiiiii e

1.2.2 Structured assembIer PrePrOCESSOLicuiiiiiritieiiieiee it siee sttt e et e e e nneeans

T.2.3 ASSEIMDIET ..

1204 LINKEI e

1.2.5 ODJECE CONVEIET ...ttt ettt ettt ae et nbe e saneesaeeeneennnean

1.2.6 LI o] = = o P OP RPNt

1.2.7 LISTCONVEIMEY ..o s s

1.2.8 LiDrary CONVEMEToi ettt e e e nne e e

1.3 Before Beginning Program Development........c.ccoccermninmmmrmmnnssssmmmnssssssnsssssss s ssssssssssnnns
1.3.1 Assembly-time source StatemMeNtSoooiiiiiiii e

1.3.2 Limitation on number of SYMDOIScoooiiiii e

1.3.3 Limitations on number of SEgMENTScooiiii i

1.3.4 Other IMItAtIONSooiiiiiiie e e

1.3.5 Number of linker branch tablescooiii e

1.3.6 Caution on hOMONYMOUS SEGMENTSeiiiiiiiiiiiieiiie ettt ettt ettt eneenneeaa

1.4 Assembler Package Featurescccouiiinirsmmmmmmmsnsmnsinssssssssssss s s ssssmms s s s e
1.5 Cautions on 75XL Series Development ... s ssssssssssss s

CHAPTER 2. PRODUCT SUMMARY

P28 T o o Yo 18 T 02T 41 (=Y o |
2.2 Host Machine Models and Operating SyStemsccccciiimiissminns s
2.2.1 PC-9800 SEIES ...cuveeeeietieeite ettt ettt ettt ettt b et b et

222 12 I O SRR
CHAPTER 3. ASSEMBLER PACKAGE EXECUTIONcccooctmmimmnernrminssssssssssssssssssssssssssssssssssnnnss
3.1 Before Running Assembler Packageccoocmrmnnismmrmnnnsmmssmnsmss s s s sassses
3.1.1 Assembler package installation ProCedUIecceviiiiiiiiiic i

T P~ B T L gl o1 (=Y o (e o = g = T P SUPTPPP

3.2 Assembler Package Execution ProCedureccceecmermnsimmmrmmnssmsssmssssssssssssssssssssssnsssns
3.2.1 Assembler, Linker, ObjeCt CONVEIETcuuieiiiiieiieeeiiee e e e

3.2.2 LIDrarianeoee e

3.23 [A oo V=T (= PRSI

3.3 Summary of Assembler Package Execution Procedurecccccmiiismmmismnrssmssnssnnsnnans

CHAPTER 4. ASSEMBLER

4.1
4.2
4.3

Assembler INput/Output Filescocoomiiiiiiiiimnicsr s

Assembler Functions
Assembler Start Method

4.3.1

Starting the assembler

19
20
21
25
27
29
30
31
32
33
34
35
36
37
37
37
37
38
38
38
38
39

40
4
44
44
46

47
48
48
62
63
63
66
67
68

69
70
72
73
73

13

CHAPTER 5. LINKER

4.4

4.3.2
4.3.3
4.3.4

Assembler Options

441
4.4.2
4.4.3
444

Execution start and end MESSAGESccuuviiiiiiiiiiii e
Assembler error NANAINGc.vviie e

Assembler termination STAtUSoovvvieeiee e

Types of assembler OPHIONSoii i e e

Assembler options specification Methodoooeiiiiiii e
Assembler optioNS PriOrity OFENc..viiiiiiiee e
Description of assembler OptioNScc.oii i

5.1 Linker INput/OUtput Filescccciiiioiiniiriicmr s s s sssms s s smns s
5.2 LinKer FUNCUIONSoiiiceiiriiiisss s rinssss s s s s sms s s e mms s e amms s s s smmnn e nnnnes
5.2.1 Linkage of object modules in iNPUE fIlESc.eeiiiiiiiii e

5.2.2 Determination of segment location addressccccooieeeiiiiieniiec e

5.2.3 Resolution of relocatable object COAEcoviiiiiiiiii e

5.2.4 Automatic branch table creationccccoiiiiiiii s

5.3 Linker Start Method ... s s s s s s e
5.3.1 StArtiNG the INKEE ... et

5.3.2 Execution start and end MESSAGESccuuviiiiiiiiiiiiee et

5.3.3 LinKer error NANAIINGcveeooieeeee et

534 Linker termination StatUSooceiiiiiiii e e

5.4 LINKEr OPtiONSciiiiiiiiiiissmeeimniniiissssssssssssssmsssssssssesssssssssssssmssssssssssssssssssssnsnmnsnnssnssessansssssnnn
541 Types Of INKEI OPIONSveeieiee e e

542 Linker option specification Methodoociiiiiii e

54.3 Linker option PriOFity OFAEooi ittt eee s

54.4 Description of INKEr OPHIONScoiiiiii e
CHAPTER 6. OBJECT CONVERTER......ccccttiiinmrrinnsssnssissssssssnssssss s ssssssssssssssssssssssssssssssnnssasssssnnss
6.1 Object Converter Input/Output Filescccriiemiiiicimiisincr e
6.2 Object Converter FUNCLIONS.......ccccciiiimiiinri s sssss s s s s s s s e
6.2.1 HEX format object module file formatcooooiiiiiiiiiie e

6.2.2 Symbol table file fOrMatc.ooiiiiiieee s

6.3 Object Converter Initiation Method ..o
6.3.1 Starting the 0DJECE CONVEIEToiiiiieei e

6.3.2 Execution start and end MESSAGESuviiiuiiiiiiiieeiie e e

6.3.3 Object converter error NaNAliNGcoceeeueeiiieiie e e

6.3.4 Object converter termination STAtUScoocuiiiiii i

6.4 Object Converter OPtioNSccccccimiiismmissrinsnr s s an s san e s sann s nns
6.4.1 Types of object CONVErter OPLIONSeeiiiiiiiiii e e

6.4.2 Object converter option specification Methodc.cooviiiiiiiiiiie e

6.4.3 Object converter option Priority OFAErceoiiiiiiiiiiiiee e

6.4.4 Description of object converter OPtioNScoovieiiciii i

CHAPTER 7. LIBRARIAN

14

71
7.2

Librarian INput/Output Filesccciirmiiininimsincsnnsssssess s ssssss s s ssms s sms s smssnssnns

Librarian Functions

7.21
722

1Y/ oTo [V L= [1 o] ¢=Tg V= L (o] o IR

Library file editing

*

*

7.2.3 Printing of library file infOrmation ...

7.3 Librarian Start Method..........ccociiiiiiir s s s
7.3.1 Starting the IDrarian ..o e

7.3.2 Subcommand input in conversational MOUEuuiiiiiiiiiiiie e

7.3.3 SUDCOMMANG fil€ ...ttt

7.3.4 Execution start and end MESSAGESvviiiuriiiiiiiiiee e e

7.3.5 [= 1 (= o] 1[0 o IR PRPUTUTR N

7.4 Description of SUDCOMMANSccciiiemiiiimriiimriins s annnnns
CHAPTER 8. LIST CONVERTERccttiiiietmriminsmnnsmsssssnsssssssssssssssssss s ssssssssssssssssssssnssssmssssnsssnnnnnnas
8.1 List Converter INpUt/OUtPUL Filesccceiiiommriinininmissrses s s s s s ssmn s
8.2 List Converter FUNCHIONSccciiicmmiiiin i es s sss s s s s s s s
8.2.1 Incorporation of 10CatioN AAAIESSESc..uviiiie i

8.2.2 Incorporation Of ODJECT COUEoiiriiiiiiii e

8.2.3 List converter processing Methodcoociiiiiiiiiiieee e e

8.2.4 Points to note when using the list CONVErter ...

8.3 List Converter Start Method.........cccciiiiimiiniiren s
8.3.1 List starting the list CONVEIErvii i

8.3.2 Execution start and end MESSAGESccuuviiiiiiiiiiiiee et

8.3.3 List converter error NAanliNGccooieeiiiiiiiiee e

8.3.4 List converter termination StatUScoociiiiiiii e

8.4 List Converter OPtiONSccccciiiiiiiiiiiissssssmmneennrsssesssssssssssssmsssssssssssssssssssnsssmssssssessesssnsssnnnnn
8.4.1 Types of list CONVErter OPLIONSeiiiiiii e

8.4.2 List conVerter OPHIONScooiiiiiie e
CHAPTER 9 LIBRARY CONVERTERiiieiceriessmcerrsssssceeressssme s ssssssmme s nsssssmme s sessssmssnessssnmnnnes
9.1 Library Converter Input/Output Filescceemiiiiiminscniniiinnsssn s sssess s
9.2 Library Converter FUNCLIONSccccciicemmemmminriinissssssssssmssesssn s ssssssssssssssmssssssssssessnssnnssnsnnas
9.3 Starting the Library CONVErter ... s s s ssssssssssss s sssssssssnns
9.3.1 Starting the lIbrary CONVEIETo...i i

9.3.2 Execution start and end MESSAJEcoouuiiiiiiiiiiei et

9.3.3 Library converter €rror ProCESSINGueeerurririrreerreeeeatreeeereee e sare e snr e e e e s s e snneesnnneens

9.3.4 Library converter €nd STAtUSccooiiiiiiiieiiee e

9.4 Library Converter OPtiONScccciiirrcmmmmmmmmmirississssssssmsssssssssesssssssssssssmssssssssssesssssssssnsnnmnnns
9.4.1 Types of library converter OPtONoooiio i e

9.4.2 Specifying the library converter OPtioNcoccoiiiiiieiii i

9.4.3 Priority order of library COnverter OPtioNSc.uiiiiiiiiiie e

9.4.4 Library converter option explanationccccoiiieiiiieiiiee e
CHAPTER 10 SETTING OPTIONS FROM THE PROJECT MANAGERccccoecmmrminnmmnrmnnssnnnnnnnnnas
10.1 Setting Options from the Project Managercccocumurmrsssmsisssmsmssnssisssssssssssssmsssssnssans
T0.1.1 ASSEIMDIET .. et

T0.1.2 LINKEI e

L IR B O o 1=Ye oo 10 V7= Ty (=Y OO PTOP U PRRPRUROTI
CHAPTER 11 PROGRAM OUTPUT LISTS.....cciicsmrirnnsnmnrmnissssssmssssssssssssssssssssssssssssssssssnsssssssssnssnas
11.1 Assembler Output LiStScccuciiiiiiiminininsnnms s s s s s e
T1.11 ASSEMDIY LIS ..

15

11.1.2 SymbDOl D16 [ISTeiiiiieeeeee e 275

B T TG T O o o =Y £ T o [PR 276

B T B =t o) [SRR 277

11.2 Linker Output LisStcoiiiiiiiiiimeccmimnniisissssssssssssssmsss s s s s sesssss s sssssmssss s s sssesssssssssnsnnmssnsssnsses 278
11.2.1 LINKer OPioN TStoei e e 278

11.2.2 Input - outpUt MOAUIE lIST ..o e 279

11.2.3 Segment iNK Map lISt ..o e 280

11.2.4 Branch table Map liStceoo oo 281

11.2.5 Public symbol list, symbol table ISt ... 282

11.3 Librarian Output Listcccccciemmmimmiiiiiisisssssssssssssns s rsssssssssssssssssssssssssssssssssssssmsssnsssnsssnssas 283
11.3.1 Library file information liSt ..o 283

11.4 List Converter Output List ..o s s e 284
11.4.1 Absolute asSembBIY liStoooi e 284
CHAPTER 12 EFFECTIVE USE OF THE ASSEMBLER PACKAGEcccoursmminmmmnmssisnsnssensssns 287
12.1 How to Utilize Parameter File........cccucermmiininsmmiiniimss s snssssss s s ssssssss s ssssssssssenns 288
12.2 Use of the LiSt CONVEITErieieceeieercre s ensmse s e e e s s e s e s s s e s sms s s enssmnn s neas 289
12.3 Finding Error LiNeScouuceeermiisssrmnnssssrrnsssss s ssssssss s snssssss s s ssssssssssssssssss s ssssssmsssensssnmsnnnas 290
12.4 Example of Use of BatCh File......ccccciiiiiiiiiiiiiieeccmrennninisssssssssssssmssss s ses s ssssmmssss s sns s 291
CHAPTER 13 ERROR MESSAGESccccocteirirmmerresssmrerssssssmessssssssmssssssssmsessssssmssssssssnmsssessssnmsnsans 293
13.1 Assembler’s Error MeSSages.......ccccuriruiiisirssnmmmmmssnrrnssssssssssssssssss s ssssssssssmsssssss s s nnssnnsnas 294
13.2 Linker’'s Error MESSAQEScrruururrrrmmssssmermmssssssermssssnsssmassssssssssssssssssssssssssssnsssnsssssssssnsessnnss 306
13.3 Object Converter Error MeSSageccucerririmmrssussissmsmsssnssssmsssssmsssssssssssssssssssssssasssssnsssas 313
13.4 Librarian Error MeSSAQES......cuuuummrimiissmmrrmmsssnssissnssssssssnsnssnnss 317
13.5 List Converter Error MeSSAQEScuuuuururmrrissummsssmsssssnsssssanssssssssssnsssssssssssnsssssnsssssnnssssnnsss 321
13.6 Library Converter Error ME@SSaQgescccuurmmrrrsnrsssnsmsssmssssssssssssnsssssssssssnsssssnsssssnsssssnsssns 322
APPENDIX A. LIST OF OPTIONSooiiiiccecmrrirssmmerressssmse s sssssmmesssssssmss s sssssmmsssssssnmsssesssanmessesssnmnnnnes 323
A.1 List of Assembler OptioNSccccccoiiiimminismnnicr s s 324
A.2 List Of LINKEr OPLiONScccemiiiiiiiiiiiiiissssmmsnnnssnsssssssssssssssmmsssssesssssssssssssnnssnssssssssssssssssssnnnnnns 325
A.3 List of Object Converter OPIONSccccceimiiniinmminsrns s s s sans 326
A.4 List of Librarian SUDCOMMANGSc.coeceeiiriiimerrrssme e e ssmns s essssms e s smme e e s s e s eessnmmnes 326
A.5 List of Converter OPtioNS........ccciiiiiiirsmmmmmmmminiisisssssssssssmssssssssssssssssssssssssssssseessssssssssssnnnnes 327
A.6 List of Librarian Converter Optionsccccucimmiimminsmmmissssss s s s ssssssssssnes 327
APPENDIX B MAXIMUM CAPABILITIESccoiiiiimrriiinmnnsinsmssssssssmss s ssmss s ssssssmss s sssssmsssssssssssssnas 329
APPENDIX C POINT FOR ATTENTIONciiiiccerrrrsmmenssssmmse s sssssmme s sssssmme s s sesssmms s ssnssmmnssessssmmnnnens 331
APPENDIX D SAMPLE PROGRADMSooeriiirmmerresssmmerssssssmssssssssmmssssssssmmsssssssnmsssesssanmessesssnnnnnes 333
[0 20 = T T U o= - 334

D.2 EXecution EXamMPIESccccciiirissmmmmmmmmirissssssssssssmmssssssmsssssssssssssmssssssnsssssssssssssnnsmmssnsssnssnsssss 337

[2 T @ ¥ o 10 1 0= 339
APPENDIX E INDEXccoecttiisssmssrissssnnsssssssmsssissssnssssasssssss s sassssssssssssssssssasssnssssnsssnnnnssssssnnnnssnsssnnnnnnns 363
e T 15 T (= 363

16

%

bR D D I T P o

LIST OF FIGURES

Figure No. Title Page
1-1 RA75X ASSEMDIEr PACKAGEccciiiiiiiiiiieiieee et 20
1-2 ASSEMDBIET FIOW ...t e e e ettt e e e e et e e e e e s ntae e e e e e anneneaeean 22
1-3 Development Process for Products Using MiCroCOMPULErSccovvriieeinieeeiiieeeeee e 23
1-4 Software DevelopMENT PrOCESScuuiiiiiiiiiiiiee et e s ettt e e et e e e s e s rae e e e e e saraeeeaeennnes 24
1-5 Assembly Process of this Packagecoccviiiiiiiiiiic e 25
1-6 ReaSSEMDIY PrOCESSoiiiiiie it 27
1-7 Program Creation Using Previously Written Modulescceeeiiiiiiiiiiiiiecee e 28
1-8 Program Development Procedure Using Assembler Packageccccoevvvcveeenienncnnennee, 29
1-9 Source Module File Creation ...t 30
1-10 Structured Assembler Preprocessor FUNCHONSoviiiiiiiiie e 31
1-11 ASSEMDBIET FUNCHION ...t et e e e et e e e e e eneeeeeeean 32
1-12 [0 A=Y gl T oz 1T o IR URURRR 33
1-13 Object Converter FUNCHIONccuiiiiii it a e e nnraee s 34
1-14 [o] =g =T o TN U Vo (o] o IR SRTPRR 35
1-15 [Ty QO o] a1V =T (= LT o i o] o TSR 36
1-16 Library Converter FUNCHONSoiiiiiiiiiie e e 37
3-1 Sample Program CONSIIUCTIONoiiiiiiiiiie ittt 62
3-2 Assembler Package Execution ProCedure ...t 68
4-1 Assembler INPUY/OUIPUL FlESeoiuiiiiieiee s 71
5-1 Linker INPU/OULPUL FIIESc.eiiiiiiiiee et 121
6-1 Object Converter INPU/OULPUL FIlESvviieiiiiiiiee e 182
7-1 Librarian INPUY/OUIPUL FlESeiiiiiiiiiii et 202
8-1 List Converter INpUt/OULPUL FlESeiiiiiiiiiiee e 236
8-2 Example of List Converter Input/Output Filescccooiiiiiiiiiiiiieeee e 237
9-1 Library Converter INput/OUtpUt FileSooeiiiiiiiieieit e 254
10-1 Options Setting Menu (ASSEMDIET)viiiiiiiiiiie e 261
10-2 Options Setting Dialog Box (If the source file has not been selected) (Assembler) 262
10-3 Options Setting Dialog Box (If the source file has been selected) (Assembler) 262
10-4 [Source List] Dialog BOXciiiueieiiiieiiiiee ittt st 264
10-5 Source File Options Setting Dialog BOXccooitiiiiiiiiiiiiesee et 264
10-6 Options Setting MeNU (LINKET)ccueiiiiiiiieeee e 265
10-7 Options Setting Dialog BOX (LINKET) .c..uviiiiiiiiiiieeeiiee et 266
10-8 Options Setting Menu (Object CONVEMEN)ciuiiiiiiiieiie ettt 268
10-9 Options Setting Dialog Box (Object CONVEIEN)coiiiiiiiiiieiie e 268

17

>

* % % %

LIST OF TABLES

Table No. Title Page
2-1 Provided Fles (1/2) ..ot e 41
2-1 Provided FleS (2/2) ...cueiiiieieeee et 43
2-2 Host Machine Models (PC-9800 Series) (1/2) ...eeiuieiiiriieiiieiieeiee st 44
2-2 Host Machine Models (PC-9800 SErES) (2/2)cccvcuuueieeeieiiiiee et e e ea e saee e 45
3-1 Installation METhOASooiiiii e 48
4-1 Assembler INPUY/OUIPUL FlESeoiuiiiiieiee s 70
4-2 ASSEMDIET OPHONS (1/2) 1ttt 78
4-2 ASSEMDBIET OPLIONS (2/2) .vvviieiee ittt e e et e e e e s e e e e e esraeeeae s 79
4-3 Assembler OPtIONS PHOMILYooiiieiii et 81
4-4 Assemble ODbJeCt DEVICE LiSt.......c.coiiiiiiiiiiiiie et 82
5-1 Linker INPUt/OULPUL FIIESeeiiiiiiieie e e 120
5-2 Segment Relocation Attributes and Location Adjustmentcoceveieeiiiiieene e 125
5-3 Kinds Of LINKEr OPLONS ..oeiiiiiiiiiee ettt e e et e e e et e e e e s e sasaeeaesesnrneeeaesnnnes 144
6-1 Object Converter INPUt/OULPUL FlESooeiiiiiiii i 182
6-2 Object Converter OPtION TYPESueeiiiiieiiiee ittt e saae e e abeeeeae 191
7-1 Librarian INPUY/OUIPUL FlESeiiiiiiieiii et 202
8-1 List Converter INpUt/OULPUL FlESeoiiiiiiiiiiee et 236
8-2 List Converter OPtioN TYPES ...coveiiiiiiieiiierie ettt ettt ean e e 244
9-1 Library Converter INput/OUtpUt FileSooiiiiiiiiiiiieie e 254
9-2 Types of Library Converter OPtionccoouiiiioiiiiiee e 257
10-1 Option Setting Dialog Box Functions (ASSEMDIEN)coouiiieriiiiiieiie e 263
10-2 Source File Options Setting Dialog Box FUNCLONSc.coiiiiiiiiiieieiice e 265
10-3 Options Setting Dialog Box FUNCHONS (LINKET) ...coiiiiiiiiiieiiiee e 267
10-4 Options Setting Dialog Box Functions (Object Converter)ccccceveineenieineeiieeseeneen 269

18

CHAPTER 1. GENERAL DESCRIPTION

Describes the role of the assembler package in 75X Series and 75XL Series development, etc., together with a
general outline of its functions.

19

CHAPTER 1 GENERAL DESCRIPTION

1.1 Outline of Assembler

The RA75X Assembler Package (referred to in the following text simply as “assembler package”) is the generic

name for a series of programs for converting source programs written in 75X Series and 75XL Series assembly

language into machine language.

The Assembler Package includes 7 programs, Structured Assembler, Assembler, Linker, Object Converter,

Librarian, List converter and Library Converter.

20

Figure 1-1 RA75X Assembler Package

Structured Assembler Program |

Assembler Program |

Linker Program |

RA75X AssemblerPackage Object Converter Program |

Librarian Program |

List Converter Program |

Library Converter Program |

CHAPTER 1 GENERAL DESCRIPTION

1.1.1 The function of an assembler

(1) Assembly language and machine language
Assembler language is the most basic programming language for microprocessors.
To operate a microprocessor, a program and data are necessary. This is programmed by a human being and
memorized in the memory of the microcomputer. Programs and data which a microcomputer can handle are
collections of binary data; this is known as machine language (computer-comprehensible language) .
Programming in machine language, that is in binary code, is difficult for a human mind to learn and prone to
errors: hence the method of representing machine language in easily understood English symbols and writing
programs using these symbols. The language system for programming using these symbols is called assembly
language.
A program is needed to translate a program written in assembly language into a collection of binary numbers
intelligible to a microprocessor. This program is called an assembler.

Figure 1-2 Assembler Flow

Program Comprising

Program Written Transiation C_ollection of

in Assembly Language Program Binary Numbers
Trans-
lation

(Source Module File) (Assembler) (Object Module File)

21

CHAPTER 1 GENERAL DESCRIPTION

(2) The role of this package in developing products using microcomputers
Where assembly language programming fits into product developmentis outlined in Figure 1-3 “Development
Process for Products Using Microcomputers”.

Figure 1-3 Development Process for Products Using Microcomputers

Product planning

System design

[Hardware development Software development]
Logic design Software design
Programming in
assembly language
Production
Position of
Assembly —< assembler
Testing j package
| © 5>
NO
OK YES
YES
Debugging
<>
YES

System evaluation

Commercial
production

CHAPTER 1 GENERAL DESCRIPTION

The software development process is described in somewhat more detail by Figure 1-4 “Software Devel-
opment Process”.

Figure 1-4 Software Development Process
Software
development

Program
specification
creation

Flowchart creation

~~~~~ Using 75X series and 75XL

Coding series assembly language
Source module | Creates source module file
editing using editor

Assembly |l 777 Creates HEX format object
Y module file

l
YES @

Debugging

...... Operation check using hardware
debugger (IE-75000-R Note 1
IE-75001-R, EVAKIT-75X Nete2)

System evaluation

Notes 1. Maintenance product (not available for purchase)
2. Discontinued (not available for purchase)

23



CHAPTER 1 GENERAL DESCRIPTION

24

We shall now apply the assembler package to the assembly process.

Figure 1-5 Assembly Process of This Package

From source
module editing

Assembly

|

errors?

To source module
editing

Assembly

Linkage

Location

{ To debugging }

Remarks As necessary, use the structured assembler, preprocessor, librarian, list converter, or library

converter.
1. Structured assembler preprocessor

Program for implementing structured programming in assembly language.

2. Librarian

It is convenient to “librarize” general-purpose modules with a clear interface by means of the
librarian. Librarization enables a large number of object modules to be handled easily as a single

file.
3. List converter

The list converter is used to create an assembly list which incorporates absolute values for

debugging purposes.
4. Library Converter

Library files which can be input to the Linker and Librarian in Assembler Package Version 5.00
or later can be created from library files in the object program module format output by versions

of Librarian before Version 5.00.

...... Object module file output

~~~~~ Load module file output

----- HEX format object module
file output

CHAPTER 1 GENERAL DESCRIPTION

1.1.2 Function of a relocatable assembler

The machine language resulting from the assembler conversion process is written into the memory of the
microcomputer before being used. To do this, itis first necessary to determine where in memory the machine language
is to be written. Therefore the machine language produced by the assembler’s conversion has, attached to it
information indicating in which address in memory it should be located.

Assemblers can be broadly classified into two kinds - absolute assemblers and relocatable assemblers - according
to the method used to place machine language in memory address.

* Absolute assembler
An absolute assembler locates machine language converted in a single assembly operation in absolute
addresses.

* Relocatable assembler
With a relocatable assembler, the addresses converted by the assembly process are only determined
temporarily. Absolute address determination is performed by the program known as the linker.

When a program is created with an absolute assembler, programming must, in principle, be performed as a one-
time operation. However, writing a large program at one time as a single entity results in a complex program and
makes program analysis difficult when maintenance is required . In view of this, program development is carried out
by dividing the program into a number of subprograms (modules), each with a specific function. This is known as
modular programming.

Arelocatable assembler is one which is suited to modular programming. The advantages of modular programming
using a relocatable assembler are described below.

25

CHAPTER 1 GENERAL DESCRIPTION

(1) Development is made more efficient
Writing a large program as a single unit is difficult.
Dividing a large program into modules allows a number of programs to be developed in parallel, making the
process more efficient.
Also, when a bug is found it is not necessary to reassemble the whole program just to amend one party; only
the module requiring correction needs to be reassembled. This enables the time required for debugging to

be reduced.
Figure 1-6 Reassembly Process
When program consists When program consists
of single modules of several modules
Module Module
Module
I Whole
?UQ § program
oun [
m“g?f!o‘z Bug oo Only this
moaitie found module
Module needs to
be modified
Module

26

CHAPTER 1 GENERAL DESCRIPTION

(2) Resources can be fully used

Highly reliable and generally applicable modules previously created can be used in the development of other
programs. Accumulating a number of such generally applicable modules means that the proportion of new

work needed on program development can be reduced .

Figure 1-7 Program Creation Using Previously Written Modules

Module A

Module B

Module C

Module D

New module

1.2 Outline of Assembler Package Functions

»| Module A

New module

Module D <

New program

The general program development procedure using this package is shown in Figure 1-8 “Program Development
Procedure Using Assembler Package”. The basic procedure used in program development is: assembler — linker
— object converter. Use the Structured Assembiler, Librarian, List Converter or Library Converter as necessary.

27

CHAPTER 1

GENERAL DESCRIPTION

28

Figure 1-8 Program Development Procedure Using Assembler Package

Structured assembler
source file ®

Structured
assembler
(ST75X)

Source module
file ®

Assembly Object

list file module
O file ®

Librarian

(LB75X)

Library
file @

N

Link
list
file

Q//Q\

Library
(P file ®

Structured assembler
source file @

Structured
assembler
(ST75X)

Source module
file @

Object

module
file ®

Load
module
file

List converter
(LCNV75X)

Obiject converter
(OC75X)

Absolute Symbol

assembly Q table (P
list file ® file

N

?

Assembly

list file
@)

List converter

(LCNV75X)
HEX format Absolute
object assembly
module file list file @

CHAPTER 1 GENERAL DESCRIPTION

1.2.1 Source module file creation using editor

A single program is functionally divided into a number of modules.

A module is the unit of coding and the unit of input to the assembler. A module which is an assembler input unit
is called a source module.

After coding of each source module is completed, the source module is input using the editor and written to a file.
The file created in this way is called the source module file.

The source module file is the input file for the assembler (RA75X).

Figure 1-9 Source Module File Creation

) Program] Source module

Source
module

END

Source
module

END

END

Source
module

END Write to file

(editor)

D

Source module file

29

CHAPTER 1 GENERAL DESCRIPTION

1.2.2 Structured assembler preprocessor

The structured assembler preprocessor is a program for implementing structured programming in assembly
language. A source program written in assembly language is input, and an assembler source program is output.

Please refer to the separate volume “RA75X Assembler Package Structured Assembler Preprocessor User’s
Manual” (Document No. U12598E) for details of the structured assembler preprocessor and structured assembly
language.

Figure 1-10 Structured Assembler Preprocessor Functions

Structured
assembler
source file

Structured assembler
preprocessor (ST75X)

Assembler

source
file

30

CHAPTER 1 GENERAL DESCRIPTION

1.2.3 Assembler

The assembler has a source module file as input, and converts the assembly language into machine language.
If coding errors are found in the source module file, assembly errors are output. If there are no assembly errors, an
object module file is output containing machine language information and relocation information relating to the
relocatable machine language addresses. In addition, assembly-time information is output as an assembly list file.

Figure 1-11 Assembler Function

Source module file

Conversion of
assembly language to

machine language Assembler
(RA75X)
Output Creation of object
Object
module file

Creation of list file

O module file

Assembiler list file

31

CHAPTER 1 GENERAL DESCRIPTION

1.2.4 Linker
The linker has as input a number of object module files output by the assembler or alibrary file output by the librarian,
links them, and outputs a single load module file. It also outputs link-time information as a link list file.

If a library file is specified, one only should be specified at the end of the input file names.

Figure 1-12 Linker Function

Object module files

e

Linker
(LK75X)
0utp7 \
Load module file Link list file

32

CHAPTER 1 GENERAL DESCRIPTION

1.2.5 Object converter

The object converter has an input the load module file output by the linker, and output the results as a HEX format
object module file.

An object module file output by the assembler cannot be used as input to the object converter.

A HEX format object module file is necessary for ROM ordering and debugging input.

In addition, symbol information required for symbolic debugging by the debugger is output as a symbol table file.

Figure 1-13 Object Converter Function

Load module file

Input

Object converter

(OC75X)
Output
Symbol table HEX format
file object
module file

The basic processing of the assembler package ends when processing has been completed normally as far as
the object converter .
In addition, program development can be made more efficient by using the librarian and list converter.

33

CHAPTER 1 GENERAL DESCRIPTION

1.2.6 Librarian

The librarian is used to create or update library files.
It is convenient to “librarize” general-purpose modules with a clear interface, as this enables a large number of

object modules to be handled easily as a single file.
The linker includes a function for extracting only the needed modules from the library file. Therefore, if a number
of modules are recorded in a single library file, it is not necessary to specify the file name of each module required

for linkage .
Figure 1-14 Librarian Function

Library file Object module files

? 7

Librarian
(LB75X)

? ?

Library file Library file
information
list file

34

CHAPTER 1 GENERAL DESCRIPTION

1.2.7 List converter

The list converter has as input the assembly list file of relocatably assembled modules, the object module file, and
the load module file output by the linker, and incorporates actual address values and object code in a relocatable
assembly list. It then outputs the results as an absolute assembly list.

The list converter is designed to enable relocatable assembled programs to be debugged more efficiently.

Figure 1-15 List Converter Function

A bly list fil
O O (er:crgtaéés) e O | Object module file
Load
module

file

List converter
(LCNV75X)

?

Absolute assembly list file

35

CHAPTER 1 GENERAL DESCRIPTION

* 1.2.8 Library converter
The Library Converter outputs library files which can be input to Version 5.00 or subsequent versions of Linker
and Librarian when object program module format library files output by the Librarian in a version of RA75X Assembler

Package earlier than Version 5.00 are input.

Figure 1-16 Library Converter Functions

Object module format
library files

(from a version earlier
than Version 5.00)

Library converter
(LBCNV75X)

Library converter output
(P library file

36

CHAPTER 1 GENERAL DESCRIPTION

1.3 Before Beginning Program Development

The following restrictions should be noted before beginning actual program development.

1.3.1 Assembly-time source statements

Source statements up to 220 characters in length (including Cr and LF) can be handled by the assembler.

1.3.2 Limitation on number of symbols

)

(2

During assembly Approx. 3,000

During linkage
Limits to the number of symbols differs as follows depending on the type of symbol.

e Local symbols > No limit
» External definition (PUBLIC) symbols : Approx. 3,000 for all input modules
* External reference (EXTRN) symbols : Approx. 500 per module

1.3.3 Limitations on number of segments

)

)

During assembly

For one source program, a total of approximately 120 for (a) to (c) below can be written:
(a) Number of segment definition pseudo-instructions

(b) Number of ORG pseudo-instructions

(c) 2 x number of VENT pseudo-instructions

During Linkage

For all input modules, a total of approximately 250 (a) to (d) below can be input:
(2) Number of input modules x 2

(b)
(¢) Number of ORG pseudo-instructions in source program
(d) 2 x number of VENT pseudo-instructions

Number of segments

37

CHAPTER 1 GENERAL DESCRIPTION

* 1.3.4 Other limitations

1

During assembly

* Number of local symbols in 1 macro 100 (including temporary parameters)
* Nest Levels Approx. 64 Kbytes

* Macro Body Area Size 32 Levels

(Macro instructions, $IF instructions, $SWITCH instructions and $INCLUDE instructions together)
* Maximum number of times repeating macros can be repeated 1023 Times

1.3.5 Number of linker branch tables

Approximately 1,000 branch tables can be created by the linker.

1.3.6 Caution on homonymous segments

If there are two or more segments with the same name in a single source module, list conversion may not be

performed correctly. Ensure that all segments in a source module have different names when using the list converter.

1.4 Assembler Package Features

38

The assembler package features the following functions.

(1)

)

(3)

)

Branch instruction optimization function (BR)

An automatic branch instruction selection pseudo-instruction (BR pseudo-instruction) is provided. To create
a program which makes efficient use of memory, it is necessary to use a 1-byte or 2-byte branch instruction
according to the branch destination range. However, itis very tedious to take account of the branch destination
range in writing each branch instruction. When the BR pseudo-instruction is used, the assembler generates
the appropriate branch instruction code for the branch range concerned.

This process is referred to as optimization.

VENTn pseudo-instruction

75X series and 75XL series products have an interrupt vector table in the area from address OH to address
OFH as a maximum (depending on the device). The start address of each interrupt service routine and the
value of MBE (memory bank enable flag) and RBE (register bank enable flag) during interrupt servicing are
set in this interrupt vector area.

The VENTnN pseudo-instruction is provided to facilitate the setting of values in this vector table.

TBR and TCALL pseudo-instructions

Ifitis wished to execute a 2-byte or 3-byte branch instruction or call instruction as a 1-byte instruction by means
of the GETI instruction special data must be set in the GETI instruction reference table (20H to 7FH). The
TBR and TCALL pseudo-instructions are provided to facilitate the setting of this data.

Macros

A macro is a symbolic name which is assigned to a string of commands and is used in the source program
in place of that string of commands, so that those commands are executed each time that name is called.
When the same string of commands is used repeatedly, if it is made into a macro, the volume of the source
program can be made smaller. Also, when a single function includes a number of commands, if a name
indicating the function of that string of commands is assigned to it, the source program becomes easy to write
and easy to read.

CHAPTER 1 GENERAL DESCRIPTION

(5) Structured assembler preprocessor (ST75X)
The structured assembler preprocessor is a program for implementing structured programming in assembly
language. A source program written in assembly language is input, and an assembler source programis output.
Use of structured assembly language enables a program with good coding characteristics to be written.

(6) Librarian (LB75X)
A librarian function is provided. This enables a number of object modules to be collected together in a single
library file.
Collecting generally applicable modules as a library file enable modules to be used more effectively, and also
offers improved efficiency in terms of file management and operability.

(7) List converter (LCNV75X)
The list converter is designed to improve debugging efficiency using IE-75000-RNete 1 |E-75001-R, EVAKIT-
75XNete 2 of programs assembled by the assembler.
In an ordinary assembly list, addresses in relocatable segments and object code in which relocatable symbols
are referenced are different from the final values.
For this reason, when debugging is performed with absolute addresses specified, it is not possible to find the
absolute addresses simply by referring to the assembly list, and the link map list must also be consulted.
The list converteris a program which generates an absolute assembly list in which the final absolute addresses
are incorporated in the relocatable addresses and object code in the assembly list output by the assembler.

Notes 1. Maintenance product (not available for purchase)
2. Discontinued (not available for purchase)

1.5 Cautions on 75XL Series Development
The following points must be noted when using a 75XL Series device as a development device.

(1) For 75XL Series development, a 75XL Series device file (sold separately) is needed as well as the RA75X
assembler package.

39

[MEMO]

40

CHAPTER 2. PRODUCT SUMMARY

This chapter outlines the file names and operating environment for each of the programs provided in the assembler
package.

41

CHAPTER 2 PRODUCT SUMMARY

2.1 Product Contents

The RA75X assembler package consists of the files shown in Table 2-1.

Table 2-1 Provided Files (1/2)

Program Name File Name File Contents

Structured Assembler st75x.exe Structured assembler preprocessor execution format command file
st75x.hip Execution format help file.
st75xp.dll Tools DLL for Project Manager
st75xp.hlp Tools DLL help file.
st75x.om1 Overlay File

Assembler ra75x.exe Assembler execution format command file.
ra75x.hlp Execution format help file.
ra75xp.dll Tools DLL for Project Manager
ra75xp.hlp Tools DLL help file.
ra75x.om1Note Assembler Information File
ra75x.om* 75X Device File

Linker Ik75x.exe Linker Execution Format Command File
Ik75xp.dll Tools DLL for Project Manager
Ik75xp.hlp Tools DLL help file.

Object Converter oc75x.exe Object converter execution format command file.
oc75x.hlp Execution format help file.
oc75x.dll Tools DLL for Project Manager.
oc75xp.hlp Tools DLL help file.

Librarian Ib75x.exe Librarian execution format command file.
Ib75x.hlp Execution format help file.

List Converter lcnv75x.exe List converter execution format command file.
lenv75x.hip Execution format help file.

Library Converter Ibcnv75x.exe Library Converter execution format command file.

Project Manager pritman.exe Project Manager execution format command file.
pritman.hlp Project Manager help file.
pritmake.exe Project Manager make execution format command file.
pritedit.exe Standard editor execution format command file.
pritedit.htp Standard editor help file.
pritlog.exe File used by the Project Manager.
pritmsg.dll File used by the Program Manager.
pritspin.dll File used by the Project Manager.
pritedit.dll File used by the standard Editor.
pritman.txt Project Manager supplementary explanations.
ddummy.75x 75X Dummy Device File

Note This file is also necessary when starting the Linker and Object Converter.

42

CHAPTER 2 PRODUCT SUMMARY

Table 2-1 Provided Files (2/2)

Program Name File Name File Contents
ra75x.log Setup Log File
necdev.ini Tool Information File
prjlog.pif PIF file for Project Manager ‘prjtlog.exe’
pripipe.386 File used by the Project Manager

75xtest1.asm,75xtest2.asm

Sample program file for the Assembler

stesti.src, stest2.src

Sample program file for the Structured Assembler

sra75x.bat

Batch file for the Structured Assembler

cd_chg.lib, exam0000.idm,
exam0001.idm,example1.idl,
example2.idl,example3.asm
pick_up.fnc,sub_pu.fnc

Sample program for the Project Manager’s standard editor

Remarks 1. A command file is the first file read into memory when a program is started.

2. An overlay file is read into memory if required during program execution.

3. A sample program file is used to check the operation of the assembler package.

43

CHAPTER 2 PRODUCT SUMMARY

2.2 Host Machine Models and Operating Systems

Host machines and OSs that can run RA75X are described below.

2.2.1 PC-9800 series

(1) PC-9800 series models

Table 2-2 Host Machine Models (PC-9800 Series) (1/2)

CPU 8086/V30™ 80286 80386 80486

Supported Model

PC-9801 XAmodel 1/2/3/11/21/31 XL? FAzss7u2/us107

E XLmodel 1/2/4 RL2ss/21/51 BXuzuemz

F1/213 V Xor2/4/01/21/41 RA2s5/21/51 BAuzuemz2

Mzss UX21/41 ES2ss BS2u2u7m2

Vr2 RX2/4/21/51 RS21/51 BX2u2u7m2

VMorz/a/21/11 EX24 Tmodel warwsw7/ss/FsFsi/F71 | BA2uzuzmz

U2 DXz4u2/u5 DSassu2/us BA3u2

UVas21/11 LX2/4/5i5¢ DAzss721us07 BX3u2

CVai CSassisw NA/a0/120/c/c40/120C

UR/20 US/40/80 NS/Ror120

UF FSass71u21us107 NX/Cri20

XLmodel 1/2/4 FXass1u25 Ne/i20wrzaow

V Xorz/a101/21/41 LS2s5 NS/Asnz01340

UX21/41 NS/20 NL/R
PC-9801 RXz/4121/51 NS/E /20140 NL/A120/260A

EX2/4 NS/T /20140

XL? NS/Lao

RLa2/s/21/51 NCao

RA2s5/21/51

ES2ss

RS21/51

Tmodel W2/W5/W7/S5/F5/F51/F7

LV21/22

LX2/4/5i5¢

LS2ss

N

NV

NL

Remark Models in the table that have a high resolution mode can also be used in high resolution mode.

Caution At least 640K bytes of internal memory is required.

44

CHAPTER 2 PRODUCT SUMMARY

Table 2-2 Host Machine Models (PC-9800 Series) (2/2)

CPU
Supported Model

8086/V30

80286

80386

80486

PC-H98

model70-002/100
model60-002/040/100
modelU60-002/040/100

Smodel8-002/040/100
SmodelU8-002/040r100
model80-002/040/100
modelU80-002/040/100
model90-002/040/100
modelU90-002/040/100
model100
modelU100
model105-100/300
modelU105-100/300
Tmodel1/z2c

CPU
Supported Model

80486

Pentium™

PC-9821

Aeuzu7u7wimmMzM7W
ASU2/U7/U7TW/UB/UBW/M2/MZ/M7W
ApPu2/u7/U7W/U/UIW/M2IMTM7W
Beurw

Bsurw

Bpuzwusw
As2uzu7wiuswimz
Ap2u2/usw/cow/caTM2
Xpuswicsw
Xsurwicsw

Xeurw
Ap3cswicowuzmz
As3cswiuzmz
Xe104/ca
PC-9821model s1/s2
Cemodel s1/s2
Ce2model $1/52/52D/T2/T2D
CS2model s2/53
Cbmodel 2F/2D/2
CXmodel 52/53
Cb2smmia

Tsi2o0m
Ne/120wrzaow
Npa4ow/saowsgtow
Nsa4sow/s40w/s10w
Ne2/zsow

Nd/zsow

L d260/350a/350A2
Ltoso/350A/540A

Nmyz40

Ne3ss

Nd2/3

Afuswmow
Bfuowmow
Anusw/coT/uz/m2
Xtciow
Xausw/cow/c1ow/ut
Xnusw/cow
Xfuswicowut
Xa7ca/cs
Xa9cu/cs
Xa10c4012
CX2s15B/517B/S15T/S17T
Cfmodel s3

Nfasow/s1ow

Remark

Models in the table that have a high resolution mode can also be used in high resolution mode.

Caution At least 640K bytes of internal memory is required.

CHAPTER 2 PRODUCT SUMMARY

(2) PC-9800 series OS

0S Version
MS-DOS™ Ver. 3.30-Ver5.00Note 1/5 0QANete 1
Windows Ver. 3.1Note 2

Notes 1. A task swapping function is provided in Ver. 5.00/5.00A, but the task swapping function cannot
be used with the RA75X assembler package.

2. Ifthe Assembleris usedin Windows, Project Manager is necessary. If Project Manageris not used,
run the Assembler under MS-DOS.

(3) Assembly package supply medium
3.5-inch FD (2HD)

2.2.2 IBM PC/AT™

(1) Models
IBM PC/AT

Caution At least 384K bytes of internal memory is required (not including the system area).

(2) 1BM PC/AT 0OS

oS Version
PC DOS™Netel | \/gr, 5.0 to Ver. 6.0
MS-DQSNote 1 Ver. 5.0 to Ver. 6.0

5.0/VNote 2
IBM DOS™Note 1| j5 2/\/Note 2
Windows Ver. 3.1Note3

Notes 1. Atask swapping function is provided from Ver. 5.0 onward, but the task swapping function cannot
be used with the RA75X assembler package.
2. Only the English-language mode is supported.
3. Ifthe Assembleris usedin Windows, Project Manager is necessary. If Project Manager is notused,
run the Assembler under MS-DOS PC DOS or IBM DOS.

(3) Assembler package supply media
3.5-inch FD (2HC)

46

CHAPTER 3. ASSEMBLER PACKAGE EXECUTION

This chapter describes the assembler package installation procedure and execution procedures.
Executing each program in accordance with the execution procedures described here will enable the user to
become familiar with the operation of the assembler package.

47

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

3.1 Before Running Assembler Package
3.1.1 Assembler package installation procedure

Install the Assembler Package and the Project Manager. The Project Manager is necessary if the Assembler is
to be used in Windows.

This software is supplied on four 3.5-inch floppy disks.

Installation can be done by one of the following three methods.

Table 3-1 Installation Methods

Installation Method Programs which can be installed
Execute ‘setupj.exe’ in Windows 3.1. Assembler Package Project Manager (Japanese Edition)
Execute ‘setupe.exe’ in Windows 3.1. Assembler Package Project Manager (English Edition)
Execute ‘dosint.bat’ under DOS. Assembler Package

Cautions 1. Close all currently running applications before installation.

2. Windows 3.1 may become unstable if installation is cancelled, so restart the host machine.

3. The information file used by each tool, ‘necdev.ini,” is changed only when ‘setupj.exe’ or
‘setupe.exe’ is executed and the software is installed. Accordingly, if you use Project
Manager, install it using ‘setupj.exe’ or ‘setupe.exe.’

4. If your OS is the Japanese Windows 3.1, execute ‘setupj.exe’, if English Windows 3.1, execute
‘setupe.exe’, and if DOS, execute ‘dosinst.bat’ to install the Assembler Package and the
Project Manager.

48

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

(1) In installing by running ‘setupj.exe’ or ‘setupe.exe’ under Windows 3.1
The following installation example is for the case that the host machine is a PC-9800 series model, the
Assembler Package and Project Manager are being read from Drive ‘C:’, the execution format is being installed
in A:\nectools\bin and the sample program is being installed in A:\nectools\smp75x. It is assumed that
Windows has already been started.

[Execution Example]
<1> Running the Installer
(a) Insert the ‘RA75X SETUP DISK#1’ in the floppy disk drive.
(b) Select ‘Run’ from the File menu.
(c) Input the following in the command line input box.

= Run

Command Line:

|A\SETUPE.EXE | Cancel

|:| Run Minimized Browse...

Help

Input ‘setupj.exe’ in the command line input box in Japanese Windows 3.1 and ‘setupe.exe’ in English
Windows 3.1.
(d) Select ‘OK’.

49

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

(e) After setup initialization, the installer will start.

NEC tools setup

initializing setup...

RA75X setup

NEC Setup

% Welcome to NEC Setup Program.

Continue

(f) To continue the installation, select ‘Continue (C).’
To terminate installation, select ‘End (E).’

50

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

<2> Select the item to be installed.
(a) Select the items to be installed by clicking the appropriate check boxes.
In the default installation, the Assembler Package and Project Manager are selected for installation.
(b) After selecting the items to be installed, select ‘Continue (C).’
If you are installing the Assembiler, it is necessary that Project Manager be installed already or that
it be installed at the same time that the Assembler is installed.

= Products to Install

Select the products to install.

I Project Manager Vx.xx

X1 75X Series Assembler Package Vx.xx

contne | | Bt |

(c) To end the installation, select ‘End (E).’
(d) ltems which cannot be installed will be displayed in gray.

51

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

<3> Specify the installation directory.

(a) The dialog box for specifying the installation destination directories is then displayed. After inputting
the installation directories as shown below, select ‘Continue (C).’

= Directory Option

Root Cinectools Need: 4768K Space: 350656K
Executable files Cinectoolsibin

Ra/5x Sample Canectoolsismp 79:xdra7ax

Ideal Sample Canectoolsismp 75xiideal

Addendum Text

Cihnectoolsidoc

Device files Cinectoolsidev

Continue Back QOriginal Exit

(b) To return to the installation item selection dialog box, select ‘Back (B).’

(c) To specify the default directory, select ‘Initialize (O).” The default installation destination directory thus
becomes “\nectools’ on the drive where Windows is installed. If the tools have already been installed using
the installer, that root directory is used. To edit the root directory, the directories which are related to the
root directory and linked to it are changed.

(d) To terminate the installation, select ‘End (E).’

Items which cannot be installed are displayed in gray.

If there are no supplementary explanations, the supplementary explanation directory is displayed in gray.

If there are supplementary explanations, icons are registered after installation is completed, so read their

contents.

—~
D
-

A
—h
~

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

(g) If the specified directory is incorrect, it will result in an error and the following message will be displayed.

= Bad Path

Install directory drivefpath provided is not valid.

Xinectools

(h) If the capacity is insufficient, it will result in an error and the following message will be displayed.

Insufficient Disk Space

You do not hawve encugh disk space In the destination to
install all of the required files.

Delete unnecessary files, ar change install drive.

53

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

54

<4> Specify the group to be registered in Program Manager.

(a) The dialog box for specifying the registered group name is next displayed. After inputting the group
name to be registered as shown below, select ‘Continue (C).’ If the specified group does not exist,
that group is newly created.

Also, if the specified group has already been registered using the Installer, that group is used.

= Group Name

Specify the Program manager Group name to
register icons.

If the Group is not exist, it will be made
automatically.

Group: ‘NECt00I5|

‘ Continue ‘ Back Exit

(b) To return to the dialog box for specifying the installation destination, select ‘Back (B).’

(c) To terminate installation, select ‘Exit (E).’

(d) If you are not installing Project Manager, the dialog box for specifying the registered group name is
not displayed.

<5> Start copying files.
(a) The dialog box for starting copying of files is displayed. If you select ‘Continue (C),” copying of files
will start.
(b) To return to the dialog box for specifying the registered group name, select ‘Back (B).’
(c) To terminate installation, select ‘Exit (E).’

= File copy Start

If you press "Continue” button, installer will start the file
copy.

If you press " Cancel™ button while copying files, you can
quit the installation.

But the directoriesffiles which have already been copied
are leftin the disk.

| ‘ Back | | Exit

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

<6> Copying Files

= RA75X SETUP DISK #1

Source File:

AMCHNVTSX.EXE

Destination File:
CANECTOOLS\BIN\LCNY75X.EXE

. 5%

(a) When ‘Cancel (C)’ is selected, the following message is displayed.

= Setup Message

Setup is not yet complete.

9 If you quit now, this product
will not be correctly installed.

Quit the setup of this product?

= |

(b) To terminate installation, select ‘Yes (Y).’
To resume copying of files, select ‘No (N).’

<7> Replace the Output Media

(a) When the following message is displayed, insert ‘RA75X SETUP DISK #2’ in the floppy disk drive.

— Setup Message

Please insert the disk labeled
'RATSX SETUP DISK #3'
into drive A:

I ‘ Cancel |

(b) When the same message is repeated, insert ‘RA75X SETUP DISK #3,’ then next ‘RA75X SETUP
DISK #4’ in the floppy disk drive.

55

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

56

<8> The registered group and icons are created.
The Assembler cannot be operated in Windows, so no icon is created for it.

m »
= '
|

g

Froject |gilstelit=R{sls
tanager EEEi][=Tsi

<9> ‘AUTOEXEC.BAT’ is changed.
(a) Using the radio button, select whether to modify the ‘AUTOEXEC.BAT file by selecting ‘Installer will
modify automatically’ or ‘Modify it manually later.’

= Modefy AUTOEXEC.BAT

Select the way to modify AUTOEXEC.BAT.
 Modify AUTOEXEC.BAT

The original AUTOEXEC.BAT is saved as
AUTOEXEC.OLD

O Modify by yourself
AUTOEXEC.SMP is made on root directory as a

sample.
Continue

(b) If ‘Installer will modify automatically’ is selected, the ‘AUTOEXEC.BAT’ file on the disk where the
Windows directory is located will be rewritten and the original file will be saved with the name
‘AUTOEXEC.OLD.’

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

(c) If ‘Modify it manually later’ is selected, ‘AUTOEXEC.SMP’ will be created in the root directory as a
sample to help you modify the AUTOEXEC.BAT file.
If ‘AUTOEXEC.SMP’ already exists, the following contents will be added to it.

REM --- nec tools installer Oxx/xx/xx XX:XX:XX ---
PATH a:\nectools\bin;%PATH%

<10> Finish installation.
(a) The following message is displayed. Select ‘OK’ to terminate the installation.

= Setup Successful

Installation is complete.

You will need to restart computer so that the new
settings can take effect.

(b) Restarting the Host Machine

Remark If you cancelled the installation in the middle, the following message will be displayed. Press
‘Continue (C)’ to return to the dialog box where you selected “Exit (E).’

= Setup stoped

Setup is not completed.

Select ‘Exit (E)’ to display the next message.

Select ‘OK’ to close the installer.

= Setup terminated accidentally

The product has not been properly installed.
You should run the setup program from scratch again.

Please consult your nearest NECG technical support department it
you need assistance to install this product.

57

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

(2) If you are installing by running ‘dosinst.bat’ under DOS.
The example is shown of installation in the case where a PC-9800 series host machine is used, the Assembler
Package is read from drive C:, the execution format is installed in A:\nectools\bin and the sample program
is installed in A:\nectools\smp75x.

[Execution Example]
<1> Execute the batch file ‘dosinst.bat.’
The description format is as shown below.

x>dosinst.bat A Installation source drive A Installation destination drive A Installation destination directory A

A : indicates 1 or more blank spaces.

<Example of Description>

A>mkdir nectools ; Creates an installation destination directory.
A>C: ; Changes from the current drive to the installation source drive.
C>dosinst.bat c: a: nectools ; Executes the batch file.

<2> To end the installation, input the CTRL key + C key or the ALT key + C key when the message ‘Press
any key to continue.” is displayed.
The following message will be displayed.

End batch file execution? (Y/N) ?

Input Y’ to terminate execution of the batch file.
Press ‘N’ to continue execution of the batch file.

<3> If you terminate execution of the batch file, please refer to the contents of ‘nectools\ra75x.add’ and modify
‘autoexec.bat.’

<Contents of ‘ra75x.add’>

REM PLEASE ADD TO THE BOTTOM OF YOUR AUTOEXEC.BAT.
PATH a:\nectools\BIN;%PATH%

58

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

(3) File Configuration after Installation
The Assembler Package file configuration after installation is as follows.

— nectools\
— bin\
ra75x.exe Assembler execution format command file.
st75x.exe Structured Assembler preprocessor execution format command file.
Ik75x.exe Linker execution format command file.
oc75x.exe Object converter execution format command file.
Ib75x.exe Librarian execution format command file.
Ibcnv75x.exe Library converter execution format command file.
lcnv75x.exe List converter execution format command file.
*.hlp Execution format help file.
*p.dll Project Manager tools DLL
*p.hlp Tools DLL help file.
pritman.exe Project Manager execution format command file.
pritmake.exe Project Manager make execution format command file.
pritlog.exe File used by the Project Manager.
pritedit.exe Standard editor execution format command file.
pritmsg.dll File used by the Program Manager.
pritspin.dll File used by the Project Manager.
pritedit.dll File used by the standard editor.
pritman.hlp Project Manager help file.
pritedit.htp Standard editor help file.
ra75x.om1 Assembler Information file
ra75x.om* 75X device file.
st75x.om1 Overlay file.
———— doc\
pritman.txt Project Manager supplementary explanations.
dev\ Note
ddummy.75X 75X dummy device file (use Project Manager)
——— setup\
ra75x.log Setup log file.
——— smp75x\
ideal\
example\
L idea-L light sample program (for training)
org\
L idea-L light sample program (for saving)
ra75x\
*.asm Assembler sample file.
*.s Structured Assembler sample file
sra75x.bat Structured Assembler sample batch file
— windows\
necdev.ini Tools information file
prjlog.pif Project Manager ‘prjtlog.exe’ PIF file
system\

pripipe.386 File used by the Project Manager.

Note This is an empty directory. Please copy the 75XL device file (sold separately) to this directory.

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

60

4)

®)

Adjustment of ‘CONFIG.SYS’ file contents
Create a file ‘CONFIG.SYS’ in the root directory of the disk used to start up the host machine, and include
the following in it:

FILES=n

‘n’is anumber indicating the maximum number of files that can be opened by one program. ‘20’ or more should
be written in order to use the assembler package. However, a larger number than this may be necessary
depending on what other programs (editor, etc.) are to be used concurrently with the assembler package.
Please check the manual, etc., for each program.

The following should also be specified in order to increase the program execution speed:

BUFFERS=n

‘n’ is the number of system input/output buffers to L be used by the entire system. To a certain degree, the
greater this value, the faster is the disk input/output speed. However, this value is directly related to memory
consumption. If there is adequate installed memory capacity, it is as well to specify a larger value. If 512 to
640 KB of memory is installed, a value of around ‘20’ should be specified.

Setting environment variable

The following environment variable is supported by the assembler package.

‘INC75X'...... Specifies the include file search path. This environment variable is used when using an include
file which defines constant values etc., specific to the product subject to assembly. See the
section on the assembler -I option for details.

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

— Caution

The assembler package assembler and linker are divided into an executable command file and
overlay files. When these program files are in the current path (current directory of current drive),
the program files can be loaded simply by specified ‘RA75X’ in the command line. However, in some
cases source module files and the associated object files, etc., are located in the current path and
other executable file, etc., are located in a different path.

The method for accomplishing this is as follows.

Example:

If the assembler program files (‘RA75X.EXE’ and ‘RA75X.0M1’, ‘RA75X.0M2’, ‘RA75X.0M3’, &
‘RA75X.0M4’) are in the subdirectory \BIN\75X’ and the current path is other than \BIN\75X’ there
are two possible start methods as shown below.

(1) Specify the drive and directory in which the program files are located in full, as follows:

A>C:\BIN\75X\RA75X 75XTEST1.ASM -C106

(2) Include the name of the path in which the program files are located in a list of command search
paths supported by the OS.
For example:

A>SET PATH=A:\BIN; C :\BIN; C:\BINY75X

If ‘AUTOEXEC.BAT’, etc., is used for this setting the assembler can subsequently be started
simply by specifying ‘RA75X’ in the command line:

A>RA75X 75XTEST1.ASM -C106

(In either case, the command file and overlay files must be in the same path.)

61

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

3.1.2 Sample programs

Of the files stored on disk, “75XTESTI.ASM” and “75XTEST2.ASM” are sample program for confirming operation.
These files will be the input to the assembler as source program files in subsequent assembler operations.

A brief description of the contents of this sample program is given below.

This sample program is an A/D conversion program which samples an analog source (PTHOOH pin input signal)
8 times using uPD75106 on-chip hardware (programmable threshold port and serial interface) and outputs the
average value from the serial output pin.

The sample program is divided into two modules: one is stored in the source module file “75XTEST1.ASM” under
the module name ‘AD_MAIN’, and the other is stored in the source module file “75XTEST2 .ASM” under the module
name ‘AD_SUB’.

Figure 3-1 Sample Program Construction

AD_MAIN AD_SUB
T SIOSUB:
Maitr_1 Serial
routine output
routine
ADC NV:
HEIKIN:
- Interrupt
Average routine
value
output
routine |

Caution
This sample program has been provided as reference software to help the user learn the functions and
operating procedures of the assembler package, and cannot be used directly as an application program.

62

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

3.2 Assembler Package Execution Procedure
3.2.1 Assembler, Linker, Object Converter

(1) Changes to ‘RA75X’ under ‘SMP75X’ which is under ‘NECTOOLS’ in the current directory in Drive A.

A>
A>CD\NECTOOLS\SMP75X\RA75X
A\NECTOOLS\SMP75X\RA75X>

(2) Assemble the sample program “75XTEST1.ASM”.
* The following is input in the command line.

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106

* The following message is output at the console.

75X Series Assembler VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985 ,XXXX

ASSEMBLY START

TARGET CHIP : UPD75106
STACK SIZE = 000AH

ASSEMBLY COMPLETE, NO ERROR FOUND

(3) Check the contents of drive B.
The assembler has output “75XTEST1.REL” (object module file) and “75XTEST1.PRN” (assembly list file).

63

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

(4) Assemble the sample program “75XTEST2.ASM”.
* The following is input in the command line.

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST2.ASM -C106

* The following message is output at the console.

75X Series Assembler VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985 ,XXXX

ASSEMBLY START

TARGET CHIP : UPD75106
STACK SIZE = 0002H

ASSEMBLY COMPLETE, NO ERROR FOUND

(5) Check the contents of drive B.
The assembler has output “75XTEST2.REL” (object module file) and “75XTEST2.PRN” (assembly list file).

(6) Link object module files “75XTEST1.REL” and “75XTEST2.REL” output by the assembly.
e The following is input in the command line.

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK

* The following message is output at the console.

75X Series Linker VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985

LINK COMPLETE, NO ERROR FOUND

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

(7) Check the contents of drive B.
The linker has output “75XTEST.LNK” (load module file) and “75XTEST1.MAP” (link list file).

(8) Input the load module file “75XTEST.LNK” output as the result of linkage to the object converter.

A\NECTOOLS\SMP75X\RA75X>0C75X 75XTEST.LNK

* The following message is output at the console.

75X Series Object Converter VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985 ,XXXX

Object Conversion Complete, 0 error(s) and 0 warning(s) found

(9) Check the contents of drive B.
The object converter has output “75XTEST.HEX” (HEX format object module file) and “75XTEST.SYM”
(symbol table file).

65

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

3.2.2 Librarian

(1) Execute the librarian.
e Execute the librarian.

A>\NECTOOLS\SMP75X\RA75X>LB75X

* The following message is output to the console and the librarian prompt is displayed.

75X Series Librarian VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1984, XXXX

¢ Input the librarian subcommand as shown below (the EXIT command returns control to the OS).

*CREATE 75XTEST.LIB

*ADD 75XTEST1.REL, 75XTEST2.REL TO 75XTEST.LIB
*LIST 75XTEST.LIB TO 75XTEST.LST PUBLICS

*EXIT

B>

(2) Check the contents of drive B.
The librarian has output “75XTEST.LIB” (library file) and “75XTEST.LST” (list file).

(3) The library file created in this way can be input to the linker as follows:

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST.LIB -075XTEST.LNK

66

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

3.2.3 List converter

(1) Execute the list converter.
e The following is input in the command line.

A\NECTOOLS\SMP75X\RA75X>LCNV75X -L75XTEST.LNK 75XTEST1

* The following message is output at the console.

List Conversion Program for RA75X VX.XX [XX Xxx XX]
Copyright (C) NEC Corporation 1986, 1997

Pass 1:start
Pass 2: start
Conversion complete

(2) Check the contents of drive B.
The list converter has output “75XTEST1.P” (absolute assembly list).

67

CHAPTER 3 ASSEMBLER PACKAGE EXECUTION

3.3 Summary of Assembler Package Execution Procedure

The assembler package execution procedure for the sample program is summarized in the figure below.

75XTEST1.PRN /

st

Figure 3-2 Assembler Package Execution Procedure

75XTEST1.ASM

file

Assembler
RA75X

Source
module

75XTEST2.ASM

Source
module
file

RA75X

Assembler

\75XTEST1 .REL 75XTEST2.REL /

\75XTEST2.PRN

Assembly Object module Obj;zclt Assembly list file
list file file moaule
file |
Librarian
LB75X
75XTEST.LIB
Library file
v
Linker
LK75X
Link list Load module
Q file file
75XTEST.LNK
75XTEST1.MAP
List converter Sobgsgtrter List converter
LCNV75X 0OC75X LCN75X
Absolute Absolute
assembly assembly
| list file | list file
75XTEST1.P 75XTEST2.P
Symbol HEX format
table object module
file file
75XTEST.SYM 75XTEST.HEX

68

CHAPTER 4. ASSEMBLER

The assembler (RA75X) has as input a source module file written in 75X Series and 75XL Series assembly
language, converts this into machine language, and outputs the result as an object module file.

In addition, the assembler outputs assembily list files such as an assembly list, symbol table list, cross-reference
list, etc.

If there are assembly errors, the assembler outputs error messages in the assembly list, error list, etc., indicating
the cause of the errors.

69

CHAPTER 4 ASSEMBLER

4.1 Assembler Input/Output Files
Assembler (RA75X) input/output files are shown in Table 4-1.

Table 4-1 Assembler Input/Output Files

Type of File Default File Type
Input file Source module files .ASM
Source module files written in 75X Series and 75XL Series assembly language
Parameter files Note 1 .PRA

When it is not wished to specify option one by one in the command line when the
assembler is started, the options to be specified, etc., are generated as a parameter
file using the editor etc.

Device file (sold separately) 75X
File containing 75XL Series product SFR information, etc.
Output file Object module file .REL

Binary file containing machine language information, machine language location
address related information and symbol formation.

Assemble list file Note 2 .PRN
File containing assembly information such as assembly list, symbol table list, cross-
reference list, etc.

Error list file .ERA
File containing the assembly-time error information.

Notes 1. For detail, see “4.4.4 Description of assembler options (18) -F”.
2. The address of the Assemble List File created by the Assembler is a virtual address, so if you are
referring to the actual address, refer to the Absolute Assemble List File address created by the list
converter.

70

CHAPTER 4 ASSEMBLER

Figure 4-1 Assembler Input/Output Files

Source module file

Assembler
? (RA75X) ?

Device fileNet Parameter file
Object Assembly Error list file
module file list file

* Assembly list
¢ Cross-Reference list
* Symbol table list

Note A 75XL Series device file (sold separately) is needed for 75XL Series development.

71

CHAPTER 4 ASSEMBLER

4.2 Assembler Functions

e The assembler reads source module files and converts the assembler language into machine language.

e If a coding error is found in the source module, an error message is output in the assembly list and error list.

* The assembler performs assembly processing in accordance with the assembler options specified when the
assembler is started (or in the source module header). See 4.4 “Assembler Options” for assembler options.

* When this processing terminates normally, the assembler output a termination message and returns control to
the OS.

e Maximum assembler capabilities are shown below.

Item Maximum Value

Number of characters that can be written in one source line 220 characters
(including Cr and Lr)

Characters used in symbol The first 31 characters (8 characters when the -NS option is
specified) are valid.
Number of symbols handled by assembler Approx. 3000
Number of segments that can be handled by assembler Approx. 120
Total of 1) Number of segment definition pseudo-
instructions

2) Number of ORG pseudo-instructions
3) 2 x number of VENT pseudo-instructions

72

CHAPTER 4 ASSEMBLER

4.3 Assembler Start Method

4.3.1 Starting the assembler

The assembler is started by inputting the following command in the format shown in the OS command line.

X>RA75X[_option...]_input file name [_option...]

e X indicates the current drive.

* “Inputfile name” is the name of the source module file to be assembled. Only one input file name can be specified.
Therefore, it is not possible to assemble multiple source module files in one run of the assembler.
The drive name, directory name, etc., can be added to the input file name.

Example RA75X -C106 B: 75XTEST1.ASM
RA75X -C106 C: \USER\NEC\75XTEST1.ASM

* “option”is a string of 1to 3 characters beginning with the “- “symbol, and may be followed by parameters. Options
can be written before and after the input file, and if there are multiple options, they can be written in any order.
However, if multiple identical options or options of the same kind are written, in some cases an error is generated,
and in some cases the last output specified is valid for details. See 4.4 “Assembler Options” for details.

* One or more blanks (spaces or TAB) should be used to separate options and the input file name.

¢ The input file name and options can be written in the parameter file. For the use of the parameter file, see the
item on the -F option in 4.4.4 “Description of assembler options”.

* Asadefault operation, a file with the same name as the input file but with the file type changed to *.REL’ is created
in the current directory. This can be changed by means of the ‘-O’ option.

73

CHAPTER 4 ASSEMBLER

4.3.2 Execution start and end messages

(1) Execution start message
When the assembler is started, an execution start message is displayed on the console.

75X Series Assembler VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985, XXXX

ASSEMBLY START

(2) Execution end message
e If no assembly errors are detected during assembly, the assembler outputs the following message and
returns control to the OS.

ASSEMBLY COMPLETE, NO ERROR FOUND

* Ifassembly errors are detected during assembly, the assembler displays the number of errors on the console
and returns control to the OS.

ASSEMBLY COMPLETE, 5 ERRORS FOUND(10)

* If afatal erroris detected during assembly which prevents assembly from continuing, the assembler outputs
a message to the console, stops execution, and returns control to the OS.

74

CHAPTER 4 ASSEMBLER

Example 1. When a source file which does not exist in drive B is specified.

AANECTOOLS\SMP75X\RA75X>RA75X SAMPLE.ASM -C106
75X Series Assembler VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985 ,XXXX

A006 File not found ‘SAMPLE. ASM’
Program aborted

Inthis example, an error is generated since a source file which does not exist in drive is specified, and assembly
is aborted.

Example 2. When the -C option is not specified

AANECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM
75X Series Assembler VXX. XX [XX Xxx xx]
Copyright (C) NEC Corporation 1985, XXX

***ERROR A099 CHIP IS NOT SELECTED
—C000A/000/004/006/008/028/036/048/064/066/068/

104/106/108/P108/112/116/116H/117H
206/208/CG208/212A/216A/CG216A/217/218/236/237/238/268/
304/306/308/312/312B/316/316A/316B/328/336/352A
402/
512/516/517/518/
617A

0004/0006/0008/P0016/ } Note
3012/3016/3017/P3018/3104/3106/3108/P3116

Program aborted

Note The 75XL Series device file in the same directory as the assembler main program is displayed.

In this example, an error is generated since the -C option for specification of the target product has not been
specified, and assembly is aborted.

When the assembler outputs an error message and aborts assembly, the cause of the error message should
be found in 13.1 “Assembler’s Error Messages”, and appropriate action taken.

75

CHAPTER 4 ASSEMBLER

4.3.3 Assembler error handling

If the assembler detects an error during execution, it performs one of the following three kinds of processing
according to the severity of the error.

(1) Abort error
If the assembler is generated which prevents program execution from continuing, the program displays a
‘Program aborted’ message, and the program is aborted immediately.

(2) Fatal error
If an error is generated which would result in generation of object code different from that intended by the user,
the program nevertheless continues processing to the end, then outputs the message “ASSEMBLY COM-
PLETE, X ERRORS FOUND” (where X is the number of errors).

(3) Normal termination
If the program terminates normally, it outputs the message “ASSEMBLY COMPLETE NO ERROR FOUND”.
e Error related to start line (only output to standard output)

Error number_error message

e Error unrelated to start line

Output format for assembly list and standard output

*** _ERROR_#error number,__STNO #nnnn_(mmmm), _error message

nnnn : Error line number
mmmm : Previous error line number

4.3.4 Assembler termination status

When the assembler terminates and returns control to the OS, one of the following error status codes is returned
to the OS.

Termination Condition Termination Status

Normal termination 0
Fatal error 1
Abort error 2

When the assembler is started from a batch file under MS-DOS (PC DOS, IBM DOS), it is possible to determine
whether there are any assembly errors automatically using these values.

76

CHAPTER 4 ASSEMBLER

4.4 Assembler Options
441 Types of assembler options

Assembler options are used to give the assembler detailed directions concerning its operation. There are 19
different options as shown below.

77

CHAPTER 4 ASSEMBLER

Table 4-2 Assembler Options (1/2)

No . Description Format Function/Category Default Interpretation
1 -C product Specification of assembler target product Cannot be omitted
2 -M mode 75XL Series CPU mode switching Cannot be omitted when a 75XL Series
Cannot be specified when a 75X Series device is used.
device is used.
3 -Offile name] Object module file specification ‘Input file name.REL’ is create in current
-NO path.
4 -J Object module file forced output -NJ
-NJ output specification
5 -G Specification of output to object module of | -G
-NG of symbol information for debugging
6 -GA Specifies output of source debugging -GA
-NGA information object module files.
7 -P[file name] Assembly list file specification ‘Input file name.PRN’ is create in current
-NP path.
8 -E[file name] Error list file specification -NE
-NE
9 -KS Symbol table list output specification -NKS
-NKS
10 | -KX Cross-reference list output specification -NKX
-NKX
11 | -CA Specifies distinguishing between upper/ -NCA
lower case letters.
-NCA -CA : Do not distinguish between upper/
lower case letters.
-NCA: Distinguish between upper/lower
case letters.
12 | -S Sets the symbol name length. -S
-NS -S : Sets a maximum of 31 characters.
-NS : Sets a maximum of 8 characters.
13 | -Dsymbol name Symbol Name None
[= numerical value]
[,Symbol Name
[= numerical value]...]
-NDsymbol Name
14 | -LL[number of lines] Number of lines and columns per page of | -LL66
-LW[number of characters] | assembly list file -LW132
15 | -LT[number of characters] | Specification of number of TAB expansion | -LT8
columns in assembly list table
16 | -KA Assembly list output specification -KA
-NKA
17 | -l path name [, path name...] | Include file search path specification Search the path specified by the ‘IN-
CLUDE’ pseudo command, the source
module file path and the path set in
environmental variable ‘INC75X, ’ in that
order.
18 | -F file name Parameter file specification Read all the options and file names from

the command line.

78

CHAPTER 4 ASSEMBLER

Table 4-2 Assembler Options (2/2)

No .

Description Format

Function/Category

Default Interpretation

19

-Ypath name

Specifies the device file search path.

It searches in the sequence of the ‘..\DEV’
path with respect to the RA75X starting
path, the RA75X starting path, the current
directory, and the path set in the environ-
ment variable ‘PATH.’

Remark Options can be written in either upper- or lower-case characters.

79

CHAPTER 4 ASSEMBLER

4.4.2 Assembler options specification method

Assembler options are specified in the command line when the assembler is started or in a parameter file.

In addition, certain assembler options can be specified by a control instruction which corresponds to the module
header of the source module (until a comment, mnemonic or pseudo-instruction appears in the source module).

The assembler options shown below can be specified by using a control instruction in () in the module header.
It is convenient to use these options to specify in the module header those items which must always be specified
each time assembly is performed.

« -C (PROCESSOR) or (PC)

« -CA (CAP) or (CA), -NCA (NOCAP) or (NOCA)

« -G (DEBUG) or (DB), -NG (NODEBUG) or (NODB)

« -GA (DEBUGA) or (DA), -NGA (NODEBUGA) or (NODA)

« -J (GENERATE) or (GEN), -NJ (NOGENERATE) or (NOGEN)
« -KS (SYMBOLS) or (SB), -NKS (NOSYMBOLS) or (NOSB)
o -KX {(XIREF) or (XR), -NKX (NOXREF) or (NOXR)

e -LL (PAGELENGTH) or (PL), -LW (PAGEWIDTH) or (PW)
e -LT (TAB) or (TB)

« -M (MODE) or (MD)

« -S(SYMLEN) or (SL), -NS(NOSYMLEN) or (NOSL)

The control instructions is specified in the module header of the source module as shown below.

$ [_] control instruction
|— One option can be specified on one line.
(Multiple control instructions cannot be specified on one line.)
‘¢’ is specified in the first column.

Example To specify a control instruction in the module header of a source module.

$ SYMBOLS

$ XREF

$ TITLE="A-D CONVERTER

e A-D CONVERT PROGRAM e

80

CHAPTER 4 ASSEMBLER

4.4.3 Assembler options priority order

(1) If multiple identical options or options of the same kind are specified in the command line, the option specified

last is valid.

(2) If the same or same kind of option is specified in the parameter file and in the command line, the command

line option is valid.
(3) If another special assembler option is specified among assembler options, it may be meaningless.

The priority order for these assembler options is shown in Table 4-3. A cross (x) in the table means that when

the option under “A” is specified the option under “B” is invalid.

Table 4-3 Assembler Options Priority

B A| -NO | -NP
-GA —
-G —
-J —
KA —
-KS —
KX —
-LL —
LW —
LT —

~. . The side B options are invalid.
— : Thereisnorelationship between
side A and side B.

4.4.4 Description of assembler options

Each off the assembler options is described in detail in the following pages.

81

CHAPTER 4 ASSEMBLER

-C chip
(1 -C
Description Format -C device
Default Interpretation ~ Cannot be omitted
[Function]

e -C option specifies the product subject to assembly.

[Use]

e -C option must always be specified. The assembler performs assembly appropriate to the product specified by

-C option.

[Description]

e The ROM range, RAM range, instruction set, reserved words (specified address name symbols), etc., vary
according to the 75X Series and 75XL Series product (device). Products which can be specified by the -C option
and the ROM and RAM ranges of each product are shown in Table 4-4.

(1) 75X Series

Table 4-4 Assemble Object Device List

Assembly Target Product Product Specification ROM Range RAM Range
uPD75000 000 OH to 3FFFH OH to OF7FH
uPD75000A 000A OH to OF7FH OH to OF7FH
uPD75004 004 OH to OFFFH OH to 01FFH
uPD75006 006 OH to 177FH OH to O1FFH
uPD75008, 75P008 008 OH to 1F7FH OH to O1FFH
uPD75028 028 OH to 1F7FH OH to 01FFH
uPD75036, 75P036 036 OH to 3F7FH OH to O3FFH
uPD75048, 75P048 048 OH to 1F7FH OH to O1FFH,

400H to 07FFH Nete
uPD75064 064 OH to OFFFH OH to 01FFH
uPD75066 066 OH to 177FH OH to O1FFH
uPD75068, 75P068 068 OH to 1F7FH OH to O1FFH
uPD75104, 75104A 104 OH to OFFFH OH to 013FH
uPD75106 106 OH to 177FH OH to 013FH
uPD75108, 75108A, 108 OH to 1F7FH OH to O1FFH
uPD75P108B, 75108F
uPD75P108 P108 OH to 1FFFH OH to 01FFH
uPD75112, 75112F 112 OH to 2F7FH OH to O1FFH
uPD75116, 75P116, 75116F 116 OH to 3F7FH OH to O1FFH
uPD75116H 116H OH to 3F7FH OH to 02FFH
uPD75117H, 75P117H 117H OH to 5F7FH OH to 02FFH
uPD75206 206 OH to 177FH OH to 013FH Note1
uPD75208 208 OH to 1F7FH OH to 01BFH Nete1
uPD75CG208 CG208 OH to 1FFFH OH to 01BFH Netet
uPD75212A 212A OH to 2F7FH OH to O1FFH

Note Addresses 0400H to 07FFH are allocated by EEPROM.

82

CHAPTER 4 ASSEMBLER

-C chip
Assembly Target Product Product Specification ROM Range RAM Range
uPD75216A, 75P216A 216A OH to 3F7FH OH to O1FFH
uPD75CG216A CG216A OH to 3 FFFH OH to O1FFH
uPD75217 217 OH to 5F7FH OH to 02FFH
uPD75218, 75P218 218 OH to 7F7FH OH to O3FFH
uPD75236 236 OH to 3F7FH OH to 02FFH
uPD75237 237 OH to 5F7FH OH to 03FFH
uPD75238, 75P238 238 OH to 7F7FH OH to O3FFH
uPD75268 268 OH to 1F7FH OH to O1FFH
uPD75304, 75304B 304 OH to OFFFH OH to O1FFH Note2
uPD75306, 75306B 306 OH to 177FH OH to O1FFH Note2
uPD75308, 75P308, 75308B 308 OH to 1F7FH OH to O1FFH Note2
uPD75312 312 OH to 2F7FH OH to O1FFH Note2
uPD75312B 312B OH to 2F7FH OH to O3FFH Note 2
uPD75316, 75P316 316 OH to 3F7FH OH to 01FFH Note2
uPD75P316A 316A OH to 3F7FH OH to O3FFH Note 2
uPD75316B, 75P316B 316B OH to 3F7FH OH to O3FFH Note 2
uPD75328, 75P328 328 OH to 1F7FH OH to O1FFH Note3
uPD75336. 75P336 336 OH to 3F7FH OH to 02FFH Note3
uPD75352A 352A OH to 2F7FH OH to O3FFH Note 4
uPD75402, 75P402 402 OH to 077FH OH to 003FH
uPD75512 512 OH to 2F7FH OH to 01FFH
uPD75516, 75P516 516 OH to 3F7FH OH to 01FFH
uPD75517 517 OH to 5F7FH OH to O3FFH
uPD75518, 75P518 518 OH to 7F7FH OH to 03FFH
uPD75617A 617A OH to 5F7FH OH to O5FFH Note 4

Notes 1. Display memory means an area comprising a total of 196 bits, consisting of RAM addresses 1COH to
1FFH with the exception of 1C3H, 1C7H, 1CBH, 1CFH, 1D3H, 1D7H, 1DBH, 1DFH, 1E3H, 1E7H,
1EBH, 1EFH, 1F3H, 1F7H and 1FBH.

2. 8-bit data transfer instructions (MOV XA, mem / MOV mem, XA / XCH XA mem) cannot be use on
addresses in the range 01EOH to 01FFH.
3. 8-bit data transfer instructions (MOV XA, mem / MOV mem, XA / XCH XA. mem) cannot be used on
addresses in the range 01E8H to 01FFH.
4. 8-bit data transfer instructions (MOV XA, mem / MOV mem, XA / XCH XA, mem) cannot be used on
addresses in the range 0100H to 0126H.

83

CHAPTER 4 ASSEMBLER

-C

chip

(2) 75XL Series

Assembly Target Product Product Specification ROM Range RAM Range
uPD750004 0004 OH to OFFFH OH to 1FFH
uPD750006 0006 OH to 17FFH OH to 1FFH
uPD750008 0008 OH to 1FFFH OH to 1FFH
uPD75P0016 P0016 OH to 3FFFH OH to 1FFH
uPD750104 0104 OH to OFFFH OH to 1FFH
uPD750106 0106 OH to 17FFH OH to 1FFH
uPD750108 0108 OH to 1FFFH OH to 1FFH
uPD75P0116 PO116 OH to 3FFFH OH to 1FFH
uPD750064 0064 OH to OFFFH OH to 1FFH
uPD750066 0066 OH to 17FFH OH to 1FFH
uPD750068 0068 OH to 1FFFH OH to 1FFH
uPD75P0076 P0076 OH to 3FFFH OH to 1FFH
uPD753012 3012 OH to 2FFFH OH to 3FFH Note2
uPD753016 3016 OH to 3FFFH OH to 3FFH Nete2
uPD753017 3017 OH to 5FFFH OH to 3FFH Nete2
uPD75P3018 P3018 OH to 7FFFH OH to 3FFH Note2
uPD753012A 3012A OH to 2FFFH OH to 3FFH Nete2
uPD753016A 3016A OH to 3FFFH OH to 3FFH Nete2
uPD753017A 3017A OH to 5FFFH OH to 3FFH Note2
uPD75P3018A P3018A OH to 7FFFH OH to 3FFH Nete2
uPD753036 3036 OH to 3FFFH OH to 2FFH Note3
uPD75P3036 P3036 OH to 3FFFH OH to 2FFH Note3
uPD753104 3104 OH to OFFFH OH to 1FFH Note4
uPD753106 3106 OH to 17FFH OH to 1FFH Note4
uPD753108 3108 OH to 1FFFH OH to 1FFH Note4
uPD75P3116 P3116 OH to 3FFFH OH to 1FFH Note4
uPD753204 3204 OH to OFFFH OH to 1FFH Notes
uPD753206 3206 OH to 17FFH OH to 1FFH Notes
uPD753208 3208 OH to 1FFFH OH to 1FFH Notes
uPD75P3216 P3216 OH to 3FFFH OH to 1FFH Notes
uPD753304 Nete 1 3304 OH to OFFFH OH to OFFH

1EOH to 1F7H Netes
uPD754144 4144 OH to 07FFH OH to 07FH
0400H to 041FH Note?
uPD754244 4244 OH to OFFFH OH to 07FH
0400H to 041FH Note?
uPD754264 4264 OH to OFFFH OH to 07FH
0400H to 041FH Nete?
UPD75F4264 Nete 1 F4264 OH to OFFFH OH to 07FH
0400H to 041FH Note?
uPD754302 4302 OH to 07FFH OH to OFFH
uPD754304 4304 OH to OFFFH OH to OFFH
uPD75P4308 P4308 OH to 01FFFH OH to OFFH

84

CHAPTER 4 ASSEMBLER

chip

Notes 1. Under development.
The addresses 1FOH-1FFH are allocated by the display memory.

The addresses 1EOH-1F7H are allocated by the display memory.

The addresses 1EOH-1F7H are allocated by the display memory.
Addresses 0400H-041FH are allocated by EEPROM.

Nooakrwbd

[Examples]

Example 1. When the -C option is omitted.

The addresses 1ECH-1FFH are allocated by the display memory.

The addresses 1ECH-1F7H are allocated by the display memory.

AANECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM
75X Series Assembler VXX. XX [XX Xxx xx]
Copyright (C) NEC Corporation 1985, XXXX

***ERROR A099 CHIP IS NOT SELECTED
—C000A/000/004/006/008/028/036/048/064/066/068/

104/106/108/P108/112/116/116H/117H
206/208/CG208/212A/216A/CG216A/217/218/236/237/238/268/
304/306/308/312/312B/316/316A/316B/328/336/352A
402/
512/516/517/518/
617A

0004/0006/0008/P0016/ } Note
3012/3016/3017/P3018/3104/3106/3108/P3116

Program aborted

Note The installed 75XL Series device files are displayed.

In this example, an error is generated since the -C option is omitted, and program execution is aborted.

Example 2. When a uPD75104/75104A source program is assembled.

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C104

85

CHAPTER 4 ASSEMBLER

-M MODE

(2) M

Description Format -M mode
Default Interpretation ~ Omission Impossible (75XL Series)

[Function]
* The -M option specifies the 75XL Series CPU mode.

[Use]

* Assembly is performed in accordance with the CPU mode specified by -M.

* An error will be flagged if this option is not specified when a 75XL Series device is used.

* In the 75XL Series, the Mark1 Mode cannot be specified for products with more than 16 Kbytes of ROM.
* This option cannot be specified when a 75X Series device is used.

[Description]
e The modes that can be selected with this option are shown in the table below.

Option Specified Mode Model
75X Series 75XL Series 75XL Series
(ROM is less than 16 Kbytes) | (ROM is 16 Kbytes or more)
-M2 Mark2 O O
-MA1 Mark1 O
-Mo0 Common O O

O : Can be specified.
.. . Cannot be specified.

¢ |n the Mark1 mode, The BRA and CALLA instructions result in an error.
* In the common mode, an instruction in which there is a change in the stack results in an error.

86

CHAPTER 4 ASSEMBLER

MODE

[Examples]

Example 1. If “75XTEST1.ASM” is assembled with the -M2 option specified.

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -0004 -M2

Example 2. If “75XTEST1.ASM” is assembled without the -M option being specified.

AANECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C0004
75X Series Assembler VXX. XX [XX Xxx xx]
Copyright (C) NEC Corporation 1985 ,XXXX

*** ERROR A099 MODE IS NOT SELECTED
Program aborted

— An assembly error is flagged.

87

CHAPTER 4 ASSEMBLER

-O/-NO object/no object
(3) -O/-NO
Description Format -O [output file name]
-NO

Default Interpretation ‘Input file name.REL’ is created in current path

[Function]
* The -O option specifies the output destination and file name of the object module file output by the assembler.
e The -NO option specifies that no object module file is to be created.

[Use]

* The -O option is specified when it is wished to change the object module file output destination or file name.

e The -NO option is specified when assembly is to be performed only in order to output an assembly list, etc. (the
assembly time is reduced).

[Description]

* When the -O option is specified and the output file name is omitted, the output file name ‘source module file
name.REL’ is taken as being specified.

* If the path name is omitted from the file name specification, the current path is taken as being specified.

88

CHAPTER 4 ASSEMBLER

-O/-NO object/no object

[Examples]

Example 1. If “75XTEST1.ASM” is assembled with the -NO option specified.

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106 -NO

— An object module file is not output.
The Assemble List File “75XTEST1.PRN” only is output.

Example 2. If “75XTEST1.ASM” is assembled with the -O option specified.

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106 -OSAMPLE.REL

— The object module file “SAMPLE.REL” and the Assemble List file “7Z5XTEST1.PRN” are output.

89

CHAPTER 4 ASSEMBLER

-J/-NJ junk/no junk
(4) -J/-NJ
Description Format -J
-NJ

Default Interpretation -NJ

[Function]
* The -J option specifies that an object module file is to be created even if there is an assembly error.
* The -NJ option specifies that an object module file is not to be created if there is an assembly error.

[Use]
* When generating an object file even when there is an error in the source file, specify the -J option.

[Explanation]
¢ When the -NO option is specified, the -J option is invalid.

[Examples]
o |f “7Z5XTEST1.ASM” is assembled with the -J option specified.

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -J

— The object module file “75XTEST1.REL” is output even when there is an assembly error.

90

CHAPTER 4 ASSEMBLER

-G/-NG debug/no debug
(5) -G/-NG
Description Format -G
-NG

Default Interpretation -G

[Function]
¢ The -G option specifies that symbol information is to be output to the object module file output by the assembler.
e The -NG option specifies that symbol information is not to be output to the object module file.

[Use]

* When the -NG option is specified, the necessary symbol information is not output at the link list file output by
the linker or the symbol table file which is input to the debugger (IE-75000-R Nete 1 |E-75001-R, EVAKIT-75X
Note2) Therefore, when symbolic debugging is to be performed, all modules to be linked should be assembled
with the -G option specified.

e |f symbolinformation is not required and it is wished to shorten the assembly time if only by a little, the -NG option
should be specified.

Notes 1. Maintenance product (not available for purchase)
2. Discontinued (not available for purchase)

[Description]

* When the -NO option was specified, the -G option is invalid.

* When the -NG option is specified, symbol information is not output at the object module file output by the
assembler. Therefore, when the object module files output at this time is linked, symbol information is not output
to the link list file output by the linker or the symbol table list output by the object converter either.

91

CHAPTER 4 ASSEMBLER

-G/-NG debug/no debug

[Examples]
* Assembly of “75XTEST1.ASM” with the -G option specified

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106 -G

* Assembly of “75XTEST2.ASM” with the -NG option specified .

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST2.ASM -C106 -NG

To link “75XTEST1.REL” and “75XTEST2.REL”

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2. REL

92

CHAPTER 4 ASSEMBLER

-G/-NG debug/no debug

—Symbols are not displayed in the symbol list in the link list file for “75XTEST2.ASM” for which the -NG option
was specified.

SYMBOL LIST FOR 75XTEST1.LNK

TYPE VALUE ATTRIBUTE NAME

MODULE AD_MAIN

CODE 0046H SYMBOL HEIKIN
PBIT OFBCH.1 SYMBOL IETO
CODE 0060H SYMBOL LOOPH1
CODE 0066H SYMBOL LOOP2
CODE 0079H SYMBOL LOOP3
CODE 007DH SYMBOL LOOP4
CODE 0048H SYMBOL LOOP5
CODE 0050H SYMBOL MAIN
PBIT OFBOH.1 SYMBOL MBE
DATA OFB3H SYMBOL PCC
PBIT OPBOH.O SYMBOL RBE
DATA 0110H PUBLIC SEGO
CODE 0020H PUBLIC SEG1.
CODE 0050E PUBLIC SEG2
CODE 0046H PUBLIC SEG3
CODE 0020H PUBLIC SEL15
DATA OF80H SYMBOL SP
DATA 0110H PUBLIC TDATA

DATA OFAOH SYMBOL TMO
DATA OFAGH SYMBOL TMODO

LINK COMPLETE, NO ERROR FOUND

93

*

CHAPTER 4 ASSEMBLER

-GA/-NGA debuga/no debuga
(6) -GA/-NGA
Description format -GA
-NGA

Default Interpretation -GA

[Function]

e The -GA option instructs to output object module files, output by the Assembler, with source debugging
information added.

e The -NGA option instructs to output object module files, output by the Assembler, without source debugging
information added.

[Use]
e Specify the -NGA option when desiring to generate object module files without source debugging information
added.

[Description]
¢ When the -NO option is specified, the -GA option becomes invalid.

[Example]
* Assemble “75XTEST1.ASM” with the -NGA option specified.

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106 -NGA

94

—The object module file “75XTEST1.REL” is output without source debugging information added.

Caution IE-75000-R and IE-75001-R do not support source debugging, so specify the -NGA option.

CHAPTER 4 ASSEMBLER

-P/-NP print/no print
(7) -P/-NP
Description Format -P [output file name]
-NP

Default Interpretation ‘input file name.PRN’ is created in current path

[Function]
* The -P option specifies the output destination and file name of the assembly list file output by the assembler.
* The -NP option specifies that no assembily list file is to be created.

[Use]

* The -P option is specified when it is wished to change the assembly list file output destination or file name.

e The -NP option is specified when assembly is to be performed only in order to output an object module file, etc.
(the assembly time is reduced).

[Description]
¢ If the drive name is omitted from the file name specification, the current path name is taken as being specified.
* The following can be specified as the device type output destination:

* -PPRN......... Assembly list is output to line printer.
e -PCON Assembly list is output to console.

e -PAUX Assembly list is output to RS-232-C.
e -PNUL Assembly list is not output.

e An error list file can be output separately by means of the -E option.
* If the -NP option is specified, the following options are invalid.
e -KS, -KX, -LL, -LW, -KA, -LT

95

CHAPTER 4 ASSEMBLER

-P/-NP print/no print

[Examples]

Example 1. If “75XTEST1.ASM” is assembled with the -NP option specified.

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106 -NP

—Assemble List file is not output.
Only the object module file “75XTEST1.REL” is output.

Example 2. If “75XTEST1.ASM” is assembled with the -P option specified (the file name is “SAMPLE.PRN”).

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106 -PSAMPLE.PRN

—The Assemble List File “SAMPLE.PRN” and the object module file “75XTEST1.REL” are output.

Example 3. To output the list to the printer

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106 -PPRN

—The assembly list file is output to the printer.

96

CHAPTER 4 ASSEMBLER

-E/-NE error print/no error print
(8) -E/-NE
Description Format -E [output file name]
-NE

Default Interpretation -NE

[Function]
* The -E option specifies error list file output, and the output destination and filename.
e The -NE option specifies that no error list file is to be output.

[Use]
* When the assembly list is very long, it is difficult to find error lines in the list. In this case, the -E option can be
specified to extract only assembly error information.

[Description]
e If the output file name is omitted when the -E option is specified, “source module file name.ERA” is taken as
being specified as the output file name.
e If the drive name is omitted from the file name specification, the current path name is taken as being specified.
* If the same output file name as the specified by the -P option is specified, an error list is not output.
e The following can be specified as the device type file output destination.
-EPRN Error list is output tp line printer.
-ECON Error list is output to console.
-EAUX........ Error list is output to RS-232-C.
-ENUL Error list is not output.

[Example]
o If “75XTEST1.ASM” is assembled with the -E option specified (the file name is “75XTEST.ERA”).

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106 -E75XTEST.ERA

—lIf there was an error, the Error List File “7Z5XTEXT.ERA” is output.

97

CHAPTER 4 ASSEMBLER

- KS/-NKS symbols/no symbols
(9) -KS/-NKS
Description Format -KS
-NKS

Default Interpretation -NKS

[Function]
* The -KS option specifies that a symbol table list is to be output to the assembly list file.
* The -NKS option specifies that a symbol table list is not to be output.

[Use]
* The -KS option is specified when it is wished to list the symbol name, symbol attribute, value, etc., of all symbols
defined in the source module.

[Description]
* When the -KS option is specified, a symbol table list is output after the assembly list in the assembly list file.
* If the -NP option is specified, the -KS option is invalid and a symbol table list is not output.

[Example]
e |f “7Z5XTEST1.ASM” is assembled with the -KS option specified.

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106 -KS

98

66

75X SERIES ASSEMBLER VX.XX

** A-D CONVERTER VX.XX

SYMBOL TABLE LIST

OFFSET TYPE SYMBOL OFFSET TYPE

AD_MAIN = --------- CODE
0010H CODE LOOP1 0016H CODE
0002H CODE LOOP5 0000H CODE
OFBOH.0 PBIT RBE 0002H DATA
000AH CODE PUB SEG3 0000H CODE

............ STACK EXT STACK 0110H DATA

TARGET CHIP: UPD75106
STACK SIZE = 000AH

ASSEMBLY COMPLETE, NO ERROR FOUND

EXT

PUB
PUB
PUB

SYMBOL

ADCONV
LOOP2
MAIN
SEGO
SEL15
TDATA

*k

OFFSET TYPE

0000H
0029H
OFBOH.1
0002H

OFAOH

CODE
CODE
PBIT

SYMBOL

HEIKIN
LOOP3
MBE

CODE PUB SEGHT
CODE EXT SIOSUB

DATA

TMO

XX/XX/XX XX:XX:XX PAGE : X

OFFSET TYPE SYMBOL
OFBCH.1 PBIT IETO
002DH CODE LOOP4
OFB3H DATA PCC
0039H CODE PUB SEG2
OF80H DATA SP
OFA6H DATA TMODO

"9|1} 181 Algwiasse ayy ul Indino si 1sI| 8|gel joquiAs Buimojjo) ey«

SHUN-/SH-

s|joquiAs ou/sjoquwiAs

H4379N3SSY ¥ H3LdVHO

CHAPTER 4 ASSEMBLER

-KX/-NKX cross-reference/no cross-reference
(10) -KX/-NKX
Description Format -KX
-NKX

Default Interpretation -NKX

[Function]
* The -KX option specifies that a cross-reference list is to be output to the assembly list file.
e The -NKX option specifies that a cross-reference list is not to be output.

[Use]

* The -KX option is specified when it is wished to ascertain such information as how often a symbol defined in
the source module file list is referenced in the source module, in which lines of coding in the assembly list that
symbol has been referenced, and so forth.

* For example, if the location at which a symbol which defines a subroutine entry address is known, it is possible
to find immediately where that subroutine was called.

[Description]

* |If the -NP option is specified, the -KX option is invalid.

e The cross-reference list is output at the end of the assembly list file (a file containing only the cross-reference
list is not output).

[Example]
o If “7Z5XTEST1.ASM” is assembled with the -KX option specified.

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106 -KX

100

CHAPTER 4 ASSEMBLER

-KX/-NKX

cross-reference/no cross-reference

—The following type of cross reference list is output in the Assemble List File.

75X SERIES ASSEMBLER VX.XX

** A-D CONVERTER VX. XX

CROSS REFERENCE LIST

SYMBOL TYPE VALUE
AD_MAIN

ADCONV CODE ----------
HEIKIN CODE 0000H
IETO PBIT OFBCH.1
LOOP1 CODE 0010H
LOOP2 CODE 0016H
LOOP3 CODE 0029H
LOOP4 CODE 002DH
LOOP5 CODE 0002H
MAIN CODE 0000H
MBE PBIT OFBOH.1
PCC DATA 0FB3H
RBE PBIT OFBOH.O
SEGO DATA 0002H
SEG1 CODE 0002H
SEG2 CODE 0039H
SEG3 CODE 000AH
SEL15 CODE 0000H
SI0SuUB (070] 5] =J—
SP DATA OF80H
STACK STACK = —memeee-
TDATA DATA 0110H
TMO DATA OFAOH
TMODO DATA OFABH

TARGET CHIP : UPD75106
STACK SIZE = 000AH

ASSEMBLY COMPLETE, NO ERROR FOUND

EXT
R SEG = SEG3

SEG = SEG2
SEG = SEG2
SEG = SEG2
SEG = SEC2
SEG = SEG3
SEG = SEG2

T 1V TV IV 1V D

PUB ABS
PUB REL = IENT
PUB REL = INBLOCK
PUB REL = SENT

R PUB SEG = SEG1
EXT

EXT
PUB ABS

XXIXXIXX XX XX: XX PAGE: X

* %

ATTRIBUTES XREF LIST

1
6,10

60, #68
53

#37, 39
#41, 43
#56, 63
#58, 59
#69, 75
9, #23
9,10

30

9,10
#12

#17

#22

#67

7, #18, 25, 47
6, 62

27

26

7, #13, 61
51

49

101

CHAPTER 4 ASSEMBLER

-CA/-NCA cap/no cap
(11)-CA/-NCA
Description Format -CA
-NCA

Default Interpretation -NCA

[Function]
* The -CA option specifies not to distinguish the upper and lower case letters of symbol name.
* The -NCA option specifies to distinguish the upper and lower case letters of symbol name.

[Use]
* Use the -CA option in cases where upper and lower case letters are not distinguished and specify the
-NCA option when distinguishing upper and lower case letters.

[Explanation]
* If neither the -CA option or the -NCA option is specified, processing is the same as when the -NCA option is
specified.

[Description Example]
e Assemble “75XTEST1.ASM” with the -CA option specified.

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106 -CA

—The object module file “7Z5XTEST1.REL” is output without upper and lower case letters in symbol names
distinguished.

Caution Upper and lower case letters in symbol names cannot be judged by the IE-75000-R and IE-75001-
R, so specify the -CA option.

102

*

CHAPTER 4 ASSEMBLER

-S/-NS symlen/no symlen
(12)-S/-NS
Description Format -S
-NS

Default Interpretation -S

[Function]

* The -S option instructs to expand the length of recognizable symbol names to a maximum of 31 characters.

* The -NS option instructs to invalidate the -S option and allow the length of recognizable symbol names to be
a maximum of 8 characters.

[Use]
e Specify the -S option when making the length of recognizable symbol names a maximum of 31 characters and
specify the -NS option when making the length of recognizable symbol names a maximum of 8 characters.

[Explanation]
* If neither the -S or -NS option is specified, processing is the same as when the -S option is specified.

[Description Example]
e Assemble “75XTEST1.ASM” specifying the -NS option.

A\NECTOOLS\SMP75X\RA75X\RA75X 75XTEST1.ASM -C106 -NS

—The object module file “75XTEST1.REL” is output with the symbol names a maximum of 8 characters in length.

Caution The IE-75000-R and IE-75001-R can recognize only symbol names with a length of 8
characters, so specify the -NS option.

103

CHAPTER 4 ASSEMBLER

-D/-ND define/no define
(13)-D/-ND
Description Format -D Symbol Name [= Numerical Value][, Symbol Name [= Numerical value][...]]

-ND Symbol Name [, Symbol Name [...]]
Default Interpretation A symbol is not defined.

[Function]
* The -D option instructs that the specified symbol be defined with the value of the specified numerical value.
e The -ND option invalidates the specified symbol definition.

[Use]
e If you are defining a specified symbol with the value of the specified numerical value, specify the -D option. If
you are invalidating the definition of the specified symbol, specify the -ND option.

[Explanation]
e If specification of a numerical value is omitted, the symbol value becomes 1.

[Description Example]
e [If defining 1 in the symbol ‘TRUE.’

A\NECTOOL\SMP75X\RA75X\RA75X>RA75X 75XTEST1.ASM -DTRUE=1

104

CHAPTER 4 ASSEMBLER

-LL/-LW page length/page width

(14)-LL/-LW

Description Format -LL number of lines printed on one page
-LW number of columns printed on one line
Default Interpretation -LL66
-Lw132

[Function]
e The -LL option specifies the number of lines per page in the assembly list.
e The -LW option specifies the number of columns per line in the assembly list.

[Use]
* The -LL and -LW option are specified when it is wished to change the number of lines to be printed on one page
or the number of columns to be printed in one line of the assembly list.

[Description]

e The number of lines and columns which can be specified by these options are as follows:
20 < number of print lines per page < 65535
72 < number of print columns per line < 256

* If the number of characters of per line for which output to the assembly list file is attempted exceeds the value
specified by the -LW option, the assembler truncates the characters exceeding the specified number of columns
before outputting the line to the list file.

* The number of lines actually printed on one page of the assembly list file is (number of lines specified by -LL
option - 6), as a 3-line margin is left at the top and bottom of each page of the assembly list.

105

CHAPTER 4 ASSEMBLER

-LL/-LW page length/page width

[Example]

Example 1. If “75XTEST1.ASM” is assembled with printing of 40 lines per page and 80 characters per line
specified.

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106 -LL 40 -LW80

—The following type of assembly list is output.

80
75X SERIES ASSEMBLER VX.XX XX/XX/XX XX:XX:XX PAGE : X
** A-D CONVERTER VX.XX **
COMMAND : 75XTEST1.ASM -C106 -LL40 -LW80

STNO ADRS R OBJECT IC MAC SOURCE STATEMENT

1 $ TITLE='A-D CONVERTER VX. XX’

2 ;

3 A-D CONVERT PROGRAM
4 ;

5 NAME AD_MAIN

6 EXTRN CODE(ADCONV),CODE(SIOSUB)
7 PUBLIC TDATA,SEL15

8 STKLN 10

9 0000 R Co000 VENTO MBE=1,RBE=1,MAIN

10 0008 E 8000 VENT4 MBE=1,RBE=0,ADCONV

11

12 - SEGO DSEG 1 AT 10H

13 0110 TDATA: DS 2

14

15 GETI TABLE

16

17 ---- SEG1 CSEG IENT

18 0000 991F SEL15: SEL MB15

19

20 MAIN ROUTINE ***

21

22 ---- SEG2 CSEG INBLOCK

23 0000 9921 MAIN: SEL RB1

24

25 0002 R 00 GETI SEL15 ;STACK POINTER SET

106

CHAPTER 4 ASSEMBLER

-LL/-LW

page length/page width

75X SERIES ASSEMBLER VX.XX

** A-D CONVERTER VX. XX

STNO ADRS R OBJECT IC MAC
26 0003 E 8900
27 0005 9280
28
29 0007 73
30 0008 93B3
31
32 .
33
34 000A 9911
35 000C 8B3F
36 000E 8900
37 0010 E8 LOOP1:
38 0011 AABA
39 0013 FC
40 0014 9910
41 0016 E8 LOOP2:
42 0017 AAGA
43 0019 FC
44
45 ;T

Example 2. The -LL and -LW options are omitted.

SOURCE STATEXENT

XXIXXIXX XX:XX:XX PAGE : X

*%

MOV XA #STACK ;

MOV SP,XA ;

MOV A,#0011B

MOV PCC,A ;PCC « 0011B

DATA RAM 0OH-13FH ZERO CLEAR**

SEL MB1

MOV HL,#3FH

MOV XA, #00H

MOV @HLA ;100H-13FH
DECS HL

BR LOOPH1

SEL MBO

MOV @HLA ;OH-FFH
DECS HL

BR LOOP2

TIMER SET(SAMPLING TIME = 30MSEC, FXX=4

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTESTI.ASM -C106

—The assembly list is output as follows.

107

CHAPTER 4 ASSEMBLER

-LL/-LW

page length/page width

132

75X SERIES ASSEMBLER VX.XX
** A-D CONVERTER VX.XX
COMMAND

STNO ADRS R OBJECT

0 N O O~ W N =

©

0000 R CO000
0008 E 8000

—_
N = O

0110

—_ a4
N o oW

0000

-
(o]

991F

NN =
- O ©

0000

NN
w N

9921

NN
(S I N

0002 R
0003 E
0005

00
8900
9280

NN NN
© 00 N O

0007
0008

73
93B3

W W www
A~ WO N = O

000A
000C
000E
0010

9911
8B3F
8900
E8

W W W
N o O

108

: 75XTEST1.ASM -C106

IC MAC SOURCE STATEMENT

XX/XX/XX X

TITLE="A-D CONVERTER VX. XX’

X:XX: XX PAGE : X

* %

A-D CONVERT PROGRAM

kK

LOOP1:

NAME AD_MAIN

EXTRN CODE(ADCONV),CODE(SIOSUB)

PUBLIC TDATA,SEL15

STKLN 10

VENTO MBE=1,RBE=1,MAIN
VENT4 MBE=1,RBE=0,ADCONV

DSEG 1 AT 10H
DS 2

*kKk

GETI TABLE

CSEG
SEL

IENT
MB15

MAIN ROUTINE ***

CSEG
SEL

INBLOCK
RB1

GETI
MOV
MOV

SEL15
XA,#STACK
SP,XA

MOV
MOV

A#0011B
PCC,A

DATA RAM OH-13FH ZERO CLEAR**

SEL

MOV
MOV
MOV

MB1
HL,#3FH
XA, #00H
@HL,A

;STACK

;PCC « 0011B

;100H-13FH

POINTER SET

CHAPTER 4 ASSEMBLER

-LL/-LW page length/page width
132
38 0011 AABA DECS HL
39 0013 FC BR LOOP1
40 0014 9910 SEL MBO
41 0016 ES8 LOOP2: MOV @HL,1 ;O0H-FFH
42 0017 AABA DECS HL
43 0019 FC BR LOOP2
44
45 ;e TIMER SET(SAMPLLING TIME = 30MSEC, FXX=4.19MHZ **
46
47 001A 00 GETI SEL15 ;SEL MB15
48 001B 8979 MOV XA #79H
49 001D 92A6 MOV TMODO,XA
50 O001F 894C MOV XA,#01001100B
51 0021 92A0 MOV TMO,XA

109

CHAPTER 4 ASSEMBLER

-LL/-LW

page length/page width

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

110

0023
0025

0027
0029
002B
002D
002F
0030
0033
0035
0038

0000
0002
0003
0004
0005
0006
0007
0008
0009

STNO ADRS R OBJECT

R

75X SERIES ASSEMBLER VX.XX

** A-D CONVERTER VX.XX

9DB2
9DoC

9911
8900
9A0F
9A87
FD
AB4000
9210
AB4000
FO

9A2E
D9
E6
98
D9
98
CE
F9
EE

TARGET CHIP : UPD75106
STACK SIZE = 000AH

IC MAC

XX/XX/XX XX:XX:XX PAGE : X

SOURCE STATEMENT

LOOPS:

LOOP4:

SEG3
HEIKIN:
LOOPS5:

ASSEMBLY COMPLETE, NO ERROR FOUND

El
El

SEL
MOV
MOV
SKE
BR
CALL
MOV
CALL
BR

HEIKIN

CSEG
MOV
XCH
CLR1
RORC
XCH
RORC
DECS
BR
RET

END

IETO

MB1

XA, #00H
B,#0H
B,#08H
LOOP4
'HEIKIN
TDATA,XA
ISIOSUB
LOOP3

(SAMPLE NUMBERS = 8) o

SENT
C,#2H
A X

CcYy

A

A X

A

C
LOOP5

**

CHAPTER 4 ASSEMBLER

-LT TAB

(15)-LT

Description Format -LT [number of characters]
Default Interpretation -LT8

[Function]
¢ This option informs the assembler of the number of space characters (20H) to which TAB codes (09H) in the
source module are to be expanded when the assembly list is generated.

[Use]

e TAB codes in the source module are expanded to a number of space characters when output to the assembly
list. This option is used to set the maximum number of space characters corresponding to one TAB code at this
time.

[Description]

* The number of characters can be specified as a decimal number between 0 and 8. An error will be generated
if a number outside this range or a non-numeric value is specified.

* If the parameter is omitted, 8 is taken as being specified.

e If the -NP is specified, the -LT option is ignored.

111

CHAPTER 4 ASSEMBLER

-KA/-NKA assembile list/no assemble list
(16)-KA/-NKA
Description Format -KA
-NKA

Default Interpretation -KA

[Function]

-KA option specifies assembly list to be output to print file.
-NKA option specifies assembly list not to be output to print file.

[Use]

When assembly list is not required, specify -NKA option.
When assembly list is required while parameter file including -NKA option is being used, specify -KA option after
-F option.

[Description]

112

The -KA, -NKA options correspond to the ‘LIST’ control instruction, ‘NOLIST’ control instruction of assemblers.
However, the -KA and -NKA options have an effect on whole source module.

If the -KA and -NKA options are specified simultaneously, the option specified later is effective.

The -NKA option takes priority over the ‘LIST’ control instruction.

‘NOLIST’ control instruction takes priority over the -KA option.

When the -NP option is specified, the -KA option becomes invalid and no assembly list is output.

CHAPTER 4 ASSEMBLER

include path

(17)

Description Format -I path name [, path name...]
Default Interpretation ~ Search is executed in stipulated search order Nete,

[Function]
* The -1 option specifies the search path of an include file specified by INCLUDE’ control instruction.

[Use]
* When an include file is in a different path from the source module file, this option is used to specify that path.

[Description]

e Multiple paths can be specified, separated by commas. In this case, space cannot be inserted before or after
the commas.

e The path name cannot be omitted. Also, an error will result if an item other than a path name is specified.

e Up to eight -I options can be specified at one time.

 If multiple paths are specified by an -1 option, include files are searched for in the specified order.

* The search path can be set by the environment variable ‘INC75X’ as well as by the -I option. Note

Example

A>SET INC75X=A:\SRC\HDR\106

Note The include file search is conducted in the following order:

(1) When file name specified by ‘INCLUDE’ control instruction does not include a path name
<1> path in which source module file exists
<2> path specified by -l option
<3> path specified by environment variable ‘INC75X’

(2) When the file name specified by INCLUDE’ control instruction includes an absolute path name (beginning
with the drive name or V)
<1> Path specified by ‘INCLUDE’ control instruction
(3) When file name specified by INCLUDE’ control instruction includes relative path name (beginning with
“..” or beginning with except the drive name or ‘')
<1> Path whose name comprises the name of the path in which the source module file exists followed
by the path name specified by the INCLUDE’ control instruction.
<2> Path whose name comprises the path name specified by the -l option followed by the path name
specified by the ‘INCLUDE’ control instruction
<3> Path whose name comprises the path name specified by the environment variable ‘INC75X’ followed
by the path name specified by the INCLUDE’ control instruction

113

CHAPTER 4 ASSEMBLER

-l include path

[Examples]
Next the following conditions:

e Source module file name: A\SRC\UTILS.ASM
e ‘INCLUDE" control instruction specification: $INCLUDE PATH\INCFILE.H
e -| option specification: -IB:\\WORK

e Environment variable ‘INC75X’ specification: B:\INC
The include file search order is as follows:

<1> A\\SRC\PATH\INCFILE.H

<2> B\\WORK\PATH\INCFILE.H

<3> BA\INC\PATH\INCFILE.H

That is, the assembler searches these files in order and read the first one found as part of the source module file.

114

CHAPTER 4 ASSEMBLER

parameter file name

(18)-F

Description Format -F parameter file name
Default Interpretation ~ Parameter file not used.

[Function]
* The -F option specifies that the assembler option and input file name are to be read from the file specified by
the option parameter. This file is called the parameter file.

[Use]

* Writing options and input file names to be specified for the assembler in a parameter file in advance also reduces
the amount of typing required.

e Options and input file names can still be specified in the command line even if a parameter file is used. It is thus
possible to write only frequently used options in the parameter file.

[Description]

e The parameter file is a text file, and can be created with an editor, etc. There are no particular restriction on
the length of the parameter file.

* The parameter file name cannot be omitted . However, if the file type is omitted, *. PRA’ is taken as being specified.

¢ Alogical device name (‘CON’, ‘AUX’, etc.) cannot be specified as the parameter file name. Use of such names

will result in an error.

* The contents of the parameter file are expanded at the position at which the -F option is written in the assembler

start line. It is therefore possible to change the parameter file contents or add other option specifications with
options written after the -F option.

e Parameter files cannot be nested. If an -F option is written in the parameter file, an error will result.
e |tis not possible to use more than one parameter at one time. If multiple -F options are specified, an error will

result.

e Individual options and input file names should be separated by spaces, TABs or Line Feed characters. A

parameter file description cannot be split over a number of lines.

* The ;" and ‘# symbols are treated as comment marks in the parameter file. Characters from these characters

to the end of the line are regarded as a comment.

115

CHAPTER 4 ASSEMBLER

-F parameter file name

[Examples]
Consider a parameter file [ASM.PRA] with the following contents.

75XTEST1.ASM ; Input file name
-C106 ; Chip is UPD75106
-KS ; Keep symbol list

Example 1. The assembler is started with parameter file [ASM.PRA] specified.

A\NECTOOLS\SMP75X\RA75X>RA75X -FASM.PRA

Example 2. The contents specified by the parameter file [ASM.PRA] are changed and added to in the command
line.

A\NECTOOLS\SMP75X\RA75X>RA75X -FASM.PRA -C000 -PPRN

116

*

CHAPTER 4 ASSEMBLER

-Y device file search path
(19)-Y
Description Format -Y Path Name
Default Interpretation ~ Executes a search in accordance with the specified search sequence ((2) to (5) of
the [Explanation]).
[Function]

* The -Y option specifies the device file search path.

[Use]

» Specify the -Y option when searching from the specified path first.

[Explanation]
* A device file is searched for by the following sequence.
(1) Path specified by the -Y option.
(2) ‘.. \DEV’ path with respect to the RA75X starting path.
(3) RA75X starting path.
(4) Current Path
(5) Environment Variable ‘PATH’

117

[MEMO]

118

CHAPTER 5. LINKER

The linker (LK75X) has as its input object module files output by the assembler and a library file created by the
librarian, and outputs a load module file and link list file.
If a link error occurs, an error message is output to the link list file and the console.

[Main Linker Processing]
<1> Linkage of the object modules in the input file
<2> Determination of segment location addresses

<3> Resolution of relocatable object code
<4> Automatic branch table creation

119

CHAPTER 5 LINKER

5.1 Linker Input/Output Files
Linker (LK75X) input/output files are shown in Table 5-1.

Table 5-1 Linker Input/Output Files

Type of File

Default File Type

Input file Object module file Note!
Object module file output by assembler

.REL

List file containing linkage information such as input/output file list, linker option list,
segment list, etc.

Library file Notes 1.2 .LIB
File created by librarian in which multiple object modules are recorded
Parameter file Note 3 .PLK
This file is created with an editor when it is wished to specify a large number of files
which cannot be specified in the command line as linker input files.

Output file Load module file Note1 .LNK
File containing all information resulting from linkage.
The load module file is used as the input file for the object converter (OC75X).
Link list file .MAP

Notes 1. Binary file.
2. For details, see CHAPTER 7 “LIBRARIAN”.
3. For details, see (14) -F under 5.4.4 “Description of linker options”.

120

CHAPTER 5 LINKER

Figure 5-1 Linker Input/Output Files

Linker
(LK75X) ?
Parameter
file

Load module file Link list file

Multiple object module files
or
one library file

Input/output file list
Linker option list
Segment link map list
Branch table map list
Public symbol list

121

CHAPTER 5 LINKER

5.2 Linker Functions

The main functions of the linker are as follows:

Linkage of object modules in the input file
Determination of segment location addresses
Resolution of relocatable object code
Automatic branch table creation

w0 b=

e If an error is found during linkage (symbol reference cannot be resolved, segment location not possible, etc.),
an error message is output in the segment link map list and to the console.

* The linker performs linkage processing in accordance with the linker options specified when the linker is started.
See 5.4 “Linker Options” for linker options.

e When this processing terminates normally, the linker outputs a termination message and returns control to the
OS.

e Maximum linker capabilities are shown below.

ltem Maximum Value
Number of symbols that Number of local symbols No limit
can be handled by linker | Number of external definition (PUBLIC) symbols Approx. 3,000 for all input
modules
Number of external reference (EXTRN) symbols Approx. 500 per module
Number of segments that can be handled by linker Approx. 250

For all input modules:
1) 2 x number of input
2) Number of segments

Total of

3) Number of ORG pseudo-instructions in source program

4) 2 x number of VENT pseudo-instructions
Number of branch tables that can be created Approx. 1,000
Maximum number of input files 62

122

CHAPTER 5 LINKER

5.2.1 Linkage of object modules in input files

The linker has multiple object module files as input. In addition, one library file can be input together with the object

module files.

If there are unresolvable symbol reference relations (by EXTRN and PUBLIC pseudo-instructions) between input
object module files, the linker checks the object modules in the library file specified as an input file. Then, if there
are object modules in which unresolvable symbols are externally defined in the library file, those modules are extracted
from the library file automatically, an linked together with the modules in the object module files specified for input.

Example The linker is started as shown below.

A>LK75X B:TEST1.REL B:TEST2.REL B:75X.LIB -OB:TEST.LNK
T T T

Object module file Library file Load module file

In this case, the object modules are linked as shown below.

TEST1.REL TEST2.REL 75X.LIB TEST.LNK
Module 1 Module 2 Module 3 Module 1
EXTRN A1 i PUBLIC A2 i PUBLIC B1 EXTRN A1
EXTRN A2 EXTRN A2
Module 4
PUBLIC A1 Module 2
PUBLIC A2
Module 5
PUBLIC B2 Module 4
PUBLIC Af1

123

CHAPTER 5 LINKER

5.2.2 Determination of segment location address
The linker determines the location addresses of segments in the input object modules.

(1) Order of priority for determining segment location addresses.
<1> Determination of absolute segment location addresses (data segments are all absolute segments)
<2> Determination of relocatable segment location addresses
(a) Determination of the location addresses of segments for which address specification is performed
by the linker -CD option (see (6) -CD 5.4.4 “Description of linker options” for the -CD options)
(b) Determination of the location addresses of other relocatable segments
The order of priority for determining the location addresses of other relocatable segments specified
at assembly time, as shown below.
1) Location address determination for segments with IENT attribute
) Location address determination for segments with SENT PAGE attribute
) Location address determination for segments with SENT attribute
) Location address determination for segment with INBLOCK PAGE attribute
) Location address determination for segments with XBLOCK PAGE attribute
) Location address determination for segments with INBLOCK attribute

N oo 0o AW N

) Location address determination for segments with XBLOCK attribute

) Location address determination for segments with INBLOCKA PAGE attribute
9) Location address determination for segments with XBLOCKA PAGE attribute
10) Location address determination for segments with INBLOCKA attribute

11) Location address determination for segments with XBLOCKA attribute

o]

Location addresses are determined starting with segments with the highest priority shown above (this priority
order does not show the order of location addresses).

The location adjustment shown in Table 5-2 “Segment Relocation Attributes and Location Adjustment”
is performed for segments with the relocation attributes shown above when location address determination
is performed.

124

CHAPTER 5 LINKER

Table 5-2 Segment Relocation Attributes and Location Adjustment

Relocation Attribute

Location

IENT segment

Located so that the entire segment is within the area 0020H to 007FH.
Also, located so that the segment starts at an even address.

SENT segment

Located so that the entire segment is within the area 0000H to 07FFH.

PAGE segment

Located so that the start of the segment is at the start of a page (XX00H).

INBLOCK segment

Located so that the entire segment is within the range OH to 3FFFH, and in the same block.

INBLOCKA segment

Located so that the entire segment is in the same block, as with INBLOCK.
However, location is possible within the entire ROM area.

XBLOCK segment

Located so that the entire segment is within the range OH to 3FFFH.
Segment boundary adjustment is not performed as in the case of INBLOCK.

XBLOCKA segment

Located in the same way as for XBLOCK, with location possible within the entire ROM area.

AT absolute expression

The segment is located in the addresses specified by the absolute expression.
This segment is only valid for program memory.
This segment is also called an ‘absolute segment’.

Segment location prohibited areas can be specified by means of the -RS option.

(2) Segment location address determination method
Absolute segments and segments whose location addresses are specified by the -CD option are located
unconditionally starting at the specified address. The area specified by the -RS option is reserved in advance
as a segment location prohibited area . There are three methods of determining the location addresses of other

relocatable segments, as follows:

* Sequential linkage mode (specified by the -SQ option)
* Random link mode (-RN option specification or mode specification omitted)
* Order specification mode (specified by -CD option)

125

CHAPTER 5 LINKER

<1> Sequential linkage mode
Location is performed from the low address of the free memory area in the segment input order. The
segmentinput order is the order of the object modules specified for input or, in an object module, the order
in which the segments are written in the source.

Example 1. The linker is started as shown below.

A>LK75X OM1.REL OM2.REL -00M.LNK -SQ

In this case the input segments are located as shown below.

OM1.REL
SA 1> Program memory
T— =
[SA
<2>
SB — SB
<3> - SC
.
SC]
/ SD
OM2.REL s o
// /
SD <5>
Free area
SE

126

CHAPTER 5 LINKER

Example 2. Ifthereisan absolute segment, performing linkage with the -SQ option specified may result
in the creation of a free area in memory as shown below.

Module Program memory
2
SA = SA
ASEGNete— || | _----~ Free
B - [ASEGNote
- SB
<4>
SC sC

Note ASEG is an absolute segment.

In the above case, the location address of the absolute segment is determined first. Therefore, when
location of segment SB is attempted after segment SA, if segment SB is larger than the free area between
segment SA and ASEG, segment SB is located after ASEG.

In this case, the area between segment SA and ASEG is left as a free area.

127

CHAPTER 5 LINKER

<2> Random linkage mode
Location is performed so as to avoid the creation of free areas in memory as far as possible, without regard
to the segment input order.
Starting with the largest of the input segments, location is performed in the lowest address in which location
is possible in the free area left after absolute segment location.

Example Assume that the following segments are input.

e Absolute segment
Segment Segment

ASEG1 | BOH ASEG2 | 50H

¢ Relocatable segments

Segment Segment Segment

SA 200H SB 140H SC 100H

(Numbers: segment sizes)

In this case the input segments are located as shown on the next page.

128

CHAPTER 5 LINKER

<1>

<2>

<3>

<4>

<5>

<6>

<7>

Segment Program memory
ASEG1[<1> OH
SA <3>
ASEG2{<2>
200H
4 SC <5>
SA [3- ASEG1 <1> 800H
/ 3BOH
+" SB <4>
<d>/ 4FOH

SB /|__ASEG2 <2>| 500H
SD_ <65 550H
SE <7>] 5A0H

First, the absolute segments are located at the specified addresses (ASEG1: address 300H, ASEG2:
address 500H).

The largest of the relocatable segments, segment SA, is located starting at the lowest address of
the free area.

The next largest segment, SB, is located. As segment SB is 140H in size, it cannot be located in the
first free area (with a size of 100H, from address 200H to address 2FFH). Segment SB is therefore
located starting at address 3BOH of the next free area.

Next, segment SC is located. As segment SC is 100H in size, it is located in the first free area
(addresses 200H to 2FFH).

Next, segment SD is located. As segment SB is 150H in size, it cannot be located in the first free
area (4FOH to 4FFH). Segment SD is therefore located starting at address 550H of the next free area.
Next, segment SE is located. As segment SE is 20H in size, it cannot be located in the first free area
(4FOH to 4FFH), and is therefore located starting at address 5A0H of the next free area.

Finally, the shaded areas shown in the above diagram are left as free areas.

129

CHAPTER 5 LINKER

130

<3> Order specification mode
Location is performed in the segment order specified by the -CD option.

Example The following -CD option is specified when linkage is started.
-CD (CS1, CS3, CS2)

Ofthe segments input at this time, CS1, CS2, and CS3 are located in the specified order starting
at the free area in memory (however, they are not necessarily located in consecutive areas).

Program memory

S t
egmen CS1 <2>
CSs1
<2>
/ ASEG <1>
ASEG
<t> cs3 <3>
CS2 CS2 <4>
<4>
CS3
<3>

CHAPTER 5 LINKER

Caution
As the order specification mode is specified by the -CD option, segment address specification can
be performed at the same time.

Example -CD (C1, C4, C3’300H, C6, C6)

When this specification is made, the order specification mode is interpreted individually before the
segment for which address specification has been performed. That is, it is equivalent to the
following specification:

-CD (C1, C4) -CD (C3'300H, C6, C5)

However, if there are a large number of segments, and object code is generated to the point of filling
the ROM capacity of the product on which assembly is being performed, the processing time will
be extremely long. If the correct location method is not found after trying relocation a certain number
of times, an error message is output and the operation is aborted.

The following 3 processing methods can be used at this time.

1. Linkthe object modules which could not be linked after specifying the -SQ option (an error will
of course be generated as a result), decide the location method manually based on the size of
the segments in the output map list, then perform linkage again with the location order specified
by the -CD option.

2. Reduce the number of segments.

3. Amend the program so that INBLOCK (INBLOCKA) segments fit exactly within block boundaries.

©))

Stack segment location address determination

A stack segment is a segment which is reserved as a stack area by the STKLN pseudo-instruction in a source

module.

<1> Stack segment linkage

If there are stack segments in the input module, the linker links all the stack modules. Thus the stack

segment size after linkage is the sum of the sizes of all the stack segments.

However, the stack segment size after linkage can be changed by the linker -SZ option (see (10) -SZ under

5.4.4 “Description of linker options “).

<2> Stack segment location

The stack segment is located starting in the highest addresses in the area comprising addresses OH to
OFFH (bank 0) of the data memory. If data segments are located in bank 0, the stack segment is located

in the highest free area at which location is possible.

131

CHAPTER 5 LINKER

Example
Stack segment
* When no data segments * When data segments
are located in the bank SSEG are located in the bank
Data memory (bank 0) Data memory (bank 0)
OH OH
CSEG
ASEG
SSEG @ } Free area
ASEG
FFH FFH
The stack segment is Since the stack
located in the highest segment is too large
addresses. to be located in the

highest free area®, it
is located in the
highest addresses of
the next free area.

The stack segment location address can also be specified when linkage is performed by means of the
-SK option.

Example The following option is specified at linkage time.
-SK80H
In this case the stack segment is located starting at address (address specified by -SK option
-1) in the low address direction.

Data memory (bank 0)

OH

SSEG Located in low

Address specified address direction

by -SK option —~

FFH

132

CHAPTER 5 LINKER

5.2.3 Resolution of relocatable object code

During assembly, temporary values are incorporated in the object code of instructions which reference relocatable
symbols or external reference symbols.

The linker amends this object code to the correct values.

Also, if a source module is written using the reserved word ‘STACK’, the following values are assigned to ‘STACK’
by the linker.

1. When linker -SK option specified
The address value specified by the -SK option is assigned to the reserved word ‘STACK’.
2. When linker -SK option is not specified
The address value (maximum address of stack segment + 1) is assigned to the reserved word ‘STACK’.

OH

Stack segment
Address value assigned to ‘STACK’

(maximum address of stack segment + 1)

FFH

The correct value is also assigned to ‘STACK’ at the time of linkage in the object code of a ‘MOV XA, #STACK’
instruction which sets a value in the stack pointer by using the reserved word ‘STACK'.

Example 1. When a relocatable item is referenced in the segment

C1 CSEG
ABC: MOV A B
BRCB !ABC e ---- Resolution of address
: corresponding to ABC
END

133

CHAPTER 5 LINKER

Example 2. Symbol reference in another segment

C2 CSEG
Mbv A DM ------f---- Resolution of address
: corresponding to DM
D1 DSEG 1 AT OH
DM: DS 1
END

Example 3. When an external reference name is referenced

EXTRN CODE(SUB)
PUBLIC COMD

M1 CSEG

MAIN: :
—CA,LL ISUB] Reference

DM DSEG 1AT10H

- COMD: DS 1 wmemoemoenoees -~ Definition
(] END

EXTRN DATA(COMD)

PUBLIC SUB
S1 CSEG
- SUB: i - - - Definition

MOV A, COMD —

Reference

END

134

CHAPTER 5 LINKER

5.2.4 Automatic branch table creation

When a symbol which has an address value in another block (4K bytes from x000H to xFFFH) is referenced by
a 2-byte branch instruction (BRCB instruction), the linker automatically creates a 3-byte N°t¢2 pranch instruction (called
a branch table) in the original blockN°te 1 enabling the other block to be referenced by the 2-byte branch instruction.

Notes 1. To be exact, the branch table is created in the block to which the address two addresses ahead of
the address specified by the BRCB instruction belongs .
Therefore, if the BRCB instruction is written on a block boundary (XFFEH, XFFFH), the corresponding
branch table will be created in the next block. Writing a BRCB instruction at the end of a block should
therefore be avoided.

2. The kind of 3-byte branch instruction created depends on the size of on-chip ROM in the device

concerned, as shown below.
ROM size up to 16 Kbytes BR l!addr instruction.
ROM size exceeding to 16 Kbytes BRA laddr1 instruction

135

CHAPTER 5 LINKER

Example 1. The branch table is created in the case shown below.

C1 CSEG
BRCB IBADD ~-|--1----- In this case, it is possible that
L1 : | a branch table will be created.
BR $L1 :
BR IBADD 3 In this case, a branch table
: ! will not be created.
c2 CSEG |

BRCB IBADD ~--|--

C3 CSEG
BADD: :
END

When the segments shown above are located as shown below, a branch table is created.

Program memory

BRCB IBADD —|— | C1segment

BRCB |BADD — } C2 segment

1000H

__BR_mBADD }:}andname

BADD: } C3 segment

1FFFH

136

CHAPTER 5 LINKER

Example 2. If there are 2-byte branch instructions which reference differently named symbols which have the
same value in the same block, one common branch table is created in the same block.

C1 CSEG
BRCB IREL1 These symbols have
: different names but a
BRCB IC2 common address value
BRCB IREL2
c2 CSEG
RELA1:
REL2:
END

When the segments shown above are located as shown below, a branch table is created as shown
below.

Program memory

OH
BRCB !REL1 ——
BRCB !C2 —H C1 segment
BRCB ! REL2
(BR !'REL1 —— Branch table
C BR !'REL2 |
1000H
REL1: (C2) e
RET T C2 segment
1FFFH

The created branch table information is shown in the branch table map list in the link list file output
by the linker.

137

CHAPTER 5 LINKER

Example 3. Two modules are linked as shown below.

Module 1 Module 2
C1 CSEG PUBLIC EXT1,EXT3
DS 10H EXT1 EQU 40H
EXT2 CSEG AT 10H
ABS1 EQU 30H EXT3:
ABS2 CSEG AT 10H END
ABS3:
REL1 CSEG
REL2: DS OFFOH
Cc2 CSEG

EXTRN EXT1, EXT2, EXT3

BRCB !ABS1
BRCB !|ABS2
BRCB !ABS3
BRCB !ABS1
BRCB !REL1

BRCB IREL2

BRCB !ABS1
BRCB |EXT1
BRCB IEXT2
BRCB |EXT3
END

The following branch table map list is output to the link list file output by the linker.

138

CHAPTER 5 LINKER

BLOCK
NO

— Caution
In order to perform automatic branch table creation processing, the linker records provisional branch
tables uniformly for all BRCB instructions other than those for which the object code was determined
during assembly (which branch from an absolute address to an absolute address). Then only those
branch tables which are really necessary are created when segment location addresses are determined.
Therefore, it may happen that the number of branch tables recorded temporarily during linker
processing exceeds the maximum number of approximately 1,000 even if branch tables are not actually

MAP OF ROM AREA:

SEGMENT LINK MAP FOR BR.LNK (BR1)

MAP OF ROM AREA:

Three branch tables have been created.

BASE LENGTH MODULE NAME SEGMENT NAME (TYPE)

0000H 0010H DOS22 C1 (INBLOCK)

0010H 0000H DOS22 ABS2 (ABSOLUTE)

0010H 0000H DOS23 EXT2 (ABSOLUTE)

0010H OFFOH DOS22 REL1 (INBLOCK)

1000H 0014H DOS22 Cc2 (INBLOCK)

1014H 0009H (Branch table)

101DH 0763H ** GAP **

TYPE BASE LENGTH MODULE NAME =~ SEGMENT NAME
0000H 0100H ** GAP **

STACK 0100H 0000OH BR1 SSEG
0100H 0040H ** GAP **

BRANCH TABLE MAP FOR BR.LNK:

LOCATED REFERENCE EXPRESSION REFERENCE REFERENCE

ADDRESS ADDRESS SEGMENT

1014H BR IRELA 0010H REL1

1017H BR 10030H 0030H

101AH BR IEXT1 0040H

created, with the result that the linker aborts.

If this happens, linkage should be performed again with the -NTB linker option specified (see 5.4.4
“Description of linker options” for the -NTB option).
However, if linkage is performed with the -NTB option specified, no branch tables will be created,

and thus a BRCB instruction which branches to another block will cause an error.

139

CHAPTER 5 LINKER

5.3

Linker Start Method

5.3.1 Starting the linker

T

he linker is started by inputting the following command in the format shown in the OS command line.

X>LK75X [_option...]_input file name[_input file name...] [_option...]

140

X indicates the current drive.
“input file name” is the name of the object module file to be linked. The drive name, directory name, etc., can
be added to the input file name.

Examples LK75X B: 75XTEST1.REL C: 75XTEST2.REL
LK75X C: \USER\WNEC\75XTEST1.REL C: \USER\NEC\75XTEST2.REL

“option” is a string of 1 to 3 characters beginning with the “-” symbol, and may be followed by parameters. Options
can be written before and after the input file, and if there are multiple options, they can be written in any order.
However, if multiple identical options or options of the same kind are written, in some cases an error is generated,
and in some cases the last output specified is valid . See 5.4 “Linker Options” for details.

One or more blanks (spaces or TAB) should be used to separate options and the input file name.

The input file name and options can be written in a parameter file. For the use of the parameter file, see the
item on the (14) ‘-F’ option in 5.4.4 “Description of linker options”.

As the default output destination, a file with the same name a the first file specified but with the file type changed
to *.LNK’ is created in the current path. This can be changed by means of the ‘-O’ option.

‘RA75X.0OM1’ is necessary to start the linker.

CHAPTER 5 LINKER

5.3.2 Execution start and end messages

(1) Execution start message
When the linker is started an execution start message is displayed on the console

75X Series Linker VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985

(2) Execution end message
e If linkage terminates normally, the linker outputs the following message to the console and returns control
to the OS.

LINK COMPLETE, NO ERROR FOUND

* Iflinkage errors are detected during linkage, the linker displays an error message on the console and returns
control to the OS.

B>LK75X -FLINK.PLK
75X Series Linker VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985

*** W300 CHIP TYPE MISMATCH(MODULE: AD_SUB)

LINK COMPLETE, 1 ERROR FOUND

o Ifafatal erroris detected during linkage which prevents linkage from continuing, the linker outputs a message
to the console, stops execution, and returns control to the OS.
An example of an error message is shown on the next page.

141

CHAPTER 5 LINKER

Example When a source module file is specified as an input file.

B>LK75X 75XTEST1.REL 75XTEST2.ASM
75X Series Linker VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985

*** ERROR F304 INVALID FILE SYNTAX(FILE= 75XTEST2.ASM)
Program aborted

In this example, an error is generated since a source module file is specified as an input file, and linkage is
aborted.

When the linker outputs an error message and aborts linkage, the cause of the error message should be found
in 13.2 “Linker’s Error Messages”, and appropriate action taken.

5.3.3 Linker error handling

If the linker detects an error during execution, it performs one of the following three kinds of processing according
to the severity of the error.

(1) Abort error
If an error is generated which prevents program execution from continuing, the program displays a ‘Program
aborted’ message and the program is aborted immediately .

(2) Fatal error
If an error is generated which would result in generation of object code different from that intended by the user,
the program nevertheless continues processing to the end, then outputs the message “LINK COMPLETE, X
ERRORS FOUND” (where X is the number of errors).

(3) Normal termination
If the program terminates normally, it outputs the message “ LINK COMPLETE, NO ERROR FOUND”.

In the (1) and (2) cases, the error message is output in the following format (the destinations are standard output
and the map file).

*** _ERROR._error number_.error message

142

CHAPTER 5 LINKER

5.3.4 Linker termination status

When the linker terminates and returns control to the OS, one of the following error status codes is returned to
the OS.

Termination Condition Termination Status
Normal termination 0
Fatal error 1
Abort error 2

When the linker is started from a batch file under MS-DOS (PC DOS, IBM DOS), itis possible to determine whether
there are any linkage errors automatically using these values.

143

CHAPTER 5 LINKER

5.4 Linker Options
5.4.1 Types of linker options

Linker options are used to five the linker detailed directions concerning its operation. There are 15 different options
as shown below.

Table 5-3 Kinds of Linker Options

No. Description Format Function/Category Default Interpretation
1 -M[module name] Output module name specification Object module name of first file input
2 -P[file name] Link list file specification First input ‘input file .MAP’ is output to
-NP current path
3 -KM Map list output specification -KM
-NKM
4 -KP Public symbol list output specification -KP
-NKP
5 -KL Local symbol list output specification -KL
-NKL

[, ..

6 -CD([segment name
[‘address]

Code segment relocation address location
order specification (multiple specifications
possible)

Automatically located by linker

end address

[)

7 -RS (start address,

Code segment allocation prohibited area
specification (multiple specifications
possible)

ROM area not incorporated in target device

8 | -sQ
-RN

Segment location order specification

-RN

9 -SK address

Sets stack address in assembler reserved
word ‘STACK'.

Set automatically by linker.

10 | -SZ[+]size

Stack size change specification

None

11 | -NTB

Specifies suppression of automatic branch
table creation

Created automatically

12 | -Offile name]

Load module file specification

First input * input file .LNK’ is output to

-NO current path
13 | -J Load module file forced output specification| -NJ
-NJ

14 | -F file name

Parameter file specification

All options and file names are read from
command line

15 | -Y path name

Specifies the device file search path.

For the LK75X run path, the path specified
in ..\DEV’ path, LK75X run path, current
directory and environmental variable
‘PATH’ are searched in that order.

Remark Options can be written in either upper- or lower-case characters.

144

CHAPTER 5 LINKER

— Caution
e Link list definition
There are 6 kinds of link lists.
Link lists Linker option list
Input/output module list
Segment link map list
Branch table map list
Public symbol list
Symbol list

5.4.2 Linker option specification method

Linker options are specified in the command line when the linker is started or in a parameter file. See 5.3 “Linker
Start Method” for the method of specifying linker options in the command line and in a parameter file.

5.4.3 Linker option priority order

(1) If multiple identical options or options of the same kind are specified in the command line, the option specified

last is valid.
(2) If the same or same kind of option is specified in the parameter file and in the command line, the command

line option is valid.
(3) Withthe -CD and -RS options, all the specified options are valid. However, an error will be generated if multiple
different specifications are made for the same segment with the -CD option,.

5.4.4 Description of linker options

Each of the linker options is described in detail in the following pages.

145

CHAPTER 5 LINKER

M name

(1) -m

Description Format -M load module name
Default Interpretation -M first input file object module name

[Function]
* The -M option specifies the output load module name.

[Use]
* The -M option specifies the output load module name.

[Description]
e The load module name should be specified as a string of up to 8 characters.
* The load module name is printed in the link list.

[Example]
* ‘AAA’ is specified as the output load module name.

A\NEC\TOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -MAAA

146

CHAPTER 5 LINKER

name

—The link list is printed out as follows.

75X SERIES LINKER VX.XX XXIXXIXX XX:XX: XX PAGE : X

COMMAND : 75XTEST1.REL 75XTEST2.RBL -075XTEST.LNK -MAAA
INPUT MODULE LIST :

75XTEST1.REL (AD_MAIN)

75XTEST2.REL (AD_SUB)

LOAD MODULE LIST :
75XTEST.LNK (AAA)

SEGMENT LINK MAP FOR 75XTEST.LNK (AAA)

MAP OF ROM AREA :

147

CHAPTER 5 LINKER

-P/-NP print/no print
(2) -P/-NP
Description Format -P[output file name]
-NP

Default Interpretation ~ The object module ‘file name.MAP’ specified initially is output to the current path.

[Function]
* The -P option specifies the output destination and file name of the link list file output by the linker.
e The -NP option specifies that no link list file is to be created.

[Use]

* The -P option is specified when it is wished to change the link list file output destination or file name.

* The -NP option is specified when linkage is to be performed only in order to output a link module file, etc. (the
linkage time is reduced).

[Description]
* In addition to a file name, the following can be specified as the file output destination:
-PPRN Link list is output to line printer.
-PCON Link list is output to console.
-PAUX Link list is output to RS-232-C.
¢ Ifthe drive name is omitted from the output name specification, the current path is used. If the extension is omitted,
‘MAP’ is used.

[Examples]

Example 1. When the -P option is specified. The file name is “SAMPLE.MAP”.

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -PSAMPLE.MAP

—The link list file “SAMPLE.MAP” and load module file “7Z5XTEXT.LNK” are output.

Example 2. To output the link list “7Z75XTEST.LNK” to the printer

A\NECTOOLS\SMP75X\RA75X>LX75X 75XTESTI.REL 75XTEST2.REL -075XTEST.LNK -PPRN

Example 3. The -NP option is specified.

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -NP

—The link list file is not output.
The Load Module File “75XTEST.LNK” only is output.

148

CHAPTER 5 LINKER

-KM/-NKM map/no map
(3) -KM/-NKM
Description Format -KM
-NKM

Default Interpretation -KM

[Function]

* The -KM option specifies that map lists (segment map list and branch table map list) are to be output to the link
list file.

* The -NKM option specifies that map lists are not to be output to the link list file.

[Use]

* The -NKM option is specified when linkage is to be performed only in order to output a load module file, etc.
(the linkage time is reduced).

[Description]

e The link list file output destination is specified by the -P option.

o |f the -NP is specified the -KM option is invalid and map lists are not output.

[Examples]

Example 1. When the -NKM option is specified

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -NKM

149

CHAPTER 5 LINKER

-KM/-NKM map/no map

—The link list is as shown below.

75X SERIES LINKER VX.XX XXIXX/IXX XX:XX: XX PAGE : X

COMMAND : 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -NKM Linker Option List

INPUT MODULE LIST:
75XTEST1.REL (AD_MAIN)
75XTEST2.REL (AD_SUB) Input/Output Module List
LOAD MODULE LIST:
75XTEST.LNK (AD_MAIN)

PUBLIC SYMBOL LIST FOR 75XTEST.LNK

TYPE VALUE MODULE SYMBOL NAME Public Symbol List

CODE 0022H AD_SUB ADCONV

Example 2. When the -KM option is specified (the same result is produced if the -KM option is omitted)

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1. REL 75XTEST2.REL -075XTEST.LNK -KM

150

CHAPTER 5 LINKER

-KM/-NKM map/no map

—The link list is as shown below.

75X SERIES LINKER VX.XX XXIXX/IXX XX:XX: XX PAGE : X

COMMAND : 75XTEST1.REL 75XTEST2.REL -075XTEST.LNX -KM Linker Option List

INPUT MODULE LIST:
75XTEST1.REL (AD_MAIN)
75XTEST2.REL (AD_SUB) Input/Output Module List

LOAD MODULE LIST:

75XTEST.LNK (AD_MAIN)
SEGMENT LINK MAP FOR 75XTEST.LNK (AD_MAIN) 7
MAP OF ROM AREA :
BASE LENGTH MODULE NAME SEGMENT NAME (TYPE)
0000H 0002H AD_MAIN (ABSOLUTE)
0002H 0006H ** GAP **
0008H 0002H AD_MAIN (ABSOLUTE)
000AH 0012H AD_SUB SEG4 (SENT) -
001CH 0004H ** GAP ** =
0020H 0002H AD_MAIN SEG1 (IENT) S
0022H 0024H AD_SUB SEGS5 (SENT) =
0046H 000AH AD_MAIN SEG3 (SENT) %
0050H 0039H AD_MAIN SEG2 (INBLOCK) 3
0089H 16F7H ** GAP **
MAP OF RAM AREA :
TYPE BASE LENGTH MODULE NAME SEGMENT NAME
0000H 00F4H ** GAP **
STACK 00F4H 000CH AD_MAIN SSEG
0100H 0010H ** GAP **
DATA 0110H 0002H AD_MAIN SEGO
0112H 002EH ** GAP ** |

PUBLIC SYMBOL LIST POR 75XTEST.LNK

151

CHAPTER 5 LINKER

-KM/-NKM map/no map

Caution
In this example no branch table is created and therefore a branch table map list is not output even though
the -KM option is specified.

152

CHAPTER 5 LINKER

-KP/-NKP publics/no publics
(4) -KP/-NKP
Description Format -KP
-NKP

Default Interpretation -KP

[Function]
* The -KP option specifies that a public symbol list is to be output to the link list file.
* The -NKP option specifies that a public symbol list is not to be output.

[Use]

* The -KP option is specified when it is wished to ascertain information such as the symbol names and values
of symbols defined by a PUBLIC pseudo-instruction in an input segment, the names of defined modules, etc.

* If the -NKP option is specified, the linkage processing time is shortened somewhat.

[Description]
* The public symbol list output destination is specified by the -P option.
* If the -NP is specified the -KP option is invalid and a public symbol list is not output.

[Examples]

Example 1. When the -KP option is specified

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -KP

153

CHAPTER 5 LINKER

-KP/-NKP

publics/no publics

—The public symbol list is output.

COMMAND

75X SERIES LINKER VX.XX

: 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -KP

MAP OF ROM AREA:
BASE

SEGMENT LINK MAP FOR 75XTEST.LNK (AD_MAIN)

LENGTH MODULE NAME

XXIXXIXX XX:XX: XX PAGE : X

SEGMENT NAME (TYPE)

0000H 0002H
0002H 0006H

MAP OF RAM AREA:
TYPE

STACK

AD_MAIN

BASE LENGTH

(ABSOLUTE)
* %k GAP * %

MODULE NAME SEGMENT NAME

0000H O00F4H
00F4H 000CH

PUBLIC SYMBOL LIST POR 75XTEST.LNK

TYPE

TYPE VALUE MODULE SYMBOL NAME
CODE 0022H AD_SUB ADCONV
DATA 0110H AD_MAIN SEGO
CODE 0020H AD_MAIN SEG1
CODE 0050H AD_MAIN SEG2
CODE 0046H AD_MAIN SBGS3
CODE 000AH AD_SUB SEG4
CODE 0022H AD_SUB SEG5
CODE 0020H AD_MAIN SEL15
CODE 000AH AD_SUB SIOSuUB
DATA 0100H STACK
DATA 0110H AD_MAIN TDATA

SYMBOL LIST FOR 75XTEST.LNK

VALUE ATTRIBUTE NAME

CODE

154

0046H

MODULE
SYMBOL

AD_MAIN
HEIKIN

*% GAP *%
AD_MAIN SSEG

CHAPTER 5 LINKER

-KP/-NKP

publics/no publics

Example 2. When the -NKP output is specified

A\NECTOOLS\SMP75\RA75X>LX75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -NKP

—The public symbol list is output.

COMMAND

75X SERIES LINKER VX.XX

MAP OF ROM AREA:
BASE LENGTH

SEGMENT LINK MAP FOR 75XTEST.LNK (AD_MAIN)

MODULE NAME

: 75XTESTI.REL 75XTEST2.REL -075XTEST.LNK -NKP

XXIXXIXX XX:XX: XX PAGE :

SEGMENT NAME (TYPE)

0000H 0002H
0002H 0006H

MAP OF RAM AREA:

TYPE

AD_MAIN (ABSOLUTE)
* % GAP * %
BASE LENGTH MODULE NAME SEGMENT NAME
0000H OOF4H ** GAP **
00F4H 000CH AD_MAIN SSEG
0100H 0010H ** GAP **

SYMBOL LIST FOR 75XTEST.LNK

TYPE VALUE ATTRIBUTE NAME
---------------- MODULE AD_MAIN
CODE 0046H SYMBOL HEIKIN
PBIT OFBCH.1 SYMBOL IETO
CODE 0060H SYMBOL LOOP1
CODE 0066H SYMBOL LOOP2

X

155

CHAPTER 5 LINKER

-KL/-NKL local symbols/no local symbols
(5) -KL/-NKL
Description Format -KL
-NKL

Default Interpretation -KL

[Function]
* The -KL option specifies that a local symbol list is to be output to the link list file.
* The -NKL option specifies that a local symbol list is not to be output.

[Use]

* The -KL option is specified when it is wished to ascertain information such as the symbol attribute, value and
type of all the symbols defined in an input segment.

* If the -NKL option is specified, the linkage time is shortened somewhat.

[Description]
e The symbol list output destination is specified by the -P option.
e If the -NP is specified the -KL option is invalid and therefore a symbol list is not output.

[Examples]

Example 1. When the -KL option is specified

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -KL

156

CHAPTER 5 LINKER

-KL/-NKL local symbols/no local symbols

—The local symbol list is output.

75X SERIES LINKER VX.XX XXIXXIXX XX:XX: XX PAGE : X
COMMAND : 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -KL
SEGMENT LINK MAP FOR 75XTEST.LNK (AD_MAIN)

MAP OF ROM AREA:
BASE LENGTH MODULE NAME SEGMENT NAME (TYPE)

0000H 0002H AD_MAIN (ABSOLUTE)
0002H 0006H ** GAP **

MAP OF RAM AREA:

TYPE BASE LENGTH MODULE NAME SEGMENT NAME
0000H O00F4H ** GAP **

STACK 00F4H 000CH AD_MAIN SSEG
PUBLIC SYMBOL LIST POR 75XTEST.LNX

TYPE VALUE MODULE SYMBOL NAME

CODE 0022H AD_SUB ADCONV
DATA 0110H AD_MAIN SEGO
CODE 0020H AD_MAIN SEG1
SYMBOL LIST FOR 75XTEST.LNK

TYPE VALUE ATTRIBUTE NAME

----------------- MODULE ~ AD_MAIN
CODE 0046H SYMBOL HEIKIN
PBIT OFBCH.1 SYMBOL IETO
CODE 0060H SYMBOL LOOP1
CODE 0066H SYMBOL LOOP2
CODE 0079H SYMBOL LOOP3
CODE 007DH SYMBOL LOOP4
CODE 0048H SYMBOL LOOP5
CODE 0050H SYMBOL MAIN
PBIT OFBOH.1 SYMBOL MBE
DATA OFB3H SYMBOL PCC

157

CHAPTER 5 LINKER

-KL/-NKL

local symbols/no local symbols

Example 2. When the -NKL option is specified

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1. REL 75XTEST2. REL -075XTEST. LNX -NKL

—The local symbol list is output.

75X SERIES LINKER VX.XX

COMMAND

SEGMENT LINK MAP FOR 75XTEST.LNK (AD_MAIN)

MAP OF ROM AREA:

: 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -KL

XXIXXIXX XX:XX: XX PAGE : X

PUBLIC SYMBOL LIST FOR 75XTEST.LNK

TYPE VALUE MODULE SYMBOL NAME
CODE 0022H AD_SUB ADCONV

DATA 0110H AD_MAIN SEGO

CODE 0020H AD_MAIN SEG1

LINK COMPLETE, NO ERROR FOUND

158

BASE LENGTH MODULE NAME SEGMENT NAME (TYPE)
0000H 0002H AD_MAIN (ABSOLUTE)
0002H 0006H ** GAP **
MAP OF RAM AREA:
TYPE BASE LENGTH MODULE NAME SEGMENT NAME
0000H O00F4H ** GAP **
STACK 00F4H 000CH SSEG

AD_MAIN

CHAPTER 5 LINKER

-CD code

(6) -CD

Description Format -CD (segment name [‘ address] [. ...])
Default Interpretation ~ Relocatable code segment is located automatically by linker

[Function]
* The -CD option specifies the location address of a relocatable code segment, or specifies the location order for
multiple code segments.

[Use]

* The-CD optionis specified when itis wished to specify a location address when linkage is performed on segments
defined as relocatable segments in the assembly stage.

 ltis specified whenitis wished to determine in relative terms the location order of multiple relocatable segments.

[Description]
* The segment name specified is a segment name defined by a CSEG pseudo-instruction in a source module.
e The segment location address can be specified in binary, octal, decimal or hexadecimal notation.
The address range is within the ROM area of the target device.
* An error will result if multiple specifications are made for the same segment.

— Caution
Address specification and order specifications can be made simultaneously with the -CD option.

Example -CD (C1, C4, C3’300H, C6, C5)

When this kind of specification is made, order specifications are interpreted individually before
segments for which an address specification is made. In other words, this case is equivalent to the
following specifications.

-CD (C1, C4) -CD (C3°300H, C6, C5)

159

CHAPTER 5 LINKER

-CD

code

[Examples]

Example 1. When the -CD option is omitted

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK

SEGMENT LINK MAP FOR 75XTEST.LNK (AD_MAIN)

MAP OF ROM AREA:
BASE LENGTH MODULE NAME SEGMENT NAME (TYPE)

0000H 0002H AD_MAIN (ABSOLUTE)
0002H 0006H ** GAP **

0008H 0002H AD_MAIN (ABSOLUTE)
000AH 0012H AD_SUB SEG4 (SENT)
001CH 0004H ** GAP **

0020H 0002H AD_MAIN SEG1 (IENT)
0022H 0024H AD_SUB SEG5 (SENT)
0046H 000AH AD_MAIN SEG3 (SENT)
0050H 0039H AD_MAIN SEG2 (INBLOCK)
0089H 16F7H ** GAP **

160

CHAPTER 5 LINKER

-CD

code

Example 2. When the -CD option is specified for segments SEG2 and SEG3

ANECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -CD(SEG2100H, SEG3'200H

—The segments are located at the addresses specified by the -CD option.

MAP OF ROM AREA:

SEGMENT LINK MAP FOR 75XTEST.LNK (AD_MAIN)

BASE LENGTH MODULE NAME SEGMENT NAME (TYPE)
0000H 0002H AD_MAIN (ABSOLUTE)
0002H 0006H ** GAP **

0008H 0002H AD_MAIN (ABSOLUTE)
000AH 0012H AD_SUB SEG4 (SENT)
001CH 0004H ** GAP **

0020H 0002H AD_MAIN SEGH1 (IENT)
0022H 0024H AD_SUB SEG5 (SENT)
0046H OO0BAH ** GAP **

0100H 0039H AD_MAIN SEG2 (INBLOCK)
0139H 00C7H ** GAP **

0200H 000AH AD_MAIN SEG3 (SENT)
020AH 1576H ** GAP **

161

CHAPTER 5 LINKER

-RS reserve

(7) -RS

Description Format -RS (start address, end address [, ..., ...])
Default Interpretation -RS (ROM area not incorporated in target device)

[Function]
e The -RS option specifies the area of program memory (ROM) in which code segment location is prohibited, using
the start and end addresses.

[Use]
* The -RS option is specified when there is an area in the ROM area in segments are not to be located.

[Description]

e The linker does not locate code segments in the area specified by the -RS option.

e The start address and end address can be specified in binary, octal, decimal or hexadecimal notation.
e The following condition must apply: start address < end address

— Caution
When numeric specification is omitted by -RS option. It is assumed that OH has been specified for the
omitted part. Therefore, a numeric specification should not be omitted during -RS option specification.

Example

A>LK75X TEST -RS (, 100H, , 200H)

When described as above, address OH to 200H become location disabled area.

162

CHAPTER 5 LINKER

-RS

reserve

[Examples]

Example 1. When the -RS option is omitted.

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK

SEGMENT LINK MAP FOR 75XTEST.LNK (AD_MAIN)

MAP OF ROM AREA:
BASE LENGTH MODULE NAME

SEGMENT NAME (TYPE)

0000H 0002H AD_MAIN
0002H 0006H

0008H 0002H AD_MAIN
000AH 0012H AD_SUB
001CH 0004H

0020H 0002H AD_MAIN
0022H 0024H AD_SUB
0046H 000AH AD_MAIN
0050H 0039H AD_MAIN
0089H 16F7H

** GAP *k

SEG4
= GAP **
SEG1
SEG5
SEG3
SEG2
o GAP **

(ABSOLUTE)

(ABSOLUTE)
(SENT)

(IENT)
(SENT)
(SENT)
(INBLOCK)

163

CHAPTER 5 LINKER

-RS

reserve

Example 2. When the -RS option is specified

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -RS(40H, 60H)

MAP OF ROM AREA:

SEGMENT LINK MAP FOR 75XTEST.LNK (AD_MAIN)

164

BASE LENGTH MODULE NAME SEGMENT NAME (TYPE)
0000H 0002H AD_MAIN (ABSOLUTE)
0002H 0006H ** GAP **

0008H 0002H AD_MAIN (ABSOLUTE)
000AH 0012H AD_SUB SEG4 (SENT)
001CH 0004H ** GAP **

0020H 0002H AD_MAIN SEGHT (IENT)
0022H 000AH AD_MAIN SEG3 (SENT)
002CH 0014H ** GAP **

0040H 0021H (Reserve area)
0061H 0024H AD_SUB SEG5 (SENT)
0085H 0039H AD_MAIN SEG2 (INBLOCK)
00BEH 16C2H ** GAP **

CHAPTER 5 LINKER

-SQ/-RN sequential/random
(8) -SQ/-RN
Description Format -SQ
-RN

Default Interpretation -RN

[Function]

* The-SQ option specifies that segments are to be located in the order in which they are written in the input modules
or in each input module.

* The -RN segment specifies that segments are to be located in memory in an efficient fashion without regard
to the module input order.

[Use]

e The -RN option is specified when it is wished to avoid creating free areas as far as possible, without regard to
the segment input order.

e When desiring to locate segments in the description order in the source module and in the order specified in
the input module, specify the -SQ option.

[Description]

* The -SQ and -RN options are used to indicate to the linker the method to be used for determining the location
addresses of relocatable segments.
See 5.2.2. (2) “Determination of segment location addresses” for details of the segment location method
when each option is specified.

— Caution
However, if there are a large number of segments, and object code is generated to the point of filling
the ROM capacity of the product on which assembly is being performed, the processing time will be
extremely long. Since there is danger that the user will mistake it for running out of control, if a correct
location method is not discovered after a fixed number of relocation attempts (3000 times), an error
message is output and the operation is aborted.

There are three possible countermeasures in this case, as follows:

1. Link the object modules which could not be linked after specifying the -SQ option (anerror will of
course be generated as a result), decide the location method manually based on the size of the
segments in the output map list, then perform linkage again with the location order specified by the
-CD option.

2. Reduce the number of segments.

3. Amend the program so that INBLOCK (INBLOCKA) segments fit exactly within block boundaries.

165

CHAPTER 5 LINKER

-SQ/-RN

sequential/random

[Examples]

Example 1. When the -RN option is specified (the result is the same if the -RN option is omitted)

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -RN

—Segments are located as follows.

MAP OF ROM AREA:
BASE LENGTH

SEGMENT LINK MAP FOR 75XTEST.LNK (AD_MAIN)

MODULE NAME

SEGMENT NAME (TYPE)

0000H 0002H
0002H 0006H
0008H 0002H
000AH 0012H
001CH 0004H
0020H 0002H
0022H 0024H
0046H 000AH
0050H 0039H
0089H 16F7H

166

AD_MAIN

AD_MAIN
AD_SUB

AD_MAIN
AD_SUB

AD_MAIN
AD_MAIN

*k GAP *%

SEG4
o GAP **
SEGH1
SEG5
SEG3
SEG2
= GAP **

(ABSOLUTE)

(ABSOLUTE)
(SENT)

(IENT)
(SENT)
(SENT)
(INBLOCK)

CHAPTER 5 LINKER

-SQ/-RN

sequential/random

Example 2. When the -SQ option is specified

A\NECTOOLS\SMP75X>LX75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -SQ

—Segments in 75XTEST1.ASM and 75XTEST2.ASM are located in the order of segment description and when
there are links, in the input module order.

MAP OF ROM AREA:

SEGMENT LINK MAP FOR 75XTEST.LNK (AD_MAIN)

BASE LENGTH MODULE NAME SEGMENT NAME (TYPE)
0000H 0002H AD_MAIN (ABSOLUTE)
0002H 0006H ** GAP **

0008H 0002H AD_MAIN (ABSOLUTE)
000AH 0016H ** GAP **

0020H 0002H AD_MAIN SEGT (IENT)
0022H 0039H AD_MAIN SEG2 (INBLOCK)
005BH 000AH AD_MAIN SEG3 (SENT)
0065H 0012H AD_SUB SEG4 (SENT)
0077H 0024H AD_SUB SEG5 (SENT)
009BH 16E5H ** GAP **

167

CHAPTER 5 LINKER

-SK stack

(9) -SK

Description Format -SK address
Default Interpretation ~ Value is assigned to reserved word STACK by linker

[Function]

* The -SK option sets a value in the reserved word STACK.
The linker locates the stack segment in the low address direction starting at the address (address specified by
-SK option -1).

[Use]

* The -SK option is specified when it is wished to specify the stack segment location address (it is only meaningful
when the stack pointer value has been specified using the reserved word ‘STACK’ in the source program).
See 4.5 (3) STKLN for details.

[Description]

e The reserved word STACK has a value which indicates the address (maximum address of stack segment + 1).

* When the stack segment is located automatically in the linkage processing, the reserved word ‘STACK’ is
assigned the address value (maximum address of stack segment +1) by the linker.

* |f the value of STACK is specified by the -SK option when linkage is performed, the stack segment is located
in the low address direction starting at the address (address specified by -SK option -1).
(See 5.2.2 (3) “Determination of stack segment location address” for details of stack segment location.)

Data memory (bank 0)

OH
Stack segment ﬁ
<~—— Value of reserved
word STACK
FFH

168

CHAPTER 5 LINKER

-SK- stack

e The specified address must be an even address in the range OH to 100H, and can be specified in binary, octal,
decimal or hexadecimal notation.

* The -SK option can only be specified once.

* The stack segment can only be located in bank 0.

[Examples]

Example 1. When the -SK option is omitted

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK

—The stack segment is located automatically.

MAP OF ROM AREA:

TYPE BASE LENGTH MODULE NAME SEGMENT NAME
0000H O00F4H ** GAP **

STACK 00F4H 000CH AD_MAIN SSEG
0100H 0010H ** GAP **

DATA 0110H 0002H AD_MAIN SEGO
0112H 002EH ** GAP **

169

CHAPTER 5 LINKER

-SK

stack

Example 2. When the -SK option is specified

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -SKOAOH

—The stack segment is located starting as address (address specified by -SK option - 1).

MAP OF ROM AREA:

170

TYPE BASE LENGTH MODULE NAME SEGMENT NAME
0000H 0094H ** GAP **

STACK 0094H 000CH AD_MAIN SSEG
00ACH 0070H ** GAP **

DATA 0110H 0002H AD_MAIN SEGO
0112H 002EH ** GAP **

CHAPTER 5 LINKER

-SZ stack size

(10)-sz

Description Format -SZ [£] size
Default Interpretation ~ No change of stack area is assumed

[Function]
* The -SZ option specifies the size of the stack segment to be changed to in nibbles.

[Use]

* The -SZ option is specified when it is wished to change the size of the stack segment linked when linkage is
performed (it is only meaningful when the stack pointer value has been set using the reserved word ‘STACK’
in the source program, and the stack size has been reserved with the STKLN pseudo-instruction).

[Description]

* The stack segment size is increased or decreased by the amount specified by the -SZ option.
* The size can be specified in binary, octal, decimal or hexadecimal notation.

* |If multiple -SZ options are specified, the last one specified is valid.

[Example]

Example The -SZ option is specified as shown below.

A\NECTOOLS\SMP75X\RA75X>75X 75XTEST1.REL 75XTEST2.REL -075XTEST.LNK -SZ+1CH

—Since the size of the original stack segment is OCH, the stack segment size is OCH + 1CH = 28H.

MAP OF ROM AREA:

TYPE BASE LENGTH MODULE NAME SEGMENT NAME
0000H 00D8H ** GAP **

STACK 00D8H 0028H AD_MAIN SSEG
0100H 0010H ** GAP **

DATA 0110H 0002H AD_MAIN SEGO
0112H 002EH ** GAP **

171

CHAPTER 5 LINKER

-NTB no table

(11)-NTB

Description Format -NTB
Default Interpretation Linker creates a branch tables automatically

[Function]
* The -NTB option notifies the linker that automatic creation of branch tables is not to be performed.

[Use]
* Iflinkage is aborted with an “FO012 BRANCH TABLE OVERFLOW?” error, linkage should be performed again with
the -NTB option specified.

[Description]

e In order to perform automatic branch table creation processing, the linker records provisional branch table
uniformly for all BRCB instructions other than those for which the object code was determined during assembly
(which branch from an absolute address to an absolute address). Then only those branch tables which are really
necessary are created when segment location addresses are determined.

Therefore, it may happen that the number of branch tables recorded temporarily during linker processing exceeds
the maximum number of approximately 1,000, even if branch tables are not actually created, with the result that
the linker aborts.

 |f the -NTB option is specified the linker does not create branch tables automatically, and therefore linkage will
not be aborted with an “F012 BRANCH TABLE OVERFLOW?” error.

e Also, as the number of branch tables approaches the maximum of approximately 1,000, the generated object
efficiency becomes extremely low.

* If linkage is performed with the -NTB option specified, an error will result if the branch destination of a BRCB
instruction is not in the same block.

In this case, the relevant BRCB instructions should be rewritten as 3-byte branch instructions in the source
module.

172

CHAPTER 5 LINKER

-NTB no table

[Example]

Example Assume that the following error was output when linkage was performed.

AANECTOOLS\SMP75X\RA75X>LX75X BR1.REL BR2.REL -OBR.LNK
75X Series Linker VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985

*** ERROR FO012 BRANCH TABLE OVERFLOW
Program aborted

—lLinkage is performed with the -NTB option specified.

AANECTOOLS\SMP75X\RA75X>LK75X BR1.REL BR2.REL -OBR.LNK -NTB
75X Series Linker VX. XX [XX Xxx XX]

Copyright (C) NBC Corporation 1985
*** W502 EVALUATED VALUE EXCEEDS THE RANGE (AT XXXXH IN XXXX)

LINK COMPLETE, 1 ERROR FOUND

—Link processing terminates, but the “W502” error is output for commands branching to other blocks in the BRCB
command.

173

CHAPTER 5 LINKER

-O/-NO output file
(12)-0/-NO
Description Format -0 [load module file name]
-NO

Default Interpretation ‘First specified object file name.LNK’ is created in current path.

[Function]
* The -O option specifies the name of the load module file to be created by the linker.
e The -NO option informs the linker that a load module file is not to be created.

[Use]
e The -O option is specified when it is wished to change the load module file name from the default name.
* The -NO option is specified when the linker is to be started only in order to output a link list file, etc.

[Description]

* If neither the -O option nor the -NO option is specified, the linker creates a load module file in the current path
using the first object module file name specified, but with the file type changed to “.LNK’.

This fives the same result as when the -O option is specified with the file name omitted.

e ‘NUL’ or ‘AUX’ can be specified for the file name as a logical device name. If ‘NUL’ is specified, the same result
is obtained as when the -NO option is specified.

e |tis possible to specify the path in which the load module file is to be created by including the path name in the
file name. In this case, a file which has the name of the first object module file specified, but with the file type
changed to ‘.LNK’, is created in the specified path.

e If -O and -NO are specified at the same time, the latter specification is valid.

174

CHAPTER 5 LINKER

-O/-NO output file

[Examples]

Example 1. When the linker is started with “75XTEST.LNK” specified as the output file name.

A\NECTOOLS\SMP75X\RA75X>LK75X -075XTEST.LNK 75XTEST1.REL 75XTEST2.REL

—The link list file “7Z5XTEST1.MAP” and load module file “75XTEXT.LNK” are output.

Example 2. When the linker is started with the -NO option specified

A\NECTOOLS\SMP75X\RA75X>LK75X -NO -P75XTEST.MAP 75XTEST1.REL 75XTEST2.REL

—In this case, the link list file “75XTEXT.MAP” only is output.

175

CHAPTER 5 LINKER

-J/-NJ JUNK/NO JUNK
(13)-J/-NJ
Description Format -J
-NJ

Default Interpretation -NJ

[Function]
* The -J option specifies that a load module file is to be created even if there is a linkage error.
* The -NJ option specifies that a load module file is not to be created if there is a linkage error.

[Use]
* When desiring to generate a load module file even if there are errors during linking, specify the -J option.

[Explanation]
* When the -NO option is specified, the -J option is invalid.

176

CHAPTER 5 LINKER

-J/-NJ JUNK/NO JUNK

[Examples]
e When the -J option is specified.

AANECTOOLS\SMP75X\RA75X>LK75X 75XTEST1.REL -J
75X Series Linker VXX. XX [XX Xxx xx]
Copyright (C) NEC Corporation 1985

*** ERROR W310 UNRESOLVED SYMBOL(MODULE: AD_MAIN SYMBOL: ADCONV)
*** ERROR W310 UNRESOLVED SYMBOL(MODULE: AD_MAIN SYMBOL: SIOSUB)
*** ERROR W503 REFERENCE SYMBOL IS UNRESOLVED (AT 0008H IN)

*** ERROR W503 REFERENCE SYMBOL IS UNRESOLVED (AT 0035H IN SEG2)

LINK COMPLETE, 4 ERRORS FOUND

—An load module file ‘7Z5XTEST1.LNK’ has been output even though there is an assembly error.

177

CHAPTER 5 LINKER

parameter file name

(14)-F

Description Format -F parameter file name
Default Interpretation ~ Parameter file is not used

[Function]
* The -F option specifies that linker options and input/output file names are to be read from the file specified by
the option parameter. This file is called the parameter file.

[Use]

* Writing options and input/output file names to be specified for the linker in a parameter file in advance also
reduces the amount of typing required.

e Options and input file names can still be specified in the command line even if a parameter file is used. It is thus
possible to write only frequently used options in the parameter file.

[Description]

e The parameter file is a text file, and can be created with an editor, etc. There are no particular restrictions on
the length of the parameter file.

* The parameter file name cannot be omitted. However, if the file type is omitted, ‘.PLK’ is taken as being specified.

* A logical device name (‘CON’, ‘AUX’, etc.) cannot be specified as the parameter file name. Use of such names
will result in an error.

* The contents of the parameter file are expanded at the point at which the -F option is written in the linker start
line. It is therefore possible to change the parameter file contents or add other option specifications with options
written after the -F option.

e Parameter files cannot be nested. If an -F option is written in the parameter file, an error will result.

e |tis not possible to use, more than one parameter at one time. If multiple -F options are specified, an error will
result.

e Individual options and input file names should be separated by spaces, TABs or Line Feed characters. A
parameter file description cannot be split over a number of lines.

* The ;" and ‘# symbols are treated as comment marks in the parameter file. Characters from these characters
to the end of the line are regarded as a comment.

178

CHAPTER 5 LINKER

parameter file name

[Examples]

Consider a parameter file “75XTEST.PLK’ with the following contents.

75XTEST1.REL ; Input file name
75XTEST2.REL ; Input file name
-075XTEST.LNK ; Output file name
-P75XTEST.MAP ; Link list file name

-KM ; Obtain map list on link list file

Example 1. The linker is started with parameter file ‘75XTEST.PLK’ specified.

A\NECTOOLS\SMP75X\RA75X>LK75X F75XTEST.PLK

Example 2. The contents specified by the parameter file "75XTEST.PLK’ are changed and added to in the

command line.

A\NECTOOLS\SMP75X\RA75X>LK75X F75XTEST.PLK -PPRN -SQ

179

CHAPTER 5 LINKER

-Y device file search path

* (15)-Y

Description Format -Y Path name
Default Interpretation ~ Executes a search in accordance with the specified search sequence ((2) ~ (5) of
the [Explanation]).

[Function]
* The -Y option specifies the device file search path.

[Use]
» Specify the -Y option when searching from the specified path first.

[Explanation]

* A device file is searched for by the following sequence.
(1) Path specified by the -Y option.
(2) “.\DEV’ path with respect to the LK75X starting path.
(3) LK75X starting path.
(4) Current Path
(5) Environment Variable ‘PATH’

180

CHAPTER 6. OBJECT CONVERTER

The object converter (OC75X) has as its input the load module file Not¢ 1 output by the linker, and outputs a HEX
format object module file which can be input to a HEX loader Nete 2,

The object converter also outputs the symbol table file required for symbolic debugging using a debugger control
program.

Notes 1. All reference address information must have been resolved.
2. PG-1500, IE-75000-R (maintenance product), IE-75001-R, EVAKIT-75X (discontinued)

181

CHAPTER 6 OBJECT CONVERTER

6.1 Object Converter Input/Output Files

The object converter (OC75X) input/output files are shown in Table 6-1.

Table 6-1 Object Converter Input/Output Files

This is a file which contains error information when running the object converter.

Type of File Default File Type
Input file Load module file .LNK
Load module file output by the linker
Parameter file .POC
This is a file created by the editor when desiring to specify a large number of files
which cannot be defined on the command line as object converter input files.
Output file HEX format object module file .HEX
HEX format file which can be input to HEX loader.
Symbol table file .SYM
File containing information on symbols included in each module of the input file
Error list file .EOC

Figure 6-1 Object Converter Input/Output Files

Load module file

(OC75X)

Obiject converter (P

Parameter file

? ? ?

Symbol table HEX format Error list file
file object module file

Caution An object module file (.REL) output by the assembler cannot be input.

182

CHAPTER 6 OBJECT CONVERTER

6.2 Object Converter Functions

* The object converter converts the information in a load module file to a HEX format object module which can
be input by a HEX loader (PG-1500, IE-75000-RNete 1 |E-75001-R, EVAKIT-75XNote 2),

e If an error is found during object conversion, an error message is displayed on the console.

* The object converter performs processing in accordance with the object converter options specified when it is
started. See 6.4 “Object Converter Options” for object converter options.

* When this processing terminates normally, the object converter outputs a termination message and returns
control to the OS.

* Ifthe -NG option is specified when assembly is performed, module symbol information is not output to the symbol
table file.

Notes 1. Maintenance product (not available for purchase)
2. Discontinued (not available for purchase)

6.2.1 HEX format object module file format
The HEX format object module file is output in HEX format.

: 10 70 00 3CAFCD3AQ7...---FF 8B . <C_><L_>

Checksum (2 digits)|
* Value obtained by subtracting data up to code from number
of codes in order from 0 is entered.

—|Code (Max. 16 bytes)|
* Indicates object code with each byte divided into high-order 4-bits and low-

order 4 bits. (This item is not included in the last record.)

—| Record Type (2 digits)|
¢ OOH indicates data record, 01H indicates last record.

—| Location Address (4 digits)|
¢ Indicates start address of code indicated by this record. (0000H in last record)

—| Number of Codes (2 digits)|
* Number of code bytes contained in one record.
Maximum 16 bytes (O0H in last record)

Record Mark

Indicates start of record.

183

CHAPTER 6 OBJECT CONVERTER

Remark The last record indicating the end of the object code is as shown below.
00 0000 01 FE Cr LF
Checksum
Record Type
Address (0000H)

Code Count

Example

:02000000C050EE
:100008008022990799229911A2101092E489EE9200
:04001800E09906EE77
:10002000991F9907108BD389C093C09D40A3C0929C
:10003000D67ACOFEBD049B40CAF19A09A3COAACTEA
:100040009D809906C7EF9A2EDIE698DIISCEFIEEFY Data Records
:10005000992110890092807393B399118B3F890085
:10006000E8AABAFCI910ESAABAFC10897992A68924
:100070004C92A09DB29D9ICI91189009A0F9IA87FD80
:09008000AB40469210AB400AFOBF i
:00000001FF | Last Record

184

CHAPTER 6 OBJECT CONVERTER

6.2.2 Symbol table file format

The symbol table file is output in the following format.

Start of
symbol table # 04 Cr|Lr
Start of
public symbol | FF Blank Mt Module name1 “***? | Cr | Lr
I
gt)t/:;t:ﬁemtea Symbol value Public symbol name | Cr |Lr
Public
symbols
1 object
module
if; g:/mbol < | Attribute Symbol value Local symbol name | Cr |Lr
Local
Attribute Symbol value | Local symbol name | Cr | Lr symbols
; FF Blank Module name2 "2 | Cr | Lr
[Repeated for
each object
module]
Symbol table end _
mark _ | Cn | Lr

Notes 1. This column is fixed at 4 characters.
2. Up to 8 characters are entered in this column.
3. The symbol attributes are indicated by the following values.

Value | Symbol Attribute
00 NUMBER

01 CODE

02 DATA

03 STACK

05 BIT

08 PBIT

FF Module name

185

CHAPTER 6 OBJECT CONVERTER

Example

#04

;FF AD_MAIN
020110SEGO
010020SEGH
010050SEG2
010046SEG3
010020SEL15
020110TDATA
<010046HEIKIN
083EF1IETO
010060LOOP1
010066LO0OP2
010079LOOP3
01007DLOOP4
010048LOOP5
010050MAIN
083EC1MBE
020FB3PCC
083ECORBE
020F80SP
020FAO0TMO
020FA6TMODO
;FF AD_SUB
010022ADCONV
01000ASEG4
010022SEG5
01000ASIOSUB
<020FCOBSBO
01002BLOOP
020FD4PTHO
020FD6PTHM
083ECORBE
020FE4SI0
020FEOQSIOM
010032WAIT

186

CHAPTER 6 OBJECT CONVERTER

6.3 Object Converter Initiation Method
6.3.1 Starting the object converter

The object converter is started by inputting the following command in the format shown in the OS command line.

X>0C75X [_option,...] _input file name [_option...]

e X indicates the current drive .
e “input file name” is the name of the load module file to be converted. The drive name, directory name, etc., can
be added to the input file name.

Example

OC75X B:75XTEST.LNK
OC75X C:\USER\NEC\75XTEST.LNK

* “option” is a string of 1 to 2 letters beginning with the “-” symbol, and may be followed by parameters. Options
can be written before and after the input file, and if there are multiple options, they can be written in any order.
However, if multiple identical options or options of the same kind are written, in some cases an error is generated,
and in some cases the last output specified is valid. See 6.4 “Object Converter Options” for details.

e One or more blanks (spaces or TAB) should be used to separate options and the input file name.

* As the default output destination, a file with the same name as the input file but with the file type changed to
*.HEX’ is created in the current path. This can be changed by means of the -O’ option.

* ‘RA75X.0OM1’ is necessary to start the object converter.

187

CHAPTER 6 OBJECT CONVERTER

6.3.2 Execution start and end messages

(1) Execution start message
When the object converter is started an execution start message is displayed on the console.

75X Series Object Converter VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985 ,XXXX

(2) Execution end message
If the object converter does not find a fatal error, it outputs the following message to the console and returns
control to the OS.

Object Conversion Complete, 0 error(s) and 0 warning(s) found

When the object converter outputs an error message and aborts linkage, the cause of the error message should
be found in 13.3 “Object Converter Error Messages”, and appropriate action taken.

188

CHAPTER 6 OBJECT CONVERTER

6.3.3 Object converter error handling

If the object converter detects an error during execution, it performs one of the following four kinds of processing
according to the severity of the error .

(1) Abort error
If an error is generated which prevents program execution from continuing, the program displays a ‘Program
aborted’ message, and the program is aborted immediately.
However, if this type of error is discovered on the object converter start line, execution ends after the check
continues for the remainder of the start line.

(2) Fatal error
An error in which a HEX format object module file or symbol file which has been generated differs from the
user's designistreated as a fatal error. Processing is continued to the extent that other errors can be detected,
but a HEX format object module file or a symbol file is not created. (If a file with the same name as the one
you are trying to create already exists, the existing file is deleted.)

(3) Warning Error
If some error is discovered in a portion which is not related to the generation of a HEX format object module
file or symbol file, it is counted as a warning error. This is a comparatively minor error, and does not effect
the file which is output. Program execution can continue to the very end.

(4) Normal termination
If the program terminates normally, it outputs the message “Object Conversion Complete, 0 error(s) and 0

warning(s) found”.

In case (1), (2) and (3) above, the error message is output in the following format.

***_ERROR_error number_.error message

The error number is expressed as one alphabet character and 3 digits. The header alphabet characters are
one of the following letters.

* W (Warning Error)

e F (Fatal Error)

e A (Abort Error)

189

CHAPTER 6 OBJECT CONVERTER

6.3.4 Object converter termination status

When the object converter terminates and returns control to the OS, one of the following error status codes is
returned to the OS.

Termination Conditions Termination Status

Normal termination 0

Warning error

0
Fatal error 1
Abort error 2

When the object converter is started from a batch file under MS-DOS (PC DOS, IBM DOS), it is possible to
determine whether there are any errors automatically using these values.

190

CHAPTER 6 OBJECT CONVERTER

6.4 Object Converter Options
6.4.1 Types of object converter options

Object converter options are used to give the object converter detailed directions concerning its operation.
There are seven different options as shown below.

Table 6-2 Object Converter Option Types

No. Description Format Function/Category Default Interpretation
1 -S[file name] Symbol table file output ‘Input file name.SYM’
-NS is created in current path
2 -R Specifies the HEX format object output -NR
-NR sequence.
3 -U fill value Mask ROM ordering object output None
specification
4 -Offile name] HEX format object module file specification | ‘Input file name.HEX’ is created in current
-NO path
5 -E[File name] Specifies the error list file. -NE
-NE
6 -Ffile name Specifies the parameter file. Reads all the options and file names from

the command line.

7 -Ypath name Specifies the device file search path. It searches in the sequence of the ‘--\DEV’
path with respect to the OC75X starting
path, the OC75X starting path, the current
directory, and the path set in the environ-
ment variable ‘PATH.’

Remark Options can be written in either upper- or lower-case characters
6.4.2 Object converter option specification method

Object converter options are specified in the command line when the object converter is started. See 6.3 “Object
Converter Start Method” for the method of specifying object converter options in the command line.

6.4.3 Object converter option priority order
(1) If multiple identical options or options of the same kind are specified in the command line, the option specified
last is valid.
(2) If the same or same kind of option is specified in the parameter file and in the command line, the command
line option is valid.

6.4.4 Description of object converter options

Each of the object converter options is described in detail in the following pages.

191

CHAPTER 6 OBJECT CONVERTER

-S/NS symbols/no symbols
(1) -S/-NS
Description Format -S[output file name]
-NS

Default Interpretation ‘Input file name.SYM’ is created in current path

[Function]
* The -S option informs the object converter that a symbol table file is to be output.
* The -NS option informs the object converter that a symbol table is not to be output.

[Use]
e The -NS option is specified when symbolic debugging is not to be performed in debugging.

[Description]

e If the -S option or the -NS option is not specified, the object converter creates a symbol table file on the current
path with the initially specified load module file name, but with the file type changed to ‘SYM.’ It is the same when
the file name has been omitted and the -S option has been specified.

* Alogical device name (such as ‘COM’ or ‘AUX’) cannot be specified as a file name. Describing a file name with
a logical device name will result in an error.

* A path name can be described and the path where a symbol table file is created can be specified in a file name.
Inthis case, a file with the load module file name, but with the file type changed to ‘SYM' is created on the specified
path.

e If -S and -NS are specified at the same time, the option specified last is valid.

192

CHAPTER 6 OBJECT CONVERTER

-S/-NS symbols/no symbols

[Example]

Example 1. When the -NS option is specified

A\NECTOOLS\SMP75\RA75X>0C75X 75XTEST.LNK -NS

—A symbol table file is not output.
The HEX format object module file “75XTEST.HEX” only is output.

Example 2. When the -S option is specified

A\NECTOOLS\SMP75\RA75X>0C75X 75XTEST.LNK -S75XTEST.SYM

—The symbol table file “75XTEXT.SYM” and HEX format object module file “75XTEXT.HEX” are output.

193

CHAPTER 6 OBJECT CONVERTER

-R/-NR sort/no sort
(2) -R/-NR
Description format -R
-NR

Default Interpretation -NR

[Function]

* The -R option instructs the arrangement of HEX format objects in address order and outputting them.

* The -NR option instructs the outputting of HEX format objects in the order in which they are stored in load module
files.

[Use]
e Use these options when desiring to specify concerning the output order of HEX format objects.

[Explanation]
* If the -R option and -NR option are specified at the same time, the last option specified becomes valid.
* When the -NO option is specified, the -R option and -NR option are invalidated.

[Example of Use]

Example Specify the -R option.

A\NECTOOLS\SMP75X\RA75X>0C75X 75XTEST.LNK -R

—Arranges HEX format objects in address order and outputs them.

194

CHAPTER 6 OBJECT CONVERTER

-U fill up
3) -U
Description Format -U filler value [,[start], size]
Default Interpretation None
[Function]

e The -U option indicates that the specified decimal code is to be placed in all addresses other than those used
in the program description and the object code of all the addresses of the target device are to be output.

[Use]
* The -U option is specified when object code for mask ROM ordering is to be output with free ROM area filled
with decimal codes.

[Explanation]

* For filler values, specify a value from 0 to 255 in binary, octal, decimal or hexadecimal notation. If a numerical
value outside this range is specified, or something other than a numerical value is specified, or if a filler value
is not specified, it will result in an error.

* Atthe start, use a header address in the address range where you intend to carry out filling, specifying a number
between OH and OFEFFH in binary, octal, decimal or hexadecimal notation. If a numerical value outside this
range is specified, or if something other than a numerical value is specified, it will result in an error. When the
start specification is omitted, it is regarded as if 0 was specified.

* Inthe size, specify a number from 1H to OFFOOH in binary, octal, decimal or hexadecimal notation to be the size
of the address area where you intend to carry out filling. If a numerical value outside this range is specified,
if something other than a numerical value is specified or if the size was omitted when specifying the start, it will
result in an error. If specification of both the start and the size is omitted, it is regarded as if the internal ROM
area has been specified.

e The description format and address range are as follows.

e -U Filler Value : Internal ROM Area
e -U Filler Value size : From address 0 to the address specified by the size.
e -U Filler Value, start, size : From the address specified by start to the address specified by the size.

* Thefinal address of the address range where you intend to carry outfilling is a value from 1H to OFEFFH. Specify
a size value which does not exceed this range. If this range is exceeded, it will result in an error.

¢ When the -U option is specified more than once, the last option specified becomes valid. More than one address
range cannot be specified.

[Example]

Example The -U option is specified.

A\NECTOOLS\SMP75X\RA75X>0C75X 75XTEST.LNK -U00

195

*

CHAPTER 6 OBJECT CONVERTER

fill up

When -U output is specified

:10000000C050000000000000802299079922991139
:10001000A2101092E489EE92E09906EE0000000032
:10002000991F9907108BD389C093C09D40A3C0929C
:10003000D67ACOFEBD049B40CAF19A09A3C0AAC1EA
:100040009D809906C7EF9A2ED9E698D998CEF9EEF9
:10005000992110890092807393B399118B3F890085
:10006000E8AABAFC9910E8BAABAFC10897992A68924
:100070004C92A09DB29D9C991189009A0F9A87FD80
:10008000AB40469210AB400AF000000000000000B8
:100090000000000000000000000000000000000060
:1000A0000000000000000000000000000000000050
:1000B0000000000000000000000000000000000040
:1000C0000000000000000000000000000000000030
:1000D0000000000000000000000000000000000020
:1000E0000000000000000000000000000000000010
:1000F0000000000000000000000000000000000000
:1001000000000000000000000000000000000000EF
:1001100000000000000000000000000000000000DF
:1001200000000000000000000000000000000000CF
:1001300000000000000000000000000000000000BF
:1001400000000000000000000000000000000000AF
:10015000000000000000000000000000000000009F
:10016000000000000000000000000000000000008F
:10017000000000000000000000000000000000007F
:10018000000000000000000000000000000000006F

All addresses not used for program description have been filled with the specified decimal code (00).

196

CHAPTER 6 OBJECT CONVERTER

-O/-NO output file name
(4) -O/-NO
Description Format -O[HEX format object module file name]
-NO
Default Interpretation “Input file name.HEX” is created in current path
[Function]

e The -O option specifies the name of the HEX format object module file to be created by the object converter.
* The -NO option instructs the object converter not to generate a HEX format object module file.

[Use]

e The -O option is specified when it is wished to change the HEX format object module file name from the default
name.

e In cases where the object converter is run solely for the purpose of outputting a symbol table file, etc., specify
the -NO option.

[Description]

¢ |f the -O operation or the -NO option is not specified, the object converter creates a HEX format object module
file with the initially specified load module file name, but with the file type changed to ‘HEX,’ on the current path.
This gives the same result as when the -O option is specified with the file name omitted.

* A logical device name cannot be specified as a file name. If a logical device name is specified, it will result in
an error.

* |t is possible to specify the path in which the HEX format object module file is to be created by including the
path name in the file name. In this case, a file with the same name as the load module file. but with the file type
changed to ‘.LNK’, is created in the specified path.

e If -O and -NO are specified at the same time, the option specified last is valid.

[Example]

Example 1. When the converter is started with “‘TEST.HEX’ specified as the output file name

A\NECTOOLS\SMP75X\RA75X>0C75X -OTEST.HEX 75XTEST.LNK

197

CHAPTER 6 OBJECT CONVERTER

-E/-NE error print/no error print
(5) -E/-NE
Description Format -E [output file name]
-NE

Default Interpretation -NE

[Function]
* The -E option specifies error list file output, and the output destination and filename.
e The -NE option specifies that no error list file is to be output.

[Use]
* Specify the -E option when desiring to change the error list file output destination or output file name.

[Description]

* When specifying the -E option, if the output file name is omitted, it is regarded as if the output file name ‘Load
Module File Name.EOC’ was specified.

 If the drive name is omitted from the file name specification, the current path name is taken as being specified.

* The path name can be described in the file name and the path for generating an error list file can be specified.
In this case, a file with the load module file name, but with the file type changed to ‘EOC’ is generated in the
specified path.

* The following can be specified as the device type file output destination.
-EPRN Error list is output tp line printer.

-ECON Error list is output to console.
-EAUX........ Error list is output to RS-232-C.
-ENUL Error list is not output.

If the -E option and the -NE option are instructed at the same time, the last option specified becomes valid.

198

CHAPTER 6 OBJECT CONVERTER

parameter file name

(6) -F

Description Format -F parameter file name
Default Interpretation ~ Parameter file is not used

[Function]
* The -F option specifies that object converter options and input/output file names are to be read from the file
specified by the option parameter. This file is called the parameter file.

[Use]

» Writing options and input/output file names to be specified for the object converter in a parameter file in advance
also reduces the amount of typing required.

e Options and input file names can still be specified in the command line even if a parameter file is used. It is thus
possible to write only frequently used options in the parameter file.

[Description]

e The parameter file is a text file, and can be created with an editor, etc. There are no particular restrictions on
the length of the parameter file.

e The parameter file name cannot be omitted. However, if the file type is omitted’ .POC’ is taken as being specified.

* A logical device name (‘CON’, ‘AUX’, etc.) and a path name cannot be specified as the parameter file name.
Use of such names will result in an error.

e The contents of the parameter file are expanded at the point at which the -F option is written in the object converter
start line. It is therefore possible to change the parameter file contents or add other option specifications with
options written after the -F option.

e Parameter files cannot be nested. If an -F option is written in the parameter file, an error will result.

e |tis not possible to use, more than one parameter at one time. If multiple -F options are specified, an error will
result.

e Individual options and input file names should be separated by spaces, TABs or Line Feed characters. A
parameter file description cannot be split over a number of lines.

* The ;" and ‘# symbols are treated as comment marks in the parameter file. Characters from these characters
to the end of the line are regarded as a comment.

199

CHAPTER 6 OBJECT CONVERTER

-Y device file search path

@) -Y

Description Format -Y Path name
Default Interpretation ~ Executes a search in accordance with the specified search sequence ((2) ~ (5) of
the [Explanation]).

[Function]
* The -Y option specifies the device file search path.

[Use]
» Specify the -Y option when searching from the specified path first.

[Explanation]
* A device file is searched for by the following sequence.
(1) Path specified by the -Y option.
(2) “-\DEV’ path with respect to the OC75X starting path.
(3) OC75X starting path.
(4) Current Path
(5) Environment Variable ‘PATH’
e If a name other than a path name is specified, or if the path name is omitted, it will result in an error.

200

CHAPTER 7. LIBRARIAN

The librarian is a tool for collecting together modules which are of general applicability and have a clear interface
in a single file (“librarization”).

Once multiple modules have been collected together in a single file, the library file can be specified as an input
file when linkage is performed in addition to the object module file.

Only the necessary modules in the library file are linked.

Creating a library file in this way facilitates object module management and administration.

201

CHAPTER 7 LIBRARIAN

71 Librarian Input/Output Files

Librarian input/output files are shown in Table 7-1.

Table 7-1 Librarian Input/Output Files

Type of File

Default File Type

Input file

Object module file Note!
Object module file output by the assembler.

.REL

Library file
File created by the librarian. Specific modules or the all modules in the file can be
input.

.LIB

Subcommand file Note 2
A series of subcommands for the librarian are created in advance using the editor in
the form of a subcommand file.

Output file

Library file
File which has been updated by the librarian (additions/deletions/replacements).

.LIB

List file
List file to which information on each module in the library file is output.

.PRN

Notes 1. Binary file.

Caution

202

2. See 7.3.3 “Subcommand file”.

Figure 7-1. Librarian Input/Output Files

Object module files

Librarian
(LB75X)

? ?

List file Library file

‘__’ cannot be used as a file name in Librarian. Use ‘-’ instead.

CHAPTER 7 LIBRARIAN

7.2 Librarian Functions

e The main functions of the librarian are as follows:

1. Librarization of modules
2. Library file editing
3. Printing of library file information

 If an error is found during processing, the librarian outputs an error message to the console.

* The librarian performs processing in accordance with the subcommands specified after the librarian is started.
See 7.4 “Description of Subcommands” for the subcommands.

* When the EXIT subcommand is input, the librarian returns control to the OS.

7.2.1 Module librarization

The assembler creates one object module in one file. If there are a large number of object modules, therefore,
the number of files also increases. Consequently, a function is provided for collecting together a number of modules
in a single file. This is called “module librarization”, and the librarized file is called a “library file”.

A library file can also be input to the linker. Therefore, if a library file is created from generally applicable modules
when modular programming is used, efficiency can be improved in terms of both file management and operability.

7.2.2 Library file editing

The librarian has the following functions for editing a library file.

e Addition of modules to library file
* Deletion of modules from library file
* Replacement of modules in library file
(See 7.4 “Description of Subcommands” for details of these functions.)

7.2.3 Printing of library file information

The librarian has functions for editing and printing the following information held in a library file.

* Module name
* Creating program
* Recording date
e Update date
e PUBLIC symbol information
(See 7.4 “Description of Subcommands” for details of these functions.)

203

CHAPTER 7 LIBRARIAN

7.3 Librarian Start Method
7.3.1 Starting the librarian

The librarian is initiated as shown below.
X>LB75X[_!subcommand.file name] [_DATE option]

Option for recording library file edit date
File holding commands to librarian (subcommands)
Subcommand file specification symbol
Librarian command file name
——— Current drive name

Cautions 1. The librarian command files “LB75X.COM” and “LB75X.OMO” must be stored in the current
directory.

2. If the librarian is started without specification of a subcommand file, the librarian waits for
subcommand input. The librarian does not support directories.

7.3.2 Subcommand input in conversational mode

* |f a subcommand file is not specified when the librarian is started, the librarian waits for subcommand input (with
the "’ prompt displayed) after displaying the start message.

AANECTOOLS\SMP75X\RA75X>LB75X
75X Series Librarian VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1984, XXXX

* A subcommand is used to give instructions to the librarian, and uses the following format (see 7.4 “Description
of Subcommands” for details of sub-commands).

[*Subcommand name Operand information |

Prompt output by librarian

204

CHAPTER 7 LIBRARIAN

7.3.3 Subcommand file

 |f a series of subcommands to be given to the librarian is decided in advance, these subcommands are compiled
into a subcommand file using the editor.

* If a subcommand file is specified when the librarian is started, the librarian reads the subcommands from the
subcommand file and performs processing accordingly, and when all the subcommands in the subcommand
file have been executed, returns control to the OS.

* The subcommand is created in the following format:

Subcommand name Operand information
Subcommand name Operand information

EXIT

e Up to 132 characters can be written on one line of the subcommand file.

* |f a subcommand does not fit on one line, an ampersand (‘&’) symbol is written at the end of the line to indicate
that the subcommand is continued on the next line.

e Characters from a semicolon (‘;’) up to the end of a line are regarded as a comment, and are not interpreted
as part of a librarian subcommand.

e Even if there is not EXIT subcommand at the end of the subcommand file, the librarian infers the presence of
an EXIT subcommand and terminates the processing.

* When subcommand input ends, processing of each subcommand begins. When processing of one subcommand
is completed, ** is displayed again and the librarian waits for input of the next subcommand. This operation is
repeated until the termination subcommand (EXIT subcommand) is input.

* Subcommand specification

* Termination subcommand specification
Librarian termination

205

CHAPTER 7 LIBRARIAN

e Up to 80 subcommand characters can be written on one line.

* |fthe subcommand operand information specification does not fit on one line, the specification can be continued
by using ‘&’.

e If ‘&’ is specified at the end of a line, the operand input request symbol ‘-’ is printed on the next line, and input
of operand information can be continued from the beginning of the next line.

*;LIBRARY CREATION COMMAND

*CREATE 75XTEST.LIB

*ADD 75XTEST1.REL 75XTEST2.REL &

-TO 75XTEST.LIB

*LIST 75XTEST.LIB TO SAMPL.LST PUBLICS
*EXIT

¢ An example of a subcommand file is shown below.

;LIBRARY CREATION COMMAND
CREATE 75XTEST.LIB

ADD 75XTEST1.REL, 75XTEST2.REL &
TO 75XTEST.LIB

LIST 75XTEST.LIB TO SAMPL.LST PUBLICS

EXIT

206

CHAPTER 7 LIBRARIAN

7.3.4 Execution start and end messages

(1) Execution start message
When the librarian is started an execution start message is displayed on the console.

75X Series Librarian VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1984, XXXX

(2) Execution end message
If no fatal error is detected, the librarian returns control to the OS without outputting a message.

If the librarian outputs an error message and aborts processing, the cause of the error message should be
found in 13.4 “Librarian Error Messages”, and appropriate action taken.

7.3.5 Date option
The librarian has only one option: the DATE option

The DATE option is used to record the date on which the library file was edited as information in the library file,
and to print this information as a header in the output list.

207

CHAPTER 7 LIBRARIAN

DATE date
Description Format DATE (character string)
Abbreviated Format DA (character string)
Default Interpretation =~ DATE (system time)

[Function]
e The DATE record the specified string (date) as the library file edit date in the library file.
e The specified string is also printed in the list file header.

[Use]
* The DATE option is specified in order to record when editing was performed on individual modules in the library

file.

[Description]
* A string of up to 12 characters should be specified.

[Examples]

Example 1. The librarian is started with the DATE option specified.
A subcommand file is not specified.

AANECTOOLS\SMP75X\RA75X>LB75X DATE (XX/XX/XX)
75X Series Librarian VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1984,XXXX

*CREATE 75XTEST. LIB
*ADD 75XTEST1 TO 75XTEST. LIB
*LIST 75XTEST.LIB

75X Series Librarian VX.XX DATE(XX/XX/XX) PAGE: X
LIB-FILE NAME : 75XTEST.LIB (XXIXX/XX XX/XX/XX)
1 AD_MAIN (XX/XX/XX)
UPDATE : 0 RA75X VX. XX UPD75106

NUMBER OF MODULES : 1

—The processing date is recorded in the library file.

208

CHAPTER 7 LIBRARIAN

DATE date

Example 2. The library file “75XTEST.LIB” is updated with the DATE option specified.

AANECTOOLS\SMP75X\RA75X>LB75X DATE XX/XX/XX
75X Series Librarian VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1984, XXXX

*ADD 75XTEST2 TO 75XTEST.LIB
*LIST 75XTEST.LIB

The update date is recorded in the library file.

75X Series Librarian VX.XX DATE (XX/XX/XX) PAGE: X
LIB-FILE NAME : 75XTEST.LIB (XX/XX/XX XX/XX/XX)
1 AD_MAIN (XXIXX/XX)
UPDATE : 0 RA75X VX. XX UPD75106
2 AD_SUB (XXIXXIXX)
UPDATE : 0 RA75X VX. XX UPD75106

NUMBER OF MODULES : 2

In 1, the date on which library file “75XTEST.LIB” was edited last remains.
In 2, the update date is recorded.

209

CHAPTER 7 LIBRARIAN

7.4 Description of Subcommands

Details of each subcommand are given in the following pages.
The description format is as follows:

| :Subcommand name Operand information

Prompt output by librarian

210

CHAPTER 7 LIBRARIAN

CREATE create

(1) CREATE

Description Format CREATE Library file name
Abbreviated Format C Library file name
Default Interpretation ~ None

[Function]
e The CREATE subcommand creates a new library file.

[Use]

e The assembler and linker create one output module in one file. If there are a large number of modules, therefore,
the number of files also increases.
Consequently, a function is required for collecting together a number of modules in a single file. This function
is called “module librarization”, and the librarized file is called a “library file”. If there are a large number of
modules, a library file can be created by specifying the CREATE subcommand.

[Description]
* The name of the library file to be created should be specified as the operand.
e There are no modules in the initially created library file.

[Examples]

Example 1. Consider an initially created library file named “75XTEST.LIB”.

*CREATE 75XTEST.LIB

—The library file “75XTEST.LIB” is created.

211

CHAPTER 7 LIBRARIAN

CREATE create

Example 2. The library file name is omitted.

*CREATE
*** ERROR W212 ILLEGAL FILE SPECIFICATION :

*

—Omission of the library file name results in an error.

Example 3. Multiple library files are specified for initialization.

*CREATE CLIB.LIB DLIB.LIB

*** ERROR W209 PARAMETER OVER

*

—If multiple library files are specified for initialization, as shown here, an error results. However, the first library
file specified is created.

212

CHAPTER 7 LIBRARIAN

ADD

add

i

(2) ADD

Description Format

*ADD

Abbreviated Format

*A

Object module file name
Library file name
[(Object module name [, ...])]

Object module file name
Library file name
[(Object module name [, ...])]

[, ...] TO Update library file name

[, ...] TO Update library file name

[Function]

* The ADD subcommand specifies that one or more modules in a different file are to be added to an existing library

file.

[Use]

e The ADD subcommand is specified when it is wished to newly record one or more modules in a library file initially
created with the CREATE subcommand.

[Description]

* The object module file or library file containing the modules to be added to the library file is specified as the input

file.

If the file type is omitted from the input file name, it is taken to be .REL’.

e Ifthe inputfile is a library file, the name of the module in the library file to be recorded is specified in parentheses

()

e |f the module name is omitted, all the modules in the library file are recorded.

Caution

The update library file name is the name of the library file to which the addition is made.

The update library file must not contain a module with the same name as that of the module to be added.

213

CHAPTER 7 LIBRARIAN

ADD add

[Example]

Example 1. Modules M3 and M4 are to be added to the library file “75XTEST.LIB”.

<Before addition>

Library file
(75XTEST.LIB) F3.REL F4.LIB
M1 M3 M4
M2 M5

Description format
*ADD F3, F4, (M4) TO 75XTEST.LIB

<After recording>
Library file
(75XTEST.LIB)

M1

M2

M3

M4

214

CHAPTER 7 LIBRARIAN

ADD

add

Example 2. Module “75XTEST1” is to be added to the existing library file “75XTEST.LIB”.

*ADD 75XTEST1 TO 75XTEST.LIB

*

—The contents of the library file “75XTEST.LIB” are checked.

*LIST 75XTEST.LIB

75X Series Librarian VX. XX DATE() PAGE : X
LIB-FILE NAME : 75XTEST.LIB ()
1 AD_MAIN ()
UPDATE : 0 RA75X VX. XX UPD75106

NUMBER OF MODULES : 1

215

CHAPTER 7 LIBRARIAN

DELETE delete
(3) DELETE
Description Format *DELETE Library file name (Object module name [, ...])
Abbreviated Format *D Library file name (Object module name [, ...])
[Function]

e The DELETE subcommand specifies that one or more modules in an existing library file are to be deleted.

[Use]
e The DELETE subcommand is specified when it is wished to delete one or more modules which are no longer
needed from a library file.

[Description]
e The library file name specified is the name of the library file containing the module(s) to be deleted.
* The module name specified is the name of the module to be deleted from the library file.

Caution
rThe specified module must exist in the library file.

[Example]

Example 1. Modules M1 and M3 are to be deleted from the library file “75XTEST.LIB”.

<Before deletion>
75XTEST.LIB

M1

M2

M3

216

CHAPTER 7 LIBRARIAN

DELETE

delete

* Description format

*DELETE 75XTEST.LIB (M1, M3)

<After deletion>
75XTEST.LIB

M2

Example 2. Module “AD_SUB” is to be deleted from existing library file “75XTEST.LIB”.

Only module M2 remains in the library file.

<1> First, the contents of the library file are checked.

*LIST 75XTEST.LIB

75X Series Librarian VX.XX DATE() PAGE :
LIB-FILE NAME : 75XTEST.LIB ()
1 AD_MAIN ()
UPDATE : 0 RA75X VX. XX UPD75106
2 AD_SUB ()
UPDATE : 0 RA75X VX. XX UPD75106

NUMBER OF MODULES : 2

<2> Module

“AD_SUB” is deleted.

*DELETE 75XTEST.LIB (AD_SUB)

217

CHAPTER 7 LIBRARIAN

DELETE delete

<3> The contents of library file “75XTEST.LIB” are checked.

*LIST 75XTEST.LIB

75X Series Librarian VX.XX DATE() PAGE : X
LIB-FILE NAME : 75XTEST.LIB ()
1 AD_MAIN ()
UPDATE : 0 RA75X VX. XX UPD75106

NUMBER OF MODULES : 1

—The module “AD_SUB?” is deleted and “AD_MAIN” only remains.

218

CHAPTER 7 LIBRARIAN

REPLACE replace

(4) REPLACE

Description Format
Object file name
*REPLACE Library file name FROM Update library file name
[(Object module name [, ...])]
Object file name
*R Library file name FROM Update library file name
[(Object module name [, ...])]

[Function]
* The REPLACE subcommand specifies that one or more modules in an existing library file are to be replaced
with modules from another object module file or library file.

[Use]
* The REPLACE subcommand is specified when it is wished to update the recorded module contents.

[Description]

e The object module file or library file containing the module(s) is specified as the input file.

e Ifthe inputfile is a library file, the name of the module in the library file to be replaced is specified in parentheses
()

e If a module name is not specified, all the modules in the library file are replaced.

* The update library file name is the name of the library file from which the replacement is made.

Caution
¢ The update library file must contain a module with the same name as that of the module to be replaced.
e The input library file name and the update library file name must be different.

219

CHAPTER 7 LIBRARIAN

REPLACE

replace

[Example]

Example 1. Module M2 in the library file “75XTEST.LIB” is to be replaced.

<Before replacement>

75XTEST_LIB

F2.REL

M1

M2

e Description format

M2

*REPLACE F2 (M2) FROM 75XTEST.LIB

<After replacement>
75XTEST.LIB

M1

M2

220

M2 in library file '75XTEST.LIB’ has been replaced.

CHAPTER 7 LIBRARIAN

REPLACE

replace

Example 2

<1> The contents of public symbols in the library file “75XTEST.LIB” are to be checked.

*LIST 75XTEST.LIB PUBLICS

LIB-FILE NAME : 75XTEST.LIB ()

1 AD_MAIN ()
UPDATE : 0 RA75X VX. XX UPD75106

SEGO
SEG1
SEG2
SEG3
SEG15
TDATA

NUMBER OF PUBLIC SYMBOLS : 6

2 AD_SUB ()
UPDATE : 0 RA75X VX. XX UPD75106

ADCONV
SEG4
SEG5
SIOSuUB

NUMBER OF PUBLIC SYMBOLS : 4

NUMBER OF MODULES : 2

75X Series Librarian VX.XX DATE() PAGE :

221

CHAPTER 7 LIBRARIAN

REPLACE

replace

<2>

“75XTEST1.ASM” is assembled after rewriting as shown below.

$ TITLE=" A-D CONVERTER VX.XX’

222

#** A-D CONVERT PROGRAM
NAME AD_MAIN
EXTRN CODE(ADCONV), CODE(SIOSUB), CODE(HEIKIN)
PUBLIC TDATA,SEL15
STKLN 10
VENTO MBE=1, RBE=1, MAIN
VENT4 MBE=1, RBE=0, ADCONV
SEGO DSEG 1 AT 10H
TDATA: DS 2
GETI TABLE
SEG1 CSEG IENT
SEL15: SEL MB15
MAIN ROUTINE
SEG2 CSEG INBLOCK
MAIN : SEL RB1
GETI SEL15 :STACK POINTER SET
MOV XA, #STACK ;
MOV SP,XA ;
MOV A,#0011B
MOV PCC,A ;PCC « 0011B
o DATA RAM OH-13FH ZERO CLEAR *
SEL MB1
MOV HL,#3FH
MOV XA, #00H
LOOP1: MOV @HL,A :100H-13FH
DECS HL
BR LOOP1
SEL MBO
LOOP2: MOV @HL,A :OH-FFH
DECS HL
BR LOOP2

CHAPTER 7 LIBRARIAN

REPLACE

replace

7 TIMER SET (SAMPLING TIME = 30 MSEC, FXX=4.19 MHZ)

GETI SEL15 ;SEL - MB15
MOV XA #79H
MOV TMODO,XA
MOV XA,#01001100B
MOV TMO,XA
El
El IETO
SEL MB1
LOOP3: MOV XA, #00H
MOV B,#0H
LOOP4: SKE B,#08H
BR LOOP4
CALL 'HEIKIN
MOV TDATA,XA
CALL ISIOSUB
BR LOOP3
END

<3> Modules in library file “75XTEST.LIB” are replaced.

*k

*REPLACE 75XTEST1 FROM 75XTEST.LIB

223

CHAPTER 7 LIBRARIAN

REPLACE replace

<4> Check the contents of the public symbols in the library file “75XTEST.LIB” after replacement.

*LIST 75XTEST.LIB PUBLICS

75X Series Librarian VX.XX DATE() PAGE : X
LIB-FILE NAME : 75XTEST.LIB ()

1 AD_MAIN ()
UPDATE : 0 RA75X VX. XX UPD75106

SEGO
SEG1
SEG2
SEG15
TDATA

NUMBER OF PUBLIC SYMBOLS : 5

2 AD_SUB ()
UPDATE : 0 RA75X VX. XX UPD75106

ADCONV
SEG4
SEG5
SIOSuUB

NUMBER OF PUBLIC SYMBOLS : 4

NUMBER OF MODULES : 2

—The ‘AD_MAIN’ public symbolsinthe library file “75XTEST.LIB” before replacementare changed in “75XTEST1”
after replacement as follows.

Before replacement ——— — After replacement

SEGO SEGO
SEG1 SEG1

SEG2 SEG2
SEG3 E> SEL15
SEL15 TDATA
TDATA

NUMBER OF PUBLIC SYMBOLS: 6 NUMBER OF PUBLIC SYMBOLS: 5

224

CHAPTER 7 LIBRARIAN

REPLACE replace

Example 3.
<1> The contents of the library file “75XTEST.LIB” are to be checked.

*LIST 75XTEST.LIB PUBLICS

75X Series Librarian VX.XX DATE() PAGE : X
LIB-FILE NAME : 75XTEST.LIB ()

1 AD_MAIN ()
UPDATE : 0 RA75X VX. XX UPD75106

SEGO
SEG1
SEG2
SEG3
SEG15
TDATA

NUMBER OF PUBLIC SYMBOLS : 6

2 AD_SUB ()
UPDATE : 0 RA75X VX. XX UPD75106

ADCONV
SEG4
SEG5
SIOSuUB

NUMBER OF PUBLIC SYMBOLS : 4

NUMBER OF MODULES : 2

225

CHAPTER 7 LIBRARIAN

REPLACE

replace

<2> “75XTEST1.ASM” is assembled after rewriting as shown below.

$ TITLE=" A-D CONVERTER VX.XX’

)
akkk
3

A-D CONVERT PROGRAM i

226

NAME AD_MAIN
EXTRN CODE(ADCONV), CODE(SIOSUB), CODE(HEIKIN)
PUBLIC TDATA,SEL15

STKLN 10

VENTO MBE=1, RBE=1, MAIN

VENT4 MBE=1, RBE=0, ADCONV

SEGO DSEG 1 AT 10H

TDATA: DS 2

** GETI TABLE
SEG1 CSEG IENT

SEL15: SEL MB15

MAIN ROUTINE e

SEG2 CSEG INBLOCK

MAIN : SEL RB1
GETI SEL15 ;STACK POINTER SET
MOV XA,#STACK ;
MOV SP,XA ;
MOV A#0011B
MOV PCC,A ;PCC « 0011B
;** DATA RAM OH-13FH ZERO CLEAR **
SEL MB1
MOV HL,#3FH
MOV XA, #00H
LOOP1: MOV @HL,A ;100H-13FH
DECS HL
BR LOOPH1
SEL MBO
LOOP2: MOV @HL,A ;OH-FFH
DECS HL
BR LOOP2

CHAPTER 7 LIBRARIAN

REPLACE

replace

kK

LOOPS:

LOOP4:

TIMER SET (SAMPLING TIME = 30 MSEC, FXX=4.19 MHZ)

GETI
MOV
MOV
MOV
MOV
El

El

SEL
MOV
MOV
SKE
BR
CALL
MOV
CALL
BR

END

SEL15 ;SEL
XA #79H
TMODO,XA
XA,#01001100B
TMO,XA

IETO

MB1

XA, #00H
B,#0H
B,#08H
LOOP4
'HEIKIN
TDATA,XA
ISIOSUB
LOOP3

MB15

*k

227

CHAPTER 7 LIBRARIAN

REPLACE

replace

<3> A new file “CLIB.LIB” is created by LB75X, and its contents are checked.

*LIST CLIB.LIB PUBLICS

75X Series Librarian VX.XX DATE() PAGE : X
LIB-FILE NAME : 75XTEST.LIB ()

1 AD_MAIN ()
UPDATE : 0 RA75X VX. XX UPD75106

SEGO
SEG1
SEG2
SEL15
TDATA

NUMBER OF PUBLIC SYMBOLS : 5

2 AD_SUB ()
UPDATE : 0 RA75X VX. XX UPD75106

ADCONV
SEG4
SEG5
SIOSuUB

NUMBER OF PUBLIC SYMBOLS : 4

NUMBER OF MODULES : 2

<4> “CLIB.LIB” is replaced with “75XTEST.LIB”.

*REPLACE CLIB.LIB FROM 75XTEST.LIB

228

CHAPTER 7 LIBRARIAN

REPLACE

replace

—The public symbol information in “75XTEST.LIB” after replacement is as follows.

*LIST 75XTEST.LIB PUBLICS

LIB-FILE NAME : 75XTEST.LIB ()

1 AD_MAIN ()
UPDATE : 1 RA75X VX. XX UPD75106

SEGO
SEG1
SEG2
SEL15
TDATA

NUMBER OF PUBLIC SYMBOLS : 5

2 AD_SUB ()
UPDATE : 1 RA75X VX. XX UPD75106

ADCONV
SEG4
SEG5
SIOSuUB

NUMBER OF PUBLIC SYMBOLS : 4

NUMBER OF MODULES : 2

75X Series Librarian VX.XX DATE() PAGE :

229

CHAPTER 7 LIBRARIAN

LIST list
(5) LIST
Description Format - _
[m 11 [PUBLICS
*LIST Library file name| (Object module name], ...]){|, ... || TO List file name PUB
L 1L 1L JLIPL]
i m 1| | PUBLICS
*L Library file name| (Object module name[, ...])[|, ... || TO List file name PUB
PL

[Function]
* The LIST subcommand specifies that information on modules in the library file are to be output to the list file.

[Use]
* The LIST subcommand is specified when it is wished to obtain information on modules recorded in a library file.

[Description]

* The name of the library file for which information is to be printed is specified as the library file name.

e If only information for a specific module is to be printed, the relevant module name is specified in parentheses
@2

e If a module name is not specified, information on all the modules in the library file is printed out.

e The name of the file to which the print information is to be output is specified as the list file name.

* The following can be specified as the list file name:
PRN Output to printer
CON..... Output to console

e If information on PUBLIC symbols defined in the module is to be output, ‘PUBLICS’ is specified.
PUBLIC symbols are symbols declared by the assembler PUBLIC pseudo-instruction.

230

CHAPTER 7 LIBRARIAN

LIST

list

e Qutput information is as shown below.

Library information | e Creation date, update date
* Number of recorded modules

Module information| ¢ Module name

* Creation program name

* Recording date, update date

* Number of updates

* PUBLIC symbols defined in module
* Number of PUBLIC symbols

Caution
IV If the list file name is omitted, the information is output to the console.

[Example]

Example 1. To output information on all modules in “75XTEST.LIB”.

*LIST 75XTEST.LIB
75X Series Librarian VX. XX DATE() PAGE :
LIB-FILE NAME : 75XTEST.LIB ()
1 AD_MAIN ()
UPDATE : 0 RA75X VX. XX UPD75106
2 AD_SUB ()
UPDATE : 0 RA75X VX. XX UPD75106
NUMBER OF MODULES : 2

231

CHAPTER 7 LIBRARIAN

LIST list

Example 2. To output information on the specific module ‘AD_MAIN’ in “75XTEST.LIB”.

*LIST 75XTEST.LIB(AD_MAIN)

75X Series Librarian VX. XX DATE() PAGE : X
LIB-FILE NAME : 75XTEST.LIB ()
1 AD_MAIN ()
UPDATE : 0 RA75X VX. XX UPD75106

NUMBER OF MODULES : 1

Example 3. To output information on PUBLIC symbols in the specific module ‘AD_MAIN’ in “75XTEST.LIB”.

*LIST 75XTEST.LIB (AD_MAIN) PUBLICS
75X Series Librarian VX. XX DATE() PAGE : X
LIB-FILE NAME : 75XTEST.LIB ()
1 AD_MAIN ()
UPDATE : 0 RA75X VX. XX UPD75106
SEGO
SEGH1
SEG2
SEG3
SEG15
TDATA
NUMBER OF PUBLIC SYMBOLS : 6
NUMBER OF MODULES : 1

232

CHAPTER 7 LIBRARIAN

EXIT exit

(6) EXIT

Description Format EXIT
Abbreviated Format =

[Function]
* The EXIT subcommand specifies that the librarian is to be terminated.

[Use]
e The EXIT subcommand is specified to terminate the librarian.

[Example]
e Terminates the librarian.

*EXIT
A\NECTOOLS\SMP75X\RA75X>

233

[MEMO]

234

CHAPTER 8. LIST CONVERTER

The list converter (LCNV75X) has as input an assembly list file and object module file output by the assembler
and a load module file output by the linker, and outputs an absolute assembly list in which actual values are
incorporated in the relocatable addresses and object code in the assembly list file.

Debugging efficiency can be improved by performing program debugging (using an IE-75000-R Nete1 |E-75001-
R or EVAKIT-75X Nete 2) while referring to the absolute assembly list.

Notes 1. Maintenance product (not available for purchase)
2. Discontinued (not available for purchase)

235

CHAPTER 8 LIST CONVERTER

8.1 List Converter Input/Output Files
List converter (LCNV75X) input/output files are shown in Table 8-1.

Table 8-1 List Converter Input/Output Files

Type of File Default File Type
Input file Assembly list file Note 1 .PRN
Assembly list file output by the assembler.
Object module file Notes 1.2 .REL
Object module file output by the assembler.
Load module file Nete 2 .LNK

Load module file output by the linker.
The list converter calculates the actual values from this file.

Parameter file .PLV
File for creating execution program parameters
User-created file

Output file Absolute assembly list file P
List file in which with the relocatable values in the assembly list output by the
assembler are replaced with actual values determined by the linker.

Error list file .ELV
This is file which contains error information when running the list converter.

Notes 1. The input assembly list file and object module file must have been output as the result of assembly
of the same source program.
Also, since addresses in the assembly list file created by the assembler are virtual addresses, the
addresses in the absolute assembly list file created by the list converter should be referred to.
2. Binary file

Figure 8-1 List Converter Input/Output Files

Object module file Assembly list file Load module file Parameter file

: : : :

/ \
? :

Absolute assembly list file Error list file

236

CHAPTER 8 LIST CONVERTER

Figure 8-2 Example of List Converter Input/Output Files

Source module file

75XTEST1.ASM

Relocatable
assembler

Assembly
list file
75XTEST1.PRN

Object

module file
75XTEST1.REL

Linker

75XTEST2.REL

75XTEST2.ASM
Relocatable
assembler
Object Assembly
module file list file

75XTEST2.PRN

List converter

8.2 List Converter Functions

Absolute assembly

list file
75XTEST1.P

Load module file
75XTEST.LNK

l

List converter

Absolute assembly

list file
75XTEST2.P

The list converter searches among the modules in the input load module file (.LNK) for modules in the object module
file (.REL) input at the same time. The list converter reads from the relevant module information values determined
during linkage for the relocatable addresses and temporary object code which were not determined during assembly.

It then inserts these values in the appropriate places in the input assembly list and outputs the result as an absolute

assembly list file.

237

CHAPTER 8 LIST CONVERTER

8.2.1 Incorporation of location addresses

Offset addresses with 0000H as the start of the segment are incorporated as relocatable segment addresses in
the assembly list output by the assembler. The list converter incorporates absolute location addresses determined
during linkage in place of these relocatable location addresses.

Example Following assembly list is input to the list converter.

<Assembly list>

19 ---- SEG2 CSEG INBLOCK

20 0000 9921 MAIN: SEL RB1

21

22 0002 R 00 GETI SEL15 ;STACK POINTER SET
23 0003 E 8900 MOV XA #STACK ;

24 0005 9280 MOV SP,XA ;

25

26 0007 73 MOV A,#0011B

27 0008 93B3 MOV PCCA ;PCC « 0011B

Temporary values are incorporated as the location addresses.

Absolute addresses are incorporated during linkage in the location addresses, and output as an absolute
assembly list.

<Absolute assembly list>

19 - SEG2 CSEG INBLOCK

20 0050 9921 MAIN: SEL RB1

21

22 0052 R 10 GETI SEL15 ;STACK POINTER SET
23 0053 E 8900 MOV XA #STACK ;

24 0055 9280 MOV SP,XA ;

25

26 0057 73 MOV A,#0011B

27 0058 93B3 MOV PCC,A ;PCC « 0011B

Absolute addresses are incorporated.

238

CHAPTER 8 LIST CONVERTER

8.2.2 Incorporation of object code

Temporary values (with 00H used as the data value indicated by relocatable symbols) are incorporated in the object
code of instructions which reference relocatable symbols (including external reference symbols) in the assembly list
output by the assembler. The list converter replaces this temporary object code with the correct object code determined

during linkage.

Example Following assembly list is input to the list converter.

<Assembly list>

54
55
56
57
58
59

_

002B 9A0F MOV B,#00H
002D 9A87 LOOP4: SKE B,#08H
002F FD BR LOOP4
0030 R AB4000 - CALL IHEIKIN
0033 9210 MOV TDATA,XA
0035 E AB4000 - CALL !SIOSuB

Temporary values are incorporated in the object code.
An absolute assembly list is output in which the object code of the CALL instructions which reference
the relocatable symbol ‘HEIKIN’ and the external reference symbol ‘SIOSUB’ is replaced with the correct

values determined during linkage.

<Absolute assembly list>

54
55
56
57
58
59

_

007B 9A0F MOV B,#00H
007D 9A87 LOOP4: SKE B,#08H
007F FD BR LOOP4
0080 R AB4046 - CALL HEIKIN
0083 9210 MOV TDATA,XA
0085 E AB400A- CALL !SIOSuUB

Correct object code is incorporated.

Caution The code of the VENTn pseudo-instruction is not converted by the list converter.

239

CHAPTER 8 LIST CONVERTER

8.2.3 List converter processing method

List converter processing consists of two stages, called ‘passes’.

In ‘pass 1’ the list converter checks the contents of the input object module file and load module file, and searches
the load module file for modules, corresponding to the object module file. In ‘pass 2’, the list, converter incorporates
absolute values in the assembly list, based on the module information found, and outputs an absolute assembly file.

As a guide to the processing stage, the list converter outputs the following images to the console during processing.
Each dot output represents one segment. In ‘pass 2’, the remaining segments are skipped when all the segments
in the relevant module have been processed, so that fewer dots may be output in this pass than in ‘pass 1’

pass 1: start ...
pass 2: start

8.2.4 Points to note when using the list converter

When using the list converter, the following points should be noted when writing the source program.

* The VENTn and ORG pseudo-instructions should be written in upper-case characters starting in column 9 of
the source program.

e The NOLIST control instruction should not be used.

e Segments with the same name should not be used in the same module.

¢ A segment definition pseudo-instruction or ORG pseudo-instruction must be written before writing an instruction
which generates object code.

Also, the list converter does not correct the symbol values of a cross-reference list or symbol list included in the

assembly list.
All files input to the list converter must be free of errors.

240

CHAPTER 8 LIST CONVERTER

8.3 List Converter Start Method

8.3.1 List starting the list converter

The list converter is started as shown below.

X>LCNV75X [_List converter option[...]]_file specification

Specifies list converter options. Nete
List converter command file name
Current drive name

Note If multiple options are specified, they are separated by spaces. See 8.4.2 “List converter options” for
details.

(1) Command line specification

X>LCNV75XL_-L file name_-A file specification [_-O output file name]

Output file name Nete3
Primary name of assembly list file and object module file output by assembler Nete2
Name of load module file output by linker Nete1

Notes 1. The file type (.LNK) should also be specified.
2. Thefile type of the assembly list file and the object module file mustbe . PRN’ and * *.REL’ respectively.
3. The name of the file to which the absolute assembly list created by the list converter is to be output
should be specified.
If omitted, a specified by file is output with the primary name file type “.P’.
4. -L, and -O can be specified in any order.

Caution Spaces may not be inserted between options and file names.

241

CHAPTER 8 LIST CONVERTER

8.3.2 Execution start and end messages

(1) Execution start message
When the list converter is started, a start message is displayed on the console.

List Conversion Program for RA75X VX.XX [XX Xxx XX]
Copyright (C) NEC Corporation 1986, 1997

Afterthat, when the list converter then asks for input file names in conversational mode, specify the appropriate
file.

(2) Execution end message

e If processing terminates normally, the list converter outputs the following message to the console and returns
control to the OS.

Conversion complete

* [f afatal error is detected during processing which prevents the conversion processing from continuing, the
list converter outputs a message to the console, stops execution, and returns control to the OS.

Example Ifthereisan errorin the input/outputfile specification method, the list converter outputs the following
message to the console and returns control to the OS.

List Conversion Program for RA75X VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1986, 1997

Usage: LCNV75X option input-file option
Please enter ‘LCNV75X --', if you want help messages.

* [f the list converter outputs an error message (error number) and aborts processing, the cause of the error
message should be found in 13.5 List Converter Error Messages, and appropriate action taken.

— Caution
If there is an error in the contents of the input assembly list file, the list converter will create an output
file in which conversion is incomplete. You should check for an error message on the console even if
an output file is produced.

242

CHAPTER 8 LIST CONVERTER

8.3.3 List converter error handling

If the list converter detects an error during execution, it performs one of the following three kinds of processing

according to the severity of the error.

(1) Abort error

If an error is generated which prevents program execution from continuing, the program displays a ‘Program

aborted’ message, and the program is aborted immediately.

(2) Fatal error

If an error is generated which would result in generation of object code different from that intended by the user,
the program nevertheless continues processing to the end, then outputs the message “X ERRORS FOUND”

(when X is the number of errors) .

(3) Normal termination

If the program terminates normally, it outputs the message “NO ERROR FOUND”

In cases (1) and (2) above, the error message is output in the following format.

***_ERROR_error number_.error message

The error number consists of a letter followed by a 3-digit number. The initial letter is one of the following:

W (Warning error)
F (Fatal error)
A (Abort error)

8.3.4 List converter termination status

When the list converter terminates the execution and returns control to the OS, one of the following error status

codes is returned to the OS.

Termination Condition

Termination Status

Normal termination 0
Fatal error 1
Abort error 2

When the list converter is started from a batch file under MS-DOS (PC DOS, IBM DOS), it is possible to determine
whether there are any errors automatically using these values.

243

CHAPTER 8 LIST CONVERTER

8.4 List Converter Options
8.4.1 Types of list converter options

List converter options are used to specify the input/output files to be used by the list converter. There are five options
as shown in Table 8-2 below. Options can be written in either upper- or lower-case characters.

Table 8-2 List Converter Option Types

Item No. | Description Format Function, Classification Interpretation when Omitted
1 -L [file name] Specifies the input load module file name. Input assembily list file primary name.LNK.
2 -O [file name] Specifies the output absolute assembly list file | Input assembly list file primary name.P
name.

-R [file name] Specifies the input object module file name. Input assembly list file primary name.REL
-E [file name] Specifies the error list file name. -NE
-NE

5 -F file name Specifies the parameter file. Read all options and file names from the

command line.

8.4.2 List converter options

Each of the list converter options is described in detail in the following pages.

244

CHAPTER 8 LIST CONVERTER

link file name

(1 -L

Description Format -L [file name]

Default Input assembly list file primary name.LNK
[Function]

* The -L option specifies the name of the load module file to be input.

[Use]
* The -L option is specified when the input files are specified in the command line.

[Description]

e If there is a -L option is not specified, the file input assembly list file, primary name file type ‘.LNK’.

* [If the only the primary name of the input file is specified, input a file with the same name, but with the file type
*LNK’ added

[Examples]

Example 1. When the -L option is specified

AANECTOOLS\SMP75X\RA75X>LCNV75X -L75XTEST.LNK 75XTESTA1
List Conversion Program for RA75X VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1986, 1987

Pass 1: starteee...
Pass 2: start
Conversion complete

245

CHAPTER 8 LIST CONVERTER

-L link file name

Example 2. When the -L option is not specified

A\NECTOOLS\SMP75X\RA75X>LCNV75X -75XTEST1

List Conversion Program for RA75X VX.XX [XX Xxx XX]
Copyright (C) NEC Corporation 1986, 1997

pass 1:startccoeeveeennnn.
pass 2: start
conversion complete

—The list converter asks for the load module file name, and this should therefore be input. When the file name
has been input, the converter processing is started.
If the specified file does not exist or the file type is omitted, the following message is output and control is returned
to the OS.

A\NECTOOLS\SMP75X\RA75X>LCNV75X 75XTEST1

List Conversion Program for RA75X VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1986, 1997

A006 File not found ‘-I75XTEST1.LNK’
Program aborted

Example 3. Insert a space between -L and the primary name

A\WNECTOOLS\SMP75X\RA75X>LCNV75X -L 75XTEST.LNK

List Conversion Program for RA75X V1.1 [19 Mar 88]
Copyright (C) NEC Corporation 1986, 1997

A002 Too many input file
Please enter ‘LCNV75X--, if you want help messages.
Program aborted

— Caution
A space cannot be inserted between -L and the file name. If a space is inserted, the list converter will
abort as shown in Example 3.

246

CHAPTER 8 LIST CONVERTER

-0 output file name
(2 -0
Description Format -0 [file name]
Default The file is output with the file extension ‘.P’ added to the input assembly list file
primary name.

[Function]
* The -O option specifies the name of the file to which the absolute assembly list is to be output.

[Use]
e The -O option is specified when the absolute assembly list is to be output directly to the printer or the disk or
file name is to be changed from the default specification.

[Description]

e If the absolute assembly list is to be output directly to the printer, *.PRN’ should be specified as the file name.

* |f the -O option is not specified, a file with the same primary name as the input assembly list file and file type
.P’ is output to the disk containing the input assembly list file.

[Example]

Example 1. When the -O option is specified

A\NECTOOLS\SMP75X\RA75X>LCNV75X -L75XTEST.LNK 75XTEST1 -OSAMPL

List Conversion Program for RA75X VX.XX [XX Xxx XX]
Copyright (C) NEC Corporation 1986, 1997

Pass 1: start
Pass 2: start
Conversion complete

—The absolute assembly list “SAMPL.P” is output.

247

CHAPTER 8 LIST CONVERTER

output file name

Example 2. When the file name “SAMPLE.LST” is specified by the -O option

A\NECTOOLS\SMP75X\RA75X>LCNV75X -L75XTEST.LNK 75XTEST1 -OSAMPL.LST

List Conversion Program for RA75X VX.XX [XX Xxx XX]
Copyright (C) NEC Corporation 1986

Pass 1: start

Pass 2: start

Conversion complete

—The absolute assembly list “SAMPL.LST” is output.

Example 3. When the -O option is not specified

A\NECTOOLS\SMP75X\RA75X>LCNV75X -L75XTEST.LNK 75XTEST1

List Conversion Program for RA75X VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1986

Pass 1: start

Pass 2: start

Conversion complete

In this example the input and output files are as shown below.

¢ Input load module file 75XTEST.LNK
* Input assembly list file 75XTEST1.PRN
* Input object module file 75XTEST1.REL

Output absolute assemble list file 75XTEST1.P

Caution
A space cannot be inserted between -O and the file name.
If a space is inserted, an error will be output.

248

CHAPTER 8 LIST CONVERTER

relocatable file name

(3) -R

Description Format -R [file name]

Default Input assembly list file primary name.REL
[Function]

* The -R option specifies the name of the object module file to be input.

[Use]
e |f the primary name of the object module file differs from the primary name of the assembly list file, or if the file
type is not “.REL”, specify the -R option.

[Description]

e If there is a fatal error, the absolute assembly list is not output.

e If the only the primary name of the input file is specified, input a file with the same name, but with the file type
*.REL’ added.

[Example]
* If the -O option is specified (load module file “75XTEST.LNK”, assembly list file “75XTEST1.PRN”, object
module file “SAMPLE.REL”)

A\NECTOOLS\SMP75X\RA75X>LCNV75X -L75XTEST.LNK 75XTEST1 -RSAMPLE.REL

—The absolute assembly list file “75XTEST1.P” is output.

249

CHAPTER 8 LIST CONVERTER

-E/-NE error print/no error print
(4) -E/-NE
Description Format -E [output file name]
-NE

Default Interpretation -NE

[Function]
* The -E option specifies error list file output, and the output destination and filename.
e The -NE option specifies that no error list file is to be output.

[Use]
* When the assembly list is very long, it is difficult to find error lines in the list. In this case, the -E option can be
specified to extract only assembly error information.

[Description]
e If the output file name is omitted when the -E option is specified, “source module file name.ERA” is taken as
being specified as the output file name.
e If the drive name is omitted from the file name specification, the current path name is taken as being specified.
* If the same output file name as the specified by the -P option is specified, an error list is not output.
e The following can be specified as the device type file output destination.
-EPRN Error list is output to line printer.
-ECON Error list is output to console.
-EAUX........ Error list is output to RS-232-C.
-ENUL Error list is not output.
* |f the same device as the absolute assembly list file is specified in the file name, it will result in an abort error.

[Example]
o If “75XTEST1.ASM” is assembled with the -E option specified (the file name is “75XTEST.ELV”).

A\NECTOOLS\SMP75X\RA75X>LCNV75X 75XTEST1 -L75XTEST.LNK -E75XTEST.ELV

—lIf there was an error, the error list file “75XTEXT.ELV” is output.

250

*

CHAPTER 8 LIST CONVERTER

parameter file name

(®) -F

Description Format -F parameter file name
Default Interpretation ~ Parameter file not used.

[Function]
* The -F option specifies that the list convert option and input file name are to be read from the file specified by
the option parameter. This file is called the parameter file.

[Use]

* Writing options and input file names to be specified for the list convert in a parameter file in advance also reduces
the amount of typing required.

¢ Options and input file names can still be specified in the command line even if a parameter file is used. Therefore,
it is possible to write only frequently used options in the parameter file.

[Description]

e The parameter file is a text file, and can be created with an editor, etc. There are no particular restriction on
the length of the parameter file.

* The parameter file name cannot be omitted. However, if the file type is omitted, .PLV’ is taken as being specified.

* A logical device name (‘CON’, ‘AUX’, etc.) cannot be specified as the parameter file name. Use of such names
will result in an error.

* The contents of the parameter file are expanded at the position at which the -F option is written in the assembler
start line. It is therefore possible to change the parameter file contents or add other option specifications with
options written after the -F option.

e Parameter files cannot be nested. If an -F option is written in the parameter file, an error will result.
e |tis not possible to use more than one parameter at one time. If multiple -F options are specified, an error will

result.

e Individual options and input file names should be separated by spaces, TABs or Line Feed characters. A

parameter file description cannot be split over a number of lines.

* The ;" and ‘# symbols are treated as comment marks in the parameter file. Characters from these characters

to the end of the line are regarded as a comment.

251

CHAPTER 8 LIST CONVERTER

-F parameter file name

[Examples]
Consider a parameter file “75XTEST.PLV” with the following contents.

;PARAMETER FILE
75XTEST1 -L75XTEST.LNK
-E75XTEST.ELV

Example The assembler is started with parameter file “75XTEST.PLV” specified.

A\NECTOOLS\SMP75X\RA75X>LCNV75X -F75XTEST.PLV

252

CHAPTER 9 LIBRARY CONVERTER

The library converter (LBCNV75X) outputs library files which can be input to version 5.00 or subsequent versions
of Linker (LK75X) and Librarian (LB75X) when object program module format library files output by a version of
Librarian (LB75X) in a RA75X Assembler Package which is earlier than version 5.00 are input.

253

CHAPTER 9 LIBRARY CONVERTER

9.1 Library Converter Input/Output Files

Library converter (LBCNV75X) input/output files are the files shown in Table 9-1 Library Converter Input/Output
Files.

Table 9-1 Library Converter Input/Output Files

Type of File Default File Type
Input File Object program module format library files .LIB
Library files output by the Librarian (LB75X) in a RA75X Assembler Package version
earlier than Version 5.00.

Output File Library converter output library files .CNV
Library files which can be input to the Linker (LK75X) and Librarian (LB75X) in
Version 5.00 or subsequent versions of the RA75X Assembly Package.

Figure 9-1 Library Converter Input/Output Files

Object module format library files
(earlier than Version 5.00)

Library converter
(LBCNV75X)

output library files

(P Library converter

254

CHAPTER 9 LIBRARY CONVERTER

9.2 Library Converter Functions

e The library converter converts object program module format library files output by a version of Librarian (LB75X)
in an Assembler Package which is earlier than Version 5.00 to library files which can be input to the Linker and
Librarian in Version 5.00 or subsequent versions.

e If an error is discovered while the library converter is running, an error message is displayed on the console.

e The library converter carries out processing in accordance with the library converter options which are specified
at startup time. See 9.4 Library Converter Options, concerning the options in library converter.

* When processing is completed normally, the library converter outputs an end message and control returns to
the OS.

Caution The object modules included in library files converted by the library converter cannot be
debugged.

9.3 Starting the Library Converter
9.3.1 Starting the library converter

In order to start the library converter, input a command on the OS command line with the following format.

X>LBCNV75X[_Option] _Input file [_Option...]

* X indicates the current drive.

e The input file name is the name of the library file which you want to convert. The drive name and directory name,
etc. can be included with the input file name.

e Please input 1 or more spaces between each option or input file (space or TAB) to demarcate between them.

* The default output destination is the originally specified file name with the file type changed to *.CNV,’ created
on the current path. This can be changed using the -O option.

9.3.2 Execution start and end message

(1) Execution Start Message
The execution start message is displayed on the console when the library converter starts.

75X Series Library Converter Vx.xx [XX xxx XX]
Copyright (C) NEC Corporation 1996

255

CHAPTER 9 LIBRARY CONVERTER

(2) Execution End Message
* Ifthe library converter has not detected any fatal error, it outputs the following message to the console, then
control is returned to the OS.

Library Conversion Complete, 0 error(s) found.

e If the library converter outputs an error message and aborts processing, the cause of the error message
should be found in 13.6 Library Converter Error Messages, and appropriate action taken.

9.3.3 Library converter error processing
The library converter outputs an Abort Error and aborts processing immediately if an error occurs which makes

it impossible to continue program execution.
Error messages are output with the following format.

***_Error No._Error message

9.3.4 Library converter end status

The library converter returns the following error status code to the OS when it ends execution and returns control
to the OS.

End Conditions End Status
End normally 0
Abort error 2

If the Library Converter is started from a batch file in MS-DOS (PC DOS, IBM DOS), it can be judged automatically
using these values whether there were any link errors.

256

CHAPTER 9 LIBRARY CONVERTER

9.4 Library Converter Options

9.4.1 Types of library converter option

The following type of option is provided.

Table 9-2 Types of Library Converter Option

Item No.

Description Format

Function, Classification

Interpretation when Omitted

1

-0 [file name]

Specifies a library file output by the Library

Converter.

Generates ‘Input file name.cnv’ in the current

path.

9.4.2 Specifying the library converter option

The library converter option is specified on the command line when starting the library converter. Please refer
to 9.3 Starting the Library Converter concerning specification of the library converter option on the command line.

9.4.3 Priority order of library converter options

If the same option is specified more than once on the command line of the library converter, the option specified

last becomes valid.

9.4.4 Library converter option explanation

Details of the -O option are explained below.

257

CHAPTER 9 LIBRARY CONVERTER

-0 output file name

(1) -0

Description Format -O [File name]
Format when Omitted ‘Input file name.CNV’ is generated on the current path.

[Function]
* The -O option specifies the library file name output by the library converter.

[Use]
¢ Specify the -O option when desiring to change the library file name output by the library converter from the default
file name.

[Explanation]

* |f the -O option is not specified, a library file which has the same name as the input file name first specified,
but with the file type changed to *.CNV,’ is generated and output by the library converter. This is the same in
the case when the file name is omitted and the -O option is specified.

* A logical device name (such as ‘COM’ or ‘AUX’) cannot be specified as a file name. If such a name is used
to describe the file name, it will result in an error.

e The path name can be included in the file name and the path where the library file output by the library converter
is to be generated can be specified. In this case, a file with the name of the input file, but with the file type changed
to .CNV’ is generated in the specified path.

[Example]
Start the converter with the output file name “TEST.CNV” specified.

A\NECTOOLS\SMP75X\RA75X>LBCNV75X 75XTEST.LIB -OTEST.CNV

—The library file “TEST.CNV” is output by the library converter.

258

In this chapter, setting of options from the project manager is explained.
Please refer to the Project Manager User’s Manual concerning the project manager.
The programs in which the options can be set from the project manager are as follows.

CHAPTER 10 SETTING OPTIONS FROM THE PROJECT MANAGER

Assembler

Linker

Object converter

Structured assembler preprocessor

259

CHAPTER 10 SETTING OPTIONS FROM THE PROJECT MANAGER

10.1 Setting Options from the Project Manager

The programs in which the options can be set from the project manager are as follows.

e Assembler

e Linker

¢ Object converter
e Structured assembler preprocessor (see RA75X Structured Assembler Preprocessor User’s Manual con-

cerning setting of options from this program’s project manager.)

Cautions 1.

260

In the check for the existence of an include file when creating the assembler’s make file,
clearing of commands and character strings only is performed and $if, $_if and similar
conditions are disregarded.

Description Examples $if SYM
$include (func1i.inc)
Selse
$include(func2.inc)
$endif

In the description examples, the $if, $else and $endif lines are disregarded, so both files are
interpreted as include files. For that reason, regardless of whether or not there is an actual
reference, if these files do not exist, it will result in an error during the build.

. When setting options from the project manager, the -C and -Y options are added in the

assembler. At this time, the user cannot add the -C option.

. When setting options from the project manager, the -Y and -F options are added in the linker

(-F project file primary name.PLK). At this time, the user cannot add the -F option.
When setting options from the project manager, the -Y option is added in the object converter.

. The structured assembler preprocessor always starts together with the assembler. When

setting options from the project manager at this time, the -C and -Y options are added in the
assembler. At this time, the user cannot add the -C option.

The project manager’s [Option] — [Debug] menus are disregarded. For debugging informa-
tion, set the -GS option in the [Set Structured Assembler Options] menu or the -GA option
in the [Set Assembler Options] menu.

CHAPTER 10 SETTING OPTIONS FROM THE PROJECT MANAGER

10.1.1 Assembler

(1) Options Menu ltems
Options Menu items set from the project manager are as follows.

Figure 10-1 Options Setting Menu (Assembler)

Project Manager — TEST.PR.
Qﬁ‘l’ilﬁ]l’l ﬂelp

Project Manager Options...

Structured assembler options

nbler options

Linker options
Object converter oplions

Tools...

¥ [ebug

 Status Bar
Tool Box

Y Source List

261

CHAPTER 10 SETTING OPTIONS FROM THE PROJECT MANAGER

(2) Options Setting Dialog Box
Following is an explanation of the dialog box for setting assembler options.
From the menu items, select [Option] — [Set Assembler Options] menu, or select [Options] ([Source List]
menu. Select the “Options” button in the dialog box to open the assembler options setting dialog box.

Figure 10-2 Options Setting Dialog Box (If the source file has not been selected) (Assembler)

Sets option for all source files

| Ok I‘ |‘Cance| I‘ Help |

assembler Option

|

Figure 10-3 Options Setting Dialog Box (If the source file has been selected) (Assembler)

Sets option for the selected source file

| Ok I ‘QeleJre soUrce opﬂonl ‘ Cancel I ‘ Help |

assembler Option

262

CHAPTER 10 SETTING OPTIONS FROM THE PROJECT MANAGER

Table 10-1 Option Setting Dialog Box Functions (Assembler)

Button

Function

“OK” button

If a source file is not selected, option setting of all source files (source files for
which individual options are not set) is done, then the dialog box closes.

If a source file is selected, option setting is done for the selected source file, then
the dialog box closes.

If the return key is pressed when the focus is on the option input combo box, it is
regarded as if the “OK” button was pressed.

“Source option delete” button

This becomes valid when a source file is selected. If this button is selected, the
individual options set in source file units are cleared. Overall options become valid
for a source file with individual options cleared.

“Cancel” button

This button cancels the settings in this dialog box and closes the dialog box.
If the ESC key is pressed, it is regarded as if the “Cancel” button was pressed.

“Help” button

This opens the help file for this dialog box.

Option character string display area

1

This displays option character strings which are currently set. It also displays option
character strings which cannot be reduced to one line. Option character strings input
in the option input combo box are displayed here in real time.

Option input combo box (*2)

Input option character strings here. The number of characters N°*¢ can be up to 127
characters. Device file specification is done in the project manager settings, so it is
not necessary here.

L]

A history of past inputs drops down. Up to 10 past inputs are stored. (If there is no
source, there are 10 options and also 10 options for special sources.

If there is a character string in the history which is the same as the option character
string, the previously input history is cleared and the newly input character string is
added.

Note Includes the name of the source file set automatically by the project manager and the number of option

characters.

Caution When setting options, no check is made for errors in the option description. Errors in the option
description become errors during build.

263

CHAPTER 10 SETTING OPTIONS FROM THE PROJECT MANAGER

(38) Source File Option Setting Dialog Box
If [Options] — [Source List] menu is selected from the menu items, this dialog box opens (see Figure 10-4).

Figure 10-4. [Source List] Dialog Box

If a source file is selected and the [Options] button pressed, the assembler options setting dialog box opens
(see Figure 10-2). If options are input in the options input combo box (*2) and the “OK” button pressed, the
source file options setting dialog box opens (see Figure 10-5).

Figure 10-5 Source File Options Setting Dialog Box

set options to "HAOG ASMT

I ‘ set ag All option | ‘Cancel I

264

CHAPTER 10 SETTING OPTIONS FROM THE PROJECT MANAGER

Table 10-2 Source File Options Setting Dialog Box Functions

Button Function

“OK” button Sets options for the selected source file and closes the dialog box.

“Set overall options” button Sets options for all source files (source files for which individual options are not set).

“Cancel” button

This cancels the settings in this dialog box and closes it.

10.1.2 Linker

(1) Options Menu ltems

Options menu items set from the project manager are as follows.

Figure 10-6 Options Setting Menu (Linker)

Qption
Project Manager Options...
Structured assembler options
Assembler options

Setun linker antinn

bject converter opfions

Tools...

¥ Debug

 Status Bar
Tool Box

Y Source List

265

CHAPTER 10 SETTING OPTIONS FROM THE PROJECT MANAGER

(2) Options Setting Dialog Box
Following is an explanation of the set linker options dialog box.
From the menu items, select [Options] — [Set Linker Options] menu to open the set linker options dialog box.

Figure 10-7 Options Setting Dialog Box (Linker)

| Ok I‘ |‘Cance| I‘ Help |

linker Option

266

CHAPTER 10 SETTING OPTIONS FROM THE PROJECT MANAGER

Table 10-3 Options Setting Dialog Box Functions (Linker)

Button

Function

“OK” button

Sets the options and closes the dialog box.
If the return key is pressed when the focus is on the options input combo box, it is
regarded as if the “OK” button was pressed.

“Cancel” button

This cancels the settings in this dialog box and closes it.
If the ESC key is pressed, it is regarded as if the “Cancel” button was pressed.

“Help” button

This opens the help files for this dialog box.

Option character string display area

(1

Displays the character strings for the currently set options. Option character strings
which cannot be fit on one line are also displayed. Option character strings input in
the options input combo box are displayed here in real time.

Option input combo box (*2)

Input option character strings here. The number of characters N°t¢ can be up to 127
characters. Device file specification is done in the project manager settings, so it is
not necessary here.

[L]

A history of past inputs drops down. Up to 10 past inputs are stored. If there is a
character string in the history which is the same as the option character string, the
previously input history is cleared and the newly input character string is added.

Note Includes the name of the source file set automatically by the project manager and the number of option

characters.

Cautions 1. The “Source Options Delete” button is displayed in reverse video and cannot be selected.
2. When setting options, no check is made for errors in the option description. Errors in the

option description become errors during build.

10.1.3 Object converter

(1) Options Menu ltems

Options menu items set from the project manager are shown below.

267

CHAPTER 10 SETTING OPTIONS FROM THE PROJECT MANAGER

Figure 10-8 Options Setting Menu (Object Converter)

Froject Manager — TEST.PRJ
[yl Help

Froject Manager Options...
Structured assembler options
Bssembler oplions

Linker options
C erfer opfions

Tools...

¥ Debug

¥ Status Bar
Tool Box

¥ Source List

(2) Options Setting Dialog Box
Following is an explanation of the set object converter options dialog box.

From the Menu items, select [Options] — [Set Object Converter Options] menu to open the set object converter
options dialog box.

Figure 10-9 Options Setting Dialog Box (Object Converter)

| Ok I‘ |‘Cance| I‘ Help |

object converter Option

268

CHAPTER 10 SETTING OPTIONS FROM THE PROJECT MANAGER

Table 10-4 Options Setting Dialog Box Functions (Object Converter)

Button Function

“OK” button Sets the options and closes the dialog box.
If the return key is pressed when the focus is on the options input combo box, it is
regarded as if the “OK” button was pressed.

“Cancel” button This cancels the settings in this dialog box and closes it.
If the ESC key is pressed, it is regarded as if the “Cancel” button was pressed.

“Help” button This opens the help files for this dialog box.

Option character string display area | Displays the character strings for the currently set options. Option character strings
(*1) which cannot be fit on one line are also displayed. Option character strings input in
the options input combo box are displayed here in real time.

Option input combo box (*2) Input option character strings here. The number of characters Nt can be up to 127
characters. Device file specification is done in the project manager settings, so it is
not necessary here.

] A history of past inputs drops down. Up to 10 past inputs are stored. If there is a
character string in the history which is the same as the option character string, the
previously input history is cleared and the newly input character string is added.

Note Includes the name of the source file set automatically by the project manager and the number of option
characters.

Cautions 1. The “Source Options Delete” button is displayed in reverse video and cannot be selected.

2. When setting options, no check is made for errors in the option description. Errors in the
option description become errors during build.

269

[MEMO]

270

CHAPTER 11. PROGRAM OUTPUT LISTS

This chapter shows the format, etc., of the various lists output by each program in the assembler package.

271

CHAPTER 11 PROGRAM OUTPUT LISTS

11.1 Assembler Output Lists
The assembler outputs the following lists.
e Assembly list

Symbol table list
e Cross-reference list

Error list

The assembly list, symbol table list and cross-reference list are output to the assembly list file.
The error list is output to the error list file.

Assembly List File Error List File
* Assembly list e Error list
e Symbol table list
» Cross-reference list

272

CHAPTER 11 PROGRAM OUTPUT LISTS

11.1.1 Assembly list
The assembly results are output in this list together with any error messages (only if there are errors).

[Output Format]

75X SERIES ASSEMBLER Vx.xx <1> PAGE: <2>

*k **

COMMAND i oTeTo o R <5>
COMMAND FILE: <4>

IC LINE ADDR R OBJECT ASSEMBLER SOURCE ;ORIGINAL SOURCE Nete'
0001 0000 R 12345678 lebel: mnem operand ;lebel: mnem operand
+0001 0000 R 12345678 lebel: mnem operand
0002 0000 12345678 lebel: mnem operand, operand
;lebel: mnem operand,operand

0003 ;$INCLUDE=A1.INC
1 0001 ;$INCLUDE=A2.INC
2 +0001 ;$INCLUDE=AS.INC
3 0001
a.asm(1) : #001 SYNTAX ERROR
4 +0001
4 0001
ffnnnn hhhh a XXXXXXXX SSSSSSSSSSSS............SSSSSSSSSSSS;uUUU...uUUU
<6><7> <8> <9> <10> <11> <12>

SOURCE FILE : A.ASM
INCLUDE FILE : A1.INC(1)
A2.INC(2)
A3.INC(3)
MACRO FILE : EXMAC.M(4)
TARGET CHIP : UPD75000
DEVICE FILE : VX.XX Nete2
STACK SIZE = 0000H

ASSEMBLY COMPLETE, NO ERROR FOUND

Notes 1. The source input to the structured assembler preprocessor is output.
2. When a device file is used, that file’s version is output.

273

CHAPTER 11 PROGRAM OUTPUT LISTS

[Descriptions of Output ltems]

No. Description
<1> | System date
<2> | Output list page number in decimal notation
<3> | Title (value specified by TITLE control instruction)
(Blank if there is no TITLE control instruction specification)
<4> | Parameter file command image
(Blank if there is no parameter file input specification)
<5> | Command image
<6> | File number
<7> | Displays the line number of a source described by the user in 4 digit decimal notation.
<8> | Displays the location counter value in 4-digit hexadecimal.
<9> | Operand Attributes
E ... Reference to external reference symbol.
R ... Reference to a relocatable symbol
/\ ... Absolute value
<10>| Object code is displayed in hexadecimal.
<11>| Source statement which includes the Assembler generation line. (The source (32 column) input to the structured
assembler preprocessor is output.)
<12>| User described source statement.
(If @ exceeds the heading of the line, it is output after carriage return.)

274

CHAPTER 11 PROGRAM OUTPUT LISTS

11.1.2 Symbol table list

This name, attributes and symbol values of symbols defined in the source program are output in this list.

[Output Format]

*k

SYMBOL TABLE LIST

<3>

OFFSET TYPE SYMBOL OFFSET TYPE SYMBOL
XXxxH - tttttt - orrr S_S xxxxH - tttttt - orrr S_S
<4> <5> <6> <7> <4> <5> <6> <7>

[Descriptions of Output ltems]

75X SERIES ASSEMBLER Vx.xx <1> PAGE: <2>

**

No. Description

<1> | System date

<2> | Output list page number in decimal notation

<3> | Title (value specified by TITLE control instruction)
(Blank if there is not TITLE control instruction specification)

<4> | Symbol value shown as 4 hexadecimal digits
(In case of segment name, segment size shown as 4 hexadecimal digits)

<5> BIT ... Bit symbol
CODE ... Code symbol
Symbol attribute DATA ... Data symbol
NUMBER ... Constant symbol
PBIT ... Port bit symbol
MACRO ... Macro name
<6> EXT ... External reference symbol name
Symbol reference format PUB ... External definition symbol name
/A ... Local symbol name

<7> | Symbol name

275

CHAPTER 11 PROGRAM OUTPUT LISTS

11.1.3 Cross-reference list

The locations (line numbers) at which symbols are referenced in the source program are output in this list.

[Output Format]

75X SERIES ASSEMBLER Vx.xx <1> PAGE: <2>

*k **

<3>
CROSS REFERENCE LIST

SYMBOL TYPE VALUE ATTRIBUTES XREF LIST
SS..... TT...... xxxx A RRRAA nn...nn...nn......
<'4> <.5> <é> <.7> <é> <é> <1.0>

[Descriptions of Output ltems]

No. Description

<1> | System date

<2> | Output list page number in decimal notation

<3> | Title (value specified by TITLE control instruction)
(Blank if there is no TITLE control instruction)

<4> | Symbol name

<5> BIT ... Bit symbol
CODE ... Code symbol
Symbol attributes DATA - Data symbol
NUMBER ... Constant symbol
PBIT ... Port bit symbol

MACRO ... Macro name

<6> | Symbol value shown as 4 hexadecimal digits

<7> Symbol relocation attributes { A ... Absolute symbol
.. Relocatable symbol
<8> EXT ... External reference symbol name
Symbol reference format PUB ... External definition symbol name
/A ... Local symbol name
<9> | Additional symbol information
Label symbol ... Definition segment name
... (Blank for absolute segment)
Name symbol ... Definition segment name

... (Blank for constant symbol)
Segment name ... Link attribute and location attribute
Others ... Blank

<10> | Definition/reference statement number in decimal notation
“#” on the left of the number indicates a definition statement number

276

CHAPTER 11 PROGRAM OUTPUT LISTS

11.1.4 Error list

Only error line and error messages resulting from assembly are output in the error list.

[Output Format]

a.asm(1):#001 SYNTAX ERROR

<1><2> <3> <4>

[Descriptions of Output ltems]

No. Description

<1> | Input file name

<2> | Input file line number

<3> | Error message number shown as 3 decimal digits
(See 13.1 for the meaning of the message numbers)

<4> | Error message

277

CHAPTER 11 PROGRAM OUTPUT LISTS

11.2 Linker Output List

The file name creates the following lists in the link list file.

~—— Link List File —————
 Linker option list

¢ |nput-output module list
e Segment link map list

e Branch table map list

¢ Public symbol list
Symbol table list

11.2.1 Linker option list

The image of the options input from the console is output in this list.

[Output Format]

75X SERIES LINKER Vx.xx . <1> PAGE: <2>

COMMAND :CCCC .vvnviniiniieiiiiiiiineanns <4>
COMMAND FILE :

<3>

[Descriptions of Output ltems]

No. Description

<1> | System date

<2> | Output list page number in decimal notation

<3> | Parameter file command image
(Blank if there is no parameter file input specification)

<4> | Command image

278

CHAPTER 11 PROGRAM OUTPUT LISTS

11.2.2 Input - output module list

The input/output file names and module names are output in this list.

[Output Format]

INPUT MODULE LIST:
FFF ... F (MMM... M)
<1.> <é>
LOAD MODULE LIST:

LLL ... L (NNN... N)

<3> <4>

[Descriptions of Output ltems]

No. Description

<1> | Input file name (object module file, library file)

<2> | Input object module name

<3> | Output file name (load module file)

<4> | Output module name (value specified by -M option)
(If there is no -M option, primary name of first input file name)

279

CHAPTER 11 PROGRAM OUTPUT LISTS

11.2.3 Segment link map list

Information on located segments is output in this list in address order separately for the program memory and data

memory.

[Output Format]

SEGMENT LINK MAP FOR <1> (<2>)

MAP OF ROM AREA:

BASE LENGTH MODULE NAME SEGMENT NAME (TYPE)

X)_(X... BB_BB LL!_L MMM._.. NNN.:. (RRR_...)
<3> <4> <5> <6> <7> <8>

MAP OF RAM AREA:

TYPE BASE LENGTH MODULE NAME SEGMENT NAME
XXX TTTT XXX.. BBBB LLLL MMM... NNN...
<é> <é> <é> <.4> <5.> <.6> <%>

[Descriptions of Output ltems]

No. Description
<1> | Output file name (load module file)
<2> | Output module name (value specified by -M option)
(If there is no -M option, primary name of output file name)
<3> | Segment overlap indication (‘shown as “* OVERLAP **’)
(Blank if there is no segment overlap)
<4> | Segment start address (shown as 4 hexadecimal digits in ascending address order)
<5> | Segment size (4 hexadecimal digits)
(End address - Start address + 1)
<6> | Module name (Segment definition module name)
<7> | Segment name (left-justified)
("* GAP **’ is shown for a free area)
(Blank in case of default absolute segment or VENT area)
<8> [‘ABSOLUTE’ absolute segment
IENT’
‘SENT’
Segment relocation attributes INBLOCK?, “INBLOCKA’
‘XBLOCK’, XBLOCKA’
‘INBLOCK PAGE’, INBLOCKA PAGE’
‘SENT PAGE’
L ‘XBLOCK PAGE’, XBLOCKA PAGE’
<9> Segment attributes ‘CODE’ ...Code segment
- ‘DATA’ ... Data segment
(left-justified)
‘STACK’ ... Stack segment

280

CHAPTER 11 PROGRAM OUTPUT LISTS

11.2.4 Branch table map list

Information on branch tables generated in order to branch to another block is output in this list.

[Output Format]

BRANCH TABLE MAP FOR <1>

BLOCK LOCATED REFERENCE EXPRESSION REFERENCE REFERENCE
NO ADDRESS ADDRESS ADDRESS
BB XXXX ------ B.R !NNN.... + AAA.'.. RRIRR SSS....

@ < > <5 6> s 8

[Descriptions of Output ltems]

No. Description

<1> | Output file name (load module file)

<2> | Branch table location bank value (2 hexadecimal digits)

<3> | Address in block (4 hexadecimal digits)

<4> | Target device ROM size
Up to 16K: ‘BR’
Over 16K: ‘BRA’

<5> | Reference symbol name (left- justified)
(Definition segment name when an intra-module local symbol is referenced.
Reference address value in case of absolute address reference)

<6> | Reference symbol modification value (4 hexadecimal digits)
(Blank in case of absolute address reference)

<7> | Reference start address (4 hexadecimal digits)

<8> | Reference start segment name (left-justified)
(e " in case of absolute address reference)

281

CHAPTER 11 PROGRAM OUTPUT LISTS

11.2.5 Public symbol list, symbol table list

Information on public symbols and local symbols is output in these lists.

[Output Format]

PUBLIC SYMBOL LIST FOR <1>

TYPE VALUE MODULE SYMBOL NAME

TTTT XXX.. MMM.. NNN...
<2.> <3‘> <42-> <\;:-)>
SYMBOL LIST FOR ®

TYPE VALUE ATTRIBUTE NAME

TTTT XXX... AAA... NNN...

<é> <é> <‘i-> <é>

[Descriptions of Output ltems]

No. Description

<1>| Output file name (load module file)

<2> ‘BIT’ ... Bit symbol
‘CODE* ... Code symbol
Symbol attribute names ‘DATA’ ... Data symbol
(left-justified) ‘NUMBER'’ ... Constant symbol
‘PBIT’ ... Port bit symbol
‘STACK’ ... Stack symbol

<3>| Symbol value (4 hexadecimal digits)

<4> | Name of defined symbol (left-justified)

<5>| Name of symbol defined in module (left-justified)

<6>| Symbol type ‘MODULE'’ ... In case of module name
(left- justified) ‘PUBLIC’In case of symbol
‘SYMBOL' ...In case of intra-module symbol

282

CHAPTER 11 PROGRAM OUTPUT LISTS

11.3 Librarian Output List

The librarian outputs a list of library file information by means of the LIST subcommand. See 7.4 (5) LIST for the

list output destination.

11.3.1 Library file information list

[Output Format]

Note The area enclosed by a broken line is only printed when there is a PUBLICS specification.

[Descriptions of Output ltems]

75X Series Librarian Vx.xx =~ DATE (<1>) PAGE: <2>
LIB-FILE NAME : <3> (<4> <5>)
nnrnn MM .. M (<8> <9>)
<6> <7>
UPDATE: <10> <11> <12>
77777777777777777777777777777 Note This is output for each
\r SS ... S \ module.
o l
: <13> :
| NUMBER OF PUBLIC SYMBOLS : <14>
NUMBER OF MODULES : <15>

No. Description

<1> | System date

<2> | Output list page number (decimal notation)

<3> | Library file name

<4> | Library file creation date

<5> | Library file update date

<6> | Module serial number (decimal notation)

<7> | Module name

<8> | Module creation date

<9> | Module update date

<10>| Number of module updates (decimal notation)

<11>| Name of the software which created module

<12>| Assembly target product

<13>| PUBLIC symbol name

<14>| Total number of PUBLIC symbols defined in the module

<15>| Total number of modules in library file

283

CHAPTER 11 PROGRAM OUTPUT LISTS

11.4 List Converter Output List
The list converter outputs the absolute assembly list.
11.4.1 Absolute assembly list

Inthis list, the actual values determined by the linker are incorporated in the assembily list part (excluding the symbol
list and cross-reference list) in the assembly list file output by the assembler.

[Output Format]

75X SERIES ASSEMBLER Vx.xx <1> PAGE: <2>
** <3> **
COMMAND :CCCC ..vvnviniiniiiiiiieieieans <5>

COMMAND FILE : <4>

STNO ADRS R OBJECT IC MAC SOURCE STATEMENT

nnnn hhhh a XXXXXXXX =1 +MM SSS tiiiiiiiiiiiiiiiiieaneananns
<6> <7> <8> <9> <10> <11> <12>
TARGET CHIP: <14>
STACK SIZE=xxxx <13>
ASSEMBLY COMPLETE, ERROR FOUND

284

CHAPTER 11 PROGRAM OUTPUT LISTS

[Descriptions of Output ltems]

No. Description
<1> | System date
<2> | Output list page number in decimal notation
<3> | Title (value specified by TITLE control instruction)
(Blank if there is no TITLE control instruction specification)
<4> | Parameter file command image
(Blank if there is no parameter file input specification)
<5> | Command image
<6> | Source statement number shown as 4 decimal digits
<7> | Location counter value shown as 4 hexadecimal digits
<8> | Operand attributes
E Reference of external reference symbol (symbol declared by the EXTRN pseudo-instruction)
R.... Reference of relocatable symbols in the same module
A\ ... Absolute value
<9> | Object code in hexadecimal notation
In case of a symbol definition pseudo-instruction, the operand evaluation value is shown as 4 hexadecimal digits.
<10>| Include nesting level (1)
(Blank if not nested)
<11>| Always blank (for function expansion)
<12>| Source statement
<13>| Stack area size shown as 4 hexadecimal digits
<14>| Assembly target product name

ltems <7> and <9> are subject to amendment.

285

[MEMO]

286

CHAPTER 12. EFFECTIVE USE OF THE ASSEMBLER PACKAGE

This chapter suggests some methods of making efficient use of the assembler package.

287

CHAPTER 12 EFFECTIVE USE OF THE ASSEMBLER PACKAGE

12.1 How to Utilize Parameter File

It is convenient to use a parameter file when starting the assembiler, linker or object converter.

A parameter file is one in which specifications of input files, options, etc., needed when starting a program are
recorded beforehand using an editor.

Use of a parameter file is particularly recommended when starting the linker, which uses a large number of input
files.

The contents of options specified in a parameter file can be added to or changed in the command line when starting
the program.

Example 1. A parameter file ‘LINK.PLK’ is created with the editor.

e Contents of LINK.PLK

75XTEST1.REL 75XTEST2.REL
-075X.LNK -PSAMP.MAP -KM

e The linker is started with parameter file ‘LINK.PLK’ specified.

AANECTOOLS\SMP75X\RA75X>LK75X -FLINK.PLK
75X Series Linker VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985

LINK COMPLETE, NO ERROR FOUND

Example 2. The options specified in the parameter file are changed and added to in the command line.

A\NECTOOLS\SMP75X\RA75X>LK75X -FLINK.PLK -PTEST.LNK -SQ

288

CHAPTER 12 EFFECTIVE USE OF THE ASSEMBLER PACKAGE

12.2 Use of the List Converter

In the assembly list output by the relocatable assembler, temporary values are used for addresses and object code
which were not determined during assembly.

In order to perform debugging with the in-circuit emulator, etc., using this assembly list, the actual values of
addresses and object code must be calculated by referring to the segment map list, etc., output by the linker. (This
is not so necessary if symbolic debugging is performed effectively using the OC75X).

This problem is common to relocatable assemblers .

The list converter is provided to solve this problem. This list converter creates an absolute assembly list, which
enables debugging to be performed more efficiently.

If the absolute assembly list is to be output to the printer, specifying the printer as the output destination in the
list converter (LCNV75X) enables the list to be output directly to the printer.

Example To output the absolute assembly list to the printer

A\NECTOOLS\SMP75X\RA75X>LCNV75X 75XTEST1 -L75XTEST.LNX -OPRN

List Conversion Program for RA75X VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1986, 1997

Pass 1: start
Pass 2: start
Conversion complete

289

CHAPTER 12 EFFECTIVE USE OF THE ASSEMBLER PACKAGE

12.3 Finding Error Lines

To find error lines in the assembly list in order to eliminate assembly errors, the error line back no, is used.
When errors are detected as a result of assembly, the assembler outputs the following message.

Example

ASSEMBLY COMPLETE, ? ERRORS FOUND (. 10)

Number of errors Line number of last error line

In this example, the I0th line of the assembly list is the last error line. In the 10th line of the assembly
list, the line number of the preceding error line is shown together with the error message. The error line
back number, in the assembly list is indicated as shown below.

“** ERROR #xxx, STNO #1111 (0000) , ERROR MESSAGE | -+ <1>
*** ERROR #xxx, STNO #mmmm (1111) , ERROR MESSAGE | --------- <2>
*** ERROR #xxx, STNO #nnnn (mmmm) , ERROR MESSAGE | -:= <3>
ASSEMBLY COMPLETE, tttt ERROR S FOUND (nnnn) | e <4>

<1> First error line
<2> Next error line
<3> Next error line
<4> Last error line

Using the error line back number, indication enables lines in which errors are generated to be added
in the order nnnn — mmmm — [l from the end of the list file.

290

CHAPTER 12 EFFECTIVE USE OF THE ASSEMBLER PACKAGE

12.4 Example of Use of Batch File

In the assembly package, an error status code is returned according to the error level. If an error status code is
used, assembly can be performed efficiently using a batch file. An example is given here of performance of the
following processing.

(1) Batch file (BAT.BAT) processing flow

TEST1.SRC TEST2.SRC TEST3.SRC
Structured Structured Structured
assembler assembler assembler

TEST1.ASM TEST2.ASM TEST3.ASM

Assembler Assembler Assembler

TEST1.REL TEST2.REL TEST3.REL

Linker

TEST.LNK

Object converter

TEST.HEX

List converter List converter List converter

TEST1.P TEST2.P TEST3.P

291

CHAPTER 12 EFFECTIVE USE OF THE ASSEMBLER PACKAGE

(2) Sample program

BAT.BAT

ECHO OFF

SET LEVEL=0

ST75X TEST1.SRC

RA75X TEST1.ASM -C106

IF ERRORLEVEL 1 SET LEVEL=1

ST75X TEST2.SRC

RA75X TEST2.ASM -C106

IF ERRORLEVEL 1 SET LEVEL=1

ST75X TEST3.SRC

RA75X TEST3.ASM -C106

IF ERRORLEVEL 1 SET LEVEL=1

CLS

IF %LEVEL%=1 ECHO Error generated during assembly
IF %LEVEL%=1 GOTO END

SET LEVEL=0

CLS

LK75X TEST1 TEST2 TEST3-0TEST

IF ERRORLEVEL 1 ECHO Error generated during linkage
IF %LEVEL%=1 GOTO END

CLS

OC75X TEST

IF ERRORLEVEL 1 ECHO Error generated during object conversion
IF %LEVEL%=1 GOTO END

SET LEVEL=0

LCNV75X -LTEST.LNK -ATEST1

IF ERRORLEVEL 1 SET LEVEL=1

LCNV75X -LTEST.LNK -ATEST2

IF ERRORLEVEL 1 SET LEVEL=1

LCNV75X -LTEST.LNK -ATEST3

IF ERRORLEVEL 1 SET LEVEL=1

CLS

IF %LEVEL%=1 ECHO Error generated during list conversion
IF %LEVEL%=1 GOTO END

ECHO No errors

:END

(3) Example of executed result

(a) Normal termination

No error

(b) When there is an assembly error

| Error in assembly |

The error should be corrected with reference to the assembly print file, and assembly performed again.

292

CHAPTER 13. ERROR MESSAGES

This chapter describes the error messages output by each program in the assembler package, the cause of each
error, action to be taken by the user, and so forth.

293

CHAPTER 13 ERROR MESSAGES

13.1 Assembler’s Error Messages

Format: *** ERRORN°* error number error message
PROGRAM ABORTED
This error cause program execution to be aborted.

Note This part is not output in error messages A001 to A021.

Error No. Message Missing input file
A001 Cause Input file has not been specified in start line.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Confirm program start method, then re-execute.
Error No. Message Too many input files
A002 Cause Specified number of input files exceeds limit.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Confirm program start method, then re-execute.
Error No. Message Unrecognized string ‘specified string’
A003 Cause Specified string cannot be interpreted.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Confirm program start method, then re-execute.
Error No. | Message Illegal file name ‘file name’
A004 Cause Type or length of characters in file name is illegal
Program processing | Checks start line syntax , then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.
Error No. | Message Illegal file specification ‘file name’
A005 Cause File name format is incorrect.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.
Error No. Message File not found ‘file name’
A006 Cause Specified file does not exist.
Program Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.
Error No. Message Input file specification overlapped ‘file name’
A007 Cause Overlapping input file specification
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.
Error No. Message File specification conflicted ‘file name’
A008 Cause The input or output file is specified overlaps.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.
Error No. Message Unable to make file file name’
A009 Cause Specified output file cannot be created.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check remaining disk capacity, etc.
Error No. Message Directory not found ‘file name’
A010 Cause Nonexistent drive or directory is included in output file name.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.

294

CHAPTER 13 ERROR MESSAGES

Assembler’s Error Message (cont’d’)

Error No. Message lllegal path ‘option’
AO011 Cause Iltem other than path name is specified in option in which path name should be speci-
fied as parameter.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name and option name, then re-execute.
Error No. Message Missing parameter ‘option’
A012 Cause Necessary parameter has not been specified.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. | Message Parameter not needed ‘option’
A013 Cause Unnecessary parameters has been specified.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. | Message Out of range ‘option’
A014 Cause Number specified as parameter exceeds permitted range.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. Message Parameter is too long ‘option’
AO015 Cause Parameter is too long.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. Message lllegal parameter ‘option’
AO16 Cause Parameter syntax is incorrect.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. Message Too many parameters ‘option’
A017 Cause Number of parameters exceeds limit.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. Message Option is not recognized ‘option’
A018 Cause Incorrect option has been specified.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute,
Error No. | Message Parameter file nested
A019 Cause -F option is included in parameter file.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct parameter file, then re-execute.
Error No. Message Parameter file read error ‘file name’
A020 Cause Parameter file read has failed.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check the disk status.
Error No. | Message Memory allocation failed
A021 Cause Memory block acquisition has failed.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check mounted memory capacity and whether there are resident programs, etc.
Error No. | Message CHIP OR MODE IS NOT SELECTED
A099 Cause -C option or -M option has not been specified.

Program processing

Program execution is halted.

User action

Specify -C option or -M option.

295

CHAPTER 13 ERROR MESSAGES

Assembler’s Error Message (cont’d)

Error No. | Message NO OVERLAY FILE - overlay file name
A100 Cause Overlay file has not been found.
Program processing | Program execution is halted.
User action Check that overlay file is in executable format and is in same directory and same drive.
Error No. | Message ILLEGAL OVERLAY FILE VERSION - overlay file name
A101 Cause Overlay file version is incorrect.
Program processing | Program execution is halted.
User action Check that overlay file version is correct.
Error No. | Message MACRO MEMORY OVERFLOW, CANNOT DEFINE MACRO ‘MACRO_name’
A102 Cause Insufficient memory to record macro
Program processing | Program execution is halted.
User action Partition the program and re-execute
Error No. | Message PARAMETER REPLACEMENT OVERFLOW
A103 Cause More than 128 formal parameter substitutions.
Program processing | Program execution is halted.
User action Check that there is no more than 128 formal parameter substitutions.
Error No. | Message WORKING TABLE SPACE EXHAUSTED
A901 Cause Working area in memory is insufficient.
Program processing | Program execution is halted.
User action Reduce number of segments, and PUBLIC & EXTRN symbols or reduce number of
unresolved branch instructions.
Error No. | Message BRANCH TABLE OVERFLOW
A902 Cause BR pseudo-instruction optimization work area is full.
Program processing | Program execution is halted.
User action Reduce number of BR pseudo-instructions.
Error No. | Message OPEN ERROR
A903 Cause Input/output file cannot be opened.
Program processing | Program execution is halted.
User action Check status of specified disk.
Error No. | Message CLOSE ERROR
A904 Cause Input/output file cannot be closed.
Program processing | Program execution is halted.
User action Check status of specified disk.
Error No. | Message DUPLICATE INCLUDE OR MACRO FILE ‘file_name’
A905 Cause Include file name specified in source program, or external macro file name, is same as
file name specified in start line.
Program processing | Program execution is halted.
User action Check file name.
Error No. | Message DISK FULL
A909 Cause Capacity of disk specified for output is insufficient.
Program processing | Program execution is halted.
User action Delete unnecessary files, or use a new disk.
Error No. Message PROGRAM ERROR
A999 Cause Memory contents have been overwritten by another program.
Program processing | Program execution is halted.
User action Check the multi-user method of use.

296

CHAPTER 13 ERROR MESSAGES

Format: *** ERROR #error number, STNO # ~ (~), error message
These errors are printed in the assembly list.

Assembler’s Error Message

#1 Message SYNTAX ERROR
Cause Error in statement format.
Program processing | Mnemonic operand value is regarded as 0 and processing is continued. With pseudo-
instruction, line is regarded as invalid and processing continues.
User action Amend to correct description format.
#2 Message FORMAT ERROR
Cause Number of operands is insufficient.
Program processing | Mnemonic operand value is regarded as 0 and processing is continued. With pseudo-
instruction, line is regarded as invalid and processing continues.
User action Amend to correct description format.
#3 Message ILLEGAL PARAMETER TO CONTROL
Cause Error in specified parameter option description.
Program processing | The option is ignored. In case of INCLUDE option, however, fatal error results and
program execution is aborted.
User action Correct this parameter description.
#4 Message CONTROL COMMAND IS NOT RECOGNIZED
Cause Error in written option name.
Program processing | The option is ignored.
User action Amend to correct option name.
#5 Message MISPLACED PRIMARY CONTROL
Cause Specified option can only be written in start command line or at start of source program.
Program processing | This option is ignored.
User action Amend to correct description location.
#6 Message NO TITLE FOR TITLE CONTROL
Cause No parameter specification in TITLE option.
Program processing | This option is ignored.
User action Specify the parameter.
#7 Message PAGEWIDTH WITHIN THE LIMIT FROM 72 TO 132
Cause PAGEWIDTH option parameter value is not in range 72 to 132.
Program processing | This option is ignored (default value 132 is used).
User action Correct the parameter.
#8 Message PAGELENGTH MORE THAN 20
Cause PAGELENGTH option parameter value is 20 or less.
Program processing | This option is ignored (default value 66 is used).
User action Correct the parameter.
#9 Message INCLUDE FILE NEST OVERFLOW
Cause INCLUDE control instruction nesting in include file is too deep.
Program processing | INCLUDE option in which error was detected is ignored.
User action Reduce include file nesting (to 1 level).
#10 Message NO PARAMETER TO CONTROL
Cause There is no parameter specification for option requiring parameter.

Program processing

This option is ignored.

User action

Specify the parameter.

297

CHAPTER 13 ERROR MESSAGES

Assembler’s Error Message (cont’d)

#11 Message NO PARAMETER IS ALLOWED TO THIS CONTROL
Cause Parameter has been specified for option which does not require parameter.
Program processing | Specified parameter is ignored.
User action Delete the parameter.
#14 Message LABEL WITHOUT COLON IS REQUIRED
Cause There is no name or segment name in symbol field.
Program processing | This statement is ignored as illegal statement.
User action Write name or segment name in symbol field.
#15 Message LABEL WITH COLON IS NOT ALLOWED
Cause Delimiter between symbol field and mnemonic field is space, not colon *’
Program processing | This statement is ignored as illegal statement.
User action Replace unnecessary colon “’ delimiter with space.
#16 Message LABEL WITHOUT COLON IS NOT ALLOWED
Cause Colon “’ is required as delimiter between symbol field and mnemonic field.
Program processing | Processing is continued with label undefined.
User action Write colon *’
#17 Message NAME IS NOT ALLOWED TO THIS STATEMENT
Cause Name cannot be written in symbol field in this statement.
Program processing | Processing is continued with name undefined.
User action Define name in appropriate place other than this statement, and re-assemble.
#18 Message UNDEFINED SYMBOL
Cause Undefined symbol has been referenced.
Program processing | Processing is continued with 0 as undefined symbol value.
User action Amend to correct symbol or define symbol.
#19 Message ABSOLUTE EXPRESSION EXPECTED
Cause Relocatable expression cannot be written as operand of this statement.
Program processing | With SET pseudo-instruction, symbol is not defined. In other cases, processing is
performed with expression regarded as absolute expression.
User action Use absolute expression as operand.
#20 Message NUMERIC EXPRESSION IS REQUIRED
Cause Inappropriate item has been written as operator term.
Program processing | With symbol definition pseudo-instruction, symbol is not defined. In other cases,
processing is continued with 0 as operand value.
User action Use appropriate item as operator term.
#21 Message EXPRESSION STACK OVERFLOW
Cause Expression description is too complex.
Program processing | Processing is continued with O as expression value.
User action Rewrite expression in simpler form.
#22 Message ATTRIBUTE OF EXPRESSION MISMATCHED
Cause Impermissible symbol attribute is used in expression symbol attribute combination.
Program processing | With symbol definition pseudo-instruction, symbol is not defined. In other cases,
processing is continued with 0 as expression value.
User action Amend to correct description format.
#23 Message SEGMENT TYPE MISMATCHED
Cause Impermissible item is written as operand symbol attribute.

Program processing

With symbol definition pseudo-instruction, symbol is not defined. In other cases,
processing is continued with 0 as expression value.

User action

Amend to correct description format.

298

CHAPTER 13 ERROR MESSAGES

Assembler’s Error Message (cont’d)

#24 Message OPERAND TYPE MISMATCHED
Cause Mismatch with operand description format permitted in mnemonic or pseudo-instruction.
Program processing | With mnemonic, NOPs are generated equivalent to longest code of target device. In
other cases, this statement is ignored as illegal statement.
User action Amend operand to correct description format.
#25 Message BIT ADDRESS EXPRESSION ERROR
Cause Bit specification exceeds range 0 to 3.
Program processing | With symbol definition pseudo-instruction, symbol is not defined. In other cases,
processing is continued with 0 as bit value.
User action Ensure that bit specification is in range 0 to 3.
#26 Message STRING LONGER THAN 2 CHARACTERS IS NOT ALLOWED
Cause String exceeding 2 characters cannot be used in expression.
Program processing | Processing is continued using first 2 characters.
User action Ensure that string length is no more than 2 characters.
#28 Message EXPRESSION “(“ NEST OVERFLOW
Cause Nesting of parentheses “(“ is too deep.
Program processing | Processing is continued with 0 as operand value.
User action Ensure that parenthesis “(“ nesting is maximum of 8 levels.
#30 Message MORE THAN 80 CHARACTERS STRING IS NOT ALLOWED
Cause String exceeding 80 characters in length has been written.
Program processing | Excess part of string is ignored. First 80 characters are valid.
User action Divide string into sections of up to 80 characters.
#32 Message ALREADY DEFINED SYMBOL - IGNORE
Cause Symbol this statement attempts to define has already been defined.
Program processing | Processing is continued with this symbol undefined.
User action Change symbol name and re-assemble.
#34 Message ARITHMETIC OVERFLOW
Cause Expression description is too complex.
Program processing | Processing is continued with O as expression value.
User action Rewrite expression in simpler form.
#35 Message SUBSTITUTE OVERFLOW
Cause Operand value exceeds permissible object code substitution value range.
Program processing | Processing is continued with O as object code substitution value.
User action Ensure that operand value is in this range.
#36 Message OPERAND MUST BE CODE SEGMENT ADDRESS
Cause Iltems other than code or constant symbol is used as operand symbol attribute.
Program processing | Processing is continued with constant symbol as operand symbol attribute.
User action Ensure that operand symbol attribute is code or constant symbol.
#37 Message OPERAND MUST BE DATA (DATA) SEGMENT ADDRESS
Cause Iltems other than data or constant symbol is used as operand symbol attribute.
Program processing | Processing is continued with constant symbol as operand symbol attribute.
User action Ensure that operand symbol attribute is data or constant symbol.
#38 Message OPERAND MUST BE DATA (BIT) SEGMENT ADDRESS
Cause Iltems other than bit or constant symbol is used as operand symbol attribute.

Program processing

Processing is continued with constant symbol as operand symbol attribute.

User action

Ensure that operand symbol attribute is bit or constant symbol.

299

CHAPTER 13 ERROR MESSAGES

Assembler’s Error Message (cont’d)

#40 Message BALANCE ERROR
Cause ‘,” not balanced in expression.
Program processing | Processing is continued with supplementary *,’.
User action Amend so that ‘,” balance is obtained.
#42 Message ILLEGAL CHARACTER
Cause Illegal character(s) used in source program.
Program processing | Processing is continued with illegal character (s) replaced with ‘I’.
User action Eliminate illegal character(s) and re-assemble.
#43 Message SAME SEGMENT MUST HAVE SAME ATTRIBUTE TYPE
Cause Different relocation attributes are used for same segment name.
Program processing | Processing is continued with relocation attribute specified first as valid.
User action Make all relocation attributes the same, or do not specify 2nd and subsequent reloca-
tion attributes.
#49 Message TEXT EXISTS BEHIND END STATEMENT - IGNORE
Cause Source exists after END statement.
Program processing | Source after END statement is ignored.
User action No action required (object code in which this error occurs is not affected) .
#50 Message FORWARD REFERENCE IS NOT ALLOWED
Cause Symbol forward reference is not allowed in this operand expression.
Program processing | Processing is continued with 0 as value of forward reference symbol.
User action Amend source program description to avoid forward reference.
#51 Message PUBLIC SYMBOL IS OF ILLEGAL TYPE
Cause Impermissible symbol name is written in operand field of PUBLIC pseudo-instruction.
Program processing | This statement is ignored as illegal statement.
User action Amend to correct description.
#52 Message NO END STATEMENT IN SOURCE TEXT
Cause There is no END statement in source module.
Program processing | Processing is continued with END statement assumed to be present at end of source
module.
User action Write END statement at end of source module.
#54 Message LOCATION COUNTER OVERFLOW
Cause Location counter value exceeds ROM size maximum value of target device.
Program processing | Processing is continued with counter overflow.
User action Ensure that maximum value is not exceeded.
#56 Message OPERAND MUST BE ABSOLUTE OR IN THIS SEGMENT
Cause Expression other than absolute expression has been written in operand, or symbol not
defined in same segment has been referenced.
Program processing | With ORG/CSEG/DSEG/DS pseudo-instructions, this statement is ignored as illegal
statement.
User action Use absolute expression for operand expression and symbols in same segment.
#57 Message ONLY ONE NAME STATEMENT IS ALLOWED
Cause Module name specification has been performed more than once.
Program processing | Processing is continued with second and subsequent specifications regarded as illegal.
User action Do not use more than one module name specification.
#58 Message INVALID MNEMONIC CODE
Cause Impermissible mnemonic has been written.

Program processing

NOP codes are generated equivalent to longest code of target device as illegal
statement.

User action

Use permitted mnemonic.

300

CHAPTER 13 ERROR MESSAGES

Assembler’s Error Message (cont’d)

#59 Message SEGMENT SIZE OVERFLOW TO RELOCATION TYPE (INBLOCK)
Cause Segment with INBLOCK or INBLOCKA attribute exceeds one block range.
Program processing | Processing is continued without further action.
User action Ensure that segment size is in one block range.

#60 Message SEGMENT SIZE OVERFLOW TO RELOCATION TYPE (XBLOCK)
Cause Segment with XBLOCK or XBLOCKA attribute exceeds ROM range permitted for target

device.

Program processing | Processing is continued without further action.
User action Ensure that segment size is in ROM range of target device.

#61 Message SEGMENT SIZE OVERFLOW TO RELOCATION TYPE (IENT)
Cause Segment with IENT attribute exceeds range 20H to 7FH.
Program processing | Processing is continued without further action.
User action Ensure that segment size is in range 20H to 7FH.

#62 Message SEGMENT SIZE OVERFLOW TO RELOCATION TYPE (SENT)
Cause Segment with SENT attribute exceeds range 0 to 7FFH.
Program processing | Processing is continued without further action.
User action Ensure that segment size is in range 0 to 7FFH.

#64 Message THIS PREDEFINE SYMBOL IS NOT ALLOWED
Cause Inappropriate specific address name symbol has been written as operand.
Program processing | Processing is continued with this statement regarded as illegal statement.
User action Write correct operand.

#65 Message EXCHANGE ANOTHER BRANCH OPERATION
Cause Illegal branch instruction has been written.
Program processing | Processing is continued with operand value taken as “0”.
User action Change to branch instruction of appropriate number of bytes.

#66 Message STACK OVERFLOW BY STKLN - TOO COMPLICATED SYNTAX
Cause Value of STKLN pseudo-instruction operand exceeds range 0 to 100H.
Program processing | Processing is continued with this statement regarded as illegal statement.
User action Ensure that value is in range 0 to 100H.

#67 Message THIS STATEMENT IS NOT ALLOWED FOR DATA (BIT) SEGMENT
Cause Statement which cannot be written in data segment has been written.
Program processing | Processing is continued with this statement regarded as illegal statement.
User action Delete this statement, or write it in correct segment.

#68 Message THIS STATEMENT IS NOT ALLOWED FOR CODE OR DATA (DATA) SEGMENT
Cause Statement which cannot be written in code segment or data segment has been written.
Program processing | Processing is continued with this statement regarded as illegal statement.
User action Delete this statement, or write it in correct segment.

#70 Message OPERAND MUST BE IN A BYTE
Cause Operand value exceeds range 0 to FFH.
Program processing | Processing is continued with operand value taken as 0.
User action Ensure that value is in range 0 to FFH.

#72 Message ODD ADDRESS IS NOT ALLOWED FOR THIS OPERAND
Cause Odd address has been written as operand.

Program processing

Processing is continued with operand value taken as 0.

User action

Change operand value to appropriate even address.

301

CHAPTER 13 ERROR MESSAGES

Assembler’s Error Message (cont’d)

#73 Message THIS INSTRUCTION IS NOT ALLOWED AT ODD ADDRESS
Cause TBR and TCALL pseudo-instructions have been allocated to odd address.
Program processing | Processing is continued with this statement regarded as illegal statement.
User action Allocate TBR/TCALL pseudo-instructions to appropriate even address.
#74 Message TOO MANY ERRORS TO REPORT
Cause There are too many errors in this statement. (9 or more errors).
Program processing | Processing is continued without outputting 9 or more error messages.
User action No action required.
#100 Message PHASE ERROR
Cause The symbol value has changed during assembly.

* When a BR pseudo-instruction is located on a block boundary, correct location
addresses cannot be obtained in the subsequent assembly, and therefore an error is
output.

* When there is an error in a statement which contains a symbol reference , the values
of symbols defined in lines after that line are also different, and therefore this error is
output.

* |n addition, this error may be generated due to the influence of an error in another
statement.

Program processing | Processing is continued without further action.
User action * When a BR pseudo-instruction is located on a block boundary, replace that BR
pseudo-instruction with an ordinary branch instruction.

e Check other error statement.

#101 Message ZERO DIVIDE ERROR
Cause Division by 0 has occurred during evaluation of expression.
Program processing | Mnemonic processing is continued with value of expression taken to be 0.
Processing is continued with this pseudo-instruction line is invalidated.
User action Write expression correctly.
#102 Message SYMBOL QUANTITY IS OVERFLOW
Cause Number of symbols exceeds processable number (permissible number of symbols per
source module is approx. 3,000).
Program processing | Statements following location of this error are not processed.
User action Reduce number of symbols and re-assemble, or divide source program and perform
split assembly.
#103 Message SEGMENT QUANTITY IS OVERFLOW
Cause Number of segments exceeds processable number.
Program processing | Statements following location of this error are not processed.
User action Reduce number of segments to re-assemble, or divide source program and perform
split assembly.
#105 Message CROSS REFERENCE TABLE OVERFLOW
Cause The table for creation of cross-reference list is full.
Program processing | Cross-reference table creation is discontinued.
User action Assemble without creating cross-reference list, or divide source program and perform
split assembly.
#311 Message SEGMENT MUST BE ABSOLUTE
Cause ORG pseudo-instruction is written in relocatable segment (ORG pseudo-instruction can
only be used in absolute segment).
Program processing | This ORG pseudo-instruction is ignored.
User action Do not use the ORG pseudo-instruction in a relocatable segment. When object code
allocated to an absolute address is generated, write that part as an absolute segment.

302

CHAPTER 13 ERROR MESSAGES

Assembler’s Error Message (cont’d)

#401 Message ‘macro’ not found
Cause Macro definition is illegal.
Program processing | That macro definition is invalidated, and processing is continued.
User action Describe correctly.
#402 Message Illegal macro name
Cause Error in macro name.
Program processing | That macro definition is invalidated, and processing is continued.
User action Describe the correct macro name.
#403 Message Macro formal parameter error, parameter ‘parameter’ in macro ‘macro_name’
Cause Error in macro formal parameter.
Program processing | That macro definition is invalidated, and processing is continued.
User action Describe correctly.
#404 Message ‘include’ is not allowed in macro definition ‘macro_nane’
Cause include has been described in macro definition.
Program processing | include is invalidated, and processing is continued.
User action Describe include contents directly.
#405 Message Missing ‘endm’, macro ‘macro_name’
Cause There is no ‘endm’ description.
Program processing | That macro is invalidated, and processing is continued.
User action Describe end correctly.
#406 Message lllegal external macro ‘macro_name’
Cause Illegal external macro has been specified.
Program processing | lIllegal external macro definition is invalidated, and processing is continued.
User action Describe correct external macro.
#407 Message Illegal local symbol, symbol ‘local_symbol’ in macro ‘macro_name’
Cause Error in local symbol description.
Program processing | That local symbol is invalidated, and processing is continued.
User action Describe correct local symbol.
#409 Message Input string too long
Cause Length of one line exceeds the limit.
Program processing | That line is invalidated, and processing is continued.
User action Ensure that one line contains no more than 128 characters.
#412 Message Illegal global symbol, symbol ‘global_symbol’
Cause Error in global symbol.
Program processing | That line is invalidated, and processing is continued.
User action Describe correct global symbol.
#414 Message Nest level overflow
Cause Nest level exceeds the limit.
Program processing | Block exceeding nest level is skipped, and processing is continued.
User action Set within the limit.
#415 Message ‘switch’ not found
Cause There is no switch description.
Program processing | That line is invalidated, and processing is continued.
User action Amend to the correct description.
#416 Message Missing ‘$ ends’
Cause There is no $ends description.

Program processing

That case block is invalidated, and processing is continued.

User action

Describe the correct endcase.

303

CHAPTER 13 ERROR MESSAGES

Assembler’s Error Message (cont’d)

#417 Message ‘$ i’ not found
Cause There is no $ if description.
Program processing | That line is invalidated, and processing is continued.
User action Amend to the correct description.
#418 Message Missing ‘& endif’
Cause There is no $ endif description.
Program processing | That if block is invalidated, and processing is continued.
User action Describe the correct endif.
#419 Message Zero divide error
Cause Division by 0 has occurred during expression evaluation.
Program processing | That line or block is invalidated, and processing is continued.
User action Describe the expression correctly.
#420 Message Too many local symbols, symbol ‘local_symbol’ in macro ‘macro_name’
Cause Number of local symbols in one macro exceeds the limit.
Program processing | That macro is invalidated, and processing is continued.
User action Describe the number of local symbols within the limit.
#421 Message Syntax error ‘macro’ statement, macro ‘macro_name’
Cause Error in macro definition statement description.
Program processing | Processing is continued with that macro definition invalidated.
User action Describe correctly.
#422 Message ‘macro’ statement too long, macro ‘macro_name’
Cause Length of one macro definition statement line exceeds the limit.
Program processing | That macro definition is invalidated, and processing is continued.
User action Ensure that one line contains no more than 128 characters.
#423 Message Expression value is out of range
Cause Value of repeat macro expression exceeds 1023.
Program processing | Processing is continued with expression as 1023.
User action In the case of expansion exceeding 1024, nest the repeat macro definitions.
#425 Mess age Operand syntax error
Cause Error in definition statement operand description.
Program processing | Processing is continued with that definition invalidated.
User action Describe the operand setting correctly.
#428 Message ‘$ else’ is after ‘$ else’
Cause There is an else statement after a $ else statement.
Program processing | That definition is invalidated, and processing is continued.
User action Describe correctly.
#429 Message lllegal $ case label
Cause $ case label is wrongly described.
Program processing | Processing is continued with that $ case label invalidated.
User action Describe correctly.
#435 Message Duplicate, case label definition
Cause Duplicate label definition.
Program processing | Processing is continued with this definition invalidated.
User action Describe the $ case definition correctly.
#436 Message $ case label after ‘$ default’
Cause There is a $ case label after $ default
Program processing | Processing is continued with this definition invalidated.
User action Describe the $ case label correctly.

304

CHAPTER 13 ERROR MESSAGES

Assembler’s Error Message (cont’d)

#439 Message ‘macro’ is not allowed in macro definition ‘macro_name’

‘lodm’ is not allowed in macro definition ‘macro_name’

Cause Macro definition statement in macro definition.

Program processing | Processing is continued with that macro name macro definition invalidated.

User action Describe correctly.
#498 Message Undefine symbol
Cause Undefined symbol in SET expression outside macro definition

Program processing | Processing is continued without performing SET symbol registration.

User action Check whether symbol is assembler pseudo-instruction SET symbol
#499 Message Unsuitable expression format
Cause Set expression outside macro definition is incompatible with this macro processor’'s

SET expression format.

Program processing | Processing is continued without performing SET symbol registration.

User action Check whether symbol is assembler pseudo-instruction SET symbol.

305

CHAPTER 13 ERROR MESSAGES

13.2 Linker’s Error Messages

Error No. Message Missing input file
A001 Cause Input file has not been specified in start line.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Confirm program start method, then re-execute.
Error No. Message Too many input file
A002 Cause Specified number of input files exceeds limit.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Confirm program start method, then re-execute.
Error No. Message Unrecognized string ‘specified string’
A003 Cause Specified string cannot be interpreted.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Confirm program start method, then re-execute.
Error No. | Message Illegal file name ‘file name’
A004 Cause Type or length of characters in file name is illegal.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.
Error No. | Message Illegal file specification ‘file name’
A005 Cause File name format is incorrect.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.
Error No. | Message File not found ‘file name’
A006 Cause Specified file does not exist.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name then re-execute.
Error No. Message Input file specification overlapped ‘file name’
A007 Cause Overlapping input file specification.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.
Error No. | Message File specification conflicted ‘file name’
A008 Cause Input or output file specification overlaps.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.
Error No. | Message Unable to make file ‘file name’
A009 Cause Specified output file cannot be created.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check remaining disk capacity, etc.
Error No. | Message Directory not found ‘file name’
A010 Cause Nonexistent drive or directory is included in output file name.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.
Error No. Message Illegal path, ‘option’
AO011 Cause Iltem other than path name is specified in option in which path name should be speci-
fied as parameter.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name and option name, then re- execute.

306

CHAPTER 13 ERROR MESSAGES

Linker’s Error Messages (cont’d)

Error No. Message Missing parameter ‘option’
A012 Cause Necessary parameter has not been specified.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. | Message Parameter not needed ‘option’
A013 Cause Unnecessary parameter has been specified.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. | Message Out of range ‘option’
A014 Cause Number specified as parameter exceeds permitted range.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. Message Parameter is too long ‘option’
AO015 Cause Parameter is too long.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. Message lllegal parameter ‘option’
AO16 Cause Parameter syntax is incorrect.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. Message Too many parameters ‘option’
A017 Cause Number of parameters exceeds limit.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. Message Option is not recognized ‘option’
A018 Cause Incorrect option has been specified.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. | Message Parameter file nested
A019 Cause -F option is included in parameter file.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct parameter file, then re-execute.
Error No. Message Parameter file read error ‘file name’
A020 Cause Parameter file read has failed.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check disk status.
Error No. | Message Memory allocation failed
A021 Cause Memory block acquisition has failed.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check mounted memory capacity and whether there are resident programs, etc.
Error No. Message BALANCE ERROR
F004 Cause No correspondence between first and last ‘ (single quotation mark) used in option

specification.

Program processing

Program execution is halted.

User action

Specify option correctly.

307

CHAPTER 13 ERROR MESSAGES

Linker’s Error Messages (cont’d)

Error No. Message ILLEGAL FILE - file name
F006 Cause Input file contents are illegal.
Program processing | Program execution is halted.
User action Specify correct input file.
Error No. | Message BRANCH TABLE OVERFLOW
FO12 Cause Number of branch tables exceeds processable number (approx. 1,000 can be created).
Program processing | Program execution is halted.
User action Reduce number of BRCB instruction (note that branch tables may also be created
by branch instruction optimization).
Error No. Message EXTERNAL SYMBOL OVERFLOW (MODULE: module name)
FO13 Cause Too many input module EXTRN symbols (approx. 500 EXTRN symbols can be used in
one input module).
Program processing | Program execution is halted.
User action Reduce number of EXTRN symbols.
Error No. | Message SYMBOL TABLE OVERFLOW (MODULE: module name)
FO14 Cause Too many PUBLIC symbols (total of approx. 2,000 PUBLIC symbols can be used).
Program processing | Program execution is halted.
User action Reduce number of PUBLIC symbols.
Error No. Message SEGMENT TABLE OVERFLOW (MODULE: module name)
FO15 Cause Too many segments (total of approx. 120 segments can be handled, including number
of ORG pseudo-instructions).
Program processing | Program execution is halted.
User action Reduce number of segments.
Error No. | Message MODULE TABLE OVERFLOW (FILE: file name)
FO16 Cause Too many input modules (approx. 120 modules can be input).
Program processing | Program execution is halted.
User action Reduce number of input modules.
Error No. | Message WORKING TABLE SPACE EXHAUSTED
A901 Cause Working area in memory is insufficient.
Program processing | Program execution is halted.
User action Reduce number of segments, and PUBLIC & EXTRN symbols, or reduce number of
unresolved branch instructions.
Error No. Message OPEN ERROR
A903 Cause Input/output file cannot be opened.
Program processing | Program execution is halted.
User action Check status of specified disk.
Error No. Message CLOSE ERROR
A904 Cause Input/output file cannot be closed.
Program processing | Program execution is halted.
User action Check status of specified disk.
Error No. | Message DISK FULL
A909 Cause Capacity of disk specified for output is insufficient.
Program processing | Program execution is halted.
User action Delete unnecessary files , or use a new disk.

308

CHAPTER 13 ERROR MESSAGES

Linker’s Error Messages (cont’d)

Error No. Message PROGRAM ERROR
A999 Cause Memory contents have been overwritten by another program.
Program processing | Program execution is halted.
User action Check method of use in multi-user mode.
Error No. Message INVALID OBJECT (MODULE: module name)
F100 Cause File other than object module or load module file has been input.
Program processing | Program execution is halted.
User action Check input file.
Error No. Message ILLEGAL CHARACTER (CHARACTER: character)
F102 Cause Impermissible character has been specified.
Program processing | Program execution is halted.
User action Do not use illegal characters.
Error No. Message RETRY COUNTER OVER (SEGMENT: segment name)

F106 Cause Location has been attempted a reasonable number of times, changing the relocatable
segment order, but without success (the linker cannot find a location method as there
are a large number of segments).

Program processing | Program execution is halted.
User action Input segments in the order in which they are to be located, and specify the -SQ option.
(To find the size of each segment, specify the -SQ option without considering the
segment order. Linkage will generate an error in most cases, but the size of each
segment is shown in the map file).
Error No. Message MODULE NOT FOUND (MODULE: module name)
F134 Cause Specified module is not in library file.
Program processing | Program execution is halted.
User action Specify correct module name.
Error No. Message MODULE COUNT OVERFLOW (FILE: file name)
F135 Cause There are too many module name specifications for library file.
Program processing | Program execution is halted.
User action Reduce number of module name specifications.
Error No. Message ILLEGAL SEGMENT CLASS (SEGMENT: Segment name, CLASS: segment type)
A505 Cause Illegal segment type in input file.
Program processing | Program execution is halted.
User action Create input file again.
Error No. Message THIS MODULE IS DIFFERENT VER/REV (MODULE: module name)
F301 Cause Input file version is not compatible with this linker version.
Program processing | Program execution is halted.
User action Input file output by same version of assembler.
Error No. Message THIS MODULE IS OBJECT DIFFERENT CHIP OR SERIES (MODULE: module name)
F302 Cause Modules output by non-75X assembler has been input.
Program processing | Program execution is halted.
User action Input modules output by 75X assembler.
Error No. Message THIS MODULE IS OBJECT NOT LINKABLE (MODULE : module name)

F303 Cause Modules output by non-75X assembler has been input.

Program processing

Program execution is halted.

User action

Input file output by 75X assembler.

309

CHAPTER 13 ERROR MESSAGES

Linker’s Error Messages (cont’d)

Error No. Message INVALID FILE SYNTAX (FILE: file name)
F304 Cause Module output by the non-75X assembler has been input.
Program processing | Program execution is halted.
User action Input files output by 75X assembler.
Error No. | Message SAME NAME SEGMENT IN DIFFERENT CLASS (SEGMENT: segment name)
F307 Cause Segments with same name but different segment type exist.
Program processing | Processed as different segments.
User action Change segment name or segment type and re-link.
Error No. Message CHIP TYPE MISMATCH (MODULE: module name)
W300 Cause Input module chip type is different from first input module chip type.
Program processing | First input module chip type is valid.
User action Standardize chip type for all input modules and re-assemble.
Error No. | Message MULTIPLE DEFINED (MODULE: module name SYMBOL: symbol name)
W308 Cause Same external definition symbol name has been declared more than once.
Program processing | Only first external definition symbol name input is valid.
User action Change to different external definition symbol name.
Error No. | Message SAME NAME SEGMENTS OF DIFFERENT ALIGNMENT TYPE (MODULE: module
W309 name SEGMENT: segment name)
Cause Different attributes have been specified for segments with same name.
Program processing | These sane name segments are not linked, and are processed as different segments.
User action Specify same attribute for segments with same name.
Error No. Message UNRESOLVED SYMBOL (MODULE: module name SYMBOL: symbol name)
W310 Cause External reference symbol information has not been resolved.
There is no external reference symbol corresponding to the external definition symbol.
Program processing | Part of text corresponding to this external reference symbol is not corrected.
User action Link to module containing corresponding external reference symbol.
Error No. | Message TYPE MISMATCH (MODULE: module name SYMBOL: symbol name)
W311 Cause External definition symbol and external reference symbol segment types do not match.
Program processing | External definition symbol segment type is valid.
User action Ensure that external definition symbol and external reference symbol segment types
match.
Error No. Message INVALID STACK SIZE APPOINTED
F402 Cause Increment or decrement size has been specified for size 0 stack in -SZ option.
Program processing | Program execution is halted.
User action Do not specify increment or decrement size in -SZ option.
Error No. | Message EVALUATED STACK SIZE IS INVALID
W403 Cause Stack size exceeds 100H.
Program processing | Processing is continued with O as stack size.
User action Use -SZ option specification of 100H or less, or amend so that accumulated value of
stack size for each module is 100H or less.
Error No. Message SPECIFIED SEGMENT NOT FOUND IN INPUT MODULES (SEGMENT: segment name)
F405 Cause Code segment name specified by order or address option does not exist in input file.
Program processing | Program execution is halted.
User action Specify correct segment name.

310

CHAPTER 13 ERROR MESSAGES

Linker’s Error Messages (cont’d)

Error No. Message SPECIFIED SEGMENT NOT FOUND IN SPECIFIED CLASS (CLASS: segment type,
F406 SEGMENT: segment name)
Cause Segment name specified by order or address option does not exist in specified code
segment.
Program processing | Program execution is halted.
User action Specify correct segment name.
Error No. Message SPECIFIED SEGMENT IS ABSOLUTE (SEGMENT: segment name)
F407 Cause Allocation address has been specified in absolute segment by address option.
Program processing | Address option is ignored.
User action Re-link without specifying allocation address in absolute segment.
Error No. Message ADDRESS FOR SEGMENT SPECIFIED MORE THAN ONCE (SEGMENT: segment name)
F408 Cause Multiple address specifications have been made for same segment.
Program processing | Program execution is halted.
User action Eliminate duplicate specifications.
Error No. | Message STACK OVER THE DATA MEMORY
W409 Cause Stack size specified by STKLN pseudo-instruction and -SZ option exceeds range
specifiable for stack.
Program processing | Processing is continued with O as stack size.
User action Ensure that total stack size specified by STKLN pseudo-instruction and -SZ option does
not exceed range specifiable for stack.
Error No. Message ALIGNMENT NOT COMPATIBLE WITH ASSIGNED ADDRESS (SEGMENT: segment name)
W411 Cause Relocation attribute of address-specified segment is not compatible with specified
address.
Program processing | Segment is located with relocation attribute taken as valid.
User action Ensure that specification does not involve incompatibility between address specification
and relocation attribute.
Error No. | Message CAN NOT CREATE BRANCH TABLE (SEGMENT: segment name)
F412 Cause Branch tables required for absolute or address-specified segment cannot be created in
same block.
Program processing | Processing is continued with branch instruction unresolved.
User action Move segment specification address to another block, or reduce number of unresolved
branch instructions.
Error No. Message LOCATION OVERFLOW AT CODE MEMORY (SEGMENT: segment name)
F415 Cause Attempt has been made to locate code segment exceeding maximum target chip ROM
value.
Program processing | Segment is located with maximum target chip ROM value exceeded.
User action Amend so that code segment fits in ROM range of target device.
Error No. | Message LOCATION OVERFLOW AT DATA MEMORY (SEGMENT: segment name)
F416 Cause Attempt has been made to locate data segment exceeding maximum target chip RAM
value.
Program processing | Segment is located with maximum target chip RAM value exceeded.
User action Amend so that data segment fits in RAM range of target device.
Error No. | Message SEGMENT SIZE OVER (ALIGN: relocation attribute SEGMENT: segment name)
F418 Cause Maximum segment size stipulated by relocation attribute has been exceeded.

Program processing

Performs location ignoring maximum segment size stipulated by relocation attribute.

User action

Divide segment so that it is within maximum segment size range stipulated by reloca-

tion attribute.

311

CHAPTER 13 ERROR MESSAGES

Linker’s Error Messages (cont’d)

Error No. | Message CAN NOT ALLOCATE IN FIXED AREA (ALIGN: relocation attribute SEGMENT:
F419 segment name)

Cause This segment cannot be located in location area in ROM corresponding to specified
attribute (IENT: 20H to 7FH, SENT: OH to 7FFH, INBLOCK and INBLOCKA: area not
running over 4K-byte block, XBLOCK: 0 to 3FFFH).

Program processing | Perform location exceeding location area stipulated by relocation attribute.

User action Perform absolute specification or correct address option so that segment can be
located in range corresponding to reallocation attribute specified for this segment.

Error No. Message SEGMENTS OVERLAP (SEGMENT: segment name AND segment name)
w422 Cause An attempt has been made to locate multiple overlapping segments in same area.

Program processing | Processing is continued without further action (however, linkage results are not
assured).

User action Specify overlapping segments with address specification or absolute specification so
that they do not overlap.

Error No. Message SEGMENT IN RESERVED SPACE (SEGMENT: segment name)
F423 Cause An attempt has been made to locate segment in area in which location of segment for
which absolute specification oraddress specification has been made is prohibited.

Program processing | Segment is located in location prohibited area.

User action Ensure that area specified by -RS option action and area for which absolute specifica-
tion or address specification is made do not overlap.

Error No. Message REFERENCE TYPE ERROR (AT address IN segment name)
W501 Cause Impermissible item has been used in reference symbol segment type.

Program processing | Processing is continued with “no segment type” as symbol type.

User action Correct so that external reference symbol with correct segment type is referenced, and
re-assemble .

Error No. Message EVALUATED VALUE EXCEEDS THE RANGE (AT address IN segment name)
W502 Cause Calculated operand value exceeds permissible range.
Program processing | Text correction is performed with 0 as operand value.
User action Correct so that operand value is in permissible range, and re-assemble
Error No. | Message REFERENCE SYMBOL IS UNRESOLVED
W503 Cause Information on external reference symbol referenced in text has not been resolved.
Program processing | Part of text corresponding to this external reference symbol is not corrected .
User measure Link to module containing corresponding external reference symbol.

312

CHAPTER 13 ERROR MESSAGES

13.3 Object Converter Error Message

Error No. Message Missing input file
A001 Cause Input file has not been specified in start line.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Confirm program start method, then re-execute.
Error No. Message Too many input file
A002 Cause Specified number of input files exceeds limit.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Confirm program start method, then re-execute.
Error No. Message Unrecognized string ‘specified string’
A003 Cause Specified string cannot be interpreted.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Confirm program start method, then re-execute.
Error No. | Message Illegal file name ‘file name’
A004 Cause Type or length of characters in file name is illegal.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Checks/correct file name, then re-execute.
Error No. | Message Illegal file specification ‘file name’
A005 Cause File name format is incorrect.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.
Error No. | Message File not found ‘file name’
A006 Cause Specified file does not exist.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute .
Error No. Message Input file specification overlapped ‘file name’
A007 Cause Overlapping input file specification.
Program processing | Checks start line syntax, then halts processing and returns control to OS .
User action Check/correct file name, then re-execute.
Error No. | Message File specification conflicted ‘file name’
A008 Cause Input or output file specification overlaps.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.
Error No. | Message Unable to make file ‘file name’
A009 Cause Specified output file cannot be created.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check remaining disk capacity, etc.
Error No. | Message Directory not found ‘file name’
A010 Cause Nonexistent drive or directory is included in output file name.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct file name, then re-execute.
Error No. Message Illegal path ‘option’
AO011 Cause Iltem other than path name is specified in option in which path name should be speci-

fied as parameter.

Program processing

Checks start line syntax, then halts processing and returns control to OS.

User action

Check/correct file name and option name, then re-execute.

313

CHAPTER 13 ERROR MESSAGES

Object Converter Error Messages (cont’d)

Error No. Message Missing parameter ‘option’
A012 Cause Necessary parameter has not been specified.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. | Message Parameter not needed ‘option’
A013 Cause Unnecessary parameter has been specified.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. | Message Out of range ‘option’
A014 Cause Number specified as parameter exceeds permitted range.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. Message Parameter is too long ‘option’
AO015 Cause Parameter is too long.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. Message lllegal parameter ‘option’
AO16 Cause Parameter syntax is incorrect.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. Message Too many parameters ‘option’
A017 Cause Number of parameters exceeds limit.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. Message Option is not recognized ‘option’.
A018 Cause Incorrect option has been specified.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct option syntax, then re-execute.
Error No. | Message Parameter file nested
A019 Cause -F option is included in parameter file.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check/correct parameter file, then re-execute.
Error No. Message Parameter file read error ‘file name’
A020 Cause Parameter file read has failed.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check the disk status.
Error No. | Message Memory allocation failed
A021 Cause Memory block acquisition has failed.
Program processing | Checks start line syntax, then halts processing and returns control to OS.
User action Check mounted memory capacity and whether there are resident programs, etc.
Error No. Message ‘File name’ lllegal processor type
A100 Cause The target assembly or compilation product is not covered by this program.
Program Processing | Program execution is halted.
User Action Check if the load module file is correct. Confirm the target product to be assembled or
compiled. Check if the overlay file is the correct version.

314

CHAPTER 13 ERROR MESSAGES

Object Converter Error Messages (cont’d)

Error No. Message ‘File name’ Invalid input file (or made by different host machine)
A101 Cause A file other than a load module file was input, or a load module file created on an
incompatible host machine was input.

Program Processing | Program execution is halted.

User action Check if someone didn’t attempt to input a file other than a load module file. When
input of a load module file created on an incompatible host machine is attempted, use a
hot machine which is compatible.

Error No. Message Symbol ‘symbol name’ Illegal attribute
A103 Cause There are errors in the symbol attribute values of input symbols.
Program Processing | Program execution is halted.
User action Execute again from assemble or from compile.
Error No. Message ‘File name’ lllegal input file - not linked.
104 Cause Input of an object module file (an unlinked object file) was attempted.
Program Processing | Program execution is halted.
User action Input this file to the HEX converter after it has been linked.
Error No. Message Insufficient memory in host machine.
A105 Cause There is not sufficient memory in the system to run the program.

Program Processing | Program execution is halted.

User action When it is possible to add more memory to the host machine, add more memory. Add
to the amount of memory which can be used by other application programs. When it is
not possible to add more memory, linking cannot be done with this host machine.

Error No. Message Illegal symbol table
A106 Cause There are errors in the symbol table in the input load module file.
Program Processing | Program execution is halted.
User action Relink and create a correct load module file.
Error No. Message Can’t open file ‘file name’
A900 Cause The file cannot be opened.

Program Processing | Program execution is halted.

User action Specify the correct file name. Check the disk condition (available space, media
condition, etc.). Prepare a correct file (particularly in the case of an overlay file).

Error No. | Message Can't close file ‘file name’
A901 Cause The file cannot be closed.
Program Processing | Program execution is halted.
User action Check the disk condition (available space, media condition, etc.).
Error No. Message Can't read file ‘file name.’
A902 Cause The file could not be read correctly.

Program Processing | Program execution is halted.

User action Check the disk condition where the file exists (available space, media condition, etc.).
Check if the file where there was an error is the correct file.

Error No. | Message Can't access file ‘file name’
A903 Cause The file could not be read correctly or it could not be written correctly.

Program Processing | Program execution is halted.

User action Check the disk condition where the file exists (available space, media condition, etc.).
Check if the file where there was an error is the correct file.

Error No. Message Can't write file ‘file name’
A904 Cause Data could not be written correctly to the output file.

Program Processing

Program execution is halted.

User action

Check the disk condition where the file exists (available space, media condition, etc.).

315

CHAPTER 13 ERROR MESSAGES

Object Converter Error Messages (cont’d)

Error No. Message Undefined symbol ‘symbol name’
F200 Cause There is a symbol with an unresolved address.
Program Processing | Set the value at 0, then output the symbol table and continue program execution.
User action Please define the value of this symbol. This symbol is referred to as an external
reference symbol, but when no external definition is provided, please define it externally
in the module defined by the symbol value.
Error No. | Message Out of address range
F201 Cause The load module file’s object address exceeds the limit.
Program Processing | Execution of the program continues as is.
User action Specify the output object area correctly.
Error No. Message xxxxH - yyyyH overlapped
W300 Cause The object is overlapping with respect to the addresses between xxxx and yyyy.

Program Processing

Output the object as is and continue processing.

User action

Using expansion space, etc., link and correct so that no object is output that is overlap-
ping with respect to the same address in the same address space.

316

CHAPTER 13 ERROR MESSAGES

13.4 Librarian Error Messages

(1) Error message for fatal file I/O errors
Format: FATAL I/0 ERROR
DEVICE : device name
FILE NAME: file name
ERROR : error message
PROGRAM ABORTED

Message

READ ERROR

Cause

Disk read error has occurred.

Program processing

Control is returned to OS.

User action Check disk status.
Message WRITE ERROR
Cause Write error has occurred on disk.

Program processing

Control is returned to OS.

User action Check disk status.
Message NO DIRECTORY EXIST
Cause There is insufficient directory area for recording files on disk.

Program processing

Control is returned to OS.

User action Use a new floppy disk.
Message END OF VOLUME
Cause There is insufficient directory area for writing files on disk.

Program processing

Control is returned to OS.

User action Increase disk area.
Message OPEN UNSUCCESSFUL
Cause Specify correct file name.

Program processing

Control is returned to OS.

User action Correct file name.
Message SELECT ERROR
Cause Nonexistent device name has been specified.

Program processing

Control is returned to OS.

User action

Specify correct device name.

317

CHAPTER 13 ERROR MESSAGES

(2) Error message for start command

Format: *** ERROR error number error message
PROGRAM ABORTED

Librarian’s Error Messages

Error No. | Message MISSING FILE SPECIFICATION
FO0O1 Cause Parameter file name has not been specified.
Program processing | Control is returned to OS.
User action Specify parameter file name and re-execute.
Error No. | Message ILLEGAL FILE SPECIFICATION - file name
F002 Cause File name is not correct.
Program processing | Control is returned to OS.
User action Specify correct file name and re-execute.
Error No. | Message FILE NOT FOUND - file name
F005 Cause Specified file does not exist.
Program processing | Control is returned to OS.
User action Specify correct file name and re-execute.
Error No. | Message ILLEGAL OR MISSING PARAMETER: parameter
F007 Cause Parameter has not been specified for control which requires parameter, or illegal
parameter has been specified.
Program processing | Control is returned to OS.
User action Specify correct parameter and re-execute.
Error No. | Message CONTROL IS NOT RECOGNIZED: string
F008 Cause lllegal string has been specified as control.
Program processing | Control is returned to OS.
User action Specify correct control and re-execute.
Error No. Message INVALID SYNTAX: X
F009 Cause Syntax error in start command.

Program processing

Control is returned to OS.

User action

Specify command file name and control correctly, then re-execute.

318

CHAPTER 13 ERROR MESSAGES

(38) Error messages in librarian processing

Format: *** ERROR error number error message

Librarian’s Error Messages

Error No. | Message INVALID COMMAND
W201 Cause Subcommand name is incorrect.
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-execute with correct subcommand.
Error No. Message INVALID SYNTAX
W202 Cause Subcommand parameter specification is incorrect.
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-execute with correct subcommand.
Error No. | Message FILE NOT FOUND
W203 Cause Specified file does not exist.
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-execute with correct subcommand.
Error No. Message MODULE NOT FOUND - file name (module name)
W204 Cause Specified file does not exist.
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-execute with correct subcommand.
Error No. Message NOT LIBRARY FILE - file name
W205 Cause File specified as library file is not library file.
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-execute with correct subcommand.
Error No. | Message NOT OBJECT FILE - file name
W206 Cause File specified as object module file is not object module file.
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-execute with correct subcommand.
Error No. | Message FILE ALREADY EXISTS - file name
w207 Cause File specified in CREATE command already exists.
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-execute with correct subcommand.
Error No. Message MODULE ALREADY EXISTS - file name (module name)
W208 Cause In output library file, the module of which name is same as that in input file exists.
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-execute with correct subcommand.
Error No. Message PARAMETER OVER
W209 Cause Too many parameters
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-execute with correct subcommand.
Error No. Message PUBLIC SYMBOL symbol name IN file name (module name)
w210 Cause External definition symbol defined in module in file specified in ADD or REPLACE

subcommand already exists in output library file.

Program processing

Program ignores this subcommand and waits for input of next subcommand.

User action

Re-execute with correct subcommand.

319

CHAPTER 13 ERROR MESSAGES

Librarian’s Error Messages (cont’d)

Error No. | Message MISSING FILE SPECIFICATION
w211 Cause There is no file name specification in subcommand parameter.
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-execute with correct subcommand.
Error No. | Message ILLEGAL FILE SPECIFICATION - file name
w212 Cause Illegal file name has been specified in subcommand parameter.
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-execute with correct subcommand.
Error No. | Message FILE SPECIFICATION CONFLICTED - file name
w213 Cause Input file name and output file name specified by subcommand parameter do not
match.
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-execute with correct subcommand .
Error No. Message ILLEGAL FILE - file name
w214 Cause File specified by subcommand parameter is not object module file, load module file or
library file or, write-protected file has been specified as output file.
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-execute with correct subcommand.
Error No. | Message CHECK SUM ERROR - file name
w215 Cause Check sum error in file.
Program processing | Program ignores this subcommand and waits for input of next subcommand.
User action Re-create file in which checksum error occurred , then re-execute.
Error No. | Message EXIT SUBCOMMAND NOT FOUND - file name
w216 Cause There is no EXIT subcommand in parameter file specified at start time.
Program processing | Processing is performed assuming presence of EXIT subcommand at end of parameter
file (control is returned to OS).
User action Insert EXIT subcommand in parameter file.
Error No. | Message WORKING TABLE SPACE EXHAUSTED
A901 Cause Work area (memory) is insufficient.
Program processing | Control is returned to OS.
User action Increase memory.
Error No. Message INVALID FILE SYNTAX - file name
A902 Cause File format is incorrect.
Program processing | Control is returned to OS.
User action Re-execute with correct subcommand.
Error No. | Message PROGRAM ERROR: error code
A999 Cause Program bug has been detected.
Program processing | Control is returned to OS.
User action Inform NEC of program name, version and error code.

320

CHAPTER 13 ERROR MESSAGES

13.5 List Converter Error Messages

Message -I <L file> -a<A file> [-0<O file>]
L: Linker output file
A: Assembler output file
O: Output file name
Cause Start command option name is incorrect.

Program processing

Execution is halted and control is returned to OS.

User action Check option name and start again.
Message File name file open error
Cause <1> Input file has not been found.

<2> There is a space between the option and file name.

Program processing

Execution is halted and control is returned to OS.

User action <1> Check the input file name. With the -L output, the file type must also be specified. With the -A
option, check that there is both *.REL’ and ‘*.PRN’.
<2> Start again with no space between option and file name.
Message Error #n (n = 20 to 27, 35, 36, 40 to 47) program aborted
Cause Error in input load module file or input object module file.

Program processing

Execution is halted and control is returned to OS.

User action Check the input file name. If there is no error, the file is damaged and must be created again with the
linker or assembler.

Message Error #30 program aborted

Cause Error in input assembly list file.

Program processing

Execution is halted and control is returned to OS.

User action Check the input file name. If there is no error, the file is damaged and must be created again with the
assembler.

Message Error #37 program aborted

Cause <1> Error in input assembly list.

<2> ORG pseudo-instruction is not written in upper-case characters starting at column 9 in the sourcg
module.

<3> There is not ORG pseudo-instruction or CSEG pseudo-instruction in first segment of source
module.

Program processing

Execution is halted and control is returned to OS.

User action

Check the input file name. Write the ORG pseudo-instruction in upper-case characters starting at
column 9 in the source module. Write an ORG pseudo-instruction or CSEG pseudo-instruction at the
start of the first segment of the source module.

321

CHAPTER 13 ERROR MESSAGES

13.6 Library Converter Error Messages

Error No. Message lllegal input file
A001 Cause The input file contents are incorrect.
Program Processing | Program execution is halted.
User Action Specify the correct input file.
Error No. | Message Memory allocation failed
A002 Cause Allocation of memory blocks failed.

Program Processing

Program execution is halted.

User Action

Check the installed memory capacity or check if there are any resident programs
running.

322

APPENDIX A. LIST OF OPTIONS

Options for each of the programs in the assembler package are shown here in tabular form. Please refer to these
when carrying out program development.

323

APPENDIX A. LIST OF OPTIONS

A.1 List of Assembler Options

No. Description Format Function/Category Default Interpretation Pages
1 | -C product Specification of assembler Cannot be omitted p.82
target product
2 | -M mode 75XL Series CPU mode switching Cannot be specified when a 75XL p.86
Cannot be omitted when a 75XL Series devices is used.
Series devices is used.
3 | -Offile name] Object module file specification ‘Input file name.REL’ is created on p.88
-NO the current path.
4 |-J Object module file forced output -NJ p.100
-NJ specification
5 |-G Specification of output to the object | -G p.101
-NG module of symbol information for
debugging
6 |-GA Specifies output of source debugging| -GA p.94
-NGA information object module files.
7 | -P[file name] Assembly list file specification ‘Input file name.PRN’ is created on p.95
-NP the current path.
8 | -E[file name] Error list file specification -NE p.97
-NE
9 |-KS Symbol table list output specification | -NKS p.98
-NKS
10 | -KX Cross-reference list output -NKX p.100
-NKX specification
11 | -CA Specifies distinguishing between -NCA p.102
-NCA upper/lower case letters.
-CA: Do not distinguish between
upper/lower case letters.
-NCA: Distinguish between upper/
lower case letters.
12 |-S Sets the symbol name length -S p.103
-NS -S: Sets a maximum of 31 characters,
-NS: Sets a maximum of 8 characters.
13 | -D symbol Name Sets the symbol definition None p.104
[= numerical value]
[,symbol Name
[= numerical value]
-ND symbol Name
14 | -LL[number of lines] Number of lines and columns per -LL66 p.105
-LW[number of columns page of assembly list file -LW132
15 | -LT[number of characters] Specification of number of TAB ex- -LT8 p.111
pansion columns in assembly list file
16 | -KA Assembly list output specification -KA p.112
-NKA
17 | -1 path name Include file search path specification | Searching is executed on the path p.113
[, path name...] specified by the INCLUDE’ control
command, the path of the source
module file and the path specified by
environmental variable ‘INC75X.’
18 | -F file name Parameter file specification All operation and file names are p.115
read from command line
19 | -Y path name Specifies the device file search path. | It searches in the sequence of the p.117
‘.. \DEV’ path with respect to the
RA75X starting path, the RA75X
starting path, the current directory,
and the path set in the environment
variable ‘PATH.

324

APPENDIX A. LIST OF OPTIONS

A.2 List of Linker Options

No. Description Format Function/Category Default Interpretation Pages
1 -M[module name] Output module name specification Object module name of first file input p.146
2 | -P [file name] Link list file specification First input ‘input file.MAP’ is output p.148

-NP to current path
3 | -KM Map list output specification -KM p.149
-NKM
4 | -KP Local symbol list output specification | -KP p.153
-NKP
5 | -KL Specification of the local symbol list | -KL p.156
-NKL
6 | -CD (segment name Code segment relocation address Automatically located by linker p.159
[‘address] [,...]) location order specification (multiple
specifications possible)
7 | -RS (start address, end Code segment allocation prohibited ROM area not incorporated in p.162
address], ..., ...]) area specification (multiple target device
specifications possible)
8 |-SQ Segment location order specification | -RN p.165
-RN
9 | -SK address Sets stack address in assembler Set automatically by linker p.168
reserved word ‘STACK’

10 | -SZ[(] size Stack size change specification None p.171
11 | -NTB Specifies suppression of automatic Created automatically p.172

branch table creation

12 | -Offile name] Load module file specification The initially input ‘Input file.LNK’ is p.174

-NO output to the current path.
13 | -J Load module file forced output -NJ p.176
-NJ specification

14 | -F file name Parameter file specification All options and file name are read p.178

from command line

15 | -Y path name Specifies the device file search path. | Searching is executed on the p.180

*.\DEV’ path, the LK75X run path,
the current directory, and the
environmental variable ‘PATH,” in
that order, for the LK75X run path.

325

APPENDIX A. LIST OF OPTIONS

A.3 List of Object Converter Options

No. Description Format Function/Category Default Interpretation Pages
1 -Sl[file name] Symbol table file specification ‘input file name .SYM’ is created in p.192
-NS current path
2 |-R Specifies the HEX format object -NR p.194
-NR output sequence.
3 | -Ufill value Mask ROM ordering object output None p.195
specification
4 | -Offile name] HEX format object module file ‘Input file name.HEX’ is created in p.197
specification current path.
5 | -E[file name] Specifies the error list file. -NE p.198
-NE
6 | -F file name Specifies the parameter file. Reads all the options and file names p.199
from the command line.
7 | -Y path name Specifies the device file search path. | It searches in the sequence of the p.200
‘.. \DEV’ path with respect to the
RA75X starting path, the OC75X
starting path, the current directory,
and the path set in the environment
variable ‘PATH.
A.4 List of Librarian Subcommands
No. Description Function Abbreviated Format | Pages
1 | CREATE library file name Library file creation C p.211
2 | ADD object module file name Module recording A p.213
library file name
[(object module name[, ...])]
[, ...] TO update library file name
3 | DELETE library file name Module deletion D p.216
(object module name [, ...])
4 | REPLACE object module file name Module replacement R p.219
library file name
[(object module namef[, ...])]
FROM update library file name
5 | LIST library file nane Library information output L p.230
[(object module name [, ...])]
[. ...][TO list file name][PUBLICS]
6 | EXIT Librarian termination E p.233

326

APPENDIX A. LIST OF OPTIONS

A.5 List of Converter Options

No. Description Format Function/Category Default Interpretation Pages
1 -L file name Input load module file name Input assembly list file name.LNK p.245
specification.
2 | -O file name Output absolute assembly list file Input assembly list file primary p.247
name specification. name .P
3 | -R [file name] Input object module file name Input assembly list file primary p.249
specification name .REL
4 | -E [file name] Error list file specification -NE p.250
-NE
5 | -F file name Parameter file specification All option and filename are read p.251
from command line
A.6 List of Librarian Converter Options
No. Description Format Function/Category Default Interpretation Pages
1 -0 [file name] Librarian converter output librarian ‘input file name,CNV’ is created in p.258
file specification current path

327

[MEMO]

328

APPENDIX B. MAXIMUM CAPABILITIES

The maximum capabilities of the assembler package are shown for the next after:

e Source statement length

e Number of symbols that can be written

* Number of segments that can be written

* Number of branch tables that can be created

329

APPENDIX B. MAXIMUM CAPABILITIES

(1) Source statement length

Program Name Maximum Capability

Assembler 220 characters (including Cr and Lr)

(2) Number of symbols that can be written

Program Name Maximum Capability
Assembler * In assembly Approx. 3,000
Linker ¢ Local symbols No limit
e External definition (PUBLIC) approx. 3,000/all modules
* External reference (EXTRN) symbols Approx. 500/module

(3) Number of segments that can be written

Program Name Maximum Capability

Assembler Total of approximately 120 for (a) to (c) below per module:
(a) Number of segment definition pseudo-instructions

(b) Number of ORG pseudo-instructions

(c) 2 x Number of VENT pseudo-instructions

Linker Total of approximately 250 for (a) to (d) below for all modules:
(a) 2 x Number of input modules

(b) Number of segments

(c) Number of ORG pseudo-instructions

(d) 2 x Number of VENT pseudo-instructions

(4) Number nch table that can be treated

Program Name Maximum Capability
Linker Approx. 1,000
(5) Other
Program Name Maximum Capability
Assembler * Number of local symbols in 1 macro 100 (including temporary parameters)
* Nest level Approx. 64Kbytes
* Macro body area size 32 Levels
¢ macro instructions $IF instruction, $SWITCH instructions, $INCLUDE instruction)
* Number of repetitions of a repeating macro 1023 times

330

APPENDIX C. POINT FOR ATTENTION

Points requiring attention when using the assembler package are shown here.

No. Point for Attention Remedy/Action Reference

1 Caution on memory bit operations: If mem.bit object code is to be generated, Language Volume
mem.bit object code is generated even if a reserved word must be specified in the 3.5 Operand
immediate data in the range OFBOH.O to ranges shown on the left. Characteristics
OFBFH.3 or OFFOH.0 to OFFFH.3 is
specified.

2 Caution on segments with same name: Do not write modules with the same name Language Volume 4.2
If segment with the same name are written | in one source module when using the list Segment Definition
in one source module, the list converter converter. Pseudo-Instructions
may not function correctly.

3 Caution on source program description: The following rules should be followed: Language Volume
If the assembly list of a source program <1> Write VENTn and ORG pseudo- Chapter 4. Pseudo-
which does not follow the rules shown on instructions in upper-case characters Instructions
the right is input, the list converter may starting at column 9 in the source
abort due to an error with the result that program.
list is not converted correctly. <2> Do not use a NOLIST control instruc-

tion.

<3> Do not use segments with the same
name in the same module.

<4> Be sure to write a segment definition
pseudo-instruction before writing an
instruction which generates object code.

4 Restriction on input files: Check that the following files are error-

All files input to the list converter must be
free of errors.

free:

Assembly list file (.PRN)
Object module file (.REL)
Load module file (.LNK)

331

APPENDIX C. POINT FOR ATTENTION

No.

Point for Attention

Remedy/Action

Reference

Cautions on input file name to be used
with debugger:

For input file to be used with debugger in-
circuit emulator., a file name is created as
a module name in the process of assem-
bly. Therefore, if the first letter of the file
name is written in number, an error results
on debugger side upon loading.

<1> The first letter of the file name should
be written in letters other than numeric.

<2> Change existing file name with ‘name
pseudo-instruction.

)

Bug concerning BRCB instruction:

<1> When jump destination address of
BRCB instruction is BLOCK external
reference as ‘number of label-constant’,
output is not performed in branch table
map address ascending order.

<2> When jump destination address of
BRCB instruction is BLOCK external
reference in the form of ‘label-constant’
and there is a BRCB instruction of
different description format at the same
jump destination address in the same
block, an extra branch table is created.

Caution when using byte separation

operators (HIGH, LOW):
If the item is a relocatable item or an
external reference item, nesting cannot
be done. However, if used in combina-
tion with the BRCB, EQU and SET
commands, absolute items only can be
used.

Language Volume

Table 3-10 Combination
of items and operators
(except external refer-
ence items) according to
relocation attributes.
Table 3-11 Combination
of items and operators
(external reference
items) according to
relocation attributes.

Cautions concerning library converter
options:
Object modules included in library files
converted by the Library Converter
cannot be debugged.

Chapter 9 Library
Converter

Cautions concerning the assembler

options:
|IE-75000-R and IE-75001-R do not
respond to source debugging. Also,
there is no distinguishing between upper
case and lower case letters in symbol
names. Only symbol names with
lengths of 8 characters will be recog-
nized.

Set options as shown below
.~ NGA, -CA -NS

4.4.4
(6) -GA/-NGA
(11) -CA/-NCA
(12) -S/-NS

332

APPENDIX D. SAMPLE PROGRAMS

This chapter describes some of sample lists of programs etc., that are used in assembler package.

333

APPENDIX D. SAMPLE PROGRAMS

D.1 Source Lists

(1) 75XTEST1.ASM

$ TITLE="A-D CONVERT’

;** A-D CONVERT PROGRAM i

kK

334

LOOP1:

LOOP2:

NAME AD_MAIN

EXTRN CODE(SIOSUB,ADVONC)
PUBLIC TDATA, SEL15

STKLN 10

VENT MBE=1, RBE=1, MAIN

VENT 4 MBE=1, RBE=0, ADCONV
DESG 1 AT 10H

DS 2

GET1 TABLE e

CSEG IENT

SEL MB15

MAIN ROUTINE e

CSEG INBLOCK

SEL RB1

GETI SEL15 ;STACK POINTER SET
MOV XA, #STACK ;

MOV SP, XA ;

MOV A, #0011B

MOV PCC, A ;PCC « 0011B

DATA RAM 0OH-13FH ZERO CLEAR **

SEL
MOV
MOV
MOV
DECS
BR
SEL
MOV
DECS
BR

MB1

HL, #3FH

XA, #00

@HL, A ;100H-13FH
HL

LOOP1

MBO

@HL, A ;OH-FFH
HL

LOOP2

APPENDIX D. SAMPLE PROGRAMS

kK

LOOPS:

LOOP4:

kkk
)

SEG3

HEIKIN:
LOOPS:

TIMER SET (SAMPLING TIME = 30MSEC, FXX=4.19MHz) **

GETI
MOV
MOV
MOV
MOV
El

El
SEL
MOV
MOV
SKE
BR
CALL
MOV
CALL
BR

HEIKIN
CSEG
MOV
XCH
CLR1
RORC
XCH
RORC
DECS
BR
RET

END

SEL15 ;SEL

XA, #79H
TMODO, XA
XA, #01001100B
TMO, XA

IETO

MB1

XA, #0H
B, #00H

B, #08H
LOOP4
'HEIKIN
TDATA, XA
ISIOSUB
LOOP3

(SAMPLE NUMBERS = 8)

SENT
C, #2H
A X
CcYy

A

A X

A

C
LOOP5

MB15

*kk

335

APPENDIX D. SAMPLE PROGRAMS

(2) 75XTEST2.ASM

$ TITLE="A-D CONVERT’

;** A-D CONVERT PROGRAM e

NAME AD_SUB

EXTRN DATA(TDATA), CODE (SEL15)
PUBLIC SIOSUB, ADCONV

STKLN 2

SIO SUB-ROUTINE ~ ***

SEG4 CSEG SENT

SIOSUB: PUSH BS

SEL RB2
SEL MB1
MOV XA, TDATA
GETI SEL15 ;SEL MB15
MOV SIO, XA
MOV XA, #11101110B
MOV SIOM, XA ;CLOCK=262kHz, MSB
POP BS
RET
M ANALOG INPUT (RBE=0) ***

SEG5 CSEG SENT
ADCONV: PUSH BS

GETI SEL15 ;SEL MB15

MOV HL, #0D3H

MOV XA, #0COH

MOV BSBO, A ;BSBO « OH
LOOP: SET1 BSBO.@L

MOV A, BSBO

MOV PTHM, XA ;COMP. START

MOV A, #0AH ;18 MACHINE
WAIT: INCS A ;CIRCLE WAIT

BR WAIT

MOV1 CY, #H+PTHO0.0
MOV1 BSBO.@L, CY

DECS L

BR LOOP

MOV X, #0H

MOV A, BSBO

ADDS XA’, XA ;ADD DATA

SET1 RBE

POP BS

INCS B ;SAMPLE COUNT INC.
RETI

END

336

APPENDIX D. SAMPLE PROGRAMS

D.2 Execution Examples

A\NECTOOLS\SMP75X\RA75X>RA75X 75XTEST1.ASM -C106 -KS -KX
75X Series Assembler VX. XX [XX Xxx XX]
Copyright (C) NEC Corporatton 1985, XXXX

ASSEMBLY START

TARGET CHIP : UPD75106
STACK SIZE = 000AH

ASSEMBLY COMPLETE, NO ERROR FOUND

AANECTOOLS\SMP75X\RA75X>RA75X 75XTEST2.ASM -C106 -KS -KX
75X Series Assembler VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985, XXXX

ASSEMBLY START

TARGET CHIP = UPD75106
STACK SIZE = 000AH

ASSEMBLY COMPLETE, NO ERROR FOUND

A\NECTOOLS\SMP75X\RA75X>LK75X 75XTEST1. REL 75XTEST2. REL -075XTEST. LNK
75X Series Linker VX.XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985

LINK COMPLETE, NO ERROR FOUND

A\NECTOOLS\SMP75X\RA75X>0C75X 75XTEST. LNK
75X Series Object Converter VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1985, XXXX

Object Conversion Complete, 0 error(s) and 0 warning(s) found

337

APPENDIX D. SAMPLE PROGRAMS

AANECTOOLS\SMP75X\RA75X>LB75X
75X Series Librarian VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1984, XXXX

*CREATE 75XTEST.LIB

*ADD 75XTEST1.REL, 75XTEST2.REL TO 75XTEST.LIB
*LIST 75XTEST.LIB TO 75XTEST.LST PUBLICS

*EXIT

A\NECTOOLS\SMP75X\RA75X>LCNV75X -L75XTEST.LNK -A75XTEST1

List Conversion Program for RA75X VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1986, 1997

pass 1:start ..o
pass 2: start ...
Conversion complete

A\NECTOOLS\SMP75X\RA75X>LCNV75X -L75XTEST.LNK 75XTEST2

List Conversion Program for RA75X VX. XX [XX Xxx XX]
Copyright (C) NEC Corporation 1986, 1997

pass 1:start ..o
pass 2: startocccoeeeiiinns
Conversion complete

338

APPENDIX D. SAMPLE PROGRAMS

D.3 Output List
(1) Assembly list
(a) 75XTEST1.ASM assembily list

(Output to 75XTEST1.PRN.)

75X SERIES ASSEMBLER VX.XX XX/XX/IXX XX:XX:XX PAGE: X
** A-D CONVERTER VX.XX **
COMMAND : 75XTEST1.ASM -C106 -KS -KX

STNO ADRS R OBJECT IC MAC SOURCE STATEMENT

1 $ TITLE='A-D CONVERTER VX.XX’
2 ;
3 A-D CONVERT PROGRAM
4 ;
5 NAME AD-MAIN
6 EXTRN CODE(ADCONV), CODE (SIOSUB)
7 PUBLIC TDATA, SEL15
8 STKLN 10
9 0000 R C000 VENTO MBE=1, RBE=1, MAIN
10 0008 E 8000 VENT4 MBE=1, RBE=0, ADCONV
11
12 ---- SEGO DSEG 1 AT 10H
13 0110 TDATA: DS 2
14
15 GETI TABLE
16
17 ---- SEG1 CSEG IENT
18 0000 991F SEL15: SEL MB15
19
20 MAIN ROUTINE
21
22 ---- SEG2 CSEG INBLOCK
23 0000 9921 MAIN: SEL RB1
24
25 0002 R 00 GETI SEL15 ;STACK POINTER SET
26 0003 E 8900 MOV XA, #STACK :
27 0005 9280 MOV SP, XA ;
28
29 0007 73 MOV A, #0011B
30 0008 93B3 MOV PCC, A ;PCC « 0011B
31

339

340

APPENDIX D. SAMPLE PROGRAMS
32 o+ DATA RAM 0H-13FH ZERO CLEAR o
33
34 000A 9911 SEL MB1
35 000C 8B3F MOV HL, #3FH
36 000E 8900 MOV XA, #00H
37 0010 ES8 LOOP1: MOV @HL, A : 100H-13FH
38 0011 AAGA DECS HL
39 0013 FC BR LOOP1
40 0014 9910 SEL MBO
41 0016 ES8 LOOP2: MOV @HL, A :OH-FFH
42 0017 AABA DECS HL
43 0019 FC BR LOOP2
44
45 o TIMER SET(SAMPLING TIME = 30MSEC, FXX=4.19MHZ) **
46
47 001A R 00 GETI SEL15 'SEL MB15
48 001B 8979 MOV XA, #79H
49 001D 92A6 MOV TMODO, XA
50 001F 894C MOV XA, #01001100B
51 0021 92A0 MOV TMO, XA

APPENDIX D. SAMPLE PROGRAMS

75X SERIES ASSEMBLER VX.XX

** A-D CONVERTER VX.XX

STNO ADRS R OBJECT

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

0023 9DB2
0025 9D9C
0027 9911
0029 8900
002B 9AOF
002D 9A87
002F FD
0030 R AB4000
0033 9210
0035 E AB4000
0038 FO
0000 9A2E
0002 D9
0003 EG6
0004 98
0005 D9
0006 98
0007 CE
0008 F9
0009 EE

IC MAC

LOOP3:

LOOP4:

SEG3
HEIKIN:
LOOPS5:

El
El

SEL
MOV
MOV
SKE
BR
CALL
MOV
CALL
BR

HEIKIN

CSEG
MOV
XCH
CLR1
RORC
XCH
RORC
DECS
BR
RET

END

XX/XXIXX XX:XX: XX PAGE :

*k

SOURCE STATEMENT

IETO

MB1

XA, #00H
B, #0H

B, #08H
LOOP4
IHEIKIN
TDATA, XA
ISIOSUB
LOOP3

(SAMPLE NUMBERS = 8)

SENT
C, #2H
A X
CcYy

A

A X

A

C
LOOP5

341

APPENDIX D.

SAMPLE PROGRAMS

(b) 75XTEST2.ASM assembly list

(Output to 75XTEST2.PRN)

COMMAND

0 NOoO O~ W N =

— —_
N = O ©

0000
0002
0004

—_
0 N O o~ W

0009
000B
000D
000F
0011

DN NN NN DN =
oo o~ WN =2 O ©

0000

[\S I \S I \V]
© o N

0003
0005
0007
0009
000B
000D
000F
0010

W W W W wwow
o0k~ WN =2 O

342

75X SERIES ASSEMBLER VX.XX

** A-D CONVERT VX.XXSUB)

XX/XX/IXX XX:XX:XX PAGE: X

*%

: 75XTEST2.ASM -C106 -KS -KX

STNO ADRS R OBJECT

9907
9922
9911

0006 E A200
0008 E 00

92E4

89EE
92E0
9906

EE

9907

0002 E 00

8BD3
89C0
93C0
9D40
A3CO
92D6
7A

Co

IC MAC

SOURCE STATEMENT
$ TITLE=’A-D CONVERTER VX.XX(SUB)’
e A-D CONVERT PROGRAM e

SEG4
SIOSUB:

SEG5
ADCONV:

LOOFP:

WAIT:

NAME AD-SUB

EXTRN CODE(SEL15)
EXTRN DATA(TDATA)
PUBLIC SIOSUB, ADCONV
STKLN 2

SIO SUB-ROUTINE ~ ***

CSEG SENT

PUSH BS

SEL RB2

SEL MB1

MOV XA, TDATA

GETI SEL15 ;SEL - MB15

MOV SIO, XA

MOV XA, #11101110B

MOV SIOM, XA ;CLOCK=262KHZ, MSB
POP BS

RET

ANALOG INPUT (RBE=0) e

CSEG SENT

PUSH BS

GETI SEL15 ;SEL MB15
MOV HL, #0D3H

MOV XA, #0COH

MOV BSBO, A ;BSBO « OH
SET1 BSBO.@L

MOV A, BSBO

MOV PTHM, XA ;COMP. START
MOV A, #0AH ;18 MACHINE
INCS A ;CIRCLE WAIT

APPENDIX D. SAMPLE PROGRAMS

37
38
39
40
41
42
43
44
45
46
47
48
49
50

0011

0012
0014
0016
0017
0018
001A
001C
001E
0020
0022
0023

FE
BDO4
9B40
CA
F1
9A09
A3CO0
AACT
9D80
9906
c7
EF

BR WAIT

MOV1 CY, @H+PTHO0.0
MOV1 BSBO. @L, CY
DECS L

BR LOOP

MOV X, #0H

MOV A, BSBO
ADDS XA’, XXA
SET1 RBE

POP BS

INCS B

RETI

END

;ADD DATA

;SAMPLE COUNT INC.

343

144>

75X SERIES ASSEMBLER VX.XX

** A-D CONVERTER VX.XX

SYMBOL TABLE LIST

OFFSET TYPE SYMBOL OFFSET TYPE
AD_MAIN = -------m- CODE EXT
0010H CODE LOOP1 0016H CODE
0002H CODE LOOP5 0000H CODE
OFBOH.0 PBIT RBE 0002H DATA PUB
000AH CODE PUB SEG3 0000H CODE PUB

............ STACK EXT STACK 0110H DATA PUB

TARGET CHIP: UPD75106
STACK SIZE = 000AH

ASSEMBLY COMPLETE, NO ERROR FOUND

SYMBOL

ADCONV
LOOP2
MAIN
SEGO
SEL15
DATA

*k

OFFSET TYPE

0000H
0029H
OFBOH.1
0002H

CODE
CODE
PBIT

SYMBOL

HEIKIN
LOOP3
MBE

CODE PUB SEGT
CODE EXT SIOSUB

DATA

TMO

XX/XX/XX XX:XX:XX PAGE : X

OFFSET TYPE SYMBOL
OFBCH.1 PBIT IETO
002DH CODE LOOP4
OFB3H DATA PCC
0039H CODE PUB SEG2
OF80H DATA SP
OFA6H DATA TMODO

(‘NYd’11S31XSZ 01 IndinQ)

1s1] e|qe} |joquiAs NSV LLSTLXS. (B)

1s1] 9|qe} joquiis (g)

SINVHO0Hd I1dINVS "A XIAN3IddV

Sve

75X SERIES ASSEMBLER VX.XX

** A-D CONVERTER VX.XX (SUB)

SYMBOL TABLE LIST

OFFSET

TYPE

SYMBOL

PTHO
PUB SEG5
PUB SIOSUB

XX/XX/XX XX:XX:XX PAGE : X

*k

OFFSET TYPE SYMBOL

0000H CODE PUB ADCONV
OFD6H DATA PTHM
------- CODE EXT SEL15
------- DATA EXT TDATA

OFFSET TYPE

OFCOH DATA
OFBOH.O0 PBIT

OFE4H DATA
0010H CODE

SYMBOL OFFSETTYPE

BSBO 0009H CODE

RBE 0012H CODE
SIO OFEOH DATA
WAIT

SYMBOL

LOOP
PUB SEG4
SIOM

(‘N"d'2LS3L1XSZ o1 IndinQ)

Is1] aiqe} joquihks WSV 2LSILXSL (9)

SINVHO0Hd 31dINVS "A XIAN3IddV

APPENDIX D. SAMPLE PROGRAMS

(3) Cross-reference lists

(a) 75XTEST1.ASM cross-reference list

(Output to 75XTEST1.PRN)

75X SERIES ASSEMBLER VX.XX

XX/XXIXX XX:XX: XX PAGE :

** A-D CONVERTER VX.XX

CROSS REFERENCE LIST

TARGET CHIP : UPD75106
STACK SIZE = 000AH

346

*k

SYMBOL TYPE VALUE ATTRIBUTES XREF LIST
AD_MAIN = === oo 1
ADCONV CODE = ------- EXT 6, 10
HEIKIN CODE 0000H R SEG = SEG3 60, #68
IETO PBIT OFBCH.1 53
LOOP1 CODE 0010H R SEG = SEG2 #37, 39
LOOP2 CODE 0016H R SEG = SEG2 #41, 43
LOOP3 CODE 0029H R SEG = SEG2 #56, 63
LOOP4 CODE 002DH R SEG = SEG2 #58, 59
LOOP5 CODE 0002H R SEG = SEG3 #69, 75
MAIN CODE 0000H R SEG = SEG2 9, #23
MBE PBIT OFBOH.1 9,10
PCC DATA OFB3H 30

RBE PBIT OFBOH.0 9,10
SEGO DATA 0002H PUB ABS #12
SEG1 CODE 0002H PUB REL = IENT #17
SEG2 CODE 0039H PUB REL = INBLOCK #22
SEG3 CODE 000AH PUB REL = SENT #67
SEL15 CODE 0000H R PUB SEG = SEGH1 7, #18, 25, 47
SIOSuUB CODE = ------ EXT 6, 62

SP DATA OF80H 27
STACK STACK = ------ EXT 26
TDATA DATA 0110H PUB ABS 7, #13, 61
TMO DATA OFAOH 51
TMODO DATA OFAGH 49

X

APPENDIX D. SAMPLE PROGRAMS

ASSEMBLY COMPLETE, NO ERROR FOUND
(b) 75XTEST2.ASM cross-reference list

(Output to 75XTEST2.PRN)

75X SERIES ASSEMBLER VX.XX

** A-D CONVERT VX.XX(SUB)

CROSS REFERENCE LIST

SYMBOL TYPE VALUE

AD_SUB ------ e

ADCONV CODE 0000H R PUB SEG = SEG5
BSBO DATA OFCOH

LOOP CODE 0009H R SEG = SEG6
PTHO DATA OFD4H

PTHM DATA OFD6H

RBE PBIT OFBOH.0

SEG4 CODE 0012H PUB REL = SENT
SEG5 CODE 0024H PUB REL = SENT
SEL15 CODE = ------ EXT

SIO DATA OFE4H

SIOM DATA OFEOH

SIOSuUB CODE 0000H R PUB SEG = SEG4
TDATA DATA ------- EXT

WAIT CODE 0010H R SEG = SEG5

TARGET CHIP : UPD75106
STACK SIZE = 0002H

ASSEMBLY COMPLETE, NO ERROR FOUND

XX/XX/IXX XX:XX: XX PAGE :

*%

ATTRIBUTES XREF LIST

1
8, #27

31, 32, 33, 39, 43
#32, 41

38

34

45

#12

#26

6,17, 28

18

20

8, #13

7,16

#36, 37

X

347

APPENDIX D. SAMPLE PROGRAMS

(4) Link list (linker control list, input/output module list, segment list, and symbol table list)

(Output to 75XTEST1.MAP)

MAP OF RAM AREA:

75X SERIES LINKER VX.XX XX/XX/XX XX XX:XX PAGE X
COMMAND : 75XTEST1.REL 75XTEST2.REL-075XTEST.LNK
INPUT MODULE LIST:
75XTEST1.REL (AD_MAIN)
75XTEST2.REL (AD_SUB)
LOAD MODULE LIST :
75XTEST.LNK (AD_MAIN)
SEGMENT LINK MAP FOR 75XTEST.LNK (AD_MAIN)
MAP OF ROM AREA :
BASE LENGTH MODULE NAME SEGMENT NAME (TYPE)
0000H 0002H AD_MAIN (ABSOLUTE)
0002H 0006H * GAP **
0008H 0002H AD_MAIN (ABSOLUTE)
000AH 0012H AD_SUB SEG4 (SENT)
001CH 0004H ** GAP **
0020H 0002H AD_MAIN SEGH1 (IENT)
0022H 0024H AD_SUB SEG5 (SENT)
0046H 000AH AD_MAIN SEG3 (SENT)
0050H 0039H AD_MAIN SEG2 (INBLOCK)
0089H 16F7H * GAP **

SEGMENT NAME

TYPE BASE LENGTH MODULE NAME
0000H O00F4H

STACK 00F4H 000CH AD_MAIN
0100H 0010H

DATA 0110H 0002H AD_MAIN

0112H 002EH

348

“* GAP **
SSEG
o GAP **
SEGO
= GAP **

APPENDIX D. SAMPLE PROGRAMS

PUBLIC SYMBOL LIST FOR 75XTEST.LNK

TYPE VALUE MODULE SYMBOL NAME

CODE 0022H AD_SUB ADCONV
DATA 0110H AD_MAIN SEGO
CODE 0020H AD_MAIN SEGH1
CODE 0050H AD_MAIN SEG2
CODE 0046H AD_MAIN SEG3
CODE 000AH AD_SUB SEG4
CODE 0022H AD_SUB SEG5
CODE 0020H AD_MAIN SEL15
CODE 000AH AD_SUB SIOSuB

349

APPENDIX D. SAMPLE PROGRAMS

75X SERIES LINKER VX.XX
SYMBOL LIST FOR 75XTEST.LNK
TYPE VALUE ATTRIBUTE
MODULE
CODE 0046H SYMBOL
PBIT OFBCH.1 SYMBOL
CODE 0060H SYMBOL
CODE 0066H SYMBOL
CODE 0079H SYMBOL
CODE 007DH SYMBOL
CODE 0048H SYMBOL
CODE 0050H SYMBOL
PBIT OFBOH.1 SYMBOL
DATA O0FB3H SYMBOL
PBIT OFBOH.0 SYMBOL
DATA 0110H PUBLIC
CODE 0020H PUBLIC
CODE 0050H PUBLIC
CODE 0046H PUBLIC
CODE 0020H PUBLIC
DATA OF80H SYMBOL
DATA 0110H PUBLIC
DATA OFAOH SYMBOL
DATA OFAGH SYMBOL
MODULE
CODE 0022H PUBLIC
DATA OFCOH SYMBOL
CODE 002BH SYMBOL
DATA OFD4H SYMBOL
DATA OFD6H SYMBOL
PBIT OFBOH.0 SYMBOL
CODE 000AH PUBLIC
CODE 0022H PUBLIC
DATA OFE4H SYMBOL
DATA OFEOH SYMBOL
CODE 000AH PUBLIC
CODE 0032H SYMBOL
LINK COMPLETE, NO ERROR FOUND

350

AD_MAIN
HEIKIN
IETO
LOOPH1
LOOP2
LOOP3
LOOP4
LOOP5
MAIN
MBE
PCC
RBE
SEGO
SEG1
SEG2
SEG3
SEL15
SP
TDATA
TMO
TMODO

AD_SUB
ADCONV
BSBO
LOOP
PTHO
PTHM
RBE
SEG4
SEG5
SIO
SIOM
SIOSuB
WAIT

XX/XX/IXX XX:XX: XX PAGE :

X

APPENDIX D. SAMPLE PROGRAMS

(5) HEX format object module file

(Output to 75XTEST1.HEX)

:02000000C0O50EE
:100008008022990799229911A2101092E489EE9200
:04001800E09906EE77
:10002000991F9907108BD389C093C09D40A3C0929C
:10003000D67ACOFEBD049B40CAF19A09A3C0AAC1EA
:100040009D809906C7EF9A2ED9E698D998CEF9EEF9
:10005000992110890092807393B399118B3F890085
:10006000EBAABAFC9910EBAABAFC10897992A68924
:100070004C92A09DB29D9C991189009A0F9A87FFD80
:09008000AB40469210AB400AFOBF

:00000001FF

351

APPENDIX D. SAMPLE PROGRAMS

(6) Symbol table file

(Output to 75XTEST.SYM)

#04

;FF AD_MAIN
020110SEGO
010020SEGH
010050SEG2
010046SEG3
010020SEL15
030100STACK
020110TDATA
<010046HEIKIN
083EF1IETO
010060LOOP1
010066LOOP2
010079LOOP3
01007DLOOP4
010048LOOP5
010050MAIN
083EC1MBE
020FB3PCC
083CORBE
020F80SP
020FAO0TMO
020FA6TMODO
;FF AD_SUB
010022ADCONV
01000ASEG4
010022SEG5
01000ASIOSUB
<020FCOBSBO
0100SBLOOP
020FD4PTHO
020FD6PTHM
083ECORBE
020FE4SIO
020FEOSIOM
010032WAIT

352

APPENDIX D. SAMPLE PROGRAMS

(7) Library file information list

(Output to 75XTEST.LST)

75X Series Librarian VX.XX DATE() PAGE : X

LIB-FILE NAME : 75XTEST.LIB ()

1 AD_MAIN ()
UPDATA: 0O RA75X VX.XX UPD75106

SEGO
SEGH1
SEG2
SEG3
SEL15
TDATA

NUMBER OF PUBLIC SYMBOLS : 6

2 AD_SUB ()
UPDATE: O© RA75X VX.XX UPD75106

ADCONV
SEG4
SEG5
SIOSuUB

NUMBER OF PUBLIC SYMBOLS : 4

NUMBER OF MODULES : 2

353

APPENDIX D. SAMPLE PROGRAMS

(8) Absolute assembly list

(a) 75XTEST1.PRN absolute assembly list

(Output to 75XTEST1.P)

75X SERIES ASSEMBLER VX.XX XX/XXIXX XX:XX: XX PAGE : X
** A-D CONVERTER VX.XX **
COMMAND : 75XTEST1.ASM -C106 -KS -KX
STNO ADRS R OBJECT IC MAC SOURCE STATEMENT
1 $ TITLE='A-D CONVERTER VX.XX’
2 ;
3 A-D CONVERT PROGRAM
4 ;
5 NAME AD-MAIN
6 EXTRN CODE(ADCONV), CODE (SIOSUB)
7 PUBLIC TDATA, SEL15
8 STKLN 10
9 0000 R C000 VENTO MBE=1, RBE=1, MAIN
10 0008 E 8000 VENT4 MBE=1, RBE=0, ADCONV
11
12 ---- SEGO DSEG 1 AT 10H
13 0110 TDATA: DS 2
14
15 GETI TABLE
16
17 ---- SEGH1 CSEG IENT
18 0020 991F SEL15: SEL MB15
19
20 MAIN ROUTINE
21
22 ---- SEG2 CSEG INBLOCK
23 0050 9921 MAIN: SEL RB1
24
25 0052 R 10 GETI SEL15 ;STACK POINTER SET
26 0053 E 8900 MOV XA, #STACK ;
27 0055 9280 MOV SP, XA ;
28
29 0057 73 MOV A, #0011B
30 0058 93B3 MOV PCC, A ;PCC « 0011B
31
32 7 DATA RAM OH-13FH ZERO CLEAR o
33
34 005A 9911 SEL MB1

354

APPENDIX D. SAMPLE PROGRAMS
35 005C 8B3F MOV HL, #3FH
36 005E 8900 MOV XA, #00H
37 0060 ES8 LOOP1: MOV @HL, A : 100H-13FH
38 0061 AAGA DECS HL
39 0063 FC BR LOOP1
40 0064 9910 SEL MBO
41 0066 ES LOOP2: MOV @HL, A ;OH-FFH
42 0067 AABA DECS HL
43 0069 FC BR LOOP2
44
45 o+ TIMER SET(SAMPLING TIME = 30MSEC, FXX=4.19MHZ) **
46
47 006A R 00 GETI SEL15 'SEL MB15
48 006B 8979 MOV XA, #79H
49 006D 92A6 MOV TMODO, XA
50 006F 894C MOV XA, #01001100B
51 0071 92A0 MOV TMO, XA

355

APPENDIX D. SAMPLE PROGRAMS

75X SERIES ASSEMBLER VX.XX

** A-D CONVERTER VX.XX

STNO ADRS R OBJECT

52 0073 9DB2
53 0075 9D9C
54

55 0077 9911
56 0079 8900
57 007B 9AOF
58 007D 9A87
59 007F FD

60 0080 R AB4046
61 0083 9210
62 0085 E AB400A

63 0088 FO
64

65

66

67 ----

68 0046 9A2E
69 0048 D9
70 0049 EG6
71 004A 98
72 004B D9
73 004C 98
74 004D CE
75 004E F9
76 004F EE
77

78

356

IC MAC

XX/XX/IXX XX:XX:XX PAGE :

*k

SOURCE STATEMENT

LOOPS:

LOOP4:

SEG3
HEIKIN:
LOOPS5:

El
El

SEL
MOV
MOV
SKE
BR
CALL
MOV
CALL
BR

HEIKIN

CSEG
MOV
XCH
CLR1
RORC
XCH
RORC
DECS
BR
RET

END

IETO

MBH1

XA, #00H
B, #0H

B, #08H
LOOP4
IHEIKIN
TDATA, XA
ISIOSUB
LOOP3

(SAMPLE NUMBERS = 8)

SENT
C, #2H
A X
CcY

A

A X

A

C
LOOP5

LS€

75X SERIES ASSEMBLER VX.XX

** A-D CONVERTER VX.XX

SYMBOL TABLE LIST

OFFSET TYPE SYMBOL
AD_MAIN
0010H CODE LOOP1
0002H CODE LOOP5
OFBOH.0 PBIT RBE

000AH CODE PUB SEG3
............ STACK EXT STACK

XX/XX/XX XX:XX:XX PAGE : X

*k

OFFSET TYPE SYMBOL OFFSET TYPE SYMBOL
--------- CODE EXT ADCONV 0000H CODE HEIKIN
0016H CODE LOOP2 0029H CODE LOOP3
0000H CODE MAIN OFBOH.1 PBIT MBE
0002H DATA PUB SEGO 0002H CODE PUB SEGH1
0000H CODE PUB SEL15 ------- CODE EXT SIOSUB
0110H DATA PUB TDATA OFAOH DATA TMO

OFFSET TYPE SYMBOL
OFBCH.1 PBIT IETO
002DH CODE LOOP4
OFB3H DATA PCC
0039H CODE PUB SEG2
OF80H DATA SP
OFA6H DATA TMODO

SINVHO0Hd 31dINVS "A XIAN3IddV

APPENDIX D. SAMPLE PROGRAMS

** A-D CONVERTER VX.XX

CROSS REFERENCE LIST

TARGET CHIP : UPD75106
STACK SIZE = 000AH

358

75X SERIES ASSEMBLER VX.XX

SYMBOL TYPE VALUE
AD_MAIN —oceoe oo
ADCONV ~CODE -
HEIKIN CODE 0000H R
IETO PBIT OFBCH.1
LOOPH CODE 0010H R
LOOP2 CODE 0016H R
LOOP3 CODE 0029H R
LOOP4 CODE 002DH R
LOOP5 CODE 0002H R
MAIN CODE 0000H R
MBE PBIT OFBOH.1
PCC DATA OFB3H
RBE PBIT OFBOH.0
SEGO DATA 0002H
SEG1 CODE 0002H
SEG2 CODE 0039H
SEG3 CODE 000AH
SEL15 CODE 0000H R
SIOSUB CODE -
sP DATA OF80H
STACK STACK -
TDATA DATA 0110H
TMO DATA OFAOH
TMODO DATA OFA6H

ASSEMBLY COMPLETE, NO ERROR FOUND

XX/XX/IXX XX:XX: XX PAGE : X

EXT
SEG = SEG3

SEG = SEG2
SEG = SEG2
SEG = SEG2
SEG = SEG2
SEG = SEG3
SEG = SEG2

PUB ABS

PUB REL = IENT
PUB REL = INBLOCK
PUB REL = SENT
PUB SEG = SEGH1
EXT

EXT
PUB ABS

*%

ATTRIBUTES XREF LIST

1
6, 10

60, #68
53

#37, 39
#41, 43
#56, 63
#58, 59
#69, 75
9, #23
9,10

30

9,10
#12

#17

#22

#67

7, #18, 25, 47
6, 62

27

26

7, #13, 61
51

49

APPENDIX D. SAMPLE PROGRAMS

(b) 75XTEST2.PRN absolute assembly list

(Output to 75XTEST2.P)

75X SERIES ASSEMBLER VX.XX

COMMAND

STNO ADRS R OBJECT IC MAC

0 NOO O~ WD =

— —
N = O ©

000A 9907
000C 9922
000E 9911
0010 E A210
0012 E 10

0013 92E4
0015 89EE
0017 92EO
0019 9906
001B EE

NS T LS T L T A T (N T | T A O O N e
O~ ODN =20 O© 0N O~ W

0022 9907
0024 E 10
0025 8BD3
0027 89CO0
0029 93C0
002B 9D40
002D A3CO
002F 92D6
0031 7A
0032 CO
0033 FE

W W W WwwowowwNhNDNdDN
NOoO o, ODN=2 0O O 00N

** A-D CONVERT VX.XX (SUB)

XX/XX/IXX XX:XX:XX PAGE: X

*%

: 75XTEST2.ASM -C106 -KS -KX

SOURCE STATEMENT

$ TITLE="A-D CONVERTER VX.XX(SUBY’
A-D CONVERT PROGRAM
NAME AD-SUB
EXTRN CODE(SEL15)
EXTRN DATA(TDATA)
PUBLIC SIOSUB, ADCONV
STKLN 2
SIO SUB-ROUTINE ~ ***
SEG4 CSEG SENT
SIOSUB: PUSH BS
SEL RB2
SEL MB1
MOV XA, TDATA
GETI SEL15 SEL MB15
MOV SIO, XA
MOV XA, #11101110B
MOV SIOM, XA ;CLOCK=262KHZ, MSB
POP BS
RET
ANALOG INPUT (RBE=0)
SEG5 CSEG SENT
ADCONV: PUSH BS
GETI SEL15 SEL MB15
MOV HL, #0D3H
MOV XA, #0COH
MOV BSBO, A ;BSBO « OH
LOOP: SETH BSBO.@L
MOV A, BSBO
MOV PTHM, XA ;COMP. START
MOV A, #0AH :18 MACHINE
WAIT: INCS A :CIRCLE WAIT
BR WAIT

359

APPENDIX D. SAMPLE PROGRAMS

360

38
39
40
41
42
43
44
45
46
47
48
49
50

0034
0036
0038
0039
003A
003C
003E
0040
0042
0044
0045

BDO4
9B40
CA
F1
9A09
A3CO0
AACT
9D80
9906
c7
EF

MOV1
MOV1
DECS
BR
MOV
MOV
ADDS
SET1
POP
INCS
RETI

END

CY, @H+PTHO0,0

BSBO, @L, CY

L

LOOP

X, #0H

A, BSBO

XA’, XXA ;ADD DATA

RBE

BS

B ;SAMPLE COUNT INC.

19€

75X SERIES ASSEMBLER VX.XX

** A-D CONVERTER VX.XX (SUB)

SYMBOL TABLE LIST

OFFSET TYPE
OFD4H DATA
0024H CODE
0000H CODE

SYMBOL

AD_MAIN
PTHO

PUB SEG5
PUB SIOSUB

OFFSET

0000H
OFD6H

TYPE

CODE
DATA
CODE
DATA

SYMBOL

PUB ADCONV
PTHM

EXT SEL15
EXT TDATA

XX/XX/IXX XX:XX:XX PAGE : X

*k

OFFSET TYPE SYMBOL

OFCOH DATA BSBO
OFBOH.0 PBIT RBE
OFE4H DATA SIO

0010H CODE WAIT

OFFSET TYPE SYMBOL
0009H CODE LOOP
0012H CODE PUB SEG4
OFEOH DATA SIOM

SINVHO0Hd 31dINVS "A XIAN3IddV

APPENDIX D. SAMPLE PROGRAMS

75X SERIES ASSEMBLER VX.XX

CROSS REFERENCE LIST

SYMBOL TYPE VALUE
J oY V] N —
ADCONV CODE 0000H R
BSBO DATA OFCOH
LOOP CODE 0009H R
PTHO DATA OFD4H
PTHM DATA OFD6H
RBE PBIT OFBOH.0
SEG4 CODE 0012H
SEG5 CODE 0024H
SEL15 CODE ---ee-
SIo DATA OFE4H
SIOM DATA OFEOH
SIOSUB CODE 0000H R
TDATA DATA -mmm
WAIT CODE 0010H R

TARGET CHIP : UPD75106
STACK SIZE = 0002H

362

** A-D CONVERTER VX.XX(SUB)

PUB SEG = SEG5

SEG = SEG5

PUB REL = SENT
PUB REL = SENT
EXT

PUB SEG = SEG4
EXT
SEG = SEG5

ASSEMBLY COMPLETE, NO ERROR FOUND

XX/XX/IXX XX:XX: XX PAGE :

*k

ATTRIBUTES XREF LIST

1
8, #27

31, 32, 33, 39, 43
#32, 41

38

34

45

#12

#26

6,17, 28

18

20

8, #13

7,16

#36, 37

X

APPENDIX E. INDEX

E.1 Index
(Al

F 2 o To 1 A =1 (o (PR 76, 142, 189, 190, 243, 256
F Y o1 To] [V (== T TT=T0 o] o] [T PO TPPPPPP PRI 25
ADSOIULE @SSEMDIY TIST ...ttt e e e et e e e e e e st et e e e e e anane e e e e e aannneeaaeeaannnneeaaannn 284, 354
AbSOIUtE @SSEMDIY ISt fIlE ... e 236
ADSOIULE SEOMEBNT ..ot e et e e e e et e e e e et et e e e e e b e et e e e e nn e e e e e e e nnnreee e 124, 125
Y 5 PRSP R 213
I T Y | SR 62, 218
I T | U RS 62, 217
FNSTST =10 0] o1 = PR 41, 59, 63, 69
F =TT g g o] [T o] o114] o < OO PPPPPPR 72,73, 77, 324
FNS TS YT o] o] (=T gl o = Tod €= Vo = SRR 47, 68
F ST YT o] o) VAN F= T o U= Vo = OO 21
ASSEMDIY TIST ..ottt e et e e e e e e e e e e et e e e e e e e e e e e e e e e e 70, 265, 272
F ST Y=Y o 0] o] A 1 1= OSSOSO 236
N S 125
[B]

ST 1 (o o I {1 SO P R PPRP PR 291
BR PSEUAO-INSTIUCTION ...ttt et et e et e s e e s e e e e se e e e sn e e e sane e e e asr e e e ennneesneeeeanreeennne 38
Branch instruction optimization fuNCtion (BR)coiiiiiiiiiii s 38
2Tz T o o 7= o] [ST P PP RPPPPPPRPPPIN 135
Branch table Map liSt ..o a e e e e e e e e e e e e e e e aaarae 121, 145, 278, 281
Branch tables (NUMDET OF) ...ttt b et bt b et e e s e e et e e e nneenee s 38, 330
[C]

O] o) i o) A I = F-T-T=1 401 o] 1= o ISP 78, 82, 324
~CA OPLION (ASSEMDIET) ...ttt ettt b ettt b ettt e bt e bt e bt e et e e sae e enneesbeeeneennne s 78, 102, 324
(01D I oY o (o] T (1101 (=T o I SRS US PR PRSP 144, 159, 325
(070] 0 aTa =1 1o I 111 TR 41, 43, 59, 61
(070] 0100 1T o | (OSSP 80
(O NN 1T S 60
L T I TS 211, 326
(01 70T To R (=] (=Y (=Y aToT= T 1] R 272, 276, 346
[D]

=D OPLION (ASSEMDIET) ..ttt ettt b e et e st e sab e e sbe e ean e e beeeneenne s 78, 104, 324
5N I PO OTROPPR 207, 208
[I OSSOV PPS 216, 326
[E]

S| oY o) {1 o I €= 1TT=10 0] o1 [T o TSRS PRSP 76, 97, 324
S = eTo){[o I (o] o] T=Yoi eToT 0 1V/=T o (=1 SRS PTSPPRRRRt 191, 198, 326

363

APPENDIX E. INDEX

=B OPtION (liISt CONVEITET) ..ttt ettt sie e b e sabe e raeeeane e e 244, 250, 327
= (o 1= PO 272, 282
L g Lo g 13 00 111 TN 70, 71, 182, 236, 272
[y g Lo g v= L (VST oTo Lo [YRS 76, 143, 243, 256
o RSP 233, 326
External definition (PUBLIC) Symbols (NUMDET OF) ...cciiuiiiiiiiiiiiii et 122
External reference (EXTRN) symbols (NUMDET OF)coiuiiiiiiiii it 122
[F]

o) o] (oY = F-oT=Y 121 o] L= o SRRSO PPPRRRRNt 78, 115, 324
S o) o] (oY A (o] o] [=Tei fleTo] g1V =1 ¢ (=T o ISP UOPPRRROt 191, 199, 328
=F OPHION (INKEI) ettt ettt ettt e b e et sae e et saeeebeesab e e nbeenaneenee 144,178, 325
-F OPtion (lIST CONVEITEI) ...ttt ettt san e e nbeenane e e 244, 2583, 327
L= 1= I = T o) S PO PUPRI 76, 142, 143, 189, 190, 243
[G]

(Gl e) o) o] I F=F-1=1=T001 o] [T o TSRS UPR PSP 78, 91, 324
GV No) o] (o] g €= 11T 1 41 o] [=1 o ISP 78, 94, 324
[H]

L 1= o 30 1= SRR 41, 59
HEX format object MOAUIE fileeiiiiiieiiee e e e e e e e e e s naaeee s 182, 183, 351
L]

o] o1 io] W F=T=T= 100 o] [T o I PRSP PROUR TSRO 78, 113, 324
L= 1= [g T=T o | OO PR PP 125
[N = @10 (G =T=To 4411 o | PO RSPPRTR 125
[N = @10 (N 1= [0 T=1 o | SO PPRPPPR 125
1N (3745 SO

Include file

g o101 VLo T 0T o101 AR 1= =3 PSP OUPPPPRN 121
INPUE/OULPUL MOAUIE TSt ... e e et e e e e e e e e e et et e e e e e e snnsaeeaeeennnrnees 145, 278, 279
[J]

o) o] 1 o] AT €= 11T 0 0] o] [=1 o TSSO PPPRRRON 68, 110, 324
o) o] 1 To] AT {1101 C=T o SRR OTRPPPRt 144,175, 325
[K]

AN oT o o] AT C= TT=T=T 0] o] Y o TSRS PPPRRNt 78, 112, 324
NI oT o) 1o T (101 (=T o I PSP PPPNt 144, 155, 325
“KIM OPHION (INKEI) .ttt ettt bttt he e st e e bt e bt e et e e b e e eab e e nae e et e e snneennee e 144, 149, 325
e (el o (Lo T (1101 T o SO USSP PPROURTRI 144, 1583, 325
NS o) 011 To] T €= TT=1=T 0 0] o] (Y o RSP 78, 99, 324
0 Qo) o) o] AT E= T=T=T=T 0 0] o] Y o SRS PPPRRN 78, 102, 324
[L]

o] o) (o] o W (115] oo] 41V =Y o (=T o ISP UOTPPPRRRt 244, 245, 327
S oY o) o) o I €= T=1=T=T0 01 o] [T) ISP PERPRN 78, 105, 324
N oY o) (o] W F= F-T=T=T0 01 o] [T o TSRO UURUROPN 78, 111, 324

364

APPENDIX E. INDEX

-LW 0ption (BSSEMDIET) ...ttt ettt n et 78, 105, 324
LONVTEX.EXE ..ttt etttk a e 42 b e e ettt £ e R e et e 4ok et e e sttt e eab e e e okt e e e nb et e ean e e e e abeeeente e e nanes 42, 59
[o = [7= 1o PPt 42, 59, 67, 201
(] o] = 2= 1 0] o RO OUPSRRN 155
[o] =V 11 SRS 120, 123, 202, 203, 207, 208, 211, 213, 216, 219
Library file iINfOrmMation [IST......c i ettt ettt s e e s it e e e e e e eneeas 283, 353
LTS 1] o 1 PSP SUPRP ORI 120, 121, 278
0 - USSP 42,59, 63, 119
[T (T g o] (o] o T 1] AU 121, 145, 278
[T 0 =T o] o] 1 e 1= POt 144, 145, 325
] SRSV PPP 230, 326
[T A oTo] V=Y (=] SRR 38, 41, 59, 68, 235
(L] eo) 0 1YY o (=T o [0 o 1= SRR 241, 244, 327
LI 1= OSSPSR 212
(= To [y oo U] L= {1 = TSP UURPRPPR 120, 121, 182, 234
Local Symbols (NUMDET OF) ...ttt ettt b e et e b e ab e e bt et e e e aeeeab e e saeeenneenees 122
(oY= 14T] g =T [0 [1= USRS UUPRRRN 236
(oo o2z 1Mo (=Y o O PSP P TP PPPP PRI 174, 207, 236
[M]

eV o] o] 1To] g I - T ET=T ol o] =Y o PO U SRR UURTOPROURINE 78, 86, 324
1Y o] oY (o) s I (111 (=T o SRS PPPNt 144, 146, 325
[[aT=T g To] o o2 PP PPPTRPPPPRPPN 79
1Yo Yo [0 1SR 26, 213
[N]

N =] oy ifo) o I C=T-ToT=T 001 o] 1=1) IS PERR 78, 97, 324
N[o] o) o] g I €= T=TT=10] o111 o IR SRR 78, 111, 324
-NGA OPLION (ASSEMDIET) ...ttt ettt et e s bt e bt e sae e e beeean e e be e eaneenneeanee 78, 94, 324
e A e] o] 1To] g I = X111 ol o] 1= o T O U PR OPUPPTOPRUPN 78, 90, 325
e IeT o) T T (1101 =] o IR ROPPPPNt 144,175, 325
N [N o] o o] g I €= T=TT=T0 01 o] [T o I PR PPPRRRNt 98, 112, 324
SNKL OPLION (JINKET) ettt ettt ettt ae e ab e s bt et e e sbe e et e e eae e e be e enneenneean 144,175, 325
“NKIM OPHION (INKET) ettt bttt b e st e s be e ea e e she e e st e sab e e nbeeeaneenbeas 78, 112, 324
N o] o) o a I (1101 CY o IR OUPPRRRNt 144, 155, 325
N S T o] o o] a I €= T=TT=Ta 0] o] 11 o IO PP UOTPPPPNt 144, 150, 325
“NKX OPtioN (2SSEMDIET) ..ttt b et b e b ae et essbe e neenab e e saneennee e 144, 154, 325
-NO OPLION (ASSEMDIET) ...ttt h ettt b ettt e b bt e e ae e et e e eneeenee e 78, 88, 324
SN (O Xe] o) (o] gl (o] o] =Y eTe] 0 1V/=T ¢ {-Y o IR PR OPPPPNt 191, 197, 326
N (O 2o] o) o] o I {1101 C=T o PP PRPNt 144,174, 325
-NP OPtION (ASSEMDIET) ...ttt b ettt b e bt e ae e et esae e et e e sineeneenane s 78, 193, 324
SNP OPLION (INKEI) ettt bttt ae et e e he e ke e e e e e be e s abeeeaeeeabeesnneennee e 144, 148, 325
SN | S e) o] 1Te] g W (o] o] =Tel MeTo) 01V =1 4 (=1 SRRSO PPRNt 191, 194, 326
SN SR e] o) ifo) o I €= TSTT=T 001 o] 1=T) ISP SPPPRPTRNt 78, 113, 324
-NS Option (ODJECE CONVEITET) ...ttt b e e b e naeeeane e e 191, 192, 326
AL = e o] (1o I (1101 (=T USRS U PP OUPURROPRN 239
[N\ o) g0 F= 1IN (=10 a1 aF=1 1 o] o NN 76, 142, 143, 189, 190, 241, 256
[O]

O o) o i[o] g W F=F-1=1=100] o] [T o TSPV OPR PSP 78, 88, 324

365

APPENDIX E. INDEX

-O OPtioN (lIDFArY CONVEIET) ...ttt sttt sab e she e eb e san e e nbeesane e e 191, 197, 326
O le) o) o] {1153 AeTe] g 1VZ=T5 =1 o SRR SOTPPPRNt 257, 258, 327
O Ie] o) (o] {101 C=Y o SRR SOTPPPPNt 144,175, 325
-O OPLION (ODJECT CONVEITET) ...ttt sttt e a et sbe e st e sae e beeeane e 191, 197, 326
(O] 0] [=Te1 Qoo o =SSP RUPR PR 239
(O] o) =To1 i oToT 0 1Y/=T o (=1 SO SRR 42,59, 63, 181
(O] o) =To1 i eTol0)Y/=T ¢ (=1 go] o140] o IS OSSP 183, 191, 326
(O] o] =Tz Q2T o 111 L= OO OP PSP 124
(0] o] [=Tox 43T Yo [T [{1 USSR 70, 71, 120, 123, 236
(@] 2 {C I oF=1=10 e [BT T} {18 o} (o o F PR PP 72, 330
(O8] 01 1) SO SOPPPPRRP ORI 272, 278, 281, 282, 339
[02T = Y 1SS 41, 43, 59, 61
[P]

o oY o) [0 a T €= 1T=T=10 01 o1 1T o TSSO 78, 95, 324
=P OPHION (INKET) -ttt bttt b et b e et sae et e saeeen e e san e e nneesane e e 144,147, 325
[= =T=Te 14 =10 | S ORI 125
L= U= (g A=Y (=) 111 PR 70, 71, 120, 121, 192, 236
PUDBIIC SYMDOI TIST ...ttt e e b e st e sbe e e e sabeeen 121, 145, 278, 280
[R]

R A o) o] (o] W {1011 C=T 0 TP PO PRPRNt 144, 161, 325
e RS I e] o1 (o) o I (11512G] o PR ROUPPPRRNt 144, 161, 325
-R Option (ODJECE CONVEITEI) ...ttt ettt be e e e 191, 204, 326
LR A5y G OSSO 42
L 25, @ L OSSP 42
LR N5y L@ L O SUPP R TPSPOPRRN 42
Random lINKAGE MOGEoiiiiiiiiiii ettt e oot e et e e e et e e e s e bt et e e e bne e e e e e e aanee e e e e e e annbereeeennnes 128
(R loTer= N e=T o] [R= ET= 1Y o1 o) 1= SRR 26
R eTer=1e=1o] (o] o] [=Tex oo Lo [N SRS 122, 133
ReloCatable SEOMENT ettt e e e e e e e e e et e e e e e e b e e e e e e e e e e e e e e nn e e e e e e nanee 124
LR = I O PSPPSR 219, 326
[S]

o] o) d [0 g I €= TT=1=1 0 0] o1 [T o TSRS PPPRPRN 78, 103, 324
el o1 i[o] I (o] o) T=Yo i eteT 0 1V/=T o (=1 o P SOTPPPRRONt 191, 192, 326
s aSeT o (o] T (1101 (T o OO PU SR OPPPROURTRI 144, 168, 325
oL@ I oY o] (oY o I (1101 (=T) [PPSR 144, 165, 325
S A o) o) (o o IO PO PPPNt 144,171, 325
Y LY L I o o PSPPSRI 96
S E L] o] (N o] (oo [= o IS OSSP RO TUPPOPROPI 192
Segment definition PSEUO-INSIIUCHIONSoiiiiiiiiiie e 72, 330
SegMENT INK MAP TSt ...ttt e bt et sae e e e annee s 121, 145, 278, 280
Segment reloCation AttHDULEooiii e e 124, 125
SEGMENTS (NUMDET OF) ittt ettt ettt h e bt eeae e e bt e s a e e e bt e s ab e e ne e sab e e abeeeaneenbeeenneennneans 328
ST = =T=To 44110 USSR PTOURURROPRN 125
S ToT0 o= 1] O TPPROTR 334
oYU T Lol N0 g Lo Yo (U] L= {1 L= 70, 71
Lo YU oty £ (T 0 0 1= g £ SRS 330

366

APPENDIX E. INDEX

TR TN G 7 N OSSR 43, 59
S 50, G =5 € = SRRSO 42, 59
= Tod Q=T =Y o [1 1= 0 PSPPSRI 131, 132, 169, 172
I = I R TS 43
S I = 12281 TS 43
S0 oToTeY 2014 F=Ta o I 11T 202, 205
S0 oToToY 010114 F=Ta o [T 204, 205, 210
YL aa] oo I 1 SO USTUURUPTOURURROPRN 145
3T oY I 7= o 1= 1= SRS 192, 195, 352
SYMDOI 1ADIE TIST .. e 282, 285, 292, 344, 348
3V 00l oTe] Teae [=1 o T8 e o |1 o OV PPRPI 195
SYMDOIS (NUMDET OF) ..ttt bt et e s b e e et e e sh et et e e eaneebeenneeenreas 37, 330
SYSEM CONTIGUIATION ..ttt b ettt he e et eh et e bt e s h et e bt e s hb e e bt e eab e e be e eaneenbe e ebeennnennnes 44
[T]

TBR & TCALL PSEUAO-INSIIUCTIONSieiieiiiieeesiiieeeiie e st e et e e e ee e sttt e e sste e e s e e e nteeeeameeeeanneeeansseeaamseeeanneeeeanaeeeanseeeannees 37
(V]

S oo 1 o o PP RPPPRTR N 191, 195, 326
[vl

VENT PSEUAO-INSTIUCTION ceiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e s e s a e b et e a et e eeeeeaeaaaaaeaeeeesesasanannnnsnsnrne 72, 330
VENTN PSEUAO-INSTIUCTION ceiiiiiiiiii ettt e e e e e e e e e e e e s e s bbb ettt ettt et et aeaaaeaeeaeaeaesaaannnnnnsnsnbnsnnnnnee 39
[Y]

=Y OPLION (ASSEMDIET) .ttt b e a et et b e bt e sa bt e bt e eab e e he e e an e e b e e n e nnee s 78,117, 324
e oY o) i[o] I (o] o =Yoi i eToT 0 1V/=T o (=1 SR SOTSPPRROt 191, 200, 326
e oY o) d 1o a T (1101 =1 o I SRR SPTPPPRRNt 144,179, 325
[Numbers]

43Y L =S LI = S ST PP PSPPI 66, 69, 193, 351
TEXTEST.LIB oo 67, 69, 209, 211, 214, 215, 217, 218, 219, 221, 223, 224, 225
5%, LI =5 2 I V1 SR 66, 69, 149, 150, 194, 249
Y, LI =5 I S S 67, 353
TEXTESTTIMARP ettt e bt eea bt s bt e e e b bt e e e bt e e sabe e e e ea b e e e eabeeesbeeeeanbeeennn 66, 69, 194, 348
4 I SIS LIRS) (L PSP PR UPRTPR 66, 69, 213, 352
75XTEST1.ASM ..ooiiieeee e 63, 64, 69, 87, 89, 90, 92, 94, 96, 98, 98, 100, 102, 106, 168, 224, 228
5%, LI =5 2 1 1 ST 68, 69, 249
45 L =55 T I 1 T PSP TSRS 64, 69, 249
£5Y L =S T I T 1 =1 PSP OP PRI 64, 65, 69, 92, 94, 96
TEXTEST2.ASM .ttt e et e e et e ettt e e sn e e e e aseeesneeeeanteeeaneeeenseeeanseeeenseeennneas 63, 65, 69, 92, 93, 168
£5Y, LI =5 11722 R 69, 359
£ I SIS LI d 1 T PSPPSR 65, 69, 249
£5) L =S LI 1 =1 PRSPPI 65, 69, 92

367

[MEMO]

368

NEC

Although NEC has taken all possible steps
essag e to ensure that the documentation supplied
to our customers is complete, bug free

and up-to-date, we readily accept that

From: .
errors may occur. Despite all the care and
precautions we've taken, you may
Name encounter problemsin the documentation.
Please complete this form whenever
Company you'd like to report errors or suggest
improvements to us.
Tel. FAX
Address
Thank you for your kind support.
North America Hong Kong, Philippines, Oceania Asian Nations except Philippines
NEC Electronics Inc. NEC Electronics Hong Kong Ltd. NEC Electronics Singapore Pte. Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: +65-250-3583

Fax: 1-800-729-9288
1-408-588-6130

Europe Korea Japan
: NEC Electronics Hong Kong Ltd. NEC Semiconductor Technical Hotline
NEC Electronics (Europe) GmbH o[- o Fax: 044-435-9608

Technical Documentation Dept.

Fax: +49-211-6503-274 Fax: 02-528-4411

South America Taiwan
NEC do Brasil S.A. NEC Electronics Taiwan Ltd.
Fax: +55-11-6462-6829 Fax: 02-2719-5951

| would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

If possible, please fax the referenced page or drawing.

Document Rating Excellent Good Acceptable Poor
Clarity O O O a
Technical Accuracy Qa a a a

Organization a Q a Q

CS 00.6

	COVER
	Major Revisions in This Edition
	PREFACE
	CHAPTER 1. GENERAL DESCRIPTION
	1.1 Outline of Assembler
	1.1.1 The function of an assembler
	1.1.2 Function of a relocatable assembler

	1.2 Outline of Assembler Package Functions
	1.2.1 Source module file creation using editor
	1.2.2 Structured assembler preprocessor
	1.2.3 Assembler
	1.2.4 Linker
	1.2.5 Object converter
	1.2.6 Librarian
	1.2.7 List converter
	1.2.8 Library converter

	1.3 Before Beginning Program Development
	1.3.1 Assembly-time source statements
	1.3.2 Limitation on number of symbols
	1.3.3 Limitations on number of segments
	1.3.4 Other limitations
	1.3.5 Number of linker branch tables
	1.3.6 Caution on homonymous segments

	1.4 Assembler Package Features
	1.5 Cautions on 75XL Series Development

	CHAPTER 2. PRODUCT SUMMARY
	2.1 Product Contents
	2.2 Host Machine Models and Operating Systems
	2.2.1 PC-9800 series
	2.2.2 IBM PC/AT

	CHAPTER 3. ASSEMBLER PACKAGE EXECUTION
	3.1 Before Running Assembler Package
	3.1.1 Assembler package installation procedure
	3.1.2 Sample programs

	3.2 Assembler Package Execution Procedure
	3.2.1 Assembler, Linker, Object Converter
	3.2.2 Librarian
	3.2.3 List converter

	3.3 Summary of Assembler Package Execution Procedure

	CHAPTER 4. ASSEMBLER
	4.1 Assembler Input/Output Files
	4.2 Assembler Functions
	4.3 Assembler Start Method
	4.3.1 Starting the assembler
	4.3.2 Execution start and end messages
	4.3.3 Assembler error handling
	4.3.4 Assembler termination status

	4.4 Assembler Options
	4.4.1 Types of assembler options
	4.4.2 Assembler options specification method
	4.4.3 Assembler options priority order
	4.4.4 Description of assembler options

	CHAPTER 5. LINKER
	5.1 Linker Input/Output Files
	5.2 Linker Functions
	5.2.1 Linkage of object modules in input files
	5.2.2 Determination of segment location address
	5.2.3 Resolution of relocatable object code
	5.2.4 Automatic branch table creation

	5.3 Linker Start Method
	5.3.1 Starting the linker
	5.3.2 Execution start and end messages
	5.3.3 Linker error handling
	5.3.4 Linker termination status

	5.4 Linker Options
	5.4.1 Types of linker options
	5.4.2 Linker option specification method
	5.4.3 Linker option priority order
	5.4.4 Description of linker options

	CHAPTER 6. OBJECT CONVERTER
	6.1 Object Converter Input/Output Files
	6.2 Object Converter Functions
	6.2.1 HEX format object module file format
	6.2.2 Symbol table file format

	6.3 Object Converter Initiation Method
	6.3.1 Starting the object converter
	6.3.2 Execution start and end messages
	6.3.3 Object converter error handling
	6.3.4 Object converter termination status

	6.4 Object Converter Options
	6.4.1 Types of object converter options
	6.4.2 Object converter option specification method
	6.4.3 Object converter option priority order
	6.4.4 Description of object converter options

	CHAPTER 7. LIBRARIAN
	7.1 Librarian Input/Output Files
	7.2 Librarian Functions
	7.2.1 Module librarization
	7.2.2 Library file editing
	7.2.3 Printing of library file information

	7.3 Librarian Start Method
	7.3.1 Starting the librarian
	7.3.2 Subcommand input in conversational mode
	7.3.3 Subcommand file
	7.3.4 Execution start and end messages
	7.3.5 Date option

	7.4 Description of Subcommands

	CHAPTER 8. LIST CONVERTER
	8.1 List Converter Input/Output Files
	8.2 List Converter Functions
	8.2.1 Incorporation of location addresses
	8.2.2 Incorporation of object code
	8.2.3 List converter processing method
	8.2.4 Points to note when using the list converter

	8.3 List Converter Start Method
	8.3.1 List starting the list converter
	8.3.2 Execution start and end messages
	8.3.3 List converter error handling
	8.3.4 List converter termination status

	8.4 List Converter Options
	8.4.1 Types of list converter options
	8.4.2 List converter options

	CHAPTER 9 LIBRARY CONVERTER
	9.1 Library Converter Input/Output Files
	9.2 Library Converter Functions
	9.3 Starting the Library Converter
	9.3.1 Starting the library converter
	9.3.2 Execution start and end message
	9.3.3 Library converter error processing
	9.3.4 Library converter end status

	9.4 Library Converter Options
	9.4.1 Types of library converter option
	9.4.2 Specifying the library converter option
	9.4.3 Priority order of library converter options
	9.4.4 Library converter option explanation

	CHAPTER 10 SETTING OPTIONS FROM THE PROJECT MANAGER
	10.1 Setting Options from the Project Manager
	10.1.1 Assembler
	10.1.2 Linker
	10.1.3 Object converter

	CHAPTER 11. PROGRAM OUTPUT LISTS
	11.1 Assembler Output Lists
	11.1.1 Assembly list
	11.1.2 Symbol table list
	11.1.3 Cross-reference list
	11.1.4 Error list

	11.2 Linker Output List
	11.2.1 Linker option list
	11.2.2 Input - output module list
	11.2.3 Segment link map list
	11.2.4 Branch table map list
	11.2.5 Public symbol list, symbol table list

	11.3 Librarian Output List
	11.3.1 Library file information list

	11.4 List Converter Output List
	11.4.1 Absolute assembly list

	CHAPTER 12. EFFECTIVE USE OF THE ASSEMBLER PACKAGE
	12.1 How to Utilize Parameter File
	12.2 Use of the List Converter
	12.3 Finding Error Lines
	12.4 Example of Use of Batch File

	CHAPTER 13. ERROR MESSAGES
	13.1 Assembler’s Error Messages
	13.2 Linker’s Error Messages
	13.3 Object Converter Error Message
	13.4 Librarian Error Messages
	13.5 List Converter Error Messages
	13.6 Library Converter Error Messages

	APPENDIX A. LIST OF OPTIONS
	A.1 List of Assembler Options
	A.2 List of Linker Options
	A.3 List of Object Converter Options
	A.4 List of Librarian Subcommands
	A.5 List of Converter Options
	A.6 List of Librarian Converter Options

	APPENDIX B. MAXIMUM CAPABILITIES
	APPENDIX C. POINT FOR ATTENTION
	APPENDIX D. SAMPLE PROGRAMS
	D.1 Source Lists
	D.2 Execution Examples
	D.3 Output List

	APPENDIX E. INDEX
	E.1 Index

