Abstract

Hundredths of kilometers above us there is a stormy sea: the ionosphere, through which our EME signals have to go through twice. The interactions are of various types: there are significant effects on signal amplitude (QSB), and wave polarization rotations (Faraday effect). Starting from data obtained from MAP65 decodes, we have made an analysis of QSB showing its dependence not on attenuation but on focusing or defocusing effects due to ionospheric waves. Then we have defined the algorithms for calculating Faraday rotation over the total moon pass, and compared them to actual MAP 65 decodes. We have found also how Faraday typically behaves as a function of correspondent station orientation. All this analysis is focused mainly on 144 MHz EME (our experience), but a good part is applicable to all bands.

Note: this document contains the complete presentation, plus some additional detail information.
IONOSPHERIC INTERACTIONS WITH EME SIGNALS

Giorgio Marchi, IK1UWL – Flavio Egano, IK3XTV - EME 2014 Conference

Date: August 2014

Study start
Ham EME communication through the ionosphere has evolved over the years, from CW to the first digital mode JT44, then the ubiquitous JT65, and today MAP65 (thanks Joe Taylor).

Latest software arrival for EME communication, for a station equipped with cross yagis and suitable hardware, MAP65 gives JT65 type message decodes over an 80 kHz wide band, adding info on level and polarization. But MAP65 is not only a communications method, it is also a scientific instrument which, besides message decodes, gives us two important data: signal level and polarization angle.

An EME pile-up
Our interest for these two additional parameters arose from the beginning. Giorgio IK1UWL had just installed MAP65 and used it to monitor OX3LX (and qso him). He saved 46’ of data

UTC Date: 2012-ago-03 00:00

<table>
<thead>
<tr>
<th>QRG</th>
<th>DF</th>
<th>DT</th>
<th>Pol</th>
<th>dB</th>
<th>UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>144.143 -129</td>
<td>-0</td>
<td>-2</td>
<td>0</td>
<td>1.7</td>
<td>63</td>
</tr>
<tr>
<td>144.143 -138</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>1.7</td>
<td>64</td>
</tr>
<tr>
<td>144.143 -144</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>1.7</td>
<td>48</td>
</tr>
<tr>
<td>144.143 -153</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>1.9</td>
<td>43</td>
</tr>
<tr>
<td>144.143 -161</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1.5</td>
<td>31</td>
</tr>
<tr>
<td>144.143 -170</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1.7</td>
<td>15</td>
</tr>
<tr>
<td>144.143 -176</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.6</td>
<td>0</td>
</tr>
<tr>
<td>144.143 -185</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.7</td>
<td>18</td>
</tr>
<tr>
<td>144.143 -191</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>0</td>
<td>4-19 0026 RRR 0 0 0</td>
</tr>
<tr>
<td>144.143 -199</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1.7</td>
<td>10</td>
</tr>
<tr>
<td>144.143 -205</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>144.143 -214</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.6</td>
<td>0</td>
</tr>
<tr>
<td>144.143 -217</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>2.1</td>
<td>1</td>
</tr>
<tr>
<td>144.143 -226</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>144.143 -229</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1.6</td>
<td>-4</td>
</tr>
<tr>
<td>144.143 -232</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>1.8</td>
<td>-7</td>
</tr>
<tr>
<td>144.143 -238</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>1.8</td>
<td>-9</td>
</tr>
<tr>
<td>144.143 -243</td>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>1.8</td>
<td>-13</td>
</tr>
<tr>
<td>144.143 -246</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>144.143 -252</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1.8</td>
<td>23</td>
</tr>
<tr>
<td>144.143 -255</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1.8</td>
<td>31</td>
</tr>
<tr>
<td>144.143 -261</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>1.8</td>
<td>26</td>
</tr>
</tbody>
</table>

and put them in diagram
Besides being glad for the rare dx, the amount of variation of signal level and polarization angle in so short a time was surprising. Giorgio IK1UWL sent this data to Flavio IK3XTV, and we both decided to investigate on the causes of this.

The Ionosphere
- Partially ionized gas layer between ~50 and ~1000 km height and permeated by Earth’s magnetic field is a **turbulent ocean, roughened by high speed winds**.
- Free electron density is variable in space and time.
- Their density (number per m3) determines various effects:
 - Slowdown, Attenuation, Deviation, Rotation
The ionosphere, space weather
Weather near the surface involves winds that propagate like waves across the planet. Weather in the upper atmosphere and in space is characterised by very strong winds, so has wavelike characteristics as well. Space weather has two drivers: one is solar wind and radiation, the other is the dynamic atmosphere of Earth.

In the atmosphere travel waves very low in frequency (wavelength in the range of hundreds or thousands of kilometres) that carry energy and momentum also upwards (buoyancy waves). Thermal effects cause tides with vertical movements and transfer of energy through shear winds. At the altitude at which sun radiation causes ionization there are winds with speed ranging in the hundreds of meters per second. Being shear winds the ionosphere is roughened by shorter waves and vortices.

These winds, which are active most days for part of the day, cause Travelling Ionospheric Disturbancies (TIDs) which result in fluctuations of electron density and formation of amasses.

Ionospheric waves
The ionospheric winds cause continuous undulations and waves (Traveling Ionospheric Disturbances, TIDs) resulting in fluctuations of electron density.

<table>
<thead>
<tr>
<th>Class</th>
<th>Horizontal wavelength</th>
<th>Period</th>
<th>Horizontal phase velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTIDs</td>
<td>>1000 Km</td>
<td>0.5..3 h</td>
<td>300..1000 m/s</td>
</tr>
<tr>
<td>Large scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSTIDs</td>
<td>100..1000 Km</td>
<td>12 min..1h</td>
<td>100..300 m/s</td>
</tr>
<tr>
<td>Medium scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSTIDs</td>
<td><100 Km</td>
<td>A few minutes</td>
<td><200 m/s</td>
</tr>
<tr>
<td>Small scale</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: INGV Istituto Nazionale di Geofisica e Vulcanologia - Italy
This turbulence and waves in the ionosphere have a lens effect on our signals, **focusing and defocusing** them.

Rapid scintillations caused by ionospheric irregularities (ssTIDs, periods of some minutes)
Slower scintillations due to msTIDs
(observed at mid latitudes every day, wavelength 300 km, wind 100 m/s=360 km/h, period 50 minutes)

QSB

QSB band dependence (ionospheric refraction is proportional to inverse square of frequency)

Fig. 8. Detrended VHF, UHF, and L-band strip charts from a pass recorded at Poker Flat on 29 May 1976.
Among the first notions of ionospheric behaviour we got, was that absorption of signal energy was in the range of 0.1 to 0.5 dB at 144 MHz.
B – Dynamic ionosphere

Whilst the observed medium period fluctuations of signal level are in the order of 3-6 dB in day conditions (attributable to ssTIDs):

And of the order of 2 dB in night conditions

Additionally we noted long term fluctuations (attributable to msTIDs):
These cannot be attributed to absorption because a thirty-fold density change would be needed. So we realized that turbulence and waves in the ionosphere have a **lens effect on our signals, focusing and defocusing them.**

Faraday effect.

Faraday rotation is what happens to the polarization plane of a wave going through a ionized medium intersected by a magnetic field. The formula is very simple:

\[\Phi = k \cdot B \cdot \text{TEC} / f^2 \text{ (rad)}, \]

with

- \(B \) = Geomagnetic field component in wave's direction of travel (i.e. towards or from the Moon)
- \(\text{TEC} \) = Total Electron Content of the path
- \(f \) = wave frequency

Effects tied to frequency

Angle of rotation is inversely proportional to the square of frequency. Since our bands have frequencies increasing by a factor of three, the rotation becomes one ninth from a band to the next.
With the same conditions for B and TEC:

<table>
<thead>
<tr>
<th>Band</th>
<th>Rotation (°)</th>
<th>2.25 turns</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 MHz</td>
<td>90</td>
<td>360</td>
</tr>
<tr>
<td>144 MHz</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>432 MHz</td>
<td>1.1</td>
<td>4.5</td>
</tr>
<tr>
<td>1296 MHz</td>
<td>0.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Evidently, Faraday is a concern mainly in VHF Microwavers are concerned only by Spatial Offset.

Clarification on spatial offset:

Polar polarization is the angle between an antenna and earth’s polar axis.

Spatial offset between two stations is simply the difference between the polar polarizations of the two stations. This offset adds algebraically to Faraday rotation.

Geomagnetic field

We found a good source for F (total field) in the web site of the British Geological Survey. Introducing Lat, Long, Median Height of the ionosphere, and Date, one obtains:

- Total field F (nTesla)
- Inclination I (°)
- Declination D (°)
- Magnetic latitude
Component B

In our formula we must introduce the Geomagnetic field component in Moon’s direction. Referred to a system of axis North, East, Up:

- The vector F is defined by **Inclination** and **Declination**.
- Moon’s direction is defined by **Azimuth** and **Elevation**.

For projecting Field F on the Moon’s direction we must calculate the angle FM between these two vectors. The formula becomes:

$$\cos FM = \cos I \cdot \cos D \cdot \cos EL \cdot \cos Az + \cos I \cdot \sin D \cdot \sin EL \cdot \sin Az - \sin I \cdot \sin EL$$

from which $B = F \cdot \cos FM$

TEC (Total Electron Content)

TEC is a key parameter for describing Earth’s ionosphere.

It is measured in TECU (TEC Units) = 10^{16} electrons/m2

The number of TECUs represent the total number of electrons present in a cylinder of 1 m2 of section, crossing the ionosphere in the wave’s direction.

VTEC sources

Scientific Stations post VTEC (Vertical TEC) diagrams for each day. Among these we found the Royal Observatory of Belgium (ROB), that publishes VTEC histograms with values every 15’, and keeps an archive for every day of the year. Measures are made by the observatory located in Dourbes (Belgium).

Typical summer VTEC diagram:

![Typical summer VTEC diagram](image)

Typical winter VTEC diagram:

![Typical winter VTEC diagram](image)

Image Source: ROB Royal Observatory Dourbes - Belgium
From Dourbes to other places

Spatial variation of TEC:
- Longitudinal variation: Global trend quite regular and correlated to the local solar time
- Latitudinal variation: The TEC value, varies non-linearly from the poles to the equator (geomagnetic)

![Total Electron Content (TEC) Map](image)

This curve represents the latitudinal variation:

![Latitudinal Variation Curve](image)

For our purposes we have simulated it with the algorithm:

$$\text{TECU variation} = 0.02 \times \text{LAT}^2 - 2.5 \times \text{LAT} + 95$$

So for TEC value calculation:
1. Dourbes VTEC at same time
2. Magnetic latitude of station
3. With algoritm representing the curve we find the correction to be applied to Dourbes VTEC
Slab thickness
Data on the Dourbes site give VTEC and slab thickness. These represent the transformation of the real ionosphere, with changing electron content with height and total thickness over 1000 km, in an equivalent ionosphere constituted by a uniform density layer with known TECU and thickness. Going through this slab gives the same effects as going through the real ionosphere. The advantage is that two numbers define this ionosphere, without the need for integration of a complex graph.

Oblique passage (Slant TEC)
Ince the slab is crossed obliquely, the number of encountered electrons increases.
So TEC in our formula becomes $\text{TEC} = \text{STEC} = K_a \times \text{VTEC}$, with K_a given by:
With Earth radius=6367 km, and Ionosphere beginning at 100 km height, with $h=$Slab Thickness

$$K_a = \frac{(\sqrt{(6467^2+h)^2-(6367\cos E_l)^2}) - \sqrt{(6467^2-(6367\cos E_l)^2)}}{h}$$
This is easily found with Pitagora’s theorem from

![Diagram](image.png)

For $h=350$ km this is K_a as function of elevation
Final formula

We have now the data for the complete formula:

\[\Phi = k \times (F \times \cos FM) \times (VTEC \times corr \times Ka) / f^2 \]

For \(f = 144 \) MHz, \(k / f^2 = 1.14 \) with \(F \) in Gauss.

Wave plane rotation is controlled by these variables:

- Angle between Geomagnetic field and Moon direction (\(\cos FM \) ranges from 1 to \(-1\))
- TEC (constant or changing slowly, 100% to 30%)
- Moon elevation (oblique passage \(Ka \) from 1 to 3.7)

Collecting on-the-air data

We needed many sources of data, geographically spread.

A big help came from René PE1L, who collected for us all the data published on line in LiveCQ in a file, accessible to us.

We sorted them in an Excel sheet by date, spotter and spotted.

Example: 18/08/2012 – DG0OPK – PE1L, data, pol and level graphs

So we could examine a great variety of cases, and start to identify tendencies.

Note: The polarization measured by MAP65 is the algebraic sum of spatial offset and of two ionospheric crossings: the Faraday rotation of the up going transmitted wave and that of the returning echo.
Amount of rotation in an interval

As a first check on our formulas, we compiled an Excel sheet for calculating what happens in a time interval, generally not greater than an hour. An example:

<table>
<thead>
<tr>
<th>Date</th>
<th>UTC</th>
<th>Local time</th>
<th>Destination</th>
<th>SunEl.</th>
<th>Mercury</th>
<th>Venus</th>
<th>Mars</th>
<th>Jupiter</th>
<th>Saturn</th>
<th>Uranus</th>
<th>Neptune</th>
<th>Sun type</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 3, 2012</td>
<td>0.00</td>
<td>0.20</td>
<td>24.26</td>
<td>179</td>
<td>-50</td>
<td>12.26</td>
<td>7.26</td>
<td>2.26</td>
<td>4.26</td>
<td>9.26</td>
<td>13.26</td>
<td>0.26</td>
</tr>
<tr>
<td>August 3, 2012</td>
<td>0.06</td>
<td>0.56</td>
<td>24.26</td>
<td>179</td>
<td>-50</td>
<td>12.26</td>
<td>7.26</td>
<td>2.26</td>
<td>4.26</td>
<td>9.26</td>
<td>13.26</td>
<td>0.26</td>
</tr>
</tbody>
</table>

We checked many cases with good congruence between computed and observed rotations.

Global common moon trend

Having now confidence in the basic correctness of formula and correction coefficients, we proceeded to build a new Excel sheet, covering the entire common-moon period.

Our Excel sheet:
Partial checks were possible using the LiveCQ decoded periods.

An example for SP4MPB spotted by PA3FPQ on 16/12/2012. All data were computed for 30’ intervals. The choice of these two stations depended on having a LiveCQ decode running continuously for 44’.

And the graphs we obtain from it (with superimposed the decoded graph):

![Graph](image)

SP4MPB was active from 13.58 to 14.42 utc.

In this phase, TEC had a quick decrease, followed by a brief increase pre sunset, then decreasing from sunset to night. Calculated and real trend are coherent.

A second example is I2FAK calling CQ in ARRL EME contest, on 1/12/2012.
Station is 828 SSE of spotter PA3FPQ.

Decoded pol showed 90° transitions when he changed tx from H to V.

Graph corrected for this is the right one.

![Graph](image)

Night conditions, with increasing Moon elevation.

![Graph](image)

Night TEC was practically constant, so pol change derived mainly from increasing Moon elevation.
Polarization trends

When reception is difficult due to unfavorable Faraday rotation, one often wonders if this will change quickly. We decided to explore if tendencies could be found and used as a guide.

So we created a set of 8 computations for a full moon pass of IK1UWL station with stations in 8 different directions, N, NE, E, SE, S, SW, W, NW, all for the same moonpass, on Dec 19th 2012, in which the Moon was visible from 11.00 to 23.00 UTC. In this diagram the graphs are disposed in the outer ring.

Azimuth rose

![Diagram of azimuth rose with graphs for different directions](image)

In order to separate the eventual tendencies from changes in the ionosphere (which occur over a full moon pass, but are negligible in a short period), we computed also the rotations with constant VTEC and slab thickness, i.e. for an invariable ionosphere.

The relative graphs are disposed in the inner circle.
The first noticeable fact is the similarity at the beginning and at the end of the moon pass, whilst ionospheric changes give different evolutions in the central part of the moon pass.

Evidently, at moonrise and moonset the rapid change of inclination (which influences both cosFM and Ka) causes quick variations of rotation.

The overall shape of Eastward and Westward graphs is similar to a sinusoid, with slower variations in the central part. Specifically, at MR, cosFM variation of the station having MR, has a dominant effect, and is the cause, in the first hour approximately, of the pol rotation. The same effect can be seen at MS.

For Northern stations the factor Ka (change of Slant TEC) is the dominant factor at MR and MS.

For Southern stations the dominant effect, with IK1UWL spotting, is more tied to cosFM (angle between earth’s Geomagnetic field and Moon direction) due to the field’s condition above IK1UWL station, but also Ka show a similar effect.

Generalizing, during hours in which TEC changes little (during the day and during the night), Faraday rotation is affected mainly by angle changes (Moon elevation and Moon direction respect Geomagnetic field). Changes tied to TEC occur mainly during sunrise and sunset.
Conclusions

- **QSB of JT65 decodes:** Is caused by focusing or defocusing of our beam going through the waves of the windy ionosphere.

- **Faraday rotation:** There are three phases in a Moon pass:
 1. In the first hours after Moon rise the rate of change of polarization is high. Causes:
 a) – change of angle FM between Moon direction and magnetic field
 b) – change in length of ionospheric crossing (slant coeff. Ka)
 2. In the central part of Moon pass changes in angle FM and coeff. Ka balance each other, so polarization changes depend mainly from ionospheric evolution (of Total Electron Content)
 3. In the last hours before Moon set the rate of change of polarization is high for the same causes of phase 1

References

- INGV istituto nazionale di Geofisica e Vulcanologia.
- The Potential of Broadband L-Band SAR Systems for Small Scale Ionospheric TEC Mapping Remote Sensing Technology Institute, German Aerospace Center (DLR) Oberpfaffenhofen, D – 82234 Wessling, Germany
- Institute of Communication and Navigation, German Aerospace Center
- GEOMAGNETISM TUTORIAL Whitham D. Reeve Reeve Observatory Anchorage, Alaska USA
- Frederick University, 7 Y. Frederickou St., Palouriotisa, Nicosia 1036, Cyprus
- Electron density measurements of the plasmasphere – experimental observations and modelling studies
- Cooperative Research Centre for Satellite Systems Department of Physics, La Trobe University Bundoora, Australia
- Propagation Factors In Space Communications (NATO)
- Seasonal variations of storm-time TEC at European middle latitudes Royal Meteorological Institute (RMI), Belgium

Reference website: www.qsl.net/ik3xtv

Authors: G.Marchi, IK1UWL (marchi.g@libero.it) – F.Egano, IK3XTV (ik3xtv@gmail.com)

Date: August 2014

All rights reserved