DSP for Dummies

(or What I Learned About DSP When Writing LinWSJT)

Jonathan Naylor HB9DRD/G4KLX
Abtract: The JT44 data mode has become very popular over the last year; its success has been outstanding, both in terms of usage and in making EME available to modest stations. This paper attempts to explain the methods used to decode it. It is hoped that this article makes powerful DSP techniques such as Fast Fourier Transforms and Correlation more understandable to the average amateur. The mathematical level of this paper is basic.

Introduction
The purpose of this paper is to describe what I have learned about DSP (Digital Signal Processing) in the course of implementing the JT44 data mode for Linux. What I have learned is applicable to any operating system and programming language and no specific references will be made to either Linux/UNIX or C++.

With the power of modern PCs and with standard sound cards, it is possible to do DSP work on home PC’s without having to invest in specialist hardware. Many pieces of software have appeared over the last few years that make use of this fact, the most ambitious being LinRad by Leif SM5BSZ, while the most revolutionary being WSJT by Joe K1JT [1]. I use the term revolutionary in that WSJT (in JT44 mode) makes maximum use of a number of powerful DSP techniques in order to push back the frontiers of weak signal decoding in amateur radio.

Many of the DSP techniques are not intrinsically complex, however most DSP books tend to be textbooks for university courses and include a large amount of relatively advanced mathematics. However if you treat the techniques as “black boxes”, then a lot of the mathematics can be dispensed with. This article aims to demystify some of the more interesting techniques that I have used when implementing JT44 in LinWSJT.

What is the JT44 Data Mode?
A JT44 transmission lasts for slightly over 25 seconds, in that time, a 22-character message is repeated three times. Each character is represented by a unique tone. In addition, between many of the characters is a synchronisation tone, and there are 69 of those. This leads to a complete transmission consisting of 135 characters transmitted at 5.38 baud. The pattern of the synchronisation tone and the characters is fixed and uses a pseudo random pattern.

The main problem in decoding JT44 is identifying this synchronisation tone within a range of frequencies (±600 Hz is specified) and also in a range of time (-2 to +4 seconds). Once that is done, the recovery of the message becomes a relatively simple problem. But in order to do any of these things, you need to understand two basic DSP mechanisms, Fast Fourier Transforms and Correlation.

Fast Fourier Transforms (FFT's)
The FFT is a mechanism that may be used to convert data between the time domain and the frequency domain. What does that mean? In practical terms, it means that I can feed in audio data and get out data that represents the individual frequencies that make up the original data. An FFT can be used as the main part of a spectrum analyser, unlike an RF spectrum analyser; an FFT provides all of the data for all of the frequencies simultaneously. The software that amateurs use to "see" weak signals, for example FFTDSP by AF9Y, is based on a FFT. I do not need to know how it works, just how to apply it, and how to interpret the resulting data.

The main attribute of a FFT is its length that must be specified before using it. The length is important as this information along with the speed at which the incoming audio is being sampled, allows you calculate how wide the bandwidth of each output of the FFT is, and what frequency it represents. These outputs from the FFT are called "bins". In the case of JT44, the audio is being sampled at 11025 times per second, the FFT has a length of 2048 (i.e. 2048 output bins), which means that each bin is 5.4 Hz wide and that bin 236 is centred on 1270.5 Hz. The mathematical relationships between these values are:

Bin Width (Hz) = Sample Rate (Hz) / FFT Length

Bin Freq. (Hz) = Bin Number * Bin Width (Hz)

If you were to feed white noise from your radio into an FFT, the results would be similar to what can be seen in figure 1.

Figure 1: White Noise Through an FFT

A Sine wave fed into an FFT would cause an effect similar to figure 2.

Figure 2: Sine Wave Through an FFT

With strong signals and narrow FFT bins, the values in the bins adjacent to the bin containing the incoming signal will have increased values. The FFT is good, but it is not perfect.

The FFT is a very powerful tool, and it has a brother called the Inverse Fast Fourier Transform (IFFT) that does the opposite. It allows you to create an arbitrary spectrum from input data that represent the frequencies to be generated; the same mathematical relationships apply to an IFFT as to an FFT. An IFFT is used as the basis for the transmitting part of LinWSJT.

There is a very important property of an FFT that is extremely valuable, and is essential for the decoding of JT44 (and many other data modes). It is that a N-point FFT is perfectly matched to decoding data that has symbols that are N audio samples long. In the case of JT44, N is 2048. The problem is knowing where to place the FFT in the incoming data stream.

Figure 3: Optimal Location for an FFT

Figure 3 shows incoming data being sampled in three places by FFT’s, however only one of them is optimal. The outputs of FFT1 and FFT2 will contain elements from two different symbols, neither of which will be at full amplitude. The output from FFT3 will contain data from only one symbol that is perfectly matched to the FFT. The problem that faces the program using the FFT is to know where to place the FFT relative to the input data stream. This problem will be returned to later.

Correlation

Correlation is the mathematical process of comparing two waveforms, and producing a result (the correlation value) that represents how closely the two waveforms match. The correlation value in itself is not that important except as a comparative indication.

While the mathematics behind the FFT are complex, the mathematics behind Correlation are simple. All that is required is that a copy of the expected incoming waveform is available for comparison purposes. The process of Correlation only requires the use of multiplication and addition, albeit many of them.

Figure 4: Correlation Examples

The best way to describe Correlation is to work some simple examples. A number of different waveforms can be seen in figure 4, the top one is the original that we will correlate the others against. Wave 1 is the exact opposite waveform, wave 2 is a continuous high value, wave 3 is a continuous low value, wave 4 is a single peak, and wave 5 is an exact duplicate of the original wave. Although this example is using square waves (which also happens in LinWSJT), the exact same principle applies to any other wave shapes.

To Correlate the different waveforms we must compare the original waveform and each of the other waveforms at the same points in time. For this example we will sample them at regular intervals, using the middle of each level of the original waveform as a guide. The values for each of the waveforms can be seen in table 1.

	Position

-------(
	1
	2
	3
	4
	5
	6

	Original
	1
	-1
	1
	-1
	1
	-1

	Wave 1
	-1
	1
	-1
	1
	-1
	1

	Wave 2
	1
	1
	1
	1
	1
	1

	Wave 3
	-1
	-1
	-1
	-1
	-1
	-1

	Wave 4
	-1
	-1
	1
	-1
	-1
	-1

	Wave 5
	1
	-1
	1
	-1
	1
	-1

Table 1: Waveform Values

To calculate the correlation value, the values of the waves at the same points in time must be multiplied with the value of the original wave, and then added together. The calculations and their results (correlation values) can be seen in figure 2.

	
	Calculation
	Result

	Wave 1
	1 * -1 + -1 * 1 + 1 * -1 + -1 * 1 + 1 * -1 + -1 * 1
	-6

	Wave 2
	1 * 1 + -1 * 1 + 1 * 1 +

-1 * 1 + 1 * 1 + -1 * 1
	0

	Wave 3
	1 * -1 + -1 * -1 + 1 * -1 + -1 * -1 + 1 * -1 + -1 *

-1
	0

	Wave 4
	1 * -1 + -1 * -1 + 1 * 1 + -1 * -1 + 1 * -1 + -1 * -1
	+2

	Wave 5
	1 * 1 + -1 * -1 + 1 * 1 +

-1 * -1 + 1 * 1 + -1 * -1
	+6

Table 2: Correlation Value Calculations

The results are as expected. The copy of the original waveform, wave 5, is clearly the best correlation. Wave 1, which is the inverse of the original wave, has the worst. Two other values are worth noting, wave 2 can be thought of as representing the output of an FFT that is receiving a continuous carrier, it has a low correlation value. Wave 3 can be thought of as no signal (white noise), again it has a low correlation value.

Therefore with Correlation, interference signals (“birdies”) do not cause false triggering, an extremely useful property.

Decoding JT44

The input for DSP programs such as LinWSJT is usually a sound card in a PC. Many modern sound cards boast 3D Sound, MIDI interfaces and the like, however these are not needed in this application. All that is required is for the sound card to act as an audio Analog-to-Digital and Digital-to-Analog converter. The important parameters for the sound card are the sample rate and the number of bits of precision available.

The basic rule for sampling signals is that the sampling rate must be at least twice the maximum frequency that is to be processed. For a normal amateur SSB radio this is 2500 Hz, so the JT44 sampling rate of 11025 Hz easily fulfils this requirement. The number of sampling bits determines the dynamic range of the received audio data. In the case of JT44 where (a) the signals will be weak, and (b) the receivers AGC is enabled, even 8-bit sound cards are adequate.

As mentioned earlier, the key to decoding JT44 is to identify where the synchronisation tone is in terms of time and frequency. Once that is done, it is a simple matter then to apply FFT’s to the input audio data at the correct points in time, and to match the data tones to the letters and numbers of the message. In the LinWSJT program, the text decoding is the simple part; the interesting challenges are to be found in the synchronisation tone processing. The structure of the JT44 decoding section within LinWSJT can be seen in figure 5.

The first step is to process the incoming audio data with a 2048-point FFT. The values for bins 124 to 347 (the limits of the synchronisation tone frequencies) are then fed into a Correlator that operates with a local copy of the synchronisation tone waveform, and “slides” it in time relative to the incoming data from –2 to +4 seconds. At the end of the incoming audio data, the correlation values from these different frequencies and times are scanned to find the highest value, this gives both the frequency and time offset of the synchronisation tone. These values are then fed into the text decoder.

Within LinWSJT, a correlation against a square wave that represents the on-off waveform of the synchronisation tone is used, rather than a simple copy of the expected audio waveform. Even with this simplification there would still be many calculations that need to be done and a lot of data storage needed for the results. Instead of testing for every time point between –2 and +4 seconds (which equate to –2 * 11025 and +4 * 11025 samples), the program only does a check every 1024 samples within that time range, which is approximately every 0.1 seconds. This has the effect of saving memory because there are less correlation values to store, and saving time because the processing has been reduced to 1/1024 of the previous value. The value of 1024 was determined experimentally, using samples of weak JT44 signals. The results of this approximate correlation are the exact frequency (FFT bin number) and the approximate time of the synchronisation tone.

Once an approximate correlation is found, a continuous check is made for correlation in the time range of ±1024 samples relative to the approximate correlation time. Such a continuous scan is processor intensive but within such a narrow range it is completed within a fraction of a second. This results in the exact time of the synchronisation tone. The resulting data from this correlation process is used to calculate the signal strength, the synchronisation quality, and produce some of the graphs in the program display.

Figure 5: JT44 Decoding Structure within LinWSJT

The next stage is the text decoding. A simple and effective way to do this is to add the values for the different letters and numbers for each of the 22 characters (from three locations each) and choose the strongest. This works well, however in the presence of interference it may become locked to the interfering signal and cause the wrong letter or number to be decoded.

The answer to this is to use another Correlator that checks that a letter/number tone is not present when there should be a synchronisation tone. This has the effect of rejecting continuous signals that are typical of “birdies”, leaving the real JT44 data to be decoded. On real world signals that are weak and in the presence of interference, a noticeable improvement in recovered text can be seen.

Further improvements in extracting text from very weak signals can be obtained by averaging the received data both within a single JT44 message and over a number of JT44 messages. Within a single message, the odd characters and the even characters are averaged together which can make the decoding of messages such as “RORORO…” much better, also the last four characters in the message are also decoded as a single character for messages that contain a fixed ending such as “… OOOOOO”. These are standard in the original WSJT program.

Each incoming message (subject to certain restrictions) is added to an average message that is displayed separately. When the same message is received a number of times, even when the individual messages have not been decoded correctly, the cumulative average of these messages may result in meaningful text being decoded. In order for this to work, it is important to be able to have control over which incoming messages make up this average message. It is important to be able to clear the average message and start it again once the remote station has changed the message content.

Further Development

JT44 despite its success is not suitable for microwave EME operating. The top frequency at which JT44 is useful has not been ascertained, it is still usable on 1296 MHz, but at 10 GHz the spreading of the signal would cause each tone to overlap many FFT bins and make decoding impossible. For these frequencies a different data mode is needed which uses wider bins, this reduces sensitivity which must then be made up in other ways, possibly by extending the transmit and receive periods from the current thirty seconds. This is an area of potential development.

My next challenge is to implement FSK441, the Meteor Scatter mode. It is quite a different problem than the one that JT44 represents, for example Correlation will probably not be needed.

Conclusion

Development of the JT44 program has been most interesting for me; probably the most fun part has been learning new techniques. My source of information and inspiration has been Tomi Manninen OH2BNS who also learned DSP development by writing software. He has spent long periods on the WW Converse network explaining DSP concepts to me, and answering numerous e-mails. I would like to thank him for that.

I have had two DSP books recommended to me, both provide program examples and I have listed them in the references section [2][3], one of them is freely available on the Internet. Most DSP books are heavily mathematical and for someone trying to solve a real life problem, they are not so useful.

LinWSJT is developed using C++ on the Linux operating system. It makes use of the wxWindows multi-platform GUI framework that should mean that it could eventually be ported over to Windows and the Mac with relatively little effort. LinWSJT and wxWindows (as well as Linux) are open source software and are downloadable for free from the Internet. The complete source code for LinWSJT is available, it can be found at [4] under the entry “Software”.

References

[1] http://pulsar.princeton.edu/~joe/K1JT, http://www.vhfdx.de/wsjt
[2] E. Ifeachor & B. W. Jervis, Digital Signal Processing, 2nd Edition, Prentice-Hall, ISBN 0201596199

[3] http://www.dspguide.com/
[4] http://www.qsl.net/g4klx
Freq.

Time

FFT1

FFT2

FFT3

Time

1

Original

-1

1

Wave 1

-1

1

Wave 2

Wave 3

-1

1

Wave 5

-1

1

Wave 4

-1

Time

Ampl.

FFT

Ampl.

FFT Bins

Ampl.

FFT Bins

FFT

Ampl.

Time

Average Message Text

Message Text

Data for Signal Strength and Graphic Display

Exact Timing

Exact FFT Bin and Approximate Timing

WAV File format

Add Message Data to Average Message

Extract Message Data

Perform exact Correlation on single FFT Bin

Perform Correlation every 1024 Samples

Save Audio Data to Disk

[Optional]

Sample incoming Audio Data at 11025 Hz

