# Coaxial Cable 

Theory \& Practice

David M.
AJ4TF
$>$ Coaxial Cable History
$>$ Theory
$>$ Theory reduced to practice
$>$ Where can I find more information about it?

## What is Coaxial Cable?

$>$ "Co-axial" - sharing the same axis
$>$ First mention of this type of cable was by the famous English mathematician Oliver Heaviside, who patented it in 1880.

- Other accomplishments by Heaviside (in case you haven't heard of him):
- rewrote the fundamental equations of electromagnetism (Maxwell's Equations) into the forms that are used today
- Predicted the existence of the E-layer of the ionosphere
- Developed theories of transmission line propagation
- Invented the following terms:
- Impedance, inductance, conductance, permeability, reluctance, admittance


## What is Coaxial Cable?

$>$ In the 1920's, AT\&T was looking for new methods of transmission for telephone traffic, and re-evaluated Heaviside's work
$>$ This led to the patenting of what we would consider "modern" coaxial cable by AT\&T’s Bell Laboratories in 1931.

Patented Dec. 8, 1931
1,835,031

## UNITED STATES PATENT OFFICE

LLOYD ESPENSCHIED, OF KEW GARDENS, NEW YORK, AND HERMAN A. AFFEL, OF RIDGEWOOD, NEW JERSEY, ASSIGNORS TO AMERICAN TELEPHONE AND TELEGRAPH COMPANY, A CORPORATION OF NEW YORE

CONCENTRIC CONDUCTING SYSTEM tems, and more particularly to a novel form of conductor structure and associated apparatus for the guided transmission and utilization of a very wide band of frequencies whose width may be of the order of a millon cycles or more.
The art of television in particular has emphasized the need for transmission line systems having enormously wide frequency range requirements. Whereas individual channel requirements of telegraphy are of the order of a few hundred cycles at most, and telephony perhaps a few thousand cycles, television may require transmission of bands hundreds of thousands of cycles in width to insure a reasonable degree of picture detail. At the same time, of course, a transmission channel satisfying television requirements, gives opportunity for breaking up a very wide frequency band into perhaps hundreds of telephone channels.


Fíg. 2, Longitudinal Section

## Coaxial Cable Theory

$>$ Specialized form of a general two-conductor transmission line, consisting of an outer and inner conductor, with an insulating dielectric between the conductors

$>$ Dimensions:

- $a=$ outside radius of inner conductor ( $1 / 2$ the diameter)
- $b=$ inside radius of outer conductor ( $1 / 2$ the diameter)
- Dielectric properties:
$\varepsilon=$ electric permittivity, $\mu=$ magnetic permeability


## Coaxial Cable Theory

> Dielectric Properties
Dielectric can be described, in general, by the relative electric permittivity ( $\varepsilon_{\mathrm{r}}$ ) and magnetic permeability ( $\mu_{\mathrm{r}}$ ), as compared to the "perfect" dielectric, which is free space (i.e. a vacuum with nothing around it).
$\varepsilon_{\mathrm{r}}=\varepsilon / \varepsilon_{\mathrm{o}}$
$\mu_{\mathrm{r}}=\mu / \mu_{\mathrm{o}}$
$>\varepsilon_{0}=8.85 \times 10^{-11}$ permittivity of free space
$>\mu_{0}=1.26 \times 10^{-5}$ permeability of free space

## Coaxial Cable Theory

$>$ Dielectric Properties
$\varepsilon_{\mathrm{r}}=\varepsilon / \varepsilon_{\mathrm{o}}$ also known as the 'dielectric constant'
$\mu_{\mathrm{r}}=\mu / \mu_{\mathrm{o}}$

- Dielectrics are (generally) non-magnetic, $\mu_{r}=1$
- Non-ferrous conductors (such as copper) are also non magnetic, and since they are not dielectrics, $\varepsilon_{r}=1$
- It can be shown that the intrinsic wave impedance of an electromagnetic wave in free space is:

$$
\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \cong 120 \pi \cong 377 \Omega
$$

## Coaxial Cable Theory

$>$ It can also be shown that the characteristic impedance of a coaxial structure is:

$$
Z_{0}=\frac{1}{2 \pi} \sqrt{\frac{\mu_{0} \mu_{r}}{\varepsilon_{0} \varepsilon_{r}}} \ln \frac{b}{a}
$$



Since we already know $\mu_{\mathrm{r}}=1 \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \cong 120 \pi$ and $\log (x)=\frac{\ln (x)}{\ln (10)}=2.302 \ln (x)$ This simplifies into:

$$
Z_{0}=\frac{138}{\sqrt{\varepsilon_{r}}} \log \frac{b}{a}
$$

Note that the value of $b$ and $a$ is not important, only the logarithm of the ratio between them

## Coaxial Cable Theory

$>$ Per unit length capacitance

$$
C=\frac{2 \pi \varepsilon_{0} \varepsilon_{r}}{\ln \frac{b}{a}}
$$

$>$ Per unit length inductance $L=\frac{\mu_{0} \mu_{r}}{2 \pi} \ln \frac{b}{a}$
$\rightarrow$ With some manipulation, this can be reduced to:

$$
\begin{aligned}
& C=\frac{7.26 \varepsilon_{r}}{\log \left(\frac{b}{a}\right)} \quad \mathrm{pF} / \text { foot } \\
& Z_{0}=\sqrt{\frac{L}{C}} L
\end{aligned}
$$

Characteristic Impedance

## Coaxial Cable Theory

$>$ Propagation velocity (aka Velocity Factor)
$V p=\frac{c}{\sqrt{\varepsilon_{r}}}$ or as a percentage of the speed of light: $\quad V F=\frac{1}{\sqrt{\varepsilon_{r}}}$
$>$ This is the speed at which the electric and magnetic fields travel through the cable
$>$ This is important when determining the length in wavelengths of a section of coaxial cable, since the electrical length is shorter than the physical length, proportional to the velocity factor.

## Coaxial Cable Theory

> Attenuation

- Power loss in coax cable comes from dielectric losses, conductor resistance, and a small amount that is radiated from the line.
- Losses are not proportional to the length of the line, but vary by the logarithm of the length. Since the decibel is a logarithmic unit, expressing losses as dB per unit length makes calculations easier.
- Usually specified in dB per 100 ft , or dB per 100 meters
- Watch carefully for the units... $100 \mathrm{~m}>3 \mathrm{X} 100 \mathrm{ft}$ !


## Reflection Theory

$>$ When a coaxial cable (or any other transmission line) is terminated with a load equal to its characteristic impedance, it is said to have a matched load.
$>$ When the load is not equal to the characteristic impedance, it is mismatched. In this case, the power is only partially absorbed by the load, the rest of it is reflected back towards the source.


## Reflection Theory

$>$ The reflection coefficient $\rho$ is defined as:

$$
\rho=\frac{V_{R}}{V_{F}}=\frac{I_{R}}{I_{F}}=\sqrt{\frac{P_{R}}{P_{F}}}
$$

$>$ Reflected waveforms mix with the incident waveforms and add and subtract from each other, creating maximums and minimums on the line.


## Reflection Theory

$>$ The ratio of the maximum voltage on the line and the minimum voltage is called the voltage standing wave ratio, VSWR, or just SWR. Going back to the reflection coefficient:

$$
S W R=\frac{1+|\rho|}{1-|\rho|}=\frac{1+\sqrt{\frac{P_{R}}{P_{F}}}}{1-\sqrt{\frac{P_{R}}{P_{F}}}}
$$

$>$ So, if you know the forward and reflected power, you can calculate the SWR. A directional wattmeter, such as a Bird 43 can measure both forward and reflected power.
$>$ High SWR causes additional loss over and above the line loss, and high levels of reflected power can damage your transmitter.

## Practical Coax Cables

$>$ There are many factors that go into the choice of a coax cable:

- Loss (usually specified in dB per 100 ft or 100 m )
- Peak power rating (which is related to the maximum breakdown voltage)
- Average power rating (which is related to the long-term temperature rating of the dielectric material)
- Ease of handling (diameter, bend radius, solid or stranded conductor)
- And, of course, \$\$


## Practical Coax Cables



## Practical Coax Cables

Nominal Characteristics of Commonly Used Transmission Lines

| RG or Type | Part Nom. $Z_{0}$ <br> Number $\Omega$ |  | $\begin{gathered} V F \\ \% \end{gathered}$ | Cap. pF/ft | Cent. Cond. $A W G$ | Diel. <br> Type | Shield Type | Jacket <br> Matl | $\begin{aligned} & \text { OD } \\ & \text { inches } \end{aligned}$ | Max $V$ <br> (RMS) | Matched Loss ( $\mathrm{dB}^{\text {/ } 100}{ }^{\prime}$ ) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 MHz |  |  |  |  |  |  |  | 10 |  | $1000$ |
| RG-6 | Belden 1694A | 75 |  | 82 | 16.2 | \#18 Solid BC | FPE | FC | P1 | 0.275 | 300 | 0.3 | . 7 | 1.8 | 5.9 |
| RG-6 | Belden 8215 | 75 | 66 | 20.5 | \#21 Solid CCS | PE | D | PE | 0.332 | 2700 | 0.4 | 0.8 | 2.7 | 9.8 |
| RG-8 | Belden 7810A | 50 | 86 | 23.0 | \#10 Solid BC | FPE | FC | PE | 0.405 | 300 | 0.1 | 0.4 | 1.2 | 4.0 |
| RG-8 | TMS LMR400 | 50 | 85 | 23.9 | \#10 Solid CCA | FPE | FC | PE | 0.405 | 600 | 0.1 | 0.4 | 1.3 | 4.1 |
| RG-8 | Belden 9913 | 50 | 84 | 24.6 | \#10 Solid BC | ASPE | FC | P1 | 0.405 | 300 | 0.1 | 0.4 | 1.3 | 4.5 |
| RG-8 | CXP1318FX | 50 | 84 | 24.0 | \#10 Flex BC | FPE | FC | P 2 N | 0.405 | 600 | 0.1 | 0.4 | 1.3 | 4.5 |
| RG-8 | Belden 9913F | 50 | 83 | 24.6 | \#11 Flex BC | FPE | FC | P1 | 0.405 | 300 | 0.2 | 0.6 | 1.5 | 4.8 |
| RG-8 | Belden 9914 | 50 | 82 | 24.8 | \#10 Solid BC | FPE | FC | P1 | 0.405 | 300 | 0.2 | 0.5 | 1.5 | 4.8 |
| RG-8 | TMS LMR400UF | 50 | 85 | 23.9 | \#10 Flex BC | FPE | FC | PE | 0.405 | 600 | 0.1 | 0.4 | 1.4 | 4.9 |
| RG-8 | DRF-BF | 50 | 84 | 24.5 | \#9.5 Flex BC | FPE | FC | PE | 0.405 | 600 | 0.1 | 0.5 | 1.6 | 5.2 |
| RG-8 | WM CQ106 | 50 | 84 | 24.5 | \#9.5 Flex BC | FPE | FC | P 2 N | 0.405 | 600 | 0.2 | 0.6 | 1.8 | 5.3 |
| RG-8 | CXP008 | 50 | 78 | 26.0 | \#13 Flex BC | FPE | S | P1 | 0.405 | 600 | 0.1 | 0.5 | 1.8 | 7.1 |
| RG-8 | Belden 8237 | 52 | 66 | 29.5 | \#13 Flex BC | PE | S | P1 | 0.405 | 3700 | 0.2 | 0.6 | 1.9 | 7.4 |
| RG-8X | Belden 7808A | 50 | 86 | 23.5 | \#15 Solid BC | FPE | FC | PE | 0.240 | 300 | 0.2 | 0.7 | 2.3 | 7.4 |
| RG-8X | TMS LMR240 | 50 | 84 | 24.2 | \#15 Solid BC | FPE | FC | PE | 0.242 | 300 | 0.2 | 0.8 | 2.5 | 8.0 |
| RG-8X | WM CQ118 | 50 | 82 | 25.0 | \#16 Flex BC | FPE | FC | P 2 N | 0.242 | 300 | 0.3 | 0.9 | 2.8 | 8.4 |
| RG-8X | TMS LMR240UF | 50 | 84 | 24.2 | \#15 Flex BC | FPE | FC | PE | 0.242 | 300 | 0.2 | 0.8 | 2.8 | 9.6 |
| RG-8X | Belden 9258 | 50 | 82 | 24.8 | \#16 Flex BC | FPE | S | P1 | 0.242 | 300 | 0.3 | 0.9 | 3.2 | 11.2 |
| RG-8X | CXPO8XB | 50 | 80 | 25.3 | \#16 Flex BC | FPE | S | P1 | 0.242 | 300 | 0.3 | 1.0 | 3.1 | 14.0 |
| RG-9 | Belden 8242 | 51 | 66 | 30.0 | \#13 Flex SPC | PE | SCBC | P2N | 0.420 | 5000 | 0.2 | 0.6 | 2.1 | 8.2 |
| RG-11 | Belden 8213 | 75 | 84 | 16.1 | \#14 Solid BC | FPE | S | PE | 0.405 | 300 | 0.1 | 0.4 | 1.3 | 5.2 |
| RG-11 | Belden 8238 | 75 | 66 | 20.5 | \#18 Flex TC | PE | S | P1 | 0.405 | 300 | 0.2 | 0.7 | 2.0 | 7.1 |
| RG-58 | Belden 7807A | 50 | 85 | 23.7 | \#18 Solid BC | FPE | FC | PE | 0.195 | 300 | 0.3 | 1.0 | 3.0 | 9.7 |
| RG-58 | TMS LMR200 | 50 | 83 | 24.5 | \#17 Solid BC | FPE | FC | PE | 0.195 | 300 | 0.3 | 1.0 | 3.2 | 10.5 |
| RG-58 | WM CQ124 | 52 | 66 | 28.5 | \#20 Solid BC | PE | S | PE | 0.195 | 1400 | 0.4 | 1.3 | 4.3 | 14.3 |
| RG-58 | Belden 8240 | 52 | 66 | 29.9 | \#20 Solid BC | PE | S | P1 | 0.193 | 1400 | 0.3 | 1.1 | 3.8 | 14.5 |
| RG-58A | Belden 8219 | 53 | 73 | 26.5 | \#20 Flex TC | FPE | S | P1 | 0.195 | 300 | 0.4 | 1.3 | 4.5 | 18.1 |
| RG-58C | Belden 8262 | 50 | 66 | 30.8 | \#20 Flex TC | PE | S | P2N | 0.195 | 1400 | 0.4 | 1.4 | 4.9 | 21.5 |
| RG-58A | Belden 8259 | 50 | 66 | 30.8 | \#20 Flex TC | PE | S | P1 | 0.192 | 1400 | 0.5 | 1.5 | 5.4 | 22.8 |
| RG-59 | Belden 1426A | 75 | 83 | 16.3 | \#20 Solid BC | FPE | S | P1 | 0.242 | 300 | 0.3 | 0.9 | 2.6 | 8.5 |
| RG-59 | CXP 0815 | 75 | 82 | 16.2 | \#20 Solid BC | FPE | S | P1 | 0.232 | 300 | 0.5 | 0.9 | 2.2 | 9.1 |
| RG-59 | Belden 8212 | 75 | 78 | 17.3 | \#20 Solid CCS | FPE | S | P1 | 0.242 | 300 | 0.2 | 1.0 | 3.0 | 10.9 |
| RG-59 | Belden 8241 | 75 | 66 | 20.4 | \#23 Solid CCS | PE | S | P1 | 0.242 | 1700 | 0.6 | 1.1 | 3.4 | 12.0 |
| RG-62A | Belden 9269 | 93 | 84 | 13.5 | \#22 Solid CCS | ASPE | S | P1 | 0.240 | 750 | 0.3 | 0.9 | 2.7 | 8.7 |
| RG-62B | Belden 8255 | 93 | 84 | 13.5 | \#24 Flex CCS | ASPE | S | P 2 N | 0.242 | 750 | 0.3 | 0.9 | 2.9 | 11.0 |
| RG-63B | Belden 9857 | 125 | 84 | 9.7 | \#22 Solid CCS | ASPE | S | P2N | 0.405 | 750 | 0.2 | 0.5 | 1.5 | 5.8 |
| RG-142 | CXP 183242 | 50 | 69.5 | 29.4 | \#19 Solid SCCS | TFE | D | FEP | 0.195 | 1900 | 0.3 | 1.1 | 3.8 | 12.8 |
| RG-142B | Belden 83242 | 50 | 69.5 | 29.0 | \#19 Solid SCCS | TFE | D | TFE | 0.195 | 1400 | 0.3 | 1.1 | 3.9 | 13.5 |
| RG-174 | Belden 7805R | 50 | 73.5 | 26.2 | \#25 Solid BC | FPE | FC | P1 | 0.110 | 300 | 0.6 | 2.0 | 6.5 | 21.3 |
| RG-174 | Belden 8216 | 50 | 66 | 30.8 | \#26 Flex CCS | PE | S | P1 | 0.110 | 1100 | 0.8 | 2.5 | 8.6 | 33.7 |
| RG-213 | Belden 8267 | 50 | 66 | 30.8 | \#13 Flex BC | PE | S | P 2 N | 0.405 | 3700 | 0.2 | 0.6 | 2.1 | 8.0 |
| RG-213 | CXP213 | 50 | 66 | 30.8 | \#13 Flex BC | PE | S | P2N | 0.405 | 600 | 0.2 | 0.6 | 2.0 | 8.2 |
| RG-214 | Belden 8268 | 50 | 66 | 30.8 | \#13 Flex SPC | PE | D | P 2 N | 0.425 | 3700 | 0.2 | 0.7 | 2.2 | 8.0 |
| RG-216 | Belden 9850 | 75 | 66 | 20.5 | \#18 Flex TC | PE | D | P2N | 0.425 | 3700 | 0.2 | 0.7 | 2.0 | 7.1 |
| RG-217 | WM CQ217F | 50 | 66 | 30.8 | \#10 Flex BC | PE | D | PE | 0.545 | 7000 | 0.1 | 0.4 | 1.4 | 5.2 |
| RG-217 | M17/78-RG217 | 50 | 66 | 30.8 | \#10 Solid BC | PE | D | P 2 N | 0.545 | 7000 | 0.1 | 0.4 | 1.4 | 5.2 |
| RG-218 | M17/79-RG218 | 50 | 66 | 29.5 | \#4.5 Solid BC | PE | S | P2N | 0.870 | 11000 | 0.1 | 0.2 | 0.8 | 3.4 |
| RG-223 | Belden 9273 | 50 | 66 | 30.8 | \#19 Solid SPC | PE | D | P2N | 0.212 | 1400 | 0.4 | 1.2 | 4.1 | 14.5 |
| RG-303 | Belden 84303 | 50 | 69.5 | 29.0 | \#18 Solid SCCS | TFE | S | TFE | 0.170 | 1400 | 0.3 | 1.1 | 3.9 | 13.5 |
| RG-316 | CXP TJ1316 | 50 | 69.5 | 29.4 | \#26 Flex BC | TFE | S | FEP | 0.098 | 1200 | 1.2 | 2.7 | 8.0 | 26.1 |
| RG-316 | Belden 84316 | 50 | 69.5 | 29.0 | \#26 Flex SCCS | TFE | S | FEP | 0.096 | 900 | 0.8 | 2.5 | 8.3 | 26.0 |
| RG-393 | M17/127-RG393 | 50 | 69.5 | 29.4 | \#12 Flex SPC | TFE | D | FEP | 0.390 | 5000 | 0.2 | 0.5 | 1.7 | 6.1 |
| RG-400 | M17/128-RG400 | 50 | 69.5 | 29.4 | \#20 Flex SPC | TFE | D | FEP | 0.195 | 1400 | 0.4 | 1.3 | 4.3 | 15.0 |

## Practical Coax Cables

$>$ Power Handling

- The dielectric material and losses are the main contributor to the power handling ability of a given cable type for long-term operation
- For example, a 200 foot piece of RG-8 has a loss of around 3 dB . If you put 500 watts into this cable, 250 watts, or half of the power, is lost in the cable. This is dissipated as heat, and can be enough to soften the plastic materials.
- Pay attention to the maximum RMS voltage rating of the cable: A solid dielectric will handle a higher voltage (more power), but, with higher losses than a foam dielectric

| Approximate Power Handling Capability (1:1 SWR, $40^{\circ} \mathrm{C}$ Ambient): ${ }_{14}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| RG-58 Style | 1350 | 700 | 500 | 350 | 250 | 150 | 120 | 100 | 50 |
| RG-59 Style | 2300 | 1100 | 800 | 550 | 400 | 250 | 200 | 130 | 90 |
| RG-8X Style | 1830 | 840 | 560 | 360 | 270 | 145 | 115 | 80 | 50 |
| RG-8/213 Style | 5900 | 3000 | 2000 | 1500 | 1000 | 600 | 500 | 350 | 250 |
| RG-217 Style | 20000 | 9200 | 6100 | 3900 | 2900 | 1500 | 1200 | 800 | 500 |
| LDF4-50A | 38000 | 18000 | 13000 | 8200 | 6200 | 3400 | 2800 | 1900 | 1200 |
| LDF5-50A | 67000 | 32000 | 22000 | 14000 | 11000 | 5900 | 4800 | 3200 | 2100 |
| LMR500 | 18000 | 9200 | 6500 | 4400 | 3400 | 1900 | 1600 | 1100 | 700 |
| LMR1200 | 52000 | 26000 | 19000 | 13000 | 10000 | 5500 | 4500 | 3000 | 2000 |

## Practical Coax Cables

$>$ Bend Radius

- The minimum bend radius is the radius (or $1 / 2$ the diameter) of the smallest circle the cable should be coiled or bent into
- A common rule of thumb for braided shield cables is a minimum bend radius of $8 \times$ the outside diameter.
- RG-8: $\sim 1 / 2 \prime$ " outside diameter $\times 8=4$ " minimum bend radius or no smaller than an 8 " diameter coil
- For solid shield cable (hardline) the minimum bend radius will be larger
- Cables that will be frequently bent or flexed, such as with antenna rotators, should have a stranded center conductor; a solid conductor will likely break as a result of repeated flexing


## Practical Coax Cables

## Outside Use

- Water Infiltration - through jacket cuts and connectors (common amateur coaxial connectors are NOT waterproof!)
- Water causes corrosion and breakdown of the shield, and contamination of the dielectric material, which will increase the cable loss significantly
- Outer Jacket Damage
- Sunlight can cause PVC jackets to break down and eventually fail, contaminating the shield and dielectric
- For outside use, select a "Non-Contaminating" jacket material


## Practical Coax Cables

> Outside Use

- Direct Burial
- Burying a feedline can provide:
- Protection from sunlight or storm damage
- Reduction of common mode currents on the shield
- Protection from the neighbors
- For a cable that is to be buried directly in the ground, select a type that is rated for this; direct burial cables usually have a tough polyethylene jacket that resists damage.
- Some are 'flooded' with a water-blocking material that will prevent water intrusion if the jacket is cut


## Practical Coax Cables

> Outside Use

- Direct Burial
- Consider using sand in your burial trench to help prevent cable damage and protection from rocks
- Or, use a plastic pipe that the cable is pulled through
- The pipe needs to have drainage holes to allow moisture to escape
- Bury deep enough that digging, aerating, etc won't affect the cable (12-18 inches)


## Practical Coax Cables

> Coaxial Connectors

- Most common is the UHF, or PL-259/SO-239
- Despite the name, UHF connectors are not very good at UHF frequencies, the U means "universal" instead of "ultra"
- UHF connectors do not maintain a constant impedance at high frequencies
- However, they remain very popular for HF equipment



Cutaway

(E)

Solder Brald
Solder Brald
(4 Places)

## Practical Coax Cables

> Coaxial Connectors

- BNC (Bayonet Neill-Concelman) connectors are used for VHF/UHF at low to moderate power levels
- Named after its bayonet locking mechanism and its inventors, Paul Neill of Bell Laboratories, and Carl Concelman of Amphenol.
- Patented in 1951
- Good up to 2 GHz



## Practical Coax Cables

> Coaxial Connectors

- $N$ connectors are used for VHF/UHF at high power levels
- Also invented by Paul Neill of Bell Laboratories
- Good up to 11 GHz
- $\approx 5000 \mathrm{~W}$ at 20 MHz and $\approx 500 \mathrm{~W}$ at 2 GHz



## More Information

$>$ Much of this material was taken from the ARRL Antenna Book, which is a valuable resource
$>$ Coax manufacturers also have good information, example:
http://www.belden.com/pdfs/Techpprs/CoaxialCablesandApplications.pdf
$>$ Web searches can locate a lot of good info on coax cable

Questions?

