IC-R7100 Test Report

By Adam Farson VA7OJ/AB4OJ

Iss. 1, Dec. 28, 2015.

Introduction: This report presents results of an RF lab test suite performed on the IC-R7100 receiver. Basic performance tests were conducted in the VHF and UHF ranges up to 2 GHz. (The receiver covers 30 MHz – 2 GHz.)

List of tests conducted:

- 1. MDS (Minimum Discernible Signal)
- 2. AM Sensitivity
- 3. 12 dB SINAD Sensitivity (FM & WFM)
- 4. Audio Power Output & THD
- 5. Noise Figure (50 MHz & higher)
- 6. RMDR (Reciprocal Mixing Dynamic Range)
- 7. FM IMD Rejection at 20 kHz Spacing (EIA Method)

Performance Tests on IC-R7100 S/N 102499

As performed in my home RF lab, Dec. 27 – 28, 2015.

1: MDS (Minimum Discernible Signal) is a measure of ultimate receiver sensitivity. In this test, MDS is defined as the RF input power which yields a 3 dB increase in the receiver noise floor, as measured at the audio output.

Test Conditions: 2.4 kHz SSB, ATT off, APF off, AGC normal.

Table 1: MDS dBm,								
f MHz	30.0	50.0	144.0	222.0	432.0	900.0	1700.0	1999.0
MDS dBm	-131	-134	-133	-134	-133	-129	-118	-103

2: *AM Sensitivity.* An AM test signal with 30% modulation at 1 kHz is applied from a communications test set to the RF input. The PHONES jack is connected to the test set's audio input. The RF input power which yields 10 dB (S+N)/N is recorded (Table 2).

Test Conditions: ATT off, NR off, NB off, AGC normal. AM & AM-W.

Table 2: AM Sensitivity dBm.							
f MHz	120.0	399.0					
AM Sens dBm	-108	-106					
AM-W Sens. dBm	-108	-106					

Notes:

1. Very clean demodulation; full quieting at -80 dBm (preamp off).

3. 12 dB SINAD FM sensitivity: In this test, a distortion meter is connected to the external speaker jack, and an FM signal modulated by a 1 kHz tone with 3 kHz peak deviation is applied to the RF input. The input signal power for 12 dB SINAD is recorded (Table 3). AFC is off.

Table 3: FM 12 dB SINAD Sensitivity dBm.								
f MHz	30.0	50.0	144.0	222.0	432.0	900.0	1700.0	1999.0
Sens. dBm	-118	-122	-119	-121	-117	-115	-110	-80

3a. 12 dB SINAD WFM sensitivity. Here, the modulating frequency is 1 kHz and the peak deviation is 45 kHz. AFC is off.

Table 4. WI	FM 12 dB SIN	AD Sens	itivity dBm.
	f MHz	100.0	
	Sens. dBm	108	

4. Audio Power Output & THD: In this test, an audio distortion analyzer is connected to the external speaker output. An 8Ω resistive load is connected across the analyzer input. A fully-quieted FM test signal modulated at 1 kHz is applied to the antenna input. The audio voltage corresponding to 10% THD is then measured, and the audio output power calculated.

Test Conditions: 147.000 MHz FM, -73 dBm, ATT off, AFC off.

Test Result: Measured audio output voltage = 4.0V rms. Thus, audio power output = $(4.0)^2/8$ = 2W in 8 Ω . (Spec. is 2W).

5. Noise Figure: In this test, a calibrated noise source is connected to the antenna port via a precision DC - 2 GHz step attenuator. First, the antenna port is terminated in 50Ω and a 0 dBr receive audio reference set. Then, the noise source is connected and the noise loading adjusted for a +3 dBr audio level. The attenuator setting is noted.

As the noise source is calibrated, its noise power density PSD (in dBm/Hz) is known. Noise figure NF is derived as follows:

 $NF \approx PSD - ATT + 174$

where PSD = -82 dBm/Hz ATT = attenuator setting in dB Boltzmann's constant = -174 dBm/Hz

Test Conditions: 2.4 kHz SSB, AGC normal, ATT off, APF off.

Table 5. Noise figure in dB.								
Freq. MHz	50.0	144.0	222.0	432.0	900.0	1200.0		
Measured NF	7	9	7	10	12	11		
NF calc. from MDS	6.2	7.2	6.2	7.2	11.2	not meas.		

6: Reciprocal Mixing Noise occurs in a superheterodyne receiver when the noise sidebands of the local oscillator (LO) mix with strong signals close in frequency to the wanted signal, producing unwanted noise products at the IF and degrading the receiver sensitivity. Reciprocal mixing noise is a measure of LO spectral purity.

In this test, a strong "undesired" signal is injected into the receiver's RF input at a fixed offset from the operating frequency. The RF input power is increased until the receiver noise floor increases by 3 dB, as measured at the audio output. Reciprocal mixing dynamic range (**RMDR**), expressed as a figure of merit, is the difference between this RF input power and measured MDS. The higher the RMDR value, the better.

Test Conditions: 2.4 kHz SSB, ATT off, AGC normal, negative offset. Reciprocal mixing *in* dB = input power – MDS *(both in* dBm).

Table 5: RMDR dB.							
∆f kHz	50.0	144.1	432.1				
2	60	59	54				
3	64	63	58				
5	68	67	63				
10	74	73	70				
20	77	77	75				
50	78	78	77				

7. FM IMD Rejection at 20 kHz Spacing, EIA Method: The purpose of this test is to determine the range of signals which the receiver can tolerate in the FM mode while producing no spurious responses greater than the SINAD level.

Two test signals f_1 and f_2 , of equal amplitude and spaced 20 kHz apart, are applied to the antenna port. The signal 40 kHz removed from the IMD3 product being measured is modulated at 1 kHz, with 3 kHz deviation. The receiver is tuned to the IMD3 products $(2f_1 f_2)$ and $(2f_2 f_1)$. The test signal levels are then increased simultaneously by equal amounts until the IMD3 product reads 12 dB SINAD. The IMD product levels for the upper and lower IMD3 products are averaged; IMD rejection = average IMD3 product amplitude minus 12 dB SINAD sensitivity.

Test Conditions: ATT off, APF off, AGC normal, AFC off.

6m, I: FM, $f_1 = 53.000$ MHz modulated at 1 kHz, peak deviation = 3 kHz. $f_2 = 53.020$ MHz, modulation off.

6m, II: FM, $f_1 = 53.000$ MHz, modulation off, $f_2 = 53.020$ MHz, modulated at 1 kHz, peak deviation = 3 kHz.

2m, I: FM, $f_1 = 147.000$ MHz modulated at 1 kHz, $f_2 = 147.020$ MHz, modulation off.

2m, II: FM, $f_1 = 147.000$ MHz, modulation off, $f_2 = 147.020$ MHz, modulated at 1 kHz, peak deviation = 3 kHz.

1.25m, I: FM, $f_1 = 223.000$ MHz modulated at 1 kHz, peak deviation = 3 kHz. $f_2 = 223.020$ MHz, modulation off.

1.25*m***, II:** FM, $f_1 = 223.000$ MHz modulation off, $f_2 = 223.020$ MHz, modulated at 1 kHz, peak deviation = 3 kHz.

70cm, I: FM, $f_1 = 446.000$ MHz modulated at 1 kHz, peak deviation = 3 kHz. $f_2 = 446.020$ MHz, modulation off.

70*cm***,** *II***:** FM, f_1 = 446.000 MHz modulation off, f_2 = 446.020 MHz, modulated at 1 kHz, peak deviation = 3 kHz.

Frequency MHz	IMD rej. dB
53	80
147	82
223	80
446	86

Table 7. FM IMD rejection at 20 kHz spacing. Fractionary Mile Lines in the lines of the lines of

8. *Acknowledgements:* I would like to thank my friend Walter Salden VE7WRS for making his IC-R7100 available to me for testing.

Adam Farson, VA7OJ/AB4OJ

e-mail: farson@shaw.ca http://www.ab4oj.com/ December 28, 2015.

Copyright © 2015 A. Farson VA7OJ/AB4OJ. All rights reserved.