The Digital Transceiver ADT-200A
The Principle of a Digital Receiver
 AD Converter
 The Problem with IP3
 The Direct Conversion Rx

The Functional Units of ADT-200A
 DSP Module
 PA Module
 Preselector Module

The Operating Concept of ADT-200A

Where do we go from here?
The Principle of a Digital Receiver

Signal Flow in a fully digital Receiver

Tasks of the DDC:
- Quadrature Mixer with an IF ≈ 0Hz (Homodyne Receiver), **NOT** a Sampler
- Sample Rate Reduction by Decimation
- Improvement of S/N by Integration

RF in 0...30MHz → BP → Digital Down Converter (DDC) → DSP → DA-Converter

73Msps * 14Bit = 1.02Gbit/s
2 * 32ksps * 24Bit = 1.536Mbit/s

D = 2304

$t = 31.25\text{us} \rightarrow 9600\text{ Instructions at 300MIPS}$
The Dynamic Range of an AD-Converter

Example: 14Bit AD-Converter AD6645 from Analog Devices:

Dynamic Range (ideal) = 86dB (= SNR of fullscale input signal)
Dynamic Range (real) = 75dB → 12 effective Bits (ENOB)

Max. Input Power = \((0.78\text{Vrms})^2 / 1000\Omega\) = -2.2dBm
Noise Floor = -2.2dBm - 75dB = -77.2dBm

Minimum Input Voltage at 50Ω = 30.8µV
The Dynamic Range of an AD-Converter

Process Gain:

\[G_p = 10 \cdot \log_{10} \left(\frac{f_s}{2 \cdot B} \right) \]

For \(B = 2.4\text{kHz} \) and \(f_s = 73\text{Msps} \):
\(G_p = 44.8\text{dB} \rightarrow \text{SNR} = 119.8\text{dB} \)

Noise Floor in 50Ω = 0.22µV
The Calculation of Receiver Performance

- **Noise Figure**
 \[\text{F}_{\text{ges}} = 11.4 \text{dB} \]

- **Sensitivity**
 \[\text{MDS} = -129 \text{dBm} \text{ @ } B=2.4\text{kHz} \text{ (0.08uV)} \]

- **Dynamic Range**
 \[\text{DR} = 117 \text{dB} \]

- **IM3 free Dynamic Range**
 \[\text{DR}_3 = 101 \text{dB} \]

- **Max. Input Power**
 \[\text{P}_{\text{max}} = -11.4 \text{dBm} \]
The Problem with Intercept Point (IP3) Measurement

IP3 from an analog Amplifier

- IM3 product increases 3dB per 1dB of signal

IP3 from AD-Converter AD6645

- IM3 product is nearly independent of signal
Principle of the Digital Receiver

The Problem with Intercept Point (IP3) Measurement

![Graph showing IM3 behaviour of an analogue receiver]

- IM3-free dynamic range = 94 dB
- IP3 = 20 dBm
Principle of the Digital Receiver

The Problem with Intercept Point (IP3) Measurement

Excerpt from ARRL Lab Test Report
The Problem with Intercept Point (IP3) Measurement

Measurement of IM3 - Product with and without Dithering

-130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

IM3 [dBm]

Input Power [dBm]

-130 -120 -110 -100 -90 -80 0

w/o Dith. with Dith.
The Principle of a Digital Receiver

Principle of Direct Conversion Receiver

\[S(t) = A(t) \cdot e^{j\omega t} = A(t) \cdot [\cos(\omega t) + j \cdot \sin(\omega t)] \]
The Direct Conversion (Quadrature) Receiver

I-Channel: \times
Q-Channel: \times
TP
-90°
AF out
N(t)

RF in

LO
90°
\sin
\cos

Broadband Phase shifter!

TP = Low-Pass Filter
Mathematical Background of a Direct Conversion Receiver

The Principle of a Digital Receiver

\[\frac{1}{2} \sin((\omega_2 - \omega_{LO})t) + \frac{1}{2} \sin((\omega_1 - \omega_{LO})t) = \frac{1}{2} \sin(x) - \frac{1}{2} \sin(y) \]

\[\frac{1}{2} \cos((\omega_2 - \omega_{LO})t) + \frac{1}{2} \cos((\omega_1 - \omega_{LO})t) = \frac{1}{2} \cos(x) + \frac{1}{2} \cos(y) \]

\[\sin(x) = A_p(t) \sin((\omega_2 - \omega_{LO})t) \]

\[\frac{1}{2} \sin(x) + \frac{1}{2} \sin(y) = \frac{1}{2} \sin(x) + \frac{1}{2} \sin(y) \]

\[TP = \text{Low-Pass Filter} \]
Principle of the Direct-Conversion Receiver

The Image Rejection Ratio \(IRR \)

\[
IRR = \frac{1 - 2(1 + \epsilon)\cos \theta + (1 + \epsilon)^2}{1 + 2(1 + \epsilon)\cos \theta + (1 + \epsilon)^2}
\]

\(\epsilon \): Gain Error [-]
\(\Theta \): Phase Error [°]
\(\epsilon = 20 \times \log(\epsilon) \)

\(e = 0.1 \text{dB} \)
\(e = 0.03 \text{dB} \)
\(e = 0.01 \text{dB} \)
\(e = 0.003 \text{dB} \)
\(e = 0.001 \text{dB} \)
How does SDR technology benefit the radio amateur?

- A radio which can be retrofitted with new features at any time
- Characteristics which are largely independent of tolerances and ageing
- Accuracy approaching that of measuring instruments
- Special features such as Antennascope, Audio Recorder, Remote Operation etc.
- A future-oriented technology, which is implemented with a fraction of the components utilized in current radio equipment
- This technology lends itself to automated manufacturing, with a corresponding cost savings
Functional Blocks of ADT-200A

Chipset of DSP Module
Functional Blocks of ADT-200A

Signal Processing on DSP (per Channel)
/***/
** FM_Demodulator
***/

FM_Demodulator:

/* first, we calculate the squared absolut carrier value */

F3 = F1 * F1; /* F1 -> I channel input */
F4 = F2 * F2; /* F2 -> Q channel input */
F12 = F3 + F4; /* F12 -> I^2 + Q^2 */
F13 = RSQRTS F12; /* F13 -> 1/SQR(I^2 + Q^2) */
F1 = F1 * F13; /* normalize F1 */
F2 = F2 * F13; /* normalize F2 */

/* then, we get the phase info by delay modulation */

F5 = DM(last_I);
F5 = F1 - F5; /* build d/dt -> I' */
F5 = F5 * F2; /* product -> I'* Q */
F6 = DM(last_Q);
F6 = F2 - F6; /* build d/dt -> Q' */
F6 = F6 * F1; /* product -> Q'* I */

DM(last_I) = F1; /* save normalized last_I */
DM(last_Q) = F2; /* save normalized last_Q */

F1 = F5 - F6; /* I'*Q - Q'*I */
CALL ARCSIN;
DM(FM_out) = F3;
Functional Blocks of ADT-200A

The TRX3C DSP Module

- Digital Downconverter
- AD-Converter
- LP Filter 30MHz
- Preamplifier
- Master Clock
- Dig. Upconverter
- Tx-DAC
- USB-IF
- DSP
- Audio-Codec

Preamplifier | LP Filter 30MHz | AD-Converter | Digital Downconverter
The Power Amplifier

Linearity at f = 7MHz

Pin [dBm] Pout [dBm] Eta [-]

0 0.0
5 5.0
10 10.0
15 15.0
20 20.0
25 25.0
30 30.0
35 35.0
40 40.0
45 45.0
50 50.0

22.06.07 / HB9CBU
Functional Blocks of the ADT-200A

The Transmitter Power Amplifier
Principle of Adaptive Predistortion

PA Transfer Characteristic
Deviation from Linearity
Compensated Amplitude Response
Functional Blocks of ADT-200A

Spectrum of Output Signal without and with Adaptive Predistortion

2-Tone Modulation with 1100Hz and 1900Hz Test Tones

without predistortion

with predistortion (optimally tuned)
Functional Blocks of ADT-200A

Spectrum of Output Signal without and with Adaptive Predistortion

2-Tone Modulation with 1100Hz and 1900Hz Test Tones

without predistortion
with wideband predistortion

22.06.07 / HB9CBU Translation: VA7OJ
Transmitted spectrum measured over 1 MHz

ATT: 30.00 dB
BW VIDEO: 0.30 kHz
BW RES: 0.30 kHz

MARKER: -6.78 dBm, 14.0002 MHz
The Power Amplifier Module PAM2A

- electronic Rx/Tx-Switch
- Directional Coupler
- Log Detectors
Specifications of PA:
Max. Output Power 50W
Min. Output Power 100mW
Spurious and Harmonics >70dBc

Extras:
• Adaptive Predistortion
• Power-Meter for full Range of 0.1 ... 50W
• VSWR-Meter with high Dynamic even for 0.1W
• Antennascope determines the complex impedance of an Antenna, either on the TRX or on the Feed Point (optional)
The Preselector

- Attenuator, 0...35dB in 5dB-Steps
- Half Octave Filters, switched by High Current FET’s
- VLF-Front End, for 60, 75, 77.5 and 137kHz
The Half-Octave Filters in the Preselector
The Preselector

Simultaneous reception in the 80m and 30/20m bands

ATT: 20.00 dB
BW VIDEO: 300.00 kHz
BW RES: 248.29 kHz

MARKER: -36.36 dBm, 30.0454 MHz
The Preselector

Simultaneous reception in the 40m and 30/20m bands

ATT: 20.00 dB
BW VIDEO: 300.00 kHz
BW RES: 248.29 kHz
MARKER: -0.4 dBm, 6.0876 MHz
Concept of Input Attenuators

Dynamic Range = 117 dB

Preamp = 10dB
ATT = 0dB

ATT = 10dB
ATT = 20dB
ATT = 25dB

-13dBm
-3dBm
+7dBm
+17dBm
+20dBm

-130dBm
-120dBm
-110dBm
-100dBm
-95dBm

Attenuator
0dB 10dB 20dB 30dB 35dB
The Concept of Transceiver Control

Front-Panel → SPI → IF
PC → USB → IF
Web-Server → SPI → IF
Internet → UDP/IP → IF

Data Base

one Data Segment for each Rx Channel

Audio Signals → TRX
The Concept of Transceiver Control

<table>
<thead>
<tr>
<th>VFO</th>
<th>Function Keys</th>
<th>Tuning Knob</th>
<th>AF Gain Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFO 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFO 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFO 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFO 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration Set 1</th>
<th>Rx1 Frequency (VFO1)</th>
<th>Rx1 Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx1 Frequency (VFO5)</td>
<td></td>
<td>TX1 Sidetone</td>
</tr>
<tr>
<td>Rx2 Frequency (VFO2)</td>
<td></td>
<td>Rx2 Volume</td>
</tr>
<tr>
<td>Rx2 Frequency (VFO6)</td>
<td></td>
<td>TX2 Sidetone</td>
</tr>
<tr>
<td>Rx3 Frequency (VFO3)</td>
<td></td>
<td>Rx3 Volume</td>
</tr>
<tr>
<td>Rx3 Frequency (VFO7)</td>
<td></td>
<td>TX3 Sidetone</td>
</tr>
<tr>
<td>Rx4 Frequency (VFO4)</td>
<td></td>
<td>Rx4 Volume</td>
</tr>
<tr>
<td>Rx4 Frequency (VFO8)</td>
<td></td>
<td>TX4 Sidetone</td>
</tr>
</tbody>
</table>

22.06.07 / HB9CBU Translation: VA7OJ
The Concept of Transceiver Control
The Concept of TRX Control
The Operational Interface of ADT-200A

The Menu Structure

Top Menu

- BAND
- MODE
- FILTER
- OPTION
- VFO

OPTION

- AGC
- ATT
- P-AMP
- M-SPEC
- VOX

Mode specific
Mode: SSB

- ON
- 3dB
- 9dB
- -6dB
- PBT
- EQ-LOW
- EQ-MID
- EQ-HI
- BACK

Mode specific
Mode: CW

- ON
- STDND
- 50bpm
- SMI-BK
- OFF
- BFO
- KEYER
- SPEED
- QSK
- DECODE
The Menu Structure
Where do we go from here?

Availability of first units: from January 08

ADT-200 price: approx. CHF 4500 (USD 3800)

Optional add-on features:

• Antennascope

• Web-server module for web-based remote control of an ADT-200A

• User interface for control via a PC

• Spectrum analysis

• 2m/70cm transceiver module with $P_o \approx 10W$ on each band

• Diversity reception