# Phase Noise Measurement Techniques



### Agenda

- What is Phase Noise?
- Why is Phase Noise Important?
- Quantifying Phase Noise
- Causes of Phase Noise
- Phase Noise Measurement Techniques
- Additive Phase Noise
- AM Noise
- Summary



# What is Phase Noise?

Ideal Signal (noiseless)
 V(t) = A sin(2πνt)

where

- A = nominal amplitude
- v = nominal frequency
- Real Signal  $V(t) = [A + E(t)] \sin(2\pi v t + \phi(t))$

where

E(t) = amplitude fluctuations  $\phi(t)$  = phase fluctuations



| 3

Phase Noise is unintentional phase modulation that spreads the signal spectrum in the frequency domain. Phase Noise is equivalent to jitter in the time domain.



### What is Phase Noise?

- Absolute Phase Noise
  - 1 Port Produced by Signal Source



- Additive Phase Noise
  - 2 Port Added by device (e.g. amp, up/down converter)





### Phase Noise Important in Digital Modulation

# Modulation quality (phase error, EVM) is degraded by phase noise



### Phase Noise Important in Communication Systems Transmitters

#### **Adjacent Channel Power**





### Phase Noise Important in Receivers

#### Sensitivity: Big interferer near the transmit channel



Large interferer mixes with LO energy spread by phase noise to produce a signal in the receiver IF – reduced sensitivity



### Phase Noise Important in Radar

#### **Radar Applications – Moving Target Indication**



High phase noise in radar LO spreads clutter signal and masks desired low-level target response







**High Phase Noise = High Jitter** 

Jitter peaks can cause transmitted symbol errors which increased bit error rate and limits usable data rate



# **Quantifying Phase Noise**

- Phase Noise Units
- Residual Noise
  - Integrated Phase Noise
  - Residual PM
  - Residual FM
  - Jitter: Time and Frequency Domain approaches



### Phase Noise – Unit of Measure

- Phase Noise is expressed as L(f)
- L(f) is defined as single sideband power due to phase fluctuations in a 1Hz bandwidth at a specified offset frequency, f, from the carrier
- L(f) has units of dBc/Hz



# **Quantifying Phase Noise**

• Phase Noise: L(f) Units of dBc/Hz



• Plot

Spot Noise

| 2 Spot Noise |                       |                  |
|--------------|-----------------------|------------------|
| Туре         | Offset Frequency [T1] | Phase Noise [T1] |
| Fixed        | 1.00 kHz              | -107.89 dBc/Hz   |
| Fixed        | 10.00 kHz             | -132.72 dBc/Hz   |
| Fixed        | 100.00 kHz            | -134.53 dBc/Hz   |
| Fixed        | 1.00 MHz              | -145.83 dBc/Hz   |
| Fixed        | 10.00 MHz             | -149.60 dBc/Hz   |

Spot Noise offsets are user-definable (default to decade offsets)



# **Quantifying Phase Noise – Residual Noise**

• Values calculated from integration of phase noise trace



| 2 Residual Noise |              |              |                   |                           |           |          |  |  |  |
|------------------|--------------|--------------|-------------------|---------------------------|-----------|----------|--|--|--|
| Trace            | Start Offset | Stop Offset  | Int PHN           | PM                        | FM        | Jitter   |  |  |  |
| T1               | 1.00 kHz     | 10.00 MHz    | -77.46 dBc        | 10.85 m° / 189.39 µrad    | 544.60 Hz | 30.14 fs |  |  |  |
|                  |              |              |                   |                           |           |          |  |  |  |
|                  | 2 SCHWAR     | 7 April 2015 | L Phase Noise Mer | acurament Techniques   13 |           |          |  |  |  |

# Jitter – Time Domain Approach



- Oscilloscopes measure jitter directly in the time domain, but the scope's internal jitter (phase noise) limits sensitivity to the range of picoseconds
- Some very high-end scopes can measure in the range of 100 femtoseconds, but are <u>very</u> expensive



# Jitter – Frequency Domain Approach (Phase Noise)



- RMS Jitter can be calculated by integrating phase noise.
- Phase noise techniques can measure jitter with excellent sensitivity. Jitter measurements well below 10 femtoseconds (1 fs =  $10^{-15}$  s) are possible (much more sensitive than an oscilloscope).
- Phase noise plot makes it easy to distinguish random and deterministic jitter (difficult using an oscilloscope).
- Only clocks can be measured, not random data streams.



### **Causes of Oscillator Phase Noise**



Random Walk: Close to carrier, generally caused by environmental effects

- **Flicker FM:** Related to active oscillator physical resonance mechanism, power supply noise
- White FM: Related to passive resonator oscillators
- **Flicker \phiM**: Related to noisy amplifiers and multipliers
- White  $\phi$ M: Far from carrier, generally caused by broadband output amplifier noise

Source: Lance, A., Seal, W., & Labaar, F. (1984). Infrared and Millimeter Waves, Vol. 11, Ch. 7



## Absolute Phase Noise Measurement Techniques

- ➡ Direct Spectrum Analyzer
  - Phase Detector
  - Phase Detector with Cross-Correlation
  - Delay Line Discriminator





#### Simple setup, but how good is the measurement?



- Spectrum analyzer is a multistage receiver with multiple LOs
- Each LO adds phase noise to the input signal Measurement result is the <u>sum</u> of phase noise from DUT and all LOs
- Full signal amplitude is present at every stage of the SA receiver Measuring low level phase noise is limited by the SA's dynamic range
- SA minimum resolution bandwidth limits close-in offset



- Measurement sensitivity is limited by internal phase noise of spectrum analyzer
- Check data sheet for internal phase noise of spectrum analyzer
- Instrumentation noise always adds to measurement (error, not uncertainty)



#### Manual Spot Noise Measurement

- Phase Noise Marker function corrects for ratio of RBW to 1Hz and Effective Noise Bandwidth (ENB) of the RBW filter (typically <1dB)
- Must use averaging to get stable measurement and specifically, <u>power</u> averaging (not log averaging) to avoid measurement error from averaging noise samples in dB domain (-2.51dB)
- This <u>technique</u> is correct, but is the measurement accurate?
  - What about the noise of the analyzer?
  - What if we want a phase noise curve instead of a point measurement?
  - What about AM noise?
  - What if I want to measure closer than 1Hz to the carrier?



#### **Phase Noise Measurement Personality**

- Phase noise is measured over a user specified offset range
- Spot noise is available
- Residual PM, FM, Integrated Phase Noise, and RMS Jitter are calculated from phase noise trace over user specified integration range
- Convenient, fast, and nicely formatted, but still has the limitations of the spectrum analyzer measurement method (phase noise of analyzer, limited close-in capability, etc.)



### Direct Spectrum Analyzer Measurement Drifting DUT using traditional approach

- Measurement is done in half-decade spans
- Center frequency re-tuning done at start of each half-decade
- Measurement bandwidth is reduced for each half-decade making drift more difficult to track
- Close-in offsets take longer to measure which gives the signal more time to drift
- Measurement error occurs if DUT drifts out of RBW filter





### Direct Spectrum Analyzer Measurement Drifting DUT using advanced IQ capture/DSP approach

- Measurement is still done in half-decade spans
- Signal is captured with wider IQ bandwidth in all half-decades
- Drifting signal stays within captured bandwidth
- Bandwidth reduction done using DSP
- Drift is compensated using digital PLL
- Even drifting signal is measured correctly
- Additional benefit: IQ capture approach also provides AM rejection



## **Direct Spectrum Analyzer Measurement – Summary**

#### Advantages

- Fast and easy measurement setup
- High offset frequency range (up to 30GHz)
- Spectrum Analyzer can make many other measurements necessary for signal source characterization:
  - Harmonics
  - ACPR
  - Spurious emissions, etc.

#### **Limitations**

- Sensitivity is limited by inherent phase noise of the internal LO's in the instrument
- Sensitivity also limited by dynamic range since low level noise must be measured in the presence of the carrier
- Most SA's cannot reject AM noise
- Lower offset frequency is limited to 1Hz due to minimum 1Hz RBW



### **Absolute Phase Noise Measurement Techniques**

- Direct Spectrum Analyzer
- ➡ Phase Detector
  - Phase Detector with Cross-Correlation
  - Delay Line Discriminator



- Only phase noise of Ref Source adds to signal's phase noise
- Main carrier energy is removed by PD and LPF
- LNA and Baseband Analyzer measure noise signal with high sensitivity
- Offsets closer than 1Hz can be measured (down to 0.01Hz)



• Why offset DUT and Reference by 90°?





- Spectrum analyzer added phase noise of several internal LO's
- With phase detector approach, only the single reference source phase noise is added lower measurement floor, better sensitivity
- Same relationship between DUT noise and instrument noise applies, but instrument phase noise is lower



- Same presentation of results as with Spectrum Analyzer measurement.
- Phase Noise curve, Spot Noise, and Residual calculations are available.
- Spur detection algorithm displays and reports spurs separately (in dBc).
- Sensitivity is limited by the phase noise of the reference source which is lower than the multiple LO's in the spectrum analyzer.



### Absolute Phase Noise Measurement Techniques

- Direct Spectrum Analyzer
- Phase Detector
- Phase Detector with Cross-Correlation
  - Delay Line Discriminator



### Phase Detector with Cross-Correlation





**Phase Detector with Cross-Correlation** 





**Phase Detector with Cross-Correlation** 



• Uncorrelated noise from Ref 1 and Ref 2 is suppressed by the cross-correlation function

- Ref Noise Suppression: 10dB for 100 CC, 20dB for 10000 CC
- DUT noise is common to both paths and is unaffected by cross-correlation

### Phase Detector with Cross-Correlation

- Same presentation of measured data
- Cross-correlation effectively reduces the phase noise of the reference oscillator
- Up to 20dB sensitivity improvement over the standard phase detector method is possible



35

### Phase Detector Method – Summary

#### Advantages

- Carrier Suppression
  - Analyzer dynamic range is not a limiting factor as it can be with the spectrum analyzer method
  - Measurements at very small offsets are possible (down to 0.01Hz)
- Phase Noise and AM Noise can be distinguished
  - AM Noise is inherently suppressed by the phase detector
- Cross-Correlation improves the sensitivity of the test system
  - 10dB for CC=100 , 20dB for CC=10000

#### **Limitations**

- Restricted upper offset range (limited by digitizer bandwidth in baseband analyzer)
- Spectrum Analyzer is still necessary for measurement of other parameters:
  - Spurious Emissions, ACPR, Harmonics

### Absolute Phase Noise Measurement Techniques

- Direct Spectrum Analyzer
- Phase Detector
- Phase Detector with Cross-Correlation
- → Delay Line Discriminator



# **Delay Line Discriminator**



- The delay line converts frequency fluctuations to phase fluctuations which are applied to a phase detector
- No reference source required good for noisy or drifting DUTs
- Longer delay (T) gives better sensitivity, but reduces maximum usable offset
- Maximum offset is limited to  $\sim 1/(2\pi T)$  due to  $\sin(x)/x$  term ( $T \leq 160$ ns for 1MHz offset)
- Longer delay line also has higher loss which reduces PD sensitivity
- Manual adjustment of phase shifter over 180° required for calibration

# **Delay Line Discriminator**



- First measurement null occurs at f = 1/T
- Useful offset range up to  $f \approx 1/(2\pi T)$
- Longer delay line gives better sensitivity, but has lower useful upper offset limit



### Additive Phase Noise Measurement

- Two-port DUT (e.g. amplifier)
- Source noise is correlated on both PD inputs cancels out so only <u>added</u> noise of DUT is measured
- Manual adjustment of phase shifter over 180° required for calibration
- Phase detector may be external or internal to analyzer



### **AM Noise Measurement**

- Recall the expression of a real-world sine wave:
  V(t) = [A + E(t)] sin(2πνt + φ(t))
- E(t) is the AM noise component
- AM noise is usually lower than phase noise especially at close-in offsets
- AM Noise is traditionally measured using an external diode detector along with the baseband noise analyzer
- A signal generator with a known AM modulation index can be used to calibrate the measurement system





### Summary



- Phase noise is unintentional phase modulation on a signal
- Residual parameters can be calculated from phase noise data Integrated Phase Noise, Residual PM, Residual FM, and Jitter
- Absolute Phase Noise can be measured using several methods each with its own strengths and weaknesses
  - Direct Spectrum Analyzer
  - Phase Detector, Phase Detector + Cross-Correlation
  - Delay Line Discriminator
- Additive Phase Noise is measured using a power splitter, phase shifter, and baseband noise analyzer
- AM Noise is measured using an external diode detector along with a baseband noise analyzer

# Thank You!

