

Building your own PCB
Router

Part 2 (Stepper motor control)
Eddie Leighton ZS6BNE

www.qsl.net/zs6bne
zs6bne@webmail.co.za

In the previous issue I made mention
of an Internet address where you
could view pictures of my first
attempts at building plotter like
devices. The link was displayed as
an Internet address but you would
not be aware of the fact that an
“Underscore” character formed part
of the address in “/edleighton_za”
but here is a picture of the “AGEA4”
3 axis CNC drill prototype.

Although this prototype was not as
succesful as I would liked it to have
been , I did learn a lot from it! The
slides were made from curtain rails
and the plastic bits were made from
plastic chopping board! The stepper
motors came from scrapped CITOH
printers. This design had inherent
problems making it too unstable to
perform any real work but it worked!
See the machine in action to the
right.

This machine was run with a
program I wrote in Visual basic 6
which read HPGL , the Hewlett
Packard Graphics Language which
standard plotters understand.

Another great problem was the Y –
axis being driven from one side and
not in the middle. This created an
enormous amount of backlash and
instablity on the carriage carrying the
X – Axis motor and Z – Axis
assembly together with the Dremel
drill.

In the last issue of Radio ZS I
mentioned we would discuss more
on stepper motor electronics and
control in Part 2. I also mentioned
the fact that there were two types of
stepper motor being Bi-Polar and
Uni-Polar. The easiest to understand
and most popular is the Uni-Polar
type although some motors are
universal in other words they can be
driven in both configurations!

Although the zip files for EasyTrax
and TurboCNC can be found on the
Internet , they are also available on
my web site at ……..

http://www.qsl.net/zs6bne/files/hobby
cnc/

We will use TurboCNC’s setup files
as a guideline for the control of our
stepper motors. The Internet has
numerous links for stepper driver
circuits but we will discuss the most
basic operation here. As I
mentioned previously , controllers
can be very complex or simple and
here we will use the simplest of
motor control.

 Note the “centre tapped” coils made
common and taken to the positive
motor power supply. A current
limiting high wattage resistor of +- 5
ohms can be put in series with the
positive supply to prevent the
transistors from drawing too much
current and being blown.
Alternatively MOSFETS can be used
in place of the darlington transistors.

The circuit below is the most basic
configuration for driving Uni–polar
stepper motors. The 4050 buffers
are probably a good idea and can
limit the current drawn from the
printer port of the PC and also giving
maximum drive to the transistors to
switch them on fully providing
maximum current flowing through the
windings of the stepper motor coils.

Here are the typical input / output
pins of a PC’s parallel printer port.

• 8 output pins accessed via the
DATA Port

• 5 input pins (one inverted)
accessed via the STATUS Port

• 4 output pins (three inverted)
accessed via the CONTROL
Port

• The remaining 8 pins are
grounded

Setting up TurboCNC with the printer port Interface

The screen capture above shows
TurboCNC’s main menu for machine
setup. TurboCNC is very versatile
supporting a number of controller
configurations. The settings are
stored in a text file by the name of
“TurboCNC.INI”. There are so many
settings that a document like this is
too short to describe everything , so I
will show you what my turbocnc.ini
file looks like. Every machine could
be different but I will use mine as a
standard.

The most important option here is
option 2 which sets up the way
TurboCNC uses the printer port to
send signals to the stepper motor
driver. We will use the “Phase
control” method where all the coil
firing intelligence will be controlled by
TurboCNC.

The other option is “Step/Direction”
which requires a different stepper
motor driver and the intelligence is
shifted slightly to the controller itself.

In other words the controller will
determine which coils will be
activated and only requires a step
pulse and direction signal from
TurboCNC in order to step the
stepper motor in the required
direction. This method does save on
the available I/O pins on the printer
port but the controller having a little
more intelligence is then also a little
more complicated!

Keeping the control withinTurboCNC
keeps us in control too and instead
of physically building a lot of logic in
hardware we do it in software! A lot
less expensive too.

Another important area in the setup
is option 4 , the motion setup. This
determines the maximum step rate
for your steppers before they start to
miss steps so keep these values
optimised so as not to overstep your
machine. The program gradually
increases the speed of the motors
and it sounds impressive when the

axis actually move – it sounds just
like a lathe! There is a pull away step
rate setting too and this must be set
high enough that the machine is not
too slow.

It is truly amazing to see all three
axis being operated in unison all for
a common purpose and under
complete computer control! All we
are discussing here can be applied
to robotics too , but that is another
subject altogether!

Phase control setup

The extract from the phase control
setup screen above shows a few
important points. Note the pins 2 to
17 above corrospond to the bits
specified in the sequence. There will
be a minimum of 4 sequences to
control one motor. The four motor
lines will be connected to , for
example , pins 2,3,4 and 5 on LPT1
and the second motor on 6,7,8 and
9. The third motor will use pins
1,14,16 and 17 and they can be
named as X,Y and Z respectively.

A 1 specifies that the line will be
active , a 0 , inactive and an X
means “Don’t care”. (Remember
logics?) Each axis gets set up
individually with it’s bit sequence in
the correct position and X’s marked
in the positions used by the other
axis. My turbocnc.ini should explain

it all and can be used on your setup
too. I will make the file available
under the web address mentioned at
the beginning of this document so all
the main editing will already be done
for you.

Please let me know how your
machine is going. A good test before
we do any PC Board routing , is to
do a little engraving. An ideal
freeware program to generate G-
Code for engraving goes by the
name of “DeskEngrave”. This
program takes any Windows type
font and will convert a line of text to
G-Code which can be imported into
TurboCNC that will control your
machine to do a little engraving!

The turbocnc.ini file

Here are a few important extracts
from the file. Note that two coils are
being energised by the software for
every step on all three motors X , Y
and Z. This gives added torque to
the motors.

[General]
NumberOfAxes=3

[AXIS1]
Designator=X
IsStep/Dir=False
Phases=4
Phase1=0011XXXXXXXX
Phase2=0110XXXXXXXX
Phase3=1100XXXXXXXX
Phase4=1001XXXXXXXX

[AXIS2]
Designator=Y
IsStep/Dir=False
Phases=4
Phase1=XXXX0011XXXX
Phase2=XXXX0110XXXX
Phase3=XXXX1100XXXX
Phase4=XXXX1001XXXX

[AXIS3]
Designator=Z
IsStep/Dir=False
Phases=4
Phase1=XXXXXXXX1100
Phase2=XXXXXXXX0110
Phase3=XXXXXXXX0011
Phase4=XXXXXXXX1001

In the next issue we will discuss the
implementation of our machines
typically doing engraving at first. We
will discuss how to homebrew your
own cutters in the cheapest possible
way!

