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1 The Problem:

In the January/February 2011 “Morseman” column I set this problem:

“See figure 1, left. What does this circuit do? What waveforms will be observed at each of the op-amp
outputs? Can you find an analytic expression describing the frequency of these waveforms?”
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Figure 1: Left: The circuit as given. Right: The first stage, a Schmitt trigger.

2 Solution:

Since the first stage has positive feedback (applied to the non-inverting input), it’s a Schmitt trigger,
a non-linear circuit. The output has two stable states, which can be flipped from one to the other.
The second stage is an operational integrator, a linear circuit.

The oscillation frequency of such circuits cannot be found by invoking the linear oscillator condition
Aβ = 1. The trick in analysing them is to find a point at which the non-linear element changes state,
and then deduce the time it will take for it to change state again. Since the Schmitt trigger has
symmetrical state-change input voltages, this time will be half of the total oscillator period.

Assume ideal op-amps, operated from symmetrical positive and negative power supplies, where the
outputs can swing between +Vs and −Vs, ±Vs, where Vs is typically about a volt less than the power
supply voltages. T

The right-hand figure shows the first stage stage in isolation. Assume that the output voltage has
assumed the positive stable state V2 = +Vs. V2 will be triggered into the negative stable state,
V2 = −Vs, if V1 goes sufficiently negative to force the non-inverting input negative. This will start to
happen when the voltage at this input (the “+” terminal on the op-amp symbol) goes from a positive
voltage through zero voltage. We can find the voltage V1 causing this by applying Millman’s theorem:

V1

R1

+
V2

R2

= 0 (1)

whence V1 = −
R1

R2

Vs = −
2

3
Vs (2)

and V1 < −
2

3
Vs forces the negative state. (3)

Similarly, if the initial state is V2 = −Vs,

then V1 > +
2

3
Vs forces the positive state. (4)
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Values of V1 in between these limits will cause no state change.

Assume that the output of the first stage (Schmitt trigger) has just been caused to flip from the
positive to the negative stable state. Then to force it to flip back again, the voltage V2 must change
by an amount

∆V2 = 2
R1

R2

Vs =
4

3
Vs (5)

The second stage is an operational integrator, a linear circuit. The voltage at the output of the Schmitt
trigger will be +Vs. The non-inverting input of the integrator is at zero potential, a virtual earth, so
the current flowing through R3 towards the input, and on through the capacitor is

IC =
Vs

R3

= IR3 since no current can flow into the op-amp input. (6)

This constant current will cause the integrator output voltage to change by ∆V .

since V =
Q

C
(capacitor equation,) (7)

a change in voltage of ∆V =
∆Q

C
=
IR3∆t

C
(8)

rearranging, ∆t =
C∆V

IR3

(9)

Substituting from equations 5 and 6,

∆t = 2
R1

R2

Vs

(

1

Vs/R3

)

=
2R1R3

R2

C (10)

But ∆t is the time required to complete half a cycle of the oscillator waveform, so the waveform period,
T , will be twice this, or

T = 2∆t =
4R1R3

R2

C (11)

with corresponding frequency f =
1

T
=

R2

4R1R3C
(12)

Substituting the component values from the schematic, we find that

f = 375Hz (13)

The output of an LTspice simulation of the circuit is shown in figure 2.

The frequency measured from this simulation is 350 Hz, about 7% lower. This is because

• these are real op-amps, and the Schmitt trigger cannot change states instantaneously. Zooming
into the rise and fall portions of the nominal square wave, we see that these actually take about
66µ sec, corresponding to a slew rate of about 0.3 V/µ sec.

• There will also be small propagation delays between the input and corresponding output wave-
forms of the op-amps.

These account for the slightly lower frequency than that theoretically predicted.

Zooming the square wave display, we find that the outputs limit at Vs ≈ ±11V, so the Schmitt trigger
outputs limit at about a volt below and above the supply voltage (± 12V).
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Figure 2: LTspice simulation of circuit. The square and triangle waves are the outputs of the first and
second stages respectively.

Zooming the triangle wave display, we find that it limits at about ±7.6V. Since Vs ≈ ±11V, we
predicted that these limits would be

Vt ≈ ±

(

2

3

)

11 = 7.33V (14)

The difference is again accounted for by the propagation delay of the second op-amp.

We also note that it takes a finite time for oscillations to start in the simulation. This is because I
started it in the “steady state”, with power supply voltages already applied, and the outputs of both
op-amps adjusted to zero by the simulation software. This state is also stable, so theoretically, nothing
will happen!

In practice, as the simulation proceeds small voltages do build up in the circuit as a result of round-off
error in LTspice’s software differential equation solvers, and these eventually cause it to transition
to the oscillation state. If you start the simulation invoking the LTspice condition “Start external
DC supply voltages at 0V”, the simulation starts immediately, because sufficient internal voltage
imbalance will occur as the power supplies rise.

With a “real” circuit, such internal voltages will always occur because of thermal Johnson noise in the
resistors, so this oscillator will always start immediately.
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