
Single Capacitor Band-pass Filter.

1 Transfer function Derivation.

The schematic of a configuration that purports to be a bandpass filter is shown in figure 1(a).

Figure 1: (a) Bandpass filter schematic. (b) Removing the op-amp before applying Millman’s theorem.

We will see that k, a parameter scaling the resistor in parallel with the capacitor, determines filter Q.
It can be omitted, but then both peak gain and Q rise to several hundred, too high to be useful.

The conventional method for analysing an op-amp filter circuit is to

• Assume an “ideal” operational amplifier having infinite gain,

• Find the relationship between the input and output voltages which makes the voltage at the
inverting input zero.

But the “ideal” op-amp assumption normally invoked won’t work here. This would imply that the
op-amp input voltage, Vm = 0, since an ideal op-amp is assumed to have infinite gain. Applying
Millman’s theorem to find Vm then gives

V1

R
+

V2

R
2
R

+
k

R
+ sC

= Vm = 0 (1)

multiplying top and bottom by R,
V1 + V2

2 + k + sCR
= 0 (2)

The denominator value is immaterial, so V2 = −V1 (3)

Thus including the capacitor apparently has no effect, and we have a simple inverting circuit. However,
if the op-amp gain is assumed to be finite, with a typical single dominant-pole frequency roll-off
characteristic, the right-hand side is no longer zero, and we find a different expression.

We can approximate the frequency-dependent voltage gain of the op-amp by the expression

Av(ω) = − Ao

1 + j
ω

ω0

(4)

where Av(ω) = the open-loop gain as a function of ω, (5)
Ao = the voltage gain at dc, (6)
ω0 = the 3 dB angular roll-off (3 dB) frequency of the op-amp. (7)
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This 3 dB frequency is of the order of 10 Hz (or ωo ≈ 60), much lower than the resonant response
frequency formed, which is typically around 600 - 1500 Hz (ωo ≈ 3800− 9000 radian/second).

If ω >> ω0, Av(ω) ≈ − Ao

jω/ω0
= −Aoωo

jω
= −Aoωo

s
(8)

Relating Vm and V2 by the voltage gain, we find

V2 = −Vm
Aoωo

s
= −Vm

B

s
(9)

or Vm = −V2
s

B
(10)

where B = Aoωo, (11)
= the angular frequency gain-bandwidth product of the op-amp. (12)

Now, applying Millman’s theorem again to find the input voltage Vm as a function of V1 and V2,

V1

R
+

V2

R
2
R

+
k

R
+ sC

= Vm = −V2
s

B
(13)

simplifying,
V1 + V2

2 + k + sCR
= −V2

s

B
(14)

V1 + V2 = −V2
s

B
(2 + k + sCR) (15)

V1 = −V2

[
s(2 + k)

B
+

s2CR

B
+ 1

]
(16)

= −V2

[
s2 +

s(2 + k)
RC

+
B

RC

]
RC

B
(17)

whence
V2

V1
= − B/RC

s2 +
s(2 + k)

RC
+

B

RC

(18)

which is of the form
V2

V1
= − ω2

o

s2 +
ωo

Q
+ ω2

o

(19)

where ω0 =
(

B

RC

)1/2

(20)

and
ωo

Q
=

2 + k

RC
(21)

or fo =
1
2π

(
B

RC

)1/2

Hz (22)

and eliminating ω0, Q =
1

2 + k
(RCB)1/2 (23)

Equations 18, 22 and 23 give expressions for the transfer function, the resonant frequency, fo and Q.

Re-writing equation 18 in the standard form of equation 19 shows it to be a low-pass second-order
function. This is counter-intuitive, because casual inspection of the schematic of figure 1(a) shows only
one capacitor, and thus we would simplistically expect it to achieve only ±20 dB/decade Bode-plot
slopes, whereas this second-order function implies a 40 dB/decade high-frequency asymptotic roll-off.

Both f0 and Q are a function of not only the RC product, but also the gain-bandwidth product, B,
and are thus op-amp dependent! There is a slight wrinkle here. A low-pass high-Q function does not
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have its maximum response at f0, but slightly lower, at fm, where1

fm = fo

(
1− 1

2Q2

)1/2

(24)

2 Validation of the Results.

Assume a “typical” op-amp having Ao = 105 and f3dB = 10 Hz. Then

B = 2π × 105 × 10 = 6.28× 106. (25)
assume R = 100kΩ, C = 2.2µF. k = 100 (26)

from equation 22, fo = 850.5Hz (27)
from equation 23, Q = 11.5 (28)

The figure below shows, bottom window, an LTspice simulation. The op-amp is simulated by an ideal
voltage-controlled voltage source (VCVS) having Ao = 105 and an output RC filter designed for a
3 dB frequency of 10Hz. The low R value (10Ω) is chosen to give an output impedance always much
less than the impedances it’s required to drive, as implemented by a “real” op-amp.

The output voltage plot shows that the theoretical expressions for fo and Q are correct. The response
rolls off asymptotically above the maximum at 40 dB/decade, as expected from the transfer function.

1Prove this by differentiating the magnitude of the output voltage with respect to ω, equating the result to zero, and
solving for ωm. The frequency difference is less than 3% for Q > 10.
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Figure 2: Circuit simulation using an ideal VCVS.

We now substitute a real op-amp, a Linear Technology LT1001A, in the circuit of the lower window
of figure 4, using the same component values. See the figure below.

Figure 3: Circuit simulation using a real LT1001A op-amp.

Here, the transfer function plot in the upper window has been zoomed to inspect the response peak.
The frequency of maximum response has dropped to about 758 Hz. This corresponds to an angular
frequency gain-bandwidth product of about 5 × 107, which from the data-sheet seems reasonable.
Other op-amps give different responses, those with higher gain-bandwidth products producing higher
fo and Q as expected from the theoretical expressions.

An Octave Simulation.

The theoretical voltage gain given by equation 19 can be plotted to verify its form. Below is an Octave
code to do this, for normalized ωo = 1. The label font size has been increased for greater legibility, and
a finer grid used. The plot can be zoomed for inspection. The Postscript file used for this document
was produced with the -dps command, then “eps clipped” in Ghostview.2

2All software used for modelling, simulation, and document preparation (LaTeX) is freeware.
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% "lpq" plots lo-pass filter characteristic
% GEJB 6 September 2010

Q = input("Q value? ");
w = logspace(-1, 1, 20000); s = j*w; % Make 20k point ’s’ vector
Av = 1./(s.^2 + s/Q + 1); % Find complex voltage gain
set (0, "defaultaxesfontsize", 18); % Increase font size for visibility
semilogx(w, abs(Av)); grid("minor"); % Put in finer grid
xlabel(’Log Frequency.’}; ylabel(’Response, dB’);

Below is shown the resulting plot for Q = 10.
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Figure 4: Circuit simulated using Octave.

3 Conclusions.

• The additional phase shift of π/2 radian, required for a second order transfer function, is supplied
by the op-amp, which has an asymptotic phase shift of this value as its gain rolls off at 20
dB/decade.

• The shape of the transfer function depends not only on the RC product, but also on the op-amp
gain-bandwidth product, and hence is device-dependent. The selectivity of the resonant portion
of the characteristic can be increased by decreasing k.

• In theory, such a circuit having a maximum phase shift around the feedback loop of π radian
is unconditionally stable3, but a “real” opamp is more complicated than the simple model used
here, and stray circuit L and C may cause instability.

• In principle, you could use this simple circuit, followed by an amplifier/buffer, for a CW filter.
I haven’t tried this yet, but I will.

3See Bold and Tan, “Theoretical and computer analysis of circuits and systems” page 127.
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