Dragoslav Dobričić: Satelitska TV - demistifikacija jednog sna (4).

 

SVETLEĆI, NISKO LETEĆI AUTOBUSI

 

Može li geostacionarni satelit da bude na bilo kojoj visini, na bilo kom mestu iznad

zemlje i na bilo kojoj putanji?

 

Kao što smo već rekli u prošlom broju, tek je radovima Kopernika, Keplera i posebno Njutna

objašnjeno kako i zašto pojedina manja nebeska tela kruže oko drugih većih. Njutnov zakon

gravitacije je zajedno sa tri Keplerova zakona sa izvanrednom tačnošću matematički opisivao sva

kretanja planeta i njihovih satelita.

Svi smo mi kada smo bili deca imali prilike da vrtimo oko sebe , na nekom kanapu, privezan kamen

ili nešto drugo. Kao što se kamen privezan kanapom vrti oko nas, tako isto se i Mesec vrti oko

Zemlje, samo sto ga umesto kanapa drži sila gravitacionog privlačenja da ne odleti sa kružne putanje

i ne nastavi da se kreće pravolinijski.

Znači, da bi se neko telo kretalo po krugu ili elipsi potrebno je da ga neka sila vuče prema centru

kruga ili žiži elipse, jer ako nje nestane telo odmah nastavlja da se kreće pravolinijski. To je uočio još

Hajgens u 17. veku i izračunao da to ubrzanje, koje je posledica te centripetalne sile, zavisi od

kvadrata brzine tela podeljene sa rastojanjem od centra, tj. poluprečnikom kruga po kome se kreće.

 

Satelit na uzici

 

Kod satelita koji kruži oko Zemlje ova centripetalna sila je izjednačena sa gravitacionom privlačnom

silom kojom Zemlja deluje na satelit. Prema tome jasno je da satelit, zavisno od poluprečnika kruga

po kome se kreće, mora da ima tačno odredjenu brzinu. Time je i vreme obilaska satelita oko Zemlje

definisano. Ovo je ustvari Treći Keplerov zakon, koji daje vezu izmedju perioda obilaska satelita i

njegovog rastojanja od tela oko koga obilazi.

Ako se sada vratimo Zemlji i Mesecu, koji isto tako kruži oko nje, možemo zaključiti da to što Mesecu

treba skoro mesec dana, tačnije malo više od 27 dana da jednom obiđe oko Zemlje, je zato što je

mnogo daleko. Zemlja se oko svoje ose, okrene za 24 sata. Da bi neki objekat na nebu bio prividno

nepomičan i on bi morao oko Zemlje da obidje za 24 sata.

Ako bismo hteli da Mesec gledan sa Zemlje bude uvek na istom mestu, bilo bi potrebno da mu

"skratimo kanap". Kada bi mu kanap skratili jedno desetak puta dobili bismo geostacionarni Mesec,

koji bi tada bio na rastojanju od oko jedne desetine sadašnjeg, tj. na oko 36000 km od površine

Zemlje. Time bi on postao geosinhroni satelit jer bi njegovo obilaženje oko Zemlje bilo sinhrono sa

rotacijom Zemlje oko svoje ose.

Kao što smo pomenuli, jedan drugi sinhronitet, kada su Zemlja i Mesec u pitanju već postoji , a to je

da je rotacija Meseca oko sopstvene ose sinhrona sa njegovim obilaskom oko Zemlje, i posledica

toga je da mi sa Zemlje uvek vidimo istu stranu mesečeve površine.

O ovome su razmišljali mnogi učeni ljudi koji su se tokom dugačke istorije astronomije bavili

nebeskom mehanikom, ali je naš veliki naučnik Milutin Milanković verovatno prvi došao na ideju

da bi ljudi mogli, kada im to tehnologija dozvoli, da izbace u svemir telo koje bi bilo geosinhrono sa

rotacijom Zemlje i lebdelo nepomično nad istom tačkom na Zemlji.

Skoro trideset godina kasnije Artur Klark je tu ideju doradio tako što je verovatno prvi shvatio da bi

tri takva nepomična satelita mogla da pokriju telekomunikacijama praktično celu planetu, što se evo

danas i dešava. Zato se često, za geostacionarnu orbitu, u literaturi može sresti naziv Klarkov pojas

ili Klarkov prsten.

 

Orbita: gde, kako, zašto?

 

Rekli smo da je jedini način da neki satelit bude geostacionaran da on bude na rastojanju od oko

36000 km od površine Zemlje. Medjutim taj podatak nije dovoljan. Postavlja se pitanje da li je svaki

satelit koji kruži oko Zemlje na tom rastojanju geostacionaran, odnosno gledano sa Zemlje

nepomičan na nebu? Nije!

Objašnjenje je jednostavno. Zemlja rotira oko svoje ose i sve tačke na njenoj površini za 24 sata opišu

krugove koji leže u ravnima koje su normalne na osu njene rotacije. Da bi se kompenzovalo to

rotiranje i time dobio privid da je satelit nepomičan, kompenzacija mora biti u istoj ravni, tj. satelit

mora da se kreće takodje u ravni koja je normalna na zemljinu osu rotacije.

E, sada se postavlja pitanje: da li svi sateliti koji se kreću u ravnima koje su normalne na zemljinu osu

daju ovaj privid mirovanja satelita iznad Zemlje? Odgovor je pozitivan, ali nažalost fizički zakoni ne

dozvoljavaju da bilo koji satelit ili drugo nebesko telo obilazi oko Zemlje tako da njegova putanja leži

van ravni koja prolazi kroz gravitacioni centar Zemlje. Pošto je gravitacioni centar Zemlje na skoro

istom mestu gde i geometrijski centar, malo spljoštene lopte, kako ustvari izgleda naša planeta, to je

onda jasno da je geostacionarna orbita odredjena sledećim parametrima:

Prvo, mora da bude na oko 36000 km visine da bi satelit obišao oko Zemlje tačno za  24

sata;

Drugo, orbita satelita mora da leži u ravni koja je normalna na osu zemljine rotacije.

I treće, gravitacioni centar Zemlje mora da leži u istoj toj ravni, tj. ravan u kojoj leži orbita

satelita mora da prolazi kroz centar zemljine lopte. Ta, tako definisana ravan je ekvatorijalna

ravan Zemlje, a linija po kojoj ona "seče" zemljinu kuglu je krug na njoj koji se zove ekvator.

 Iz svega prethodnog proizilazi da je geostacionarna orbita jedan prsten koji leži u ekvatorijalnoj ravni i

čiji je poluprečnik oko 36000 km plus 6378 km koliko iznosi poluprečnik Zemlje.

I da na kraju zaključimo:

Samo oni sateliti čije putanje leže u ekvatorijalnoj ravni i nalaze se na rastojanju od oko

36000 km od površine Zemlje su geostacionarni sateliti i nijedni drugi!

Ovo je jako važno upamtiti, da ne biste, poput jednog našeg poznatog televizijskog

vojnog kometatora koji je , za neke sjajne zvezde i planete na nebu, tokom

bombardovanja, tvrdio da su to vrlo nisko postavljeni geostacionarni vojni sateliti za

osmatranje, a tako su sjajni, jer su, kako reče, veliki "kao autobus", pa se vide upaljena

svetla u njima!

Reče i ostade živ!

                                    do sledećeg broja ...