

This device is designed for VHF/UHF amplifier, oscillator and mixer applications. As a common gate amplifier, 16 dB at 100 MHz and 12 dB at 450 MHz can be realized. Sourced from Process 92.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

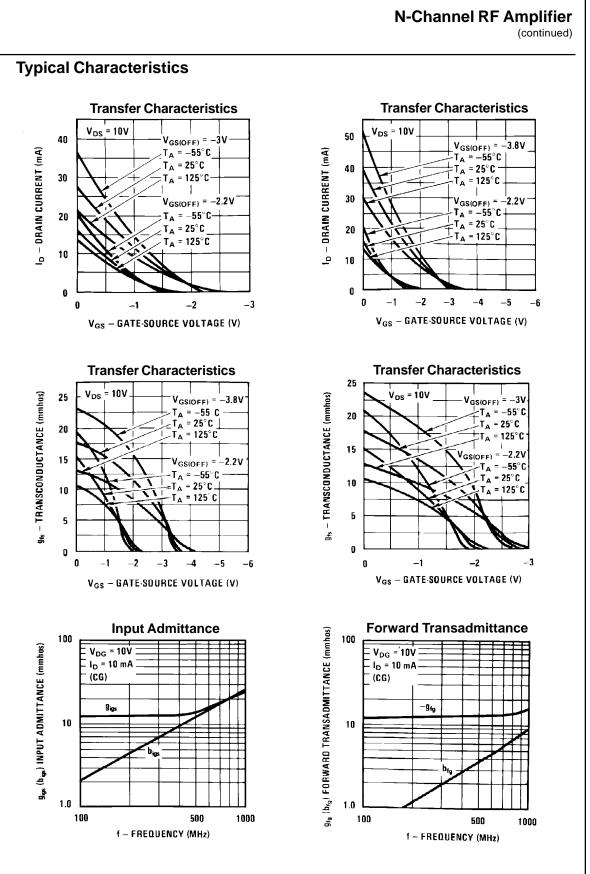
Symbol	Parameter	Value	Units	
V _{DS}	Drain-Source Voltage	25	V	
V _{GS}	Gate-Source Voltage	- 25	V	
I _{GF}	Forward Gate Current	10	mA	
T _J ,T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C	

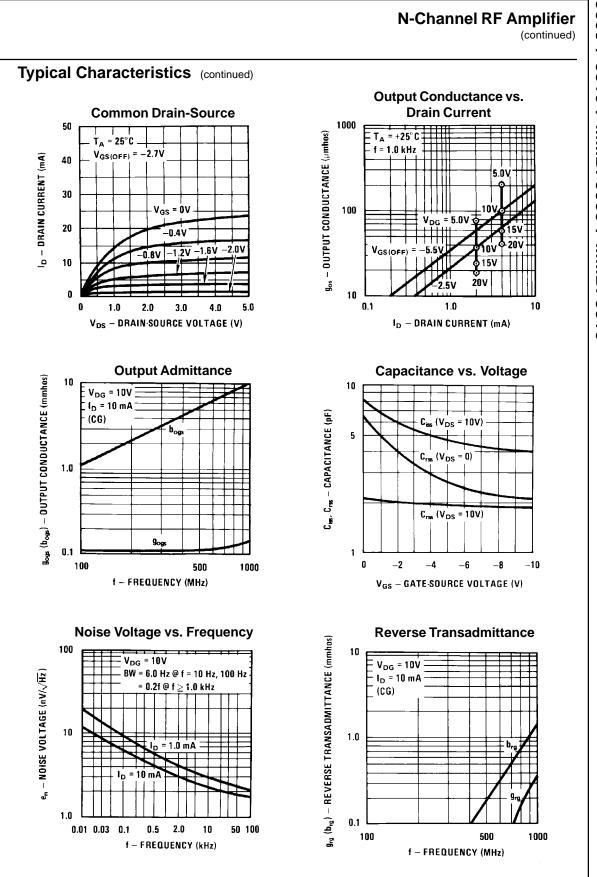
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

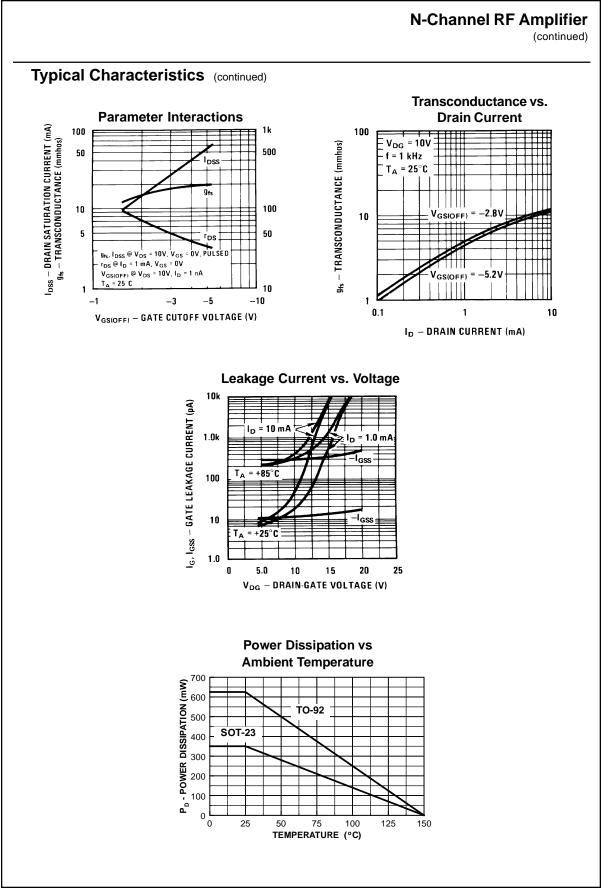
NOTES:

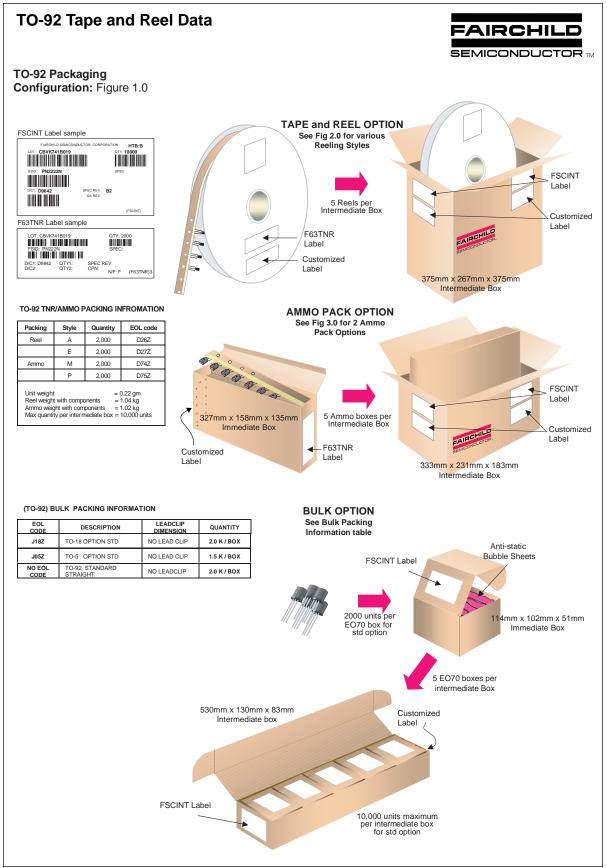
1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

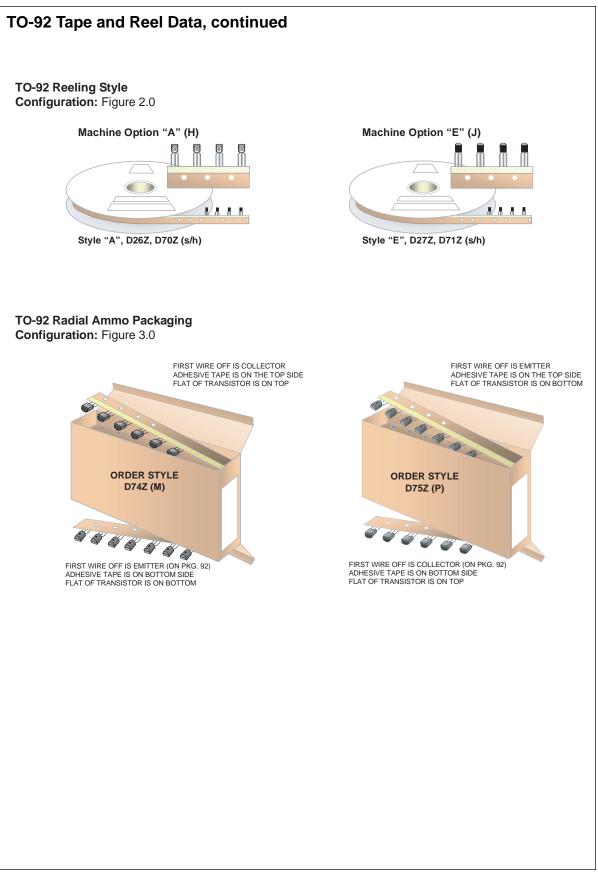

Symbol	Characteristic	Мах		Units
		J309-J310	*MMBFJ309-310	
PD	Total Device Dissipation	625	350	mW
	Derate above 25°C	5.0	2.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W

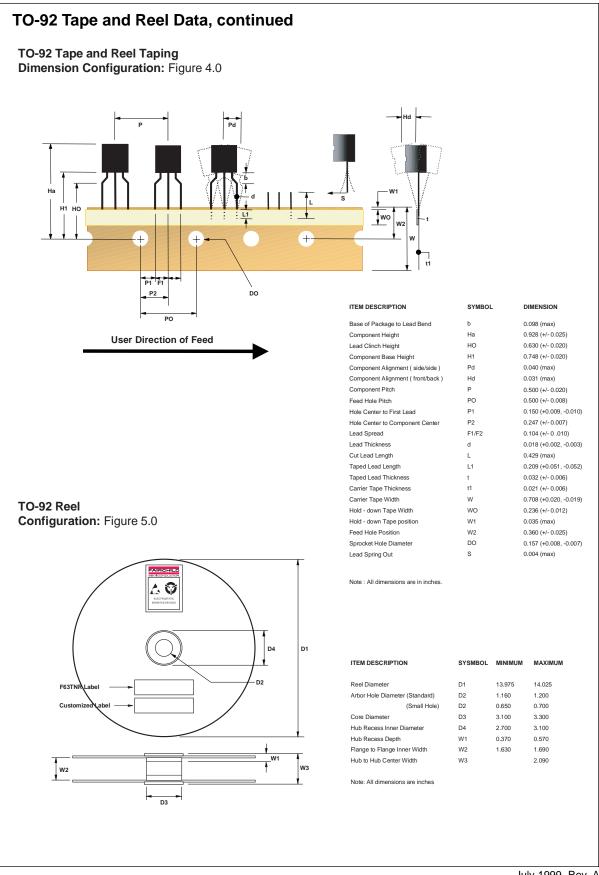

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

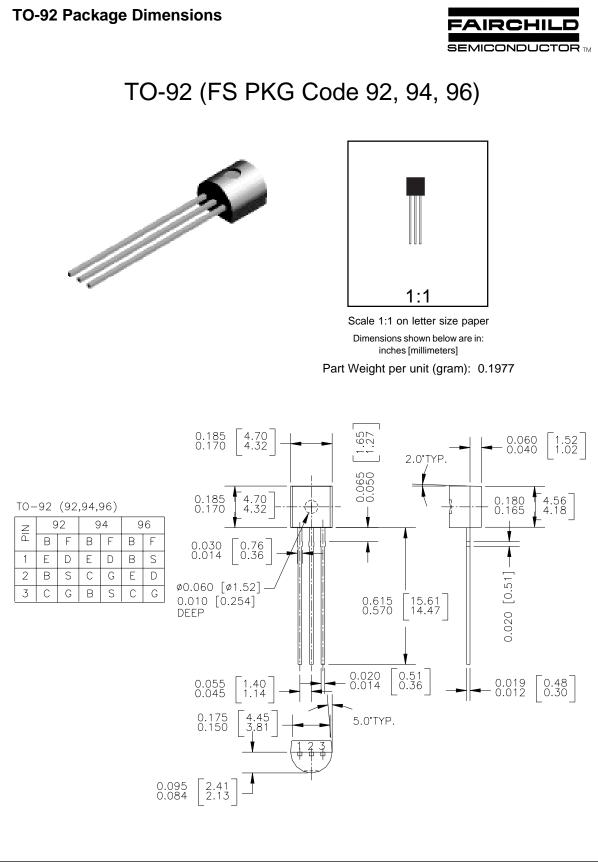

©1997 Fairchild Semiconductor Corporation

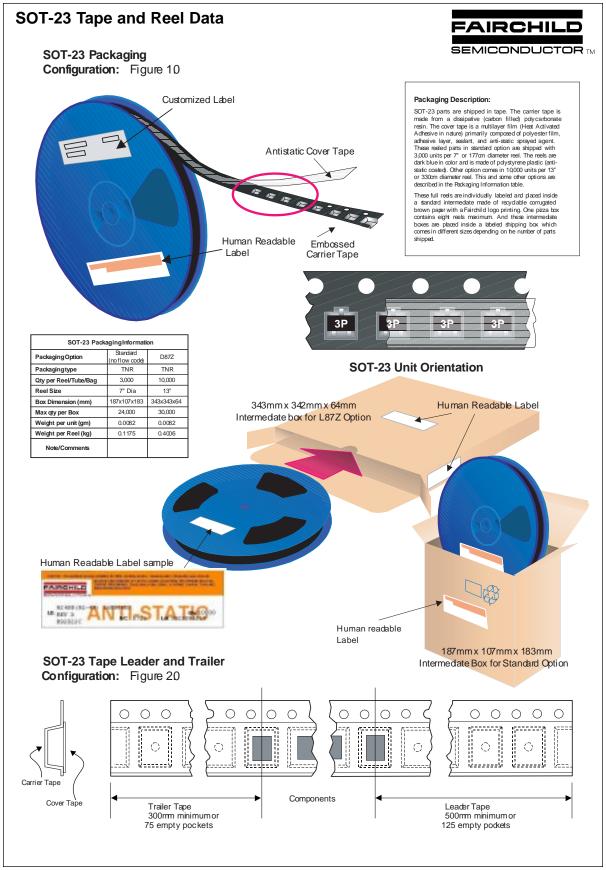

N-Channel RF Amplifier (continued)

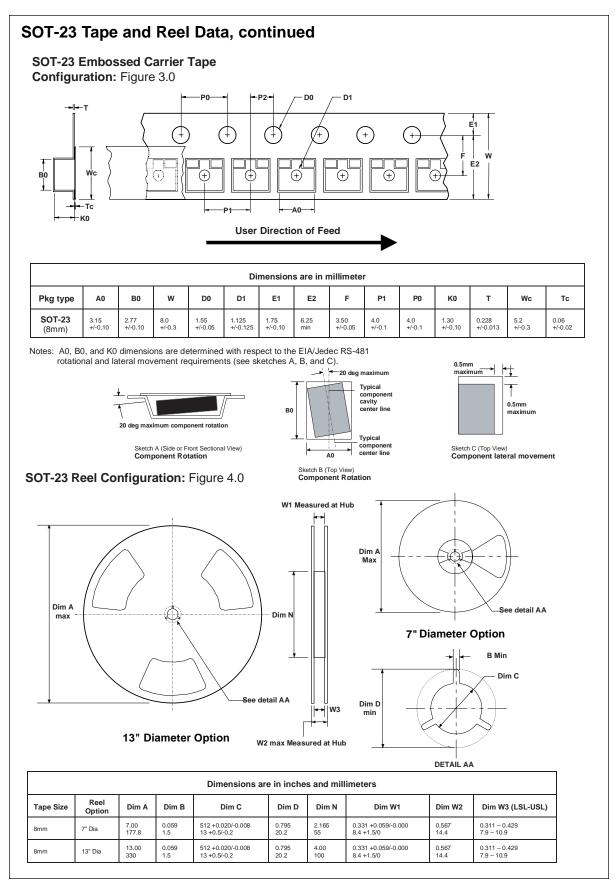
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
•						
OFF CHA	RACTERISTICS					
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = -1.0 \ \mu A, \ V_{DS} = 0$	- 25			V
I _{GSS}	Gate Reverse Current	$V_{GS} = -15 V, V_{DS} = 0$ $V_{GS} = -15 V, V_{DS} = 0, T_A =$ $125^{\circ}C$			- 1.0 - 1.0	nA μA
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 10 \text{ V}, \text{ I}_D = 1.0 \text{ nA}$ 309 310	- 1.0 - 2.0		- 4.0 - 6.5	V V
ON CHAF	RACTERISTICS					
I _{DSS}	Zero-Gate Voltage Drain Current*	$V_{DS} = 10 V, V_{GS} = 0$ 309 310	12 24		30 60	mA mA
V _{GS(f)}	Gate-Source Forward Voltage	$V_{DS} = 0, I_G = 1.0 \text{ mA}$			1.0	V
Re ₍ y _{is)}	Common-Source Input Conductance	$V_{DS} = 10, I_D = 10 \text{ mA}, f = 100 \text{ MHz}$ 309		0.7		mmho
Re ₍ y _{is)}	Common-Source Input Conductance	309		0.7		mmhos
(-)	•			0.7 0.5 0.25		mmhos mmhos mmhos
Re _(yos)	Conductance Common-Source Output Conductance	309 310 V _{DS} = 10, I _D = 10 mA, f = 100 MHz		0.5 0.25		mmhos
Re(y _{os)} G _{pg}	Conductance Common-Source Output Conductance Common-Gate Power Gain Common-Source Forward	309 310		0.5		mmho: mmho: dB
Re(y _{os)} G _{pg} Re(y _{fs)}	Conductance Common-Source Output Conductance Common-Gate Power Gain	309 310 V _{DS} = 10, I _D = 10 mA, f = 100 MHz V _{DS} = 10, I _D = 10 mA, f = 100 MHz		0.5 0.25 16		mmhos
Re(y _{os)} G _{pg} Re(y _{fs)} Re(y _{ig)}	Conductance Common-Source Output Conductance Common-Gate Power Gain Common-Source Forward Transconductance	$\begin{array}{c} 309\\ 310\\ \end{array}$ $V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \end{array}$ $V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \end{array}$ $V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \end{array}$	10,000	0.5 0.25 16 12	20,000	mmhos mmhos dB mmhos mmhos
Re(y _{os)} G _{pg} Re(y _{fs)} Re(y _{ig)} Øfs	Conductance Common-Source Output Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward	$\begin{array}{c} \textbf{309} \\ \textbf{310} \\ \textbf{V}_{DS} = \textbf{10}, \textbf{I}_{D} = \textbf{10} \text{ mA}, \textbf{f} = \textbf{100} \text{ MHz} \\ \textbf{V}_{DS} = \textbf{10}, \textbf{I}_{D} = \textbf{10} \text{ mA}, \textbf{f} = \textbf{100} \text{ MHz} \\ \textbf{V}_{DS} = \textbf{10}, \textbf{I}_{D} = \textbf{10} \text{ mA}, \textbf{f} = \textbf{100} \text{ MHz} \\ \textbf{V}_{DS} = \textbf{10}, \textbf{I}_{D} = \textbf{10} \text{ mA}, \textbf{f} = \textbf{100} \text{ MHz} \\ \textbf{V}_{DS} = \textbf{10}, \textbf{I}_{D} = \textbf{10} \text{ mA}, \textbf{f} = \textbf{100} \text{ MHz} \\ \textbf{V}_{DS} = \textbf{10}, \textbf{I}_{D} = \textbf{10} \text{ mA}, \textbf{f} = \textbf{1.0} \text{ kHz} \\ \textbf{309} \\ \textbf{310} \\ \textbf{V}_{DS} = \textbf{10}, \textbf{I}_{D} = \textbf{10} \text{ mA}, \textbf{f} = \textbf{1.0} \text{ kHz} \end{array}$		0.5 0.25 16 12	,	mmhos mmhos dB mmhos mmhos μmhos
Re(Y _{os)} G _{pg} Re(Y _{fs)} Re(Y _{ig)} Øfs	Conductance Common-Source Output Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output	$\begin{array}{c} \textbf{309} \\ \textbf{310} \\ \hline \textbf{V}_{DS} = \textbf{10}, \ \textbf{I}_{D} = \textbf{10} \ \textbf{mA}, \ \textbf{f} = \textbf{100} \ \textbf{MHz} \\ \hline \textbf{V}_{DS} = \textbf{10}, \ \textbf{I}_{D} = \textbf{10} \ \textbf{mA}, \ \textbf{f} = \textbf{100} \ \textbf{MHz} \\ \hline \textbf{V}_{DS} = \textbf{10}, \ \textbf{I}_{D} = \textbf{10} \ \textbf{mA}, \ \textbf{f} = \textbf{100} \ \textbf{MHz} \\ \hline \textbf{V}_{DS} = \textbf{10}, \ \textbf{I}_{D} = \textbf{10} \ \textbf{mA}, \ \textbf{f} = \textbf{100} \ \textbf{MHz} \\ \hline \textbf{V}_{DS} = \textbf{10}, \ \textbf{I}_{D} = \textbf{10} \ \textbf{mA}, \ \textbf{f} = \textbf{100} \ \textbf{MHz} \\ \hline \textbf{V}_{DS} = \textbf{10}, \ \textbf{I}_{D} = \textbf{10} \ \textbf{mA}, \ \textbf{f} = \textbf{100} \ \textbf{MHz} \\ \hline \textbf{Mz} \\ \hline \textbf{309} \\ \textbf{310} \end{array}$		0.5 0.25 16 12	18,000	mmho mmho dB mmho mmho µmhos µmhos µmhos
Re(Yos) Gpg Re(Yfs) Re(Yig) Offs Ooss	Conductance Common-Source Output Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output Conductance Common-Gate Forward	$\begin{array}{c} \textbf{309} \\ \textbf{310} \\ \textbf{V}_{DS} = 10, \ \textbf{I}_{D} = 10 \ \textbf{mA}, \ \textbf{f} = 100 \ \textbf{MHz} \\ \hline \textbf{V}_{DS} = 10, \ \textbf{I}_{D} = 10 \ \textbf{mA}, \ \textbf{f} = 100 \ \textbf{MHz} \\ \hline \textbf{V}_{DS} = 10, \ \textbf{I}_{D} = 10 \ \textbf{mA}, \ \textbf{f} = 100 \ \textbf{MHz} \\ \hline \textbf{V}_{DS} = 10, \ \textbf{I}_{D} = 10 \ \textbf{mA}, \ \textbf{f} = 100 \ \textbf{MHz} \\ \hline \textbf{V}_{DS} = 10, \ \textbf{I}_{D} = 10 \ \textbf{mA}, \ \textbf{f} = 100 \ \textbf{MHz} \\ \hline \textbf{V}_{DS} = 10, \ \textbf{I}_{D} = 10 \ \textbf{mA}, \ \textbf{f} = 1.0 \ \textbf{kHz} \\ \hline \textbf{309} \\ \textbf{310} \\ \hline \textbf{V}_{DS} = 10, \ \textbf{I}_{D} = 10 \ \textbf{mA}, \ \textbf{f} = 1.0 \ \textbf{kHz} \\ \hline \textbf{V}_{DS} = 10, \ \textbf{I}_{D} = 10 \ \textbf{mA}, \ \textbf{f} = 1.0 \ \textbf{kHz} \\ \hline \textbf{309} \\ \textbf{309} \end{array}$		0.5 0.25 16 12 12 13,000	18,000	mmhos mmhos dB mmhos
Re(yos) Spg Re(yfs) Re(yfg) Ifs Joss Jfg Jog	Conductance Common-Source Output Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output Conductance Common-Gate Forward Conductance Common-Gate Forward Conductance Drain-Gate Capacitance	$\begin{array}{c} & 309\\ & 310\\ \hline \\ & V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \hline \\ & V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \hline \\ & V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \hline \\ & V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \hline \\ & V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & 309\\ \hline \\ & 310\\ \hline \\ & V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & 309\\ \hline \\ & 310\\ \hline \\ & V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & 309\\ \hline \\ & 310\\ \hline \\ & V_{DS} = 0, \ V_{GS} = -10 \ V, \ f = 1.0 \ \text{MHz}\\ \hline \end{array}$		0.5 0.25 16 12 12 13,000 12,000 100	18,000	mmho mmho dB mmho mmho <u>µmhos</u> µmhos µmhos µmhos
Re(yos) Spg Re(yfs) Re(yfg) Ifs Joss Ifg Jog Cdg Seg	Conductance Common-Source Output Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output Conductance Common-Gate Forward Conductance Common-Gate Forward Conductance Drain-Gate Capacitance Source-Gate Capacitance	$\begin{array}{c} & 309\\ & 310\\ \hline \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \hline \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \hline \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \hline \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \hline \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & \\ & \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & \\ & \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $		0.5 0.25 16 12 12 13,000 12,000 100 150	18,000	mmho mmho dB mmho mmho <u>µmhos</u> <u>µmhos</u> <u>µmhos</u> <u>µmhos</u> <u>µmhos</u>
Re(Yis) Re(Yos) Gpg Re(Yfs) Re(Yig) Dfs Doss Dfg Cdg Cdg Csg NF	Conductance Common-Source Output Conductance Common-Gate Power Gain Common-Source Forward Transconductance Common-Gate Input Conductance Common-Source Forward Transconductance Common-Source Output Conductance Common-Gate Forward Conductance Common-Gate Forward Conductance Drain-Gate Capacitance	$\begin{array}{c} & 309\\ & 310\\ \hline \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \hline \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \hline \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \hline \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 100 \ \text{MHz}\\ \hline \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & \\ & \\ & \\ V_{DS} = 10, \ I_{D} = 10 \ \text{mA}, \ f = 1.0 \ \text{kHz}\\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $		0.5 0.25 16 12 12 13,000 12,000 100 150 2.0	18,000 150 2.5	mmho mmho dB mmho mmho µmhos µmhos µmhos µmhos pF

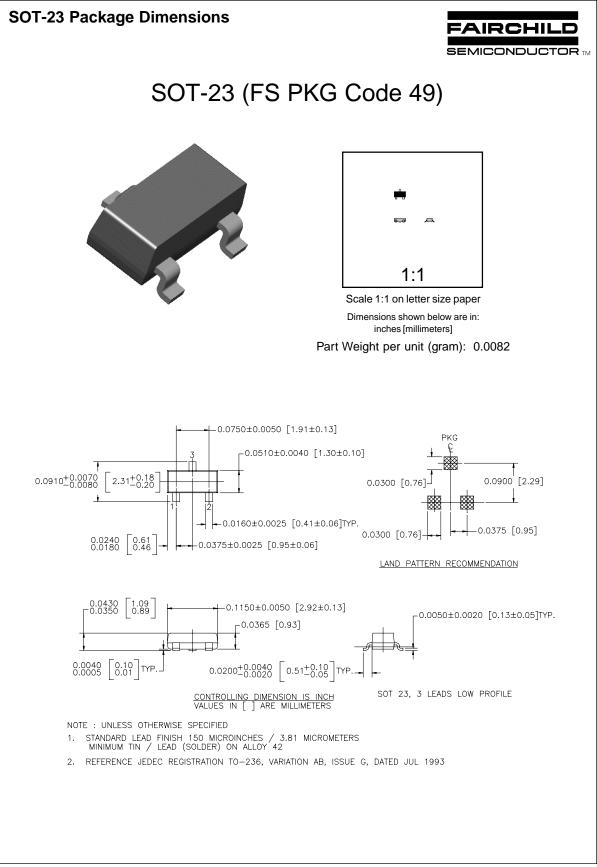





©2000 Fairchild Semiconductor International


September 1999, Rev. B


July 1999, Rev. A



©2000 Fairchild Semiconductor International

September 1999, Rev. C

September 1999, Rev. C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™] FAST[®]

FASTr™ GlobalOptoisolator™ GTO™ HiSeC™ **ISOPLANAR™** MICROWIRE™ OPTOLOGIC™ **OPTOPLANAR™** PACMAN™ POP™

PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER® SMART START™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8

SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	1	Rev G