DIY Self-powered CO² Reactor | ||||||||||||||||||||||||||||
by John LeVasseur | ||||||||||||||||||||||||||||
This articles describes a DIY powered CO² reactor made from parts widely available at nearly all LFS (local fish store) and online dealers. No special tools are required since all components push together, with the single exception of a drill bit. The cost of the entire device is under $35US complete and has a total count of 8 parts inclusively. The unit also doubles as a mechanical/biological sponge filter system, and could be the sole filtration for tanks up to 30 gallons in volume.
Disclaimer: The inclusion of the recommended products are not an endorsement of these manufacturers or their products. It is purely that these particular recommended parts happen to fit together as if made for each other, therefore making for a very simple assembly of this reactor design. No formal endorsement is expressed or implied. The image to the right shows a drawing of the completed unit. The unit will work with DIY yeast systems, or the more complex pressurized CO² systems commercially available. The primary purpose of this reactor By having a large foam pad over the inlet for the powerhead, instead of the usual inlet basket, the unit doubles as a foam filter. This also prevent clogging of the pump impeller and keeps the mesh pillow at the bottom of the reactor chamber clear from debris. If debris was allowed to collect on this pillow, flow would be impeded and the CO² would have a difficult time getting into the reactor due to back pressure in the chamber. A check valve on the CO² line is therefore a requirement. I have determined that this foam filter would be sufficient to supply all the filtering needs in a heavily planted tank, with a moderate fish load, of up to 30 gallons. No other filtration would necessarily be needed. The pump is a standard powerhead, a Maxi-Jet PH 600 manufactured by Aquarium Systems. This unit sells on the web for about $14 and is used to pump water into the reactor chamber and as the filter. The design of this powerhead is of a very simple three piece construction. A simple twist of the inlet/outlet flange, and the impeller simply pulls out for cleaning or replacement, if necessary. The unit also has, as an option, a basket and foam filter which could be used instead of the foam filter I will recommend shortly. This foam prefilter is not as large, nor will it supply the amount of filtration as the foam filter used in this reactor design. It could however be used on tanks that already have a pre-existing filtration system. Either way, a foam filter of some kind should be used to prevent the powerhead, or especially the chamber pillow, from clogging with debris. Since the foam filter is on the top of the unit, it makes it easier to remove, rinse, and reattach. If the chamber pillow gets clogged, because a prefilter is not used, the entire reactor would have to be removed to gain access to the pillow, which is located at the bottom of the reactor chamber. In short, make sure you use some kind of pre-filter on this reactor. The foam filter used in this design is an Eheim prefilter that was supplied with my Eheim 2227 wet/dry filtration system. The Eheim part number is 2615270. It is a cylindrical foam filter that fit snuggly over 1/2" tubing. I cut a piece of tubing (again supplied with my Eheim filter) approximately 2" in length. This slips snugly over the inlet pipe of the Maxi-jet powerhead. The foam prefilter is then slid onto this tubing. That's it! The next item is the device for the reactor chamber itself. If you haven't figured it out already, its a gravel cleaning tube. This specific one is from the Python Products What I liked about this tube (and by the way, what gave me idea for this reactor) is the fact that the flange on top is slightly conical. This is advantageous because any bubbles that may rise to the top of the reactor chamber are forced back into the center and into the flow of water coming from the pump. The inlet at the top also fits snuggly over the outlet of the Maxi-Jet 600's outlet tube, without the use of any adapters. It is soft and pliable enough that it will not be split when pushed onto the powerhead. Next I found that if a fine airstone is used the efficiency is increased. I choose a Kordon Mist-Air Fine airstone, item #62503, which I highly These stones are of a glass bead construction. If you use this airstone make sure you get a stiff plastic tube that fits over the airstem. The airstem has an outer diameter of .195" and you must have a tight fit. You probably can get ¼" rigid tubing from your LFS. You need about 4" in length. Once you get this rigid tubing, drill the hole in the Python tube flange slightly smaller so the tube fit very snugly. I recommend you start with very small drill bits and work your way up in size until you get the right, tight fit. If you do this, you won't have to resort to adhesives like silicon. In addition, do not attempt to use silicon or regular airline tubing. Once the pump is turned on, an airstone dangling from the end of a piece of soft airline will rattle around inside the reactor and make quite a racket. Go for the stiff, rigid tubing. Next, in order to keep the CO² bubbles from blowing out of the reactor chamber, an Eheim Filter Pillow. This particular one was used in the Eheim 2211 cannister filter as a course filter and a media separator. The Eheim item number is 26 1611 and it is available. Lastly, it is recommended you use a check valve on the CO² line leading to the reactor, especially if you use Yeast generators. Make sure you use plastic ones or types specifically made for use with CO². If you don't they may fail over time due to the corrosive nature of carbon dioxide. Below is an exploded view drawing of the Reactor. It gives you a better idea, visually, of how it all goes together. |
||||||||||||||||||||||||||||
![]() |
||||||||||||||||||||||||||||
Here is a parts list and a list of online places that stock these products. Remember, many if not all of these items can probably be found at your LFS, as well. |
||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||
Back to Tom's Place Aquatic Plants Forum |
||||||||||||||||||||||||||||
©Copyright, 2002 John LeVasseur |