Antenna Modeling

Based on ARRL Antenna Book SW

Part I: EZNEC Part II: TLW, YW, HFTA

Much cheaper (and faster) than (re)building them!

Larry Banks, W1DYJ

First licensed: 1962 (KN1VFX)

W1DYJ since 1966 – Amateur Extra

33 Blueberry Hill Road Woburn MA

W1DYJ ~ Larry Banl

"All models are wrong. Some are useful"

British Statistician George Box, 1976

https://www.qsl.net/w1dyj/

Abstract: Antenna Modeling: TLW, YW, HFTA

This presentation will start with some history detailing why Larry has always been interested in understanding antennas. It will then first go over the use of EZNEC, and then three applications: TLW, YW, and HFTA, from the ARRL Antenna Book. It will hopefully help you get a start at modeling your own antenna systems.

Larry was licensed in 1962 as novice KN1VFX and became W1DYJ in 1966. He was an engineer and manager for Hewlett-Packard Medical from 1969 to 1993. Moving to HP Education in 1993, he was responsible for technical and project management training. When Agilent split out of HP in 1999 he became Agilent Technology's global program manager for their Learning Management System. He "retired" in 2005 and then consulted for Avago Technologies (now Broadcom) on eLearning technologies through 2012.

Larry holds three degrees in EE from MIT. He holds 8BDXCC and 8BWAS, spending his time chasing DX and contesting in Woburn MA, traveling with his wife Maren, and attending as many jazz and classical concerts as they can. He is also the net manager and newsletter editor for the Minuteman Repeater Association, publications editor for HamXposition, and a member of the Yankee Clipper Contest Club.

Antenna Modeling ~ Agenda

- Why I became interested in antennas
- Part I
 - EZNEC
- Part II
 - TLW
 - YW
 - HFTA
- Appendix

The Goal:

You will learn some theory and gain some understanding about antennas.

An antenna story ~ the Gotham V80 (1962)

- New novice KN1VFX
- <u>I knew nothing about antennas</u>
- I built a HB 80m 807 CW [XTL] transmitter
- I fed my end-fed random wire out of my 2nd floor bedroom window [SWL]
- It didn't work

A 1962 QST Advertisement

- My first "real" antenna for 80M
- \$16.95 was "big bucks" for a sophomore in HS in 1962 [~\$130 today]

A beautiful example of MARKETING!

An antenna story ~ the Gotham V80

Radials not required

- I never worked anyone Best DX was a ٠ 40M OO report: "Out of Band"
- As a result, I never really learned CW •
- I have not believed advertisements ٠ since!
- I also learned that you need to • understand the physics of antennas

$\rightarrow \rightarrow \rightarrow$ Modeling (1993)

73, GOTHAM

Page 5

ZL1 ABZ

ZM6AS

ZSIOU

ZL3JA

UATAU

UAØKKE

UQ2AB VE8OJ

JZØHA

WIAW

KB6BJ

KC4AF

price.

Basic Purpose: from an X-Y-Z "wires" description of an antenna, generate tabular and graphical outputs of SWR, far field response, RF antenna currents, etc.

EZNEC Agenda

- NEC Numerical Electromagnetics Code
- Modeling Software using NEC
- EZNEC
 - Inputs & Outputs (Simple 40M dipole)
 - Ground Characteristics
 - Example (40M Vertical)

NEC: Numerical Electromagnetics Code

Uses a *Method of Moments* algorithm (fields from many mutually-coupled straight-line segments are evaluated and vector-summed)

- NEC-2 (1980) available to the public and free
- NEC-4 (1992) v4.2 (2011)
 - Requires license: \$300+ from Lawrence Livermore Labs
 - Fixes stepped wires; wire junction; ground issues, etc.
- NEC-5 x13 (2022)
 - Requires license: \$110+ from Lawrence Livermore Labs
 - Allows buried conductors

Modeling Software using NEC

EZNEC — W7EL's (Roy Lewallen) >> now free

MultiNec >> AutoEZ (AC6LA) \$79 (automates EZNEC)

NEC-Win Plus/Pro >> no longer available?

MMANA (free?)

4nec2 (free)

MiniNEC \$29

Modeling Software >> EZNEC

EZNEC 6 W7EL's (Roy Lewallen) website: <u>http://eznec.com</u>

	•	EZNEC v.6.0 Demo	Version (20 segments)		free	NEC-2
	•	EZNEC v.6.0		(500 segments)	\$99	NEC-2
The one I use:	•	EZNEC+ v. 6.0	(2K segr	nents + more features)	\$149	NEC-2
	•	EZNEC Pro/2 v.6.0	(45K seg	gments + more features)	\$525	NEC-2
	•	EZNEC Pro/4 v.6.0	(+ requi	res NEC-4 license)	\$625	NEC-4
B	ef	ore 2022				

NOW (W7EL has retired – there is no "official" support) ...lots of "YouTube's" and a groups.io group

- EZNEC Pro/2+ v7.0 FREE NEC-2 / 5 x13
- EZNEC Pro/4+

Free upgrade to Pro/4

EZNEC Agenda

- Modeling Software using NEC
- NEC Numerical Electromagnetics Code

• EZNEC

- Inputs & Output (Simple 40M dipole)
- Ground Characteristics
- EZNEC Example (40M Vertical)

EZNEC Inputs ~ 40M dipole @ 7.05 MHz.

👩 EZNEC+ v. 5.0							
File Edit Opti	ons O	utputs Setups	View Utilities Help				
· · · · · · · · · · · · · · · · · · ·	>	> 40M dipole					
Open		File	40M_Dipole.ez				
Save As		Frequency	7.05 MHz				
Ant Notes		Wavelength	139.514 ft				
Currents	\rightarrow	Wires	1 Wire, 11 segments				
Src Dat	\rightarrow	Sources	1 Source				
Load Dat	>	Loads	0 Loads				
FF Tab	>	Trans Lines	0 Transmission Lines				
NFTab	\rightarrow	Transformers	0 Transformers				
SWB	\rightarrow	L Networks	0 L Networks				
	\rightarrow	Ground Type	Free Space				
View Ant							
	\rightarrow	Wire Loss	Zero				
	\rightarrow	Units	Feet				
NEC-2	\rightarrow	Plot Type	3D				
FF Plot							
	\rightarrow	Step Size	5 Deg.				
	\rightarrow	Ref Level	0 dBi				
	\rightarrow	Alt SWR Z0	75 ohms				
	\rightarrow	Desc Options					

EZNEC Inputs ~ 40M dipole

EZNEC Inputs ~ 40M dipole

+33.5'

INDEXA

Ζ

EZNEC Output ~ 40M dipole

Free Space

EZNEC Output ~ 40M dipole

INDEXA

EZNEC Output ~ 40M dipole -> 7.05 MHz

Free Space

EZNEC+

EZNEC Output ~ 40M dipole — RF Current

Free Space

EZNEC Output ~ 40M dipole @ 15M?

EZNEC+ INF 10 5 SWR 21 MHz = 4.62:1 3 21.45 MHz = 2.13:1 7 MHz = 1.5:1 2 7.3 MHz = 2.6:1 21.5 MHz 2.11:1 1.5 7.05 MHz 1.44:1 1.1 1 5 Freq MHz 25

Free Space

EZNEC Output ~ 40M dipole -> 21.1 MHz Free Space

EZNEC Output ~ 40M dipole -> 21.1 MHz Free Space

Page 21

EZNEC Agenda

- Modeling Software using NEC
- NEC Numerical Electromagnetics Code

• EZNEC

- Inputs & Output (Simple 40M dipole)
- Ground Characteristics
- EZNEC Example (40M Vertical)

So far, this has been in "Free Space" – which doesn't exist here on earth.

Click on Ground Type

😨 EZNEC+ v.	. 0		Ground Type
File Edit Opt	tions Outputs Setups	View Utilities Help	Select Ground Type
	>	40M dipole	
Open	File	40M_Dipole.ez	
Save As		7.05 MHz	
Ant Notes	Wavelength	139.514 ft	C. Free Serves
Currents	Wires	1 Wire, 11 segments	C Liee share
Src Dat	Sources	1 Source	○ Perfect
Load Dat	Loads	0 Loads	Geal
FF Tab	Trans Lines	0 Transmission Line	Beal Ground Types
NF Tab	Transformers		C High Accuraci
SWR	L Network	0 L Networks	ing right Accuracy
	around Type	Free Space	O <u>M</u> ININEC
View Ant			
	> Wire Loss	Zero	
	→ Units	Feet	
NEC-2	> Plot Type	3D	
FF Plot			
	> Step Size	5 Deg.	
	> Ref Level	0 dBi	
	→ Alt SWR Z0	75 ohms	
	Desc Options	:	

ncel

Choices change...

Choices change... Click on <u>Options</u> → <u>Default Ground Construction</u>

👩 EZNEC+ v. :	5.0		Ν		EZNEC-	v 50			
File Edit Options					Edit Options utputs Setups View Utilities Help				
	>		40M dipole			Angle Convention	40M dipole		
Open		File	40M_Dipole_v2.ez		Open	AutoComplete/Suggest	Dipole_v2.ez		
Save As	\rightarrow	Frequency	21.1 MHz		Save As	Calculating Engine	▶ <mark>/</mark> /Hz		
Ant Notes		Wavelength	46.6147 ft		Ant Note:	Default Ground Const	47 ft		
Currents	\rightarrow	Wires	1 Wire, 31 segments		Currents		, 31 segments		
Src Dat	\rightarrow	Sources	1 Source		Src Dat	Ground File Tolerance	irce		
Load Dat	\rightarrow	Loads	0 Loads		Load Dat	Messages On/Off	▶ ds		
FF Tab	\rightarrow	Trans Lines	0 Transmission Lines		FF Tab	Segmentation Check	hsmission Lines		
NF Tab	>	Transformers	0 Transformers		NF Tab	Plot Printing	hsformers		
SWR		I Networks			SWR	Power Level	etworks		
Manu Ant I	<u>></u>	Ground Type	Real/High Accuracy		A Gauss Auch	Smith Chart Program	High Accuracy		
View Ant	\rightarrow	Ground Descrip	1 Medium (0.005, 13)			Stepped Diameter Correction	i dium (0.005, 13)		
		WILE LUSS	200			Undo Disk Space			
	>	Units	Feet			IONCAR//OACAP File Zero Angle			
NEC-2	\rightarrow	Plot Type	3D		NEC-2	TONCAP/YOACAP THE ZETO Aligie	_		
FF Plot		c. c.	55		FF Plot	EZNEC Geometry Check	+		
			oveg. oveg:		L		— p.		
			U 061 75 alaas			Far Field Table Units			
	>	AIL SWH ZU	2000 CN			Near Field Table Format	▶ ms		
	\rightarrow	Desc uptions		-		2D Plot Scale	•		
						2D Plot Grid Style	+		

Ground Charac	teristics		
Cond (S/m)	<u>Diel Cons</u>	<u>st</u>	
0.005	13	C Direct Entry	
0.001	3	C Extremely Poor: cities, high bldgs	
0.001	5	C Very Poor: cities, industrial	
0.002	10	🔿 Sandy, dry	
0.002	13	C Poor: rocky, mountainous	
0.005	13	Average: pastoral, heavy clay	
0.006	13	C Pastoral, med hills and forestation	
0.0075	12	C Flat, marshy, densely wooded	
0.01	14	C Pastoral, rich soil, US Midwest	
0.0303	20	C Very Good: pastoral, rich, central US	What
0.001	80	C Fresh water	QST a
5	81	C Salt water	
<u>k</u>		Dancel	

What you see in most QST articles

W1DYJ ~ Larry Banks

G	iround Charact	eristics		what
	Cond (S/m)	Diel Const		Engla
	0.005	13	O Direct Entry	
	0.001	3	C Extremely Poor: cities, high bldgs	
	0.001	5	🔿 Very Poor: cities, industrial 🛛 🗡	
	0.002	10	🔘 Sandy, dry	
	0.002	13	Poor: rocky, mountainous	
	0.005	13	• Average: pastoral, heavy clay	
	0.006	13	C Pastoral, med hills and forestation	
	0.0075	12	Flat, marshy, densely wooded	
	0.01	14	C Pastoral, rich soil, US Midwest	
	0.0303	20	Very Good: pastoral, rich, central US	
	0.001	80	○ Fresh water	
	5	81	C Salt water	QST
	<u>k</u>	<u> </u>	incel	articles

What we are on the New England coast

Ground Characteristics – Change Ground

40M dipole in Free Space

A dipole (0 dBd) = 2.12 dBi

Ground Characteristics – Change Ground

Ground Characteristics – Change Ground

Ground Characteristics – Change Height

Ground Characteristics – Change Height

Ground Characteristics – Change Height

EZNEC Agenda

- Modeling Software using NEC
- NEC Numerical Electromagnetics Code
- EZNEC
 - Inputs & Output (Simple 40M dipole)
 - Ground Characteristics
 - EZNEC Example (40M Vertical)

→ A Practical Example in Harpswell, Maine

EZNEC Example – 40M Vertical [Harpswell, Maine]

Situation (2010):

- I had DXCC on 10 / 15 / 20 and was working on 40M
- No tall trees → Had a 40M dipole @ 18' high off my house
- What antenna would work better?

EZNEC Example – 40M Vertical [Harpswell, Maine] Original 40M dipole: 18' high: assumes ground = 0.002 S/m; Diel Const = 13

Antenna Modeling

Dipole $1/2 \lambda$ high

Vertical 120 radials (0.2')

New England GND

Vertical 120 radials (0.2')

W1DYJ ~ Larry Banks

40m Vertical – Radial Choice

From the ARRL Antenna Book:

Practical Suggestions For Vertical Ground Systems

At least 16 radials should be used if at all possible. Experimental measurements and calculations show that with this number, the loss resistance decreases the antenna efficiency by 30% to 50% for a 0.25 wavelength vertical, depending on soil characteristics. *In general, a large number of radials (even though some or all of them must be short) is preferable to a few long radials for a vertical antenna mounted on the ground.*

a. If you install only 16 radials they need not be very long - 0.1 lambda is sufficient.

b. If you have the wire, the space and the patience to lay down 120 radials (optimal configuration), they should be 0.4 lambda long. This radial system will gain about 3 dB over the 16-radial case.

c. If you install 36 radials that are 0.15 lambda long, you will lose 1.5 dB compared to optimal configuration.

40m Vertical – Radial Choice

From the ARRL Antenna Book:

Practical Suggestions For Vertical Ground Systems

At least 16 radials should be used if at all possible. Experimental measurements and calculations show that with this number, the loss resistance decreases the antenna efficiency by 30% to 50% for a 0.25 wavelength vertical, depending on soil characteristics. *In general, a large number of radials (even though some or all of them must be short) is preferable to a few long radials for a vertical antenna mounted on the ground.*

a. If you install only 16 radials they need not be very long - 0.1 lambda is sufficient.

b. If you have the wire, the space and the patience to lay down 120 radials (optimal configuration), they should be 0.4 lambda long. This radial system will gain about 3 dB over the 16-radial case.

c. If you install 36 radials that are 0.15 lambda long, you will lose 1.5 dB compared to optimal configuration.

From QST, March 2010, pp 30-33:

An Experimental Look at Ground Systems for HF Verticals (and references)

Rudy Severns, N6LF

...four elevated radials at a height of 48 inches are within 0.2 dB of 64 radials lying on the ground.

Assume four elevated radials high enough to be safe: →10 ft

W1DYJ ~ Larry Banks

W1DYJ ~ Larry Banks

COMPARE ~ 40M Reality

Noise: Worse on Vertical by ~1-1.5 S-units

Coax feed: $\Delta = -0.25 \text{ dB} @ 7.1 \text{ MHz.}$ Dipole → 35' of RG8x = 0.25 dB Vertical → 15' of RG8x + 105' of Bury-Flex = 0.5 dB.

@ swr 1.5:1 = .29 dB @ swr 1.5:1 = .55 dB

EZNEC: Lots of functionality left for your homework

👩 EZNEC+ v. !	5.0			
File Edit Opti	ions C	Outputs Setups	View Utilities Help	
	> 40M dipole			
Open		File	40M_Dipole.ez	
Save As	\rightarrow	Frequency	7.05 MHz	
Ant Notes		Wavelength	139.514 ft	
Currents	\rightarrow	Wires	1 Wire, 11 segments	
Src Dat	>	Sources	1 Source	
Load Dat	\rightarrow	Loads	0 Loads	
FF Tab	\rightarrow	Trans Lines	0 Transmission Lines	
NF Tab	\rightarrow	Transformers	0 Transformers	
SWR	\rightarrow	L Networks	0 L Networks	
	\rightarrow	Ground Type	Free Space	
View Ant				
	>	Wire Loss	Zero	
	>	Units	Feet	
NEC-2	>	Plot Type	3D	
FF Plot				
	>	Step Size	5 Deg.	
	>	Ref Level	0 dBi	
	>	Alt SWR Z0	75 ohms	
	\rightarrow	Desc Options		

W1DYJ ~ Larry Banks

EZNEC

Complicated, but allows you to model and discover antennas and compare them to reality, AND LEARN.

Conclusions

- You Can't Beat Physics
- Understanding antennas →understanding ANTENNA SYSTEMS
 - **HOW YOU WANT TO USE YOUR ANTENNA**
 - **EFFECTS OF TRANSMISSION LINES**
 - LOCAL TERRAIN
 - GROUND CHARACTERISTICS
- All antennas are COMPROMISES
- All models are SIMPLE EXAMPLES of reality
- Your real antenna WILL NOT MATCH your model

"All models are wrong. Some are useful"

British Statistician George Box, 1976

Antenna Modeling ~ Agenda

Part II

• TLW

- YW
- HFTA

TLW – Transmission Line TLW **Program for Windows** TLW, Transmission Line Program for Windows Cable Type: R. Dean Straw ~ N6BV Feet **©ARRI**

Basic <u>Purpose</u>:

- Input = cable type, frequency, dimensions, and load impedance
- Output = SWR at input, load, and feedline loss

_ 🗆 🗵

<u>H</u>elp

TLW

Graph

Exit

Frequency: 3.5 MHz

Volt./Current

C Resist /Rear

Print

Rho at Load 0 11168

0 220 dE

44.50 Ohms at -10.66 Degrees

Tuner

Version 3.24, Copyright 2000-2014, ARRL, by N6BV, Jan. 31, 2014

Velocity Factor: 0.85 Max Voltage 600 V Total Matched-Line Loss: 0.223 dB

Resistance:

Reactance:

SWR at Load

0.003 dB

43.73 - j 8.23 Ohms =

0.419 Lambda

50.0 - j 0.49 Ohms Matched-Line Loss: 0.223 dB/100 Feet

1 25

Total Line Loss:

RG-8 Type, TMS LMR400

Use "w" suffix for wavelength (for example, 0.25v

Length: 100.000 Feet

Eload

C Input

SWR at Line Input: 1.24

Additional Loss Due to SWR

Impedance at Input:

Characteristic Z0:

Source Normal

C Autek

C Noise Bridge

A Spot Quiz!

Question: Which is the better situation?

A Spot Quiz!

Answer: Beware the Myth of Low SWR!

A Spot Quiz!

It's really too bad that SWR is so easy to measure in the shack – it can be very misleading.

Remember: the "ideal" SWR is generated with a broadband, matched dummy load!

Coox	SWR @70cm	Total Loss @70cm	Delivered Power	
Coax			70cm	
1 ¼" Heliax	1.38:1	0.73 dB	42 W	
1/2 " Heliax	1.31:1	1.54 dB	35 W	
LMR 400 "RG8"	1.22:1	2.83 dB	26 W	
8267 RG213	1.12:1	5.28 dB	15 W	
LMR 240"RG8X"	1.12:1	5.37 dB	14 W	
LMR 200 "RG58"	1.08:1	7.14 dB	10 W	
9258 "RG8X"	1.05:1	9.08 dB	5 W	
8259 "RG58A"	1.02:1	13.89 dB	2 W	

50 W @ Transmitter / 100' Coax / 73 Ω Antenna

 $dB = 10 \log_{10} (W_i/W_o) \rightarrow W_o = W_i / 10^{dB/10}$

Coox	SWR @70cm	Total Loss @70cm	Delivered Power			
Coax			70cm	2M	10M	80M
1 ¼" Heliax	1.38:1	0.73 dB	42 W	46	48	49
1/2 " Heliax	1.31:1	1.54 dB	35 W	41	46	49
LMR 400 "RG8"	1.22:1	2.83 dB	26 W	34	43	47
8267 RG213	1.12:1	5.28 dB	15 W	26	38	46
LMR 240"RG8X"	1.12:1	5.37 dB	14 W	25	37	45
LMR 200 "RG58"	1.08:1	7.14 dB	10 W	19	33	43
9258 "RG8X"	1.05:1	9.08 dB	5 W	16	32	43
8259 "RG58A"	1.02:1	13.89 dB	2 W	9	25	40

50 W @ Transmitter / 100' Coax / 73 Ω Antenna

Left to you for Homework...

	Image: Weight Constraints Image: Weight Constraints Image: Weight Constraints Image: Weight Constraints	You can look at the Voltage, Current, Resistance, and Reactance on the transmission line
If you know the impedance in your shack, you can estimate the load impedance	Velocity Factor: 0.85 Max Voltage 600 V Total Matched-Line Loss: 2.733 dF Source Imput Imput Resistance: 73 Imput	You can use TLW to help you design a TransMatch. NOTE: Antenna Tuners <u>DO NOT</u> tune anything!

Summary:

- It's really too bad that SWR is so easy to measure in the shack
- It is only one parameter in the understanding of your <u>Antenna System</u>
- However, do measure it, document it, and use it as one measure of your <u>Antenna</u> <u>System's</u> health – it will tell you if something has changed

Helps you understand and design your Antenna System

TLW
TLW, Transmission Line Program for Windows
Version 3.24, Copyright 2000-2014, ARRL, by N6BV, Jan. 31, 2014 Cable Type: RG-8 Type, TMS LMR400
C Feet 0.419 Lambda Frequency: 3.5 MHz C Meters Use "w" suffix for wavelength (for example, 0.25w) 0.50w) 1000000000000000000000000000000000000
Characteristic Z0: 50.0 - j 0.49 Ohms Matched-Line Loss: 0.223 dB/100 Feet Velocity Factor: 0.85 Max Voltage 600 V Total Matched-Line Loss: 0.223 dB
Source C Load Resistance: 40 C Volt/Current Graph C Autek C input Reactance: 0 Ohms Image: Graph Image: Graph
SWR at Line Input: 1.24 SWR at Load: 1.25 Rho at Load: 0.11168 Additional Loss Due to SWR: 0.003 dB Total Line Loss: 0.220 dB Impedance at Input: 43.73 - j 8.23 Ohms = 44.50 Ohms at -10.66 Degrees

Antenna Modeling ~ Agenda • Part II

- TLW
- YW
- HFTA

Purpose:

- Input = dimensions of a traditional monoband Yagi, its height and its matching
- Output = graphs/patterns of Gain, F/R, SWR

YW – Yagi for Windows

Description

- Similar to earlier DOS based program: YO from Brian Beezley
- Computes Gain, worse-case F/R, SWR, E- & H-plane patterns
- Generates on-screen graphs
- Results compare closely with YO, EZNEC, NEC-4
- Runs much faster
- Includes design files for 80+ Yagi designs included in ARRL Antenna Book

YW – Yagi for Windows

Limitations

- Works only for "traditional" monoband Yagis
- Evaluations done over flat "perfect" ground
- Not accurate below height of $\lambda/8$
- Not accurate in stacks, near other antennas, etc.
- Does not generate output data files
- No optimization routine like YO

33 Blueberry Hill Rd – Woburn Antennas

International Association

W1DYJ ~ Larry Banks

30' High, unmatched

YW Example: What is a GAMMA Match?

ARRL V.H.F. Manual © 1965

INDEXA

YW Example: What is a GAMMA Match?

ARRL V.H.F. Manual © 1965

30' high, matched

SWR is "tamed".

SWR is NOT the only criteria!

Antennas are PASSIVE: they generate "gain" by redirecting the RF.

> WHERE is the RF going?!

30' high, matched

INDEXA

30' high, matched

YW Example: 5el 10M yagi Idealized pattern at different heights

Page 80

INDEXA

YW Example: What's really going on with different heights?

Figure 3.38 — At any distant point, P, the field strength will be the vector sum of the direct ray and the reflected ray. The reflected ray travels farther than the direct ray by the distance BC, where the reflected ray is considered to originate at the image antenna.

YW Example: What's really going on with different heights?

Figure 3.38 — At any distant point, P, the field strength will be the vector sum of the direct ray and the reflected ray. The reflected ray travels farther than the direct ray by the distance BC, where the reflected ray is considered to originate at the image antenna.

W1DYJ ~ Larry Banks

YW Example: 5el 10M yagi → Redesign

YW does not have the "automatic" optimization routine that YO had.

YW – Yagi for Windows

Helps you understand/design your monoband Yagis, but – assumes flat, perfect ground

Antenna Modeling ~ Agenda • Part II

- TLW
- YW
- HFTA

HFTA – High Frequency Terrain Assessment R. Dean Straw ~ N6BV ©ARRL

Purpose:

Assesses the effect of uneven local terrain on the transmission and reception of HF signals.

HFTA – High Frequency Terrain Assessment

Agenda

- Overview of HFTA
- What are **Elevation Statistics**?
- What are Terrain Files?
- Using HFTA

HFTA – High Frequency Terrain Assessment What problem does HFTA attempt to solve?

HFTA – High Frequency Terrain Assessment What problem does HFTA attempt to solve?

HFTA – High Frequency Terrain Assessment

Attributes

- HFTA is a ray-tracing program designed to evaluate the effect of foreground terrain on the elevation pattern of up to four multi-element HF monoband Yagis in a stack.
- Models horizontally polarized Yagis, and "works" with simple horizontal dipoles
- Takes into account the effects of Fresnel horizontal ground-reflection
- Takes into account diffraction
- Includes <u>Elevation Statistics Files</u> ~ the angle the RF comes from
- Latest version of earlier "YT" program

HFTA – High Frequency Terrain Assessment Limitations

- Does not work with vertical polarization
- Free-space gain assumed for default Yagis; example: model is 8.5 dBi
- Does not take into account mutual impedance ground effects

Additional Requirement

Requires a <u>Terrain Data File</u>

HFTA – High Frequency Terrain Assessment

Agenda

- Overview of HFTA
- What are Elevation Statistics?
- What are Terrain Files?
- Using HFTA

Fundamentally → Where is the DX? At what angle (from the horizon) does the RF arrive?

We must always remember this simple truth: The ionosphere controls the elevation angle of the received RF at your location, not your antenna!

HFTA ~ Elevation Statistics Example: 80M: MA →EU

Conclusion, from this one graph: About 80% of the time, European 80M RF arrives at arrival angles between 5 \rightarrow 22°

HFTA ~ Elevation Statistics Example: 20M in MA

Page 96

W1DYJ ~ Larry Banks

HFTA – High Frequency Terrain Assessment

Agenda

- Overview of HFTA
- What are Elevation Statistics?
- What are Terrain Files?
- Using HFTA

Terrain File → **Unique to your location**

ASCII files that describe the terrain in all 360 degree directions from your antenna site.

	7T-0.0	NO PRO -	Noten	ad N	
File	Edit	Format	View	Hala	
lie	Eult	Format	VIEW	neip •	
meters					
		0	66	.2	
		30	63	.1	
		60	60	.1	
		90	58	.5	
		120	57	.4	
		150	54	.8	
		180	50	.9	
		210	45	.5	
		240	43	.3	
		270	43	.3	
		300	44	.0	
		330	46	.4	
		360	48	.8	
		390	50	.1	
		420	49	.5	
		450	49	.4	
		480	50	.1	
		510	49	.9	
		540	49	.6	
		570	49	.1	
		600	48	.9	
		630	48	.8	
		660	48	.0	
		690	47	.1	
		720	48	.2	
		750	48	.2	
		780	46	.5	
		810	43	.8	
		840	44	.9	
		870	48	.2	
		900	50	.2	
		020	E 1	6	

• Download

HFTA – High Frequency Terrain Assessment

Agenda

- Overview of HFTA
- What are Elevation Statistics?
- What are Terrain Files?
- Using HFTA

Select Antenna Types & Heights

INDEXA

This is an analysis. How can this be useful?

Consider the situation where you are DESIGNING an antenna system. By moving the tower location or height, you can optimize this response.

nternationa DX
HFTA- HB 5 el 10M Yagi Example: How to improve my @ 33 BBHR 10M yagi to South America

Note that my yagi is BEHIND the hill to my south...

...and as a result, the yagi's response is where there are no signals being receive from South America

HFTA- HB 5 el 10M YagiExample: How to improve my@ 33 BBHR10M yagi to South America

Increase antenna height: $30' \rightarrow 90'$

HFTA- HB 5 el 10M YagiExample: How to improve my@ 33 BBHR10M yagi to South America

HFTA – High Frequency Terrain Assessment

Lots of steps. Uses standard Yagis. Helps you understand your local terrain's effects to plan/assess your antenna system.

Conclusions

- You Can't Beat Physics
- ➤Understanding antennas →understanding ANTENNA SYSTEMS →all three of these programs will help
 - HOW YOU WANT TO USE YOUR ANTENNA
 - EFFECTS OF TRANSMISSION LINES
 - LOCAL TERRAIN
 - GROUND CHARACTERISTICS
- All antennas are COMPROMISES
- All models are **SIMPLE EXAMPLES** of reality
- Your real antenna WILL NOT MATCH your model

Summary We've looked at: TLW – Transmission Lines YW – Simple Yagis HFTA – Effects of Terrain We've seen how these software programs can be used

to plan your antenna systems

Questions???

"All models are wrong. Some are useful"

British Statistician George Box, 1976

Appendix

- W1DYJ Antennas in Woburn MA
- W1DYJ Antennas in Harpswell ME
- ARRL Handbook SW
- ON4UN's Low Band Dxing SW
- Additional ARRL Antenna Book SW
- Abstract / Bio

https://www.qsl.net/w1dyj/

33 Blueberry Hill Rd – Woburn Antennas

DX Azimuths @ 33 BBHR

33 BBHR 3D Maps

Note: Vertical dimensions are enhanced by a factor of 8

HFTA – Local Terrain @ 33 BBHR

Antenna Modeling

INDEXA

HFTA– HB 5 el 10M Yagi @ 33 BBHR

W1DYJ ~ Larry Banks

INDEXA

Antenna Modeling

33 Blueberry Hill Rd – Woburn Antennas

33 Blueberry Hill Rd -- Woburn

W1DYJ Antennas in Woburn MA

Woburn MA ~ Low HF SWR/|Zs| sweep

W1DYJ Antennas in Harpswell ME [no longer there]

W1DYJ Antennas in Harpswell ME [no longer there]

INDEXA

Harpswell ME ~ SWR sweep [no longer there]

SW: ARRL Handbook

 TubeCalculator Design tube-type High Power linears ClassE Designs single-ended Class E RF amplifier Diplexer Designs both high-pass/low-pass and band-pass/band-stop types of diplexers Helical Designs and analyzes helical-resonator bandpass filters usually used in VHF and UHF Elsie A lumped-element filter design and analysis program (the student edition) MeterBasic Designs and prints professional-quality analog meter scales OptLowpass Designs and analyzes transmitter output low-pass filters PIEL Designs and analyzes pi-L networks for transmitter output QuadNet Designs and analyzes active quadrature networks SVCFilter Standard-value component routine to design low-pass and high-pass filters 			
 ClassE Designs single-ended Class E RF amplifier Diplexer Designs both high-pass/low-pass and band-pass/band-stop types of diplexers Helical Designs and analyzes helical-resonator bandpass filters usually used in VHF and UHF Elsie A lumped-element filter design and analysis program (the student edition) MeterBasic Designs and prints professional-quality analog meter scales OptLowpass Designs and analyzes transmitter output low-pass filters PIEL Designs and analyzes pi-L networks for transmitter output QuadNet Designs and analyzes active quadrature networks SVCFilter Standard-value component routine to design low-pass and high-pass filters 	•	TubeCalculator	Design tube-type High Power linears
 Diplexer Designs both high-pass/low-pass and band-pass/band-stop types of diplexers Helical Designs and analyzes helical-resonator bandpass filters usually used in VHF and UHF Elsie A lumped-element filter design and analysis program (the student edition) MeterBasic Designs and prints professional-quality analog meter scales OptLowpass Designs and analyzes transmitter output low-pass filters PIEL Designs and analyzes pi-L networks for transmitter output QuadNet Designs and analyzes active quadrature networks SVCFilter Standard-value component routine to design low-pass and high-pass filters 	•	ClassE	Designs single-ended Class E RF amplifier
 Helical Designs and analyzes helical-resonator bandpass filters usually used in VHF and UHF Elsie A lumped-element filter design and analysis program (the student edition) MeterBasic Designs and prints professional-quality analog meter scales OptLowpass Designs and analyzes transmitter output low-pass filters PIEL Designs and analyzes pi-L networks for transmitter output QuadNet Designs and analyzes active quadrature networks SVCFilter Standard-value component routine to design low-pass and high-pass filters 	•	Diplexer	Designs both high-pass/low-pass and band-pass/band-stop types of diplexers
 Elsie A lumped-element filter design and analysis program (the student edition) MeterBasic Designs and prints professional-quality analog meter scales OptLowpass Designs and analyzes transmitter output low-pass filters PIEL Designs and analyzes pi-L networks for transmitter output QuadNet Designs and analyzes active quadrature networks SVCFilter Standard-value component routine to design low-pass and high-pass filters 	•	Helical	Designs and analyzes helical-resonator bandpass filters usually used in VHF and UHF
 MeterBasic Designs and prints professional-quality analog meter scales OptLowpass Designs and analyzes transmitter output low-pass filters PIEL Designs and analyzes pi-L networks for transmitter output QuadNet Designs and analyzes active quadrature networks SVCFilter Standard-value component routine to design low-pass and high-pass filters 	•	Elsie	A lumped-element filter design and analysis program (the student edition)
 OptLowpass Designs and analyzes transmitter output low-pass filters PIEL Designs and analyzes pi-L networks for transmitter output QuadNet Designs and analyzes active quadrature networks SVCFilter Standard-value component routine to design low-pass and high-pass filters 	•	MeterBasic	Designs and prints professional-quality analog meter scales
 PIEL Designs and analyzes pi-L networks for transmitter output QuadNet Designs and analyzes active quadrature networks SVCFilter Standard-value component routine to design low-pass and high-pass filters 	•	OptLowpass	Designs and analyzes transmitter output low-pass filters
 QuadNet Designs and analyzes active quadrature networks SVCFilter Standard-value component routine to design low-pass and high-pass filters 	•	PIEL	Designs and analyzes pi-L networks for transmitter output
SVCFilter Standard-value component routine to design low-pass and high-pass filters	•	QuadNet	Designs and analyzes active quadrature networks
	•	SVCFilter	Standard-value component routine to design low-pass and high-pass filters

Supplemental Files Additional discussion, additional projects, • full-size PC board etching patterns, program examples and other useful information

ARRI

W1DYJ's

SW: ARRL OH4UN's Low Band DXing

- Conversion Calculator Excel spreadsheet that converts signal levels typically encountered at receiver inputs between μV, mV, dBμV, μW, etc
- Receiver Levels Excel spreadsheet tool shows you levels involved with radio signals from transmit power to received signal
- RX noise figure and MDS calculation Excel spreadsheet tool shows you the relation between receiver bandwidth, temperature and receiver MDS
- ON4UN Low-Band DXing Software (DOS)

Propagation Software; Mutual Impedance and Driving Impedance; Coax Transformer/Smith Chart;

Impedance, Current and Voltage Along Feed Lines; Two- and Four-Element Vertical Arrays; The L Network; Series/Shunt Input L-Network Iteration; Shunt/Series Impedance Network; Line Stretcher (Pi and T) Stub Matching; Parallel Impedances (T Junction); SWR Value and SWR Iteration; Radiation Angle for Horizontal Antennas; Coil Calculation; Gamma-Omega and Hairpin Matching; Element Taper

ON4UN-Yagi-Design (DOS)

The Analyze Module; Generic Dimensions; Element Strength; Element Taper; Mechanical Yagi Balance; Yagi Wind Area; Matching; Optimize Gamma/Omega; Feed-Line Analysis; Rotating Mast Calculation

OH4UN John Devoldere (SK)

Page 130

SW: ARRL Antenna Book

- TLW Computes parameters for transmission lines and antenna-tuners
- YW Computes parameters for Yagi-Uda antennas
- HFTA Evaluates the effect of local terrain on the launch of HF signals
 - \rightarrow 24th Edition: Software is available online
- Many of the apps from previous editions are available at: <u>www.arrl.org/antenna-book</u>

AATAutomatically evaluates antenna tuner networksArrayfeed1Computes parameters necessary for feeding 2-element and 4-element phased-arrays.GAMMAComputes the parameters for a gamma matchLPCAD30For computing LPDA designsMOBILEEvaluating and designing mobile whip antennas and coilsRange-BearingComputes the range/bearing from one lat/lon point to anotherSCALEScales Yagi designs to other frequencies

EZNEC 7 Roy Lewallen W7EL (retired)

<u>W1DYJ's</u> 17th Ed. – 1994 23rd Ed. – 2015 24th Ed. – 2019

