understanding end fed half wave antennas and its half wave multiples

There is so much to find on the internet on End Fed Half Wave antennas. And yet...

In many publications on (smaller) End Fed Half Wave (EFHW) Antennas, often the 15 m is shown between brackets. And the reason is simple, yet it took me some study and antenna comparison to understand why that is.
After I made my first EFHW (for 40 m , with coil for 80 m) and I prepared for my second one (in fact EFHW for 20 m with max length of 16 meters, with two coils, for 40 m and 80 m), I suddenly realized that 15 m would not give resonnance in this antenna. Why?
When using an EFHW for 80 m or 40 m , there is a multiple of half waves for 15 m . For the EFHW for 20 m (with or without a coil and extension for 40 and/or 80 m) there is no halve wave multiple. See the tables below for the explanation of the relations! And so I understood it, afterall.... and realized how wonderful a full EFHW antenna is!

Here below three examples:
First "my first", the EFHW for 40 m with coil and extension for 80 m
Then the full EFHW for 80 m
Finally the antenna that will be my next project: EFHW for 20 m , with coils and extensions for 40 m and 80 m . All three Antennas have been built and adjusted (also the experimental EFHW for 20 m with extensions).
This Library Webpage shows the publications on those measurements (in detail).

Note: "long wire" in the text below, means the resonnant half wave length for the lowest frequency

END FED HALVE WAVE ANTENNA FOR 40m (WITH COIL FOR 80m) - LONG WIRE RELATION

speed of light in km / s	$299.792,50$
velocity factor antenna wire	0,96

frequency $k H z$	wavelength meter	x velocity factor	halve wave meter	quarter wave meter	nr of halves	relation length
3650	82,13	78,85	39,42	19,71	coil+ extra wire	
7100	42,22	40,54	20,27	10,13	1	20,27
14200	21,11	20,27	10,13	5,07	2	20,27
21250	14,11	13,54	6,77	3,39	3	20,32
28500	10,52	10,10	5,05	2,52	4	20,20

This table shows the relationship between the four frequency bands of a 40 m End Fed Halve Wave Antenna (or such antenna with $110 \mu \mathrm{H}$ coil and 2 m 35 wire for 80 m). It indicates how close the relations are.
It indicates why the antenna works on "15" meters (in fact 14 meters...).

END FED HALVE WAVE ANTENNA FOR 80m - FULL SIZE - LONG WIRE RELATION

speed of light in km / s	$299.792,50$
velocity factor antenna wire	0,96

frequency $k H z$	wavelength meter	x velocity factor	halve wave meter	quarter wave meter	$n r$ of halves	relation length
3650	82,13	78,85	39,42	19,71	1	39,42
5360	55,93	53,69	26,85	13,42	$\left.1,5{ }^{*}\right)$	40,27
7100	42,22	40,54	20,27	10,13	2	40,54
10130	29,59	28,41	14,21	7,10	3	42,62
14200	21,11	20,27	10,13	5,07	4	40,54
18125	16,54	15,88	7,94	3,97	5	39,70
21250	14,11	13,54	6,77	3,39	6	40,63
24950	12,02	11,54	5,77	2,88	7	40,37
28500	10,52	10,10	5,05	2,52	8	40,39

This table shows the relationship between the nine frequency bands of an 80m End Fed Halve Wave Antenna. It indicates why also the three WARC bands are close to a half wave multiple for that band. Note *): In spite of $1,5 \times$ a half wave, the antenna tunes resonnates perfectly on 5.360 kHz !

END FED HALVE WAVE ANTENNA FOR 20 m (with/without coils for $40 \mathrm{~m} / 80 \mathrm{~m}$) - LONG WIRE RELATION
speed of light in km/s
299.792,50
velocity factor antenna wire 0,96

frequency $k H z$	wavelength meter	x velocity factor	halve wave meter	quarter wave meter	$n r$ of halves	relation length
14200	21,11	20,27	10,13	5,07	1	10,13
21250	14,11	13,54	6,77	3,39		
28500	10,52	10,10	5,05	2,52	2	10,10

This table shows the relationship between the three frequency bands of a 20 m End Fed Halve Wave Antenna (with or without extension coils and wire lengths for 40 or 80 m). It indicates that no 'multiple half' for the 15 meter band is available, so it will not resonnate there.

With the last column it is relevant to understand if that (multiple of) half wave will resonate in, above or below the desired Amateur Band. Check on this page how cutting that "long wire" should be done: make sure it gives the best result on 10 m . This may not give the best SWR on $15 \mathrm{~m}, 20 \mathrm{~m}$ or 40 m , but inside these bands the SWR will well be within acceptable limits!

Hans, PAOSNY
EndFedHalfWave relations.pdf
(EndFedHalfWave relations.xlsx)

