Mini-Circuits

High Power Amplifier in Multi-tone environment

(AN-60-037)

A multi-tone signal can be characterized by the average and the peak power. The average power is defined as a sum of the power value of each of the tones. For example, if we have 4 tones at +5 dBm each, the average power would be:
$+5 \mathrm{dBm}+6=+11 \mathrm{dBm}$.

The peak power, otherwise known as peak envelope power (PEP), is the maximum instantaneous power of the combination of the all tones. If each tone has power P1, the amplitude of the voltage of each tone is $\mathrm{V} 1=\sqrt{2 * \mathrm{P} 1 * \mathrm{R}}$, where R is the load value, typically 50 ohms. Maximum peak voltage on the load happens at the moments of time when all the voltage vectors from each of the independent tones are aligned. At this moment, the total amplitude of voltage across the load is $\mathrm{V} _$peak $=\mathrm{V} 1^{*} \mathrm{~N}$, where N is the number of independent tones. Therefore, the peak power is equal to:

P_peak $=\left(\mathrm{V} _ \text {peak }\right)^{2} /(2 * \mathrm{R})$
or
P_peak $=(\mathrm{V} 1 * \mathrm{~N})^{2} /(2 * \mathrm{R})=\left((\mathrm{V} 1)^{2} /(2 * \mathrm{R})\right)^{*} \mathrm{~N}^{2}=\mathrm{P} 1 * \mathrm{~N}^{2}$

The following table gives the average and peak power for multi-tone signal (in mW), assuming that all the tones are independent and equal in power level
(1 mW each).

Number of tones	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Average Power (mW)	2	3	4	5	6	7	8	9
Peak Power (mW)	4	9	16	25	36	49	64	81

The following table gives the average and peak power for multi-tone signal (in dBm), assuming that all the tones are independent and equal in power level (0 dBm each).

Number of tones	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Average Power (dBm)	3	4.8	6	7	7.8	8.5	9	9.5
Peak Power (dBm)	6	9.5	12	14	15.6	16.9	18.1	19.1

For example, if we have 9 tones with -2 dBm of each tone, the peak power would be 81 times or 19.1 dB more than single tone:

P_peak $=-2 \mathrm{dBm}+19.1=+17.1 \mathrm{dBm}$

At the same time the average power would be only 9.5 dB higher than the power level of each tone. Therefore, the peak power is 9.6 dB more than the average power for this particular example.
If we have an amplifier with a certain output power, 100 W for example, and we would like to have "low" distortions, then we have to limit the input power of the multi-tone signal so that the peak power on the output of the amplifier is equal to 100 W . In case of $\mathrm{N}=9$ tones, each tone on the output would be $100(\mathrm{~W}) / 81=1.2 \mathrm{~W}$, or +30.9 dBm . If the low drive gain of that amplifier is 50 dB , the input power of each tone should be:
$+30.9 \mathrm{dBm}-50=-19.1 \mathrm{dBm}$.
If higher distortions is acceptable, the level of each tone could be higher, to a maximum of $1 / 9$ of the total output power. So, each tone on the output would be $100(\mathrm{~W}) / 9=11 \mathrm{~W}$, or +40.5 dBm . If the high drive gain of that amplifier is 47 dB ($50 \mathrm{~dB}-3 \mathrm{~dB}$ compression), the input power of each tone should be:
$+40.5 \mathrm{dBm}-47=-6.5 \mathrm{dBm}$.

If much greater power level of each tone is applied to the input of the amplifier (for example -2 to -1 dBm), it drives the amplifier to deeper RF overload creating more stress and does not produce any more RF power on the output. The level of input power of each tone of the multi-tone signal should be set by taking into consideration the number of tones and desired level of distortion.

[^0]
[^0]: © 2015 Mini-Circuits

 This document is provided as an accommodation to Mini-Circuits customers in connection with Mini-Circuits parts only. In that regard, this document is for informational and guideline purposes only. Mini-Circuits assumes no responsibility for errors or omissions in this document or for any information contained herein.

 Mini-Circuits may change this document or the Mini-Circuits parts referenced herein (collectively, the "Materials") from time to time, without notice. Mini-Circuits makes no commitment to update or correct any of the Materials, and Mini-Circuits shall have no responsibility whatsoever on account of any updates or corrections to the Materials or MiniCircuits' failure to do so.

 Mini-Circuits customers are solely responsible for the products, systems, and applications in which Mini-Circuits parts are incorporated or used. In that regard, customers are responsible for consulting with their own engineers and other appropriate professionals who are familiar with the specific products and systems into which Mini-Circuits' parts are to be incorporated or used so that the proper selection, installation/integration, use and safeguards are made. Accordingly, Mini-Circuits assumes no liability therefor.

 In addition, your use of this document and the information contained herein is subject to Mini-Circuits' standard terms of use, which are available at Mini-Circuits' website at www.minicircuits.com/homepage/terms of use.html.

 Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation: (i) by Mini-Circuits of such third-party's products, services, processes, or other information; or (ii) by any such third-party of Mini-Circuits or its products, services, processes, or other information.

