ATC 100 B Series Porcelain Superchip® Multilayer Capacitors

- Case B Size (.110" x .110")
- Capacitance Range 0.1 pF to 1000 pF
- High Q
- Ultra-Stable Performance
- Low ESR/ESL
- High Self-Resonance
- Low Noise
- Established Reliability (QPL)
- Extended WVDC up to 1500 VDC

ATC, the industry leader, offers new improved ESR/ESL performance for the 100 B Series RF/Microwave Capacitors. This Series is now available with extended operating temperatures up to 175°C. High Density porcelain construction provides a rugged, hermetic package.

Typical functional applications: Bypass, Coupling, Tuning, Feedback, Impedance Matching and DC Blocking.

Typical circuit applications: UHF/Microwave RF Power Amplifiers, Mixers, Oscillators, Low Noise Amplifiers, Filter Networks, Timing Circuits and Delay Lines.

ENVIRONMENTAL TESTS

ATC 100 B Series Capacitors are designed and manufactured to meet and exceed the requirements of EIA-198, MIL-PRF-55681 and MIL-PRF-123.

THERMAL SHOCK: MIL-STD-202. Method 107. Condition A.

MOISTURE RESISTANCE: MIL-STD-202, Method 106.

LOW VOLTAGE HUMIDITY:

MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for

240 hours min.

LIFE TEST:

MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage Applied:

200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC.

ELECTRICAL AND MECHANICAL **SPECIFICATIONS**

QUALITY FACTOR (Q): greater than 10,000 at 1 MHz.

TEMPERATURE COEFFICIENT OF CAPACITANCE (TCC):

+90 ±20 PPM/°C (-55°C to +125°C) +90 ±30 PPM/°C (+125°C to +175°C)

INSULATION RESISTANCE (IR):

0.1 pF to 470 pF:

106 Megohms min. @ +25°C at rated WVDC. 105 Megohms min. @ +125°C at rated WVDC.

510 pF to 1000 pF:

10⁵ Megohms min. @ +25°C at rated WVDC.

104 Megohms min. @ +125°C at rated WVDC.

IR above +125°C is derated by one order of magnitude.

WORKING VOLTAGE (WVDC): See Capacitance Values Table, page 2.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 volts DC for 5 seconds.

RETRACE: Less than ±(0.02% or 0.02 pF), whichever is greater.

AGING EFFECTS: None

PIEZOELECTRIC EFFECTS: None

(No capacitance variation with voltage or pressure).

CAPACITANCE DRIFT: ±(0.02% or 0.02 pF), whichever is greater.

OPERATING TEMPERATURE RANGE:

0.1 to 330 pF: from -55°C to +175°C 360 to 1000 pF: from -55°C to +125°C

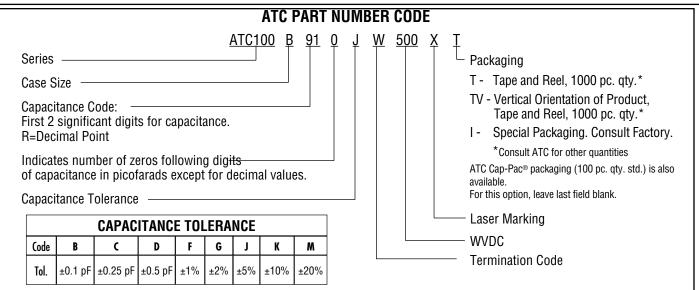
TERMINATION STYLES:

Available in various surface mount and leaded styles. See Mechanical Configurations, page 3.

TERMINAL STRENGTH: Terminations for chips and pellets withstand a pull of 5 lbs. min., 15 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

TECHNICAL

ATC Europe saleseur@atceramics.com CERAMICS



ATC 100 B Capacitance Values

CAP.	CAP. (pF)	TOL.	RATED STD.	WVDC Ext.	CAP. CODE	CAP. (pF)	TOL.	RATED STD.	WVDC EXT.	CAP. CODE	CAP. (pF)	TOL.	RATED STD.	WVDC Ext.	CAP. CODE	CAP. (pF)	TOL.	RATED STD.	WVDC Ext.
0R1 0R2 0R3 0R4	0.1 0.2 0.3 0.4	B B, C		VOLTAGE	2R4 2R7 3R0 3R3	2.4 2.7 3.0 3.3			VOLTAGE	200 220 240 270	20 22 24 27				151 161 181 201 221	150 160 180 200 220		300	1000 LOT 1
0R5 0R6 0R7 0R8 0R9 1R0 1R1 1R2	0.5 0.6 0.7 0.8 0.9 1.0 1.1	B, C,	500	EXTENDED IV	3R6 3R9 4R3 4R7 5R1 5R6 6R2	3.6 3.9 4.3 4.7 5.1 5.6 6.2	B, C, D	500	EXTENDED V	300 330 360 390 430 470 510 560	30 33 36 39 43 47 51	F, G, J, K, M	500	VDED VOLTAGE	241 271 301 331 361 391 431	240 270 300 330 360 390 430	F, G, J, K, M	200	EXT 99 V0LT
1R3 1R4 1R5 1R6 1R7 1R8 1R9 2R0 2R1 2R2	1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2	U		EXTENDED VOLTAGE	7R5 8R2 9R1 100 110 120 130 150 160 180	8.2 9.1 10 11 12	B, C, J, K, M F, G, J, K, M		EXTENDED VOLTAGE	620 680 750 820 910 101 111 121 131	62 68 75 82 91 100 110 120 130	K, IVI	300	EXTENDED	471 511 561 621 681 751 821 911 102	510 560 620 680 750 820 910 1000	K, IVI	100	EXT 00 VOLT

VRMS = 0.707 X WVDC

• SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE. PLEASE CONSULT FACTORY.
NOTE: EXTENDED WVDC DOES NOT APPLY TO CDR PRODUCTS.

The above part number refers to a 100 B Series (case size B) 91 pF capacitor,

J tolerance (±5%), 500 WVDC, with W termination (Tin/Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel packaging.

ATC accepts orders for our parts using designations *with* or *without* the "ATC" prefix. Both methods of defining the part number are equivalent, i.e., part numbers referenced with the "ATC" prefix are interchangeable to parts referenced without the "ATC" prefix. Customers are free to use either in specifying or procuring parts from American Technical Ceramics.

For additional information and catalogs contact your ATC representative or call direct at (+1-631) 622-4700.

Consult factory for additional performance data.

AMERICAN TECHNICAL CERAMICS

ATC North America sales@atceramics.com

ATC Europe saleseur@atceramics.com

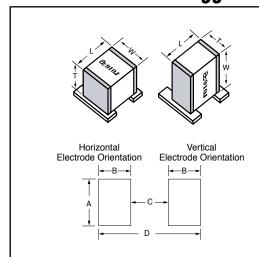
ATC 100 B Capacitors: Mechanical Configurations

ATC SERIES	ATC TERM. CODE	MIL-PRF-	CASE SIZE	OUTLINES		DY DIMENSIO INCHES (mm)		l	D AND TEI			
& CASE SIZE		55681	& TYPE	W/T IS A Termination Surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	ľ	MATERIAL	s	
100B	W	CDR14BG	B Solder Plate.1	Y→ ← ↓ <u>w</u> → L ← ↑→ T ←	+.020010 110 ±.015 (0.70 +0.51)			TIn/Lead, Solder Plated over Nickel Barrier Termination10				
100B	Р	CDR14BG	B Pellet	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & \underline{w} & \underline{w} \\ \to & \downarrow & \downarrow & \uparrow \to \uparrow & \uparrow & \uparrow & \downarrow \\ \end{array}$.110 +.035010 (2.79 +0.89 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)	.015 (0.38) ±.010 (0.25)	Heavy Tin/Lead Coated, over Nickel Barrier Terminatio			
100B	Т	N/A	B Solderable Nickel Barrier	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & \underline{w} & \underline{w} \\ \to & \downarrow & \downarrow & \uparrow \to \uparrow & \uparrow & \uparrow & \downarrow \\ \end{array}$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)	max.		RoH		IS Compliant n Plated over arrier Termination	
100B	CA	CDR13BG	B Gold Chip	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & W & \hline & \downarrow & \downarrow \\ \to & \downarrow & \downarrow & \uparrow \to \downarrow & \uparrow & \downarrow & \uparrow & \downarrow \end{array}$.110 ±.0. 15 020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)			RoHS Compliant Gold Plated over Nickel Barrier Termination			
100B	MS	CDR21BG	B Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.120 (3.05) max.		Length (L _L)	Width (W _L)	Thickness (T _L)	
100B	AR	CDR22BG	B Axial Ribbon	↓ → ¹, ← ↓ → ← w,	.135 ±.015 (3.43 ±0.38)	.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.	N/A	.250 (6.35) min.	±.005 ± (2.36 (±0.13) ±	.004 ±.001 (.102 ±.025)	
100B	RR	CDR24BG	B Radial Ribbon	<u>↓</u> → L L ← ↑ w L	.145 ±.020							
100B	RW	CDR23BG	B Radial Wire	→ L ← → W ←							AWG., 106) dia.	
100B	AW	CDR25BG	B Axial Wire	→ L L ← W → T ←	(3.68 ±0.51)				(12.7)in. min.		ninal	

Additional lead styles available: Narrow Microstrip (NM), Narrow Axial Ribbon (NA) and Vertical Narrow Microstrip (H). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are **RoHS** compliant. For a complete military catalog, request American Technical Ceramics document ATC 001-818.

AMERICAN TECHNICAL CERAMICS

ATC North America sales@atceramics.com


ATC Europe saleseur@atceramics.com

ATC 100 B Non-Magnetic Capacitors: Mechanical Configurations

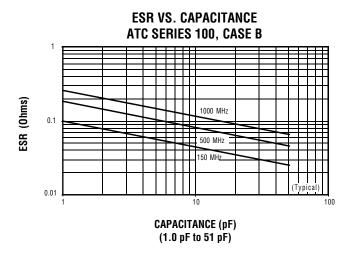
ATC SERIES	ATC	MIL-PRF-	CASE SIZE	OUTLINES		DY DIMENSION (mm)				RMINATION ID MATER		
& CASE SIZE	TERM. CODE	55681	& TYPE	W/T IS A Termination Surface	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS			
100B	WN	Meets Require- ments	B Non-Mag Solder Plate	$\begin{array}{c c} Y \to \begin{vmatrix} \downarrow & & \downarrow \\ \hline & & & \\ & & \downarrow & \\ \hline & & \downarrow \\ \downarrow & & \\ & & \downarrow \\ \hline & &$.110 +.025010 (2.79 +0.64 -0.25)	+.025010 110 ±.015 (2.79 +0.64 (2.79 ±0.38)				TIn/Lead, Solder Plated over Non-Magnetic Barrier Termination		
100B	PN	Meets Require- ments	B Non-Mag Pellet	$\begin{array}{c c} Y \to \left \leftarrow & \downarrow \\ \hline & w \\ \to \left \leftarrow \right \leftarrow \uparrow \rightarrow \mid T \mid \leftarrow \end{array}$.110 +.035010 (2.79 +0.89 -0.25)	110 ±.015 (2.79 ±0.38)	.102 (2.59) max	.015 (0.38) ±.010 (0.25)	Heavy Tin/Lead Coated over Non-Magnetic Barrier Termination			
100B	TN	Meets Require- ments	B Non-Mag Solderable Barrier	$\begin{array}{c c} Y \to \left \leftarrow & \downarrow \\ \hline & \underline{W} & \underline{W} \\ \to \left L \right \leftarrow \uparrow \to \left T \right \leftarrow \end{array}$.110 +.025010 (2.79 +0.64 -0.25	110 ±.015 (2.79 ±0.38)			RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination		over etic	
100B	MN	Meets Require- ments	B Non-Mag Microstrip	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.120 (3.05) max.			Length (L _L)	Width (W _L)	Thickness (T _L)
100B	AN	Meets Require- ments	B Non-Mag Axial Ribbon	$\begin{array}{c c} \downarrow & \rightarrow \mid L_{L} \mid \leftarrow & \stackrel{T_{L}}{\longrightarrow} \mid \leftarrow \\ \hline \frac{W_{L}}{\uparrow} & \rightarrow \mid L \mid \leftarrow & \stackrel{\uparrow}{\longrightarrow} \mid \top \mid \leftarrow \\ \end{array}$.135 ±.015 (3.43 ±0.38)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)		.250 (6.35) min	.093 ±.005 (2.36 ±0.13)	.004 ±.001 (.102	
100B	FN	Meets Require- ments	B Non-Mag Radial Ribbon	$\begin{array}{c c} & \downarrow & \downarrow \\ \hline & w & \hline \\ \rightarrow \mid L \mid \leftarrow & \uparrow \rightarrow \mid T \mid \leftarrow & \uparrow \end{array}$				N/A			±.025)	
100B	RN	Meets Require- ments	B Non-Mag Radial Wire	→ L ← → W ←	.145 ±.020 (3.68		max.		.500 (12.7)		AWG., 406) dia.	
100B	BN	Meets Require- ments	B Non-Mag Axial Wire	$\begin{array}{c c} \rightarrow & \downarrow & \downarrow & \\ \hline \rightarrow & \downarrow & \\ \hline \rightarrow & \downarrow & \\ \hline \end{array}$	±0.51)				in. min.		minal	

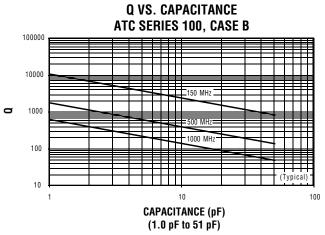
Additional lead styles available: Narrow Microstrip (DN), Narrow Axial Ribbon (GN) and Vertical Narrow Microstrip (HN). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are **RoHS** compliant.

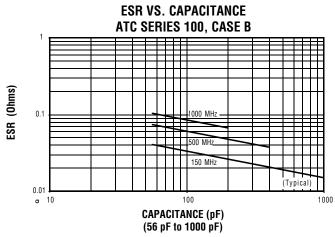
Suggested Mounting Pad Dimensions

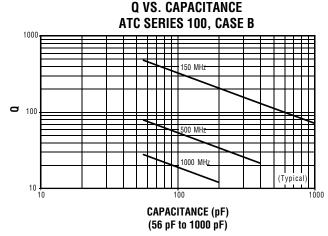
Cap Value	Pad Size	A Min.	B Min.	C Min.	D Min.
0.1 pF	Normal	.065	.050	.075	.175
υ. τ μι	High Density	.045	.030	.075	.135
0.0 %	Normal	.090	.050	.075	.175
0.2 pF	High Density	.070	.030	.075	.135
0.3 to	Normal	.110	.050	.075	.175
510 pF	High Density	.090	.030	.075	.135
> 510 pF	Normal	.120	.050	.075	.175
/ 3 10 pr	High Density	.100	.030	.075	.135

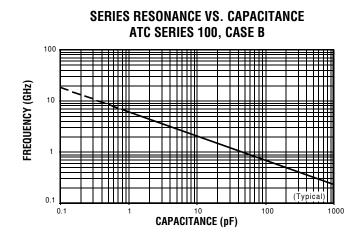
Case B Vertical Mount

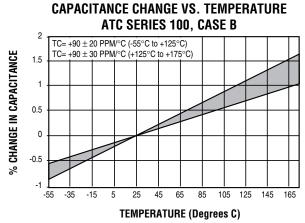

Horizontal Mount										
All	Normal	.130	.050	.075	.175					
values	High Density	.110	.030	.075	.135					

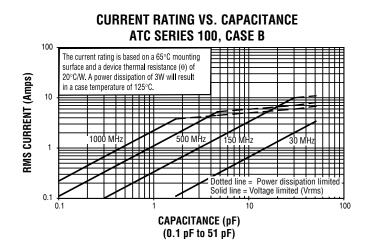

AMERICAN TECHNICAL CERAMICS

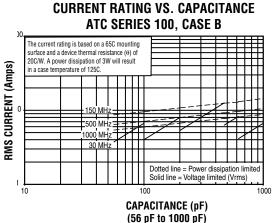

ATC North America sales@atceramics.com

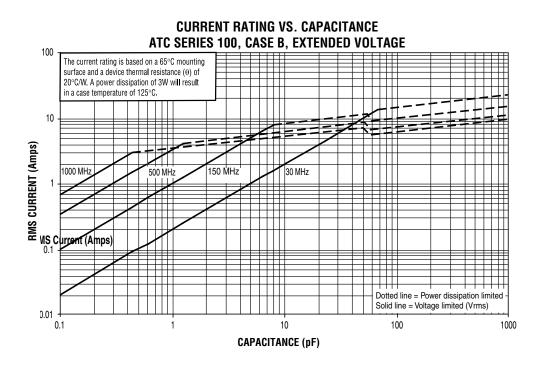

ATC Europe saleseur@atceramics.com


ATC 100 B Performance Data






AMERICAN TECHNICAL CERAMICS


ATC North America sales@atceramics.com

ATC Europe saleseur@atceramics.com

ATC 100 B Performance Data

Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document #001-992). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC's website at www.atceramics.com/productfinder/default.asp. Click on the link for Terms

ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product without prior notice.

© 1996 American Technical Ceramics Corp. All Rights Reserved

ATC # 001-807 Rev. S. 8/18

TECHNICAL **ATC Europe**

saleseur@atceramics.com

CERAMICS

