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Abstract

adio amateurs have been successfully bouncing
R VHF, UHF and microwave signals off the surface of

the moon, and receiving their echoes, for nearly forty
years. EME (Earth-moon-Earth) activities have enhanced
the teaching of disciplines as diverse as electronics,
astronomy, and physics, with several generations of stu-
dents having now used measured echoes to determine the
distance to, and orbital parameters of, the moon. Penn
College students have recently had an opportunity to ap-
ply these measurements on a truly grand scale, using EME
signals to measure the mass of the Earth. Their results differ
from the currently accepted figure by about one percent.

STATEMENT OF THE PROBLEM

Give me a lever long enough, and I'll move the world.
Give me a scale big enough, and I'll weigh it. This is es-
sentially the problem posed to Electronics students at the
Pennsylvania College of Technology in the Spring of 1991.
Their innovative solution to weighing their home planet is
worthy not only of the best scientific minds, but of the spirit
of innovation with which the Amateur Radio Service has al-
ways prided itself.

The measurement procedure which they derived is
based upon a Newtonian solution to the two-body orbital
problem. The forces which hold a satellite in orbit around
its primary are gravity (a force pulling in) and inertia (a force
pulling out). To achieve a stable orbit, these two forces must
of course be in equilibrium. Gravity varies directly with the
mass of both objects; inertia, directly with the mass of only
the satellite. Thus in setting the forces of gravity and iner-
tia equal, the mass of the satellite cancels, leaving an
expression for the orbit of the satellite which involves only
the mass of the primary (plus a constant which Newton
threw in for dimensional consistency).

The orbital characteristics of our natural satellite, the
moon, are determined through a combination of visual ob-
servation and radio ranging. From them, we determine the
velacity of the moon as it orbits the Earth. Applying
Newton’'s Laws, we can then calculate the planetary mass
required to produce the observed orbital velocity.

ESTABLISHING A MATHEMATICAL BASIS

As has been noted, a stable orbit requires that the
forces of gravity and inertia be equal. Newton’s famous In-
verse Square Law shows the force of the gravitational at-
traction between any two bodies to equal a fudge factor (the
Universal Gravitational Constant), times the product of their
masses, divided by the square of the distance between their
centers of mass. Mathematically,
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F = GMm
re

(Eq 1)

where M is the mass of the primary (planet),
m is the mass of the secondary (satellite),
r is the distance between them (the orbital radius),

6.673 x 10-1" Nt m?
kg?

Newton’s Universal Gravitational Constant.

and G =

We now consider the force of inertia pulling a satellite
out, which (again according to Newton) equals:

F = mA

where m represents the mass of the satellite,
and A is its acceleration, which in a circular orbit is

[Eq 2]

found from:
2

A= (Eq 3)
with v representing the velocity of the satellite,
and r the orbital radius, as defined above.

Combining Eqgs [2] and [3] gives us:
2
F= MY (Eq 4)

r

from which we can determine the inertial force acting on
the moon, if we know its orbital velocity. It is this latter item
which we will derive from our EME experiment.

Since the moon appears to be in a stable orbit, we set
Equations [1] and [4] equal to each other, and then simplify:

2
GMm _ mv (Eq 5)

v2r

(Eq 6)

and all that remains is to measure orbital radius, calculate
velocity, and solve for the mass of the Earth.

DETERMINING THE ORBITAL PERIOD OF THE MOON

This is perhaps the easiest part of the experiment. The
orbital period of the moon is readily measured by eye, given
the proper precision laboratory apparatus: a calendar. To
the untrained observer, the elapsed time between two suc-



cessive full (or new) moons appears to be on the order of
about twenty-eight days. To the skilled scientist, on the
other hand, the measurement comes out more like four
weeks.

How long does it take the moon to orbit the Earth? Where
do you think the word “month’” comes from? (OK, by rights
it should be “moonth,” but my students will tell you | sel-
dom take off for spelling). If we assume an orbital period
of 28 days, and apply a bit of dimensional analysis, we get:

P = (28 days) x (24 hours/day) x (60 min/h) x (60 s/min);
P = 2,419,200 seconds, or:
P =242 x 10%s

We will employ this figure shortly, in computing the
moon’s orbital velocity.

FINDING THE ORBITAL RADIUS

Remember that the radius of an orbit is measured as
the distance between the centers of mass of the two bodies.
If we assume the centers of mass of the Earth and the moon
to each be at the objects’ physical center, then the orbital
radius becomes the sum of the respective radii, plus the
shortest distance between the surfaces of the two bodies.
The radii we can calculate; it is the physical separation
which we measure next.

(A) Distance from Earth to Moon

Those hundreds of radio amateurs who have ex-
perienced the thrill of hearing their own lunar echoes know
that the elapsed time between transmission and reception
is on the order of two and a half seconds. What we require
here is a more precise estimate of echo time, measured
when the moon is directly above the observer.

Unfortunately, the moon’s orbit is aligned more or less
with the Earth’s equatorial plane, so the moon never passes
directly over Penn College. There is about a twenty degree
tilt to the lunar orbital plane, so when the moon is at
maximum northern declination, and as its hour angle
approaches local longitude, it appears nearly overhead from
much of North America. Still, to minimize measurement
error, the distance should properly be measured with the
moon at zenith, and with a declination equal to local lati-
tude. The present experiment utilized audio tapes of EME
echoes made from a more southern locale, with the moon
directly overhead, to determine minimum echo time.

You can get a fair estimate of round-trip propagation
time by starting a stopwatch when you key your transmit-
ter, and stopping it when you hear the echo. If you're work-
ing from audio tapes, start your clock on the transmitter’s
sidetone, and stop it on the received echo audio tone. For
greater accuracy, my students chose to apply the tones to
an oscilloscope, and use its calibrated timebase to meas-
ure the echo time, which came to 2.55 seconds.

We know radio waves to be propagating at the speed
of light, c = 2.998 x 108 meters per second. Multiplying
speed by time yields distance: 7.645 x 108 meters round
trip, 3.83 x 108 meters one-way, or about 238,000 miles.

(B) Radius of the Earth

Here we turn to the ancients for guidance. One of the
earliest accurate measurements of the Earth’s size involved
observing that, on the day of the Equinox at local noon in

Alexandria (which is near the equator), a stick placed ver-
tically in the ground cast no shadow. However a stick simi-
larly positioned in Athens (some known distance to the
north) cast at the same time a shadow of appreciable length.
Applying a bit of trigonometry, the Greeks computed the
size of the Earth rather precisely.

We could readily duplicate their experiment. Or accept
its result on faith. Either way, we have a dimension for the
Earth’s radius which falls rather close to the currently ac-
cepted ‘‘exact’” value of 6.37 x 108 meters, which we will
employ in the computations which follow.

(C) Radius of the Moon

Now I’'m not going to suggest that we measure the
lengths of shadows cast by sticks on the lunar surface
(although one of my students did suggest that would make
for an interesting field trip). Rather, we can observe the
moon from Earth, and estimate its radius through
trigonometry.

Any number of simple optical instruments tell us that,
as viewed from Earth, the moon subtends an angle of about
a half a degree. Given a quarter-degree ‘‘half angle’’ from
the moon’s center to its limb, and the length of the adja-
cent side (computed from our EME echoes), the tangent
function gives us the opposite side of a right triangle (that
is, the lunar radius) as:

tan (2°) x d = rp,
tan (Va°) x 3.83 x 108 meters = ry,
r'm = 1.67 x 106 meters

or about a quarter of the radius of the Earth.

(D) It All Adds Up

The moon’s orbital radius is now found simply by
adding the one-way EME path length, the radius of the
Earth, and the radius of the moon:

r =383 x 108 + 6.37 x 10% + 1.67 x 108 meters
r = 391 x 10 meters, or about 243,000 miles.

CALCULATING THE LUNAR ORBITAL VELOCITY

Since distance always equals velocity times time, we
can find the orbital velocity of the moon by dividing the dis-
tance it travels in one orbit, by the time it takes to complete
one orbit. The distance traveled in an orbit is of course
orbital circumference, which is found by multiplying orbital
radius by 2 pi (the number of radians in a circle). The cor-
responding time is simply the orbital period (one ‘‘moonth’’).
Computing velocity:

v=d/t

v=C/P

v = (2 x pi x 391 x 10% meters)
(242 x 106 s)

v = 1015 meters per second

SOLVING FOR THE EARTH’S MASS

Stick around, class, we're almost done. Inserting the
orbital radius and velocity into Eq 6, we get:
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_ (1015 m/s)® = (391 x 105 m)

M
(6.673 x 10-11 Nt m2/kg2)

M

EVALUATING OUR RESULT

Any astronomy textbook will reveal multiple measure-
ment errors for each of the intermediate values which we
usad to estimate the mass of the Earth. For example, the
actual period of the lunar orbit is about two percent less
than we estimated through our rather crude calendar tech-
nigue. The lunar radius is in fact nearly four percent greater
than we estimated through visual observation and simple
trigonometry. And the radius of the moon's orbit turns out
to be about a percent and a half less than we calculated
from our echo measurements.

With all the above measurement errors, one might ex-
pact our experimental result (the computed mass of the
Earth) to be significantly in error. It turns out otherwise. As
is often the case in computations based upon multiple in-
dependent measurements of unrelated phenomena, our
various errors tend to cancel oul, yielding a result which
would do Pythagoras proud.

Well, how close is our final result? The published value
for the mass of the Earth is: 5.975 = 10® kg, s0 we see
we'ra rather close. To determine the percentage of arror
between observed and theoretical values, subtract the
theoretical from the observed, divide by the observed, and
then (in order to convert ratio lo percentage), multiply by
a hundred. In our case:

6.037 x 10°* kg, which is a heavy planet indeed!

{5.975 = 10?9

% Error
(5.975 = 1024)

I

100 x [(6.037 x 102%) -

% Error = 1.03%

Isn't it amazing how accurate we can ba, using direct
obsarvation and strictly amateur techniques?

CONCLUSIONS

The EME challenge has been successfully met by
hundreds, perhaps thousands of radio amateurs eager to
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expand their communications horizons. It also provides us
with a mechanism for training the next generation of en-
gineers and technicians. More important, it serves as a
source of motivation and inspiration for those whom socie-
ty will ask to develop technology 1o cope with the challenges
of the future. Weighing the earth may appear frivolous, but
certainly not mundane. It demonstrates to students the
diverse applications of the radio art, and provides them with
a varifiable problem of truly cosmic proportions, against
which to weigh themselves. Once they've held the Earth
in their hands, how can they not be moved?

Qur students are our future. Of course, we on the cam-
puses will help them to acquire knowledge, and to master
skills. But we must not stop there. EME (the Earth Mass
Experiment) and similar experiences can provide tham with
something far more precious: motivation. Give them a lever
long encugh, and they will move the world!
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P.C. ELECTRONICS VISA-MC-UPSCOD
2522-0 PAXSON LN, ARCADIA CA 91007 818-44T4565

NOW SEE THE SPACE SHUTTLE VIDEO

Many ATV repeatars and individuals are retransmitling Space
Shuttle Video & Audio from their TVRO's tuned to Satcom F2-R
transponder 13, Others may be retransmitting weather radar
during significant storms. ¥ it is being done in your area on 70cm -
check page 413 in the 91-92 ARRL Repeater directory or call us,
ATV repeaters are springing up all over - all you need is the TVC-
4G 420-450 MHz downconverter, your TV settoch 2, 3ard and a
70 em antenna, We also have downconverters and antennas for
the 900 and 1200 MHz bands. In fact we are our ane stop for all
your ATV needs and info. Hams, call for our complete ATV
catalog - antennas, transceivers, transmitters and amplifiers.

We ship most tems within 24 hours after you call.

TVC-4G 70 CM ATV Downconverter - Only $89
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