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ABSTRACT

Stable orbits (of natural and artificial satellites alike)
require an equilibrium between gravitational and inertial
forces. For a given satellite altitude, or orbital radius, there
is but a single orbital velocity which affords such an equi-
librium state. This paper shows how students at the
Pennsylvania College of Technology utilize Doppler shift
measurements of received satellite telemetry signals to
accurately determine the orbital period of Amateur Radio
communications satellites, and from it, their other orbital
parameters.

FUNDAMENTAL ORBITAL MECHANICS

A stable orbit, whether of a satellite around a planet
or a planet around a sun, requires that the inward pull of
gravity and the outward pull of inertia be equal. Kepler tells
us that all satellites orbit their primaries in an ellipse, and
that orbital velocity changes throughout the elliptical orbit
(fastest at perigee, slowest at apogee) in order to main-
tain equilibrium. For the present study, we will restrict our-
selves to analyzing the behavior of satellites in roughly
circular orbits (that is, orbital eccentricities near zero), so
that the satellite’s orbital velocity is essentially constant.
Fortunately, the current generation of MicroSats fills the
bill aimost perfectly.

Newton’s famous Inverse Square Law shows the
force of the gravitational attraction between any two bod-
ies to equal a fudge factor (the Universal Gravitational
Constant), times the product of their masses, divided by
the square of the distance between their centers of mass.
Mathematically,

Fe Gﬁgm [Equation 1]

where
M is the mass of the primary (in our case planet),
m is the mass of the secondary (satellite),
ris the distance between them (the orbital radius),
and

G =6.673 x 10711 Nt m2 / kg2, Newton’s Universal
Gravitational Constant.

We now consider the force of inertia pulling a satel-
lite out, which (again according to Newton) equals:
F=mA [Equation 2]
where

m represents the mass of the satellite,
and

A is its acceleration, which in a circular orbit is found
from:

2
A=¥

- [Equation 3]

with

v representing the velocity of the satellite,
and

r the orbital radius, as defined above.

Combining Equations 2 and 3 gives us:

mv?2
r

F= [Equation 4]

from which we could determine the inertial force acting on
the satellite, given its mass and orbital velocity. Velocity
is of course related to orbital period, which we will derive
shortly from Doppler shift measurements.

Since our Amateur Radio satellites appear (thankful-
ly) to be in stable orbits, we set Equations 1 and 4 equal
to each other:

GMm mv2 .
2= [Equation 5]
and then simplify:

Q(M 2 [Equation 6]
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We can now solve Equation 6 for v:

' 1/2
= (G—M) [Equation 7]
r
orforr:
r= %—2" [Equation 8]

and we see that the velocity and orbital radius of our satel-
lite are inexorably linked, by readily determined constants.

DETERMINING THE GM PRODUCT

At the Pennsylvania College of Technology, second
year electronics students have recently come up with an
independent estimate of the Earth’s mass, based upon
recovering echoes from radio signals bounced off the sur-
face of the Moon. Their novel EME experiment, which
involved observing the lunar orbit and solving Equation 6
above for M, has already been treated in the literature
[Shuch, 1991]. Their published result for the mass of the
Earth, 6.037 x 10* kg, appears to be in error by about 1%.

Let’s utilize a more widely accepted value for the
mass of the Earth: 5.975 x 10* kg. Now we’ve already
stated that Newton’s Universal Gravitational Constant, a
fudge~factg>1§ for dimensional consistency, is equal to
6.673 x 10 Nt m?/ kg®. Thus we see that the GM prod-
uct encountered in Equations 7 and 8 above is not a
Chevy at all, but rather 4 x 10" m?¥s?, a constant which
relates radius to velocity for any satellite orbiting the
Earth.

DOPPLER, AND OTHER SHIFTY CHARACTERS

The change in frequency of electromagnetic waves
as a function of relative motion is now known as the
Doppler shift. The phenomenon was first described by
Johann Christian Doppler, a mathematics professor at the
State Technical Academy in Prague, in 1842, in a paper
delivered to the Royal Bohemian Society of Learning titled
“On the Colored Light of Double Stars and Some Other
Heavenly Bodies” (Magnin, 1986). Doppler shift varies
directly with both the transmitted frequency and the rela-
tive velocity between the transmitter and receiver, and
inversely with the speed of light. It is utilized in fields as
diverse as aircraft radar (Shuch, 1987), spacecraft navi-
gation, remote sensing, biomedical imaging, and of course
satellite orbital analysis (Davidoff, 1978).

To understand the Doppler shift for electromagnetic
waves, imagine the headlight on the front of an approach-
ing train, which is traveling at a substantial velocity—let's
say, mach 100,000, a tenth the speed of light. Now we
know the radiation leaves the headlight at the speed of
light, 3 x 10° meters per second. Since it appears that the
train is adding its forward velocity to that of the light beam,
we would naively expect the light from the moving train to
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reach us at a speed 10% greater than that at which it left
the bulb, or 3.3 x 10* m/s.

But of course it can't. Einstein tells us that the speed
of light in free space, whether measured at the point of
transmission, the point of reception, or some point in
between, will always equal exactly the same value, 300
million meters per second. The wave cannot change
speed, regardless of relative motion between the
observers. Yet the presumed additional velocity which we
had expected the train’s motion to impart to the wave has
to go somewhere. And since it can’t manifest itself in a
speed variation, it instead varies the frequency of the
wave.

The Doppler shift is remarkably symmetrical. It cares
not whether the source of relative motion is the transmit-
ter, the receiver, or some combination of the two. And the
magnitude of the frequency shift is the same whether the
length of the transmission path is increasing or decreas-
ing, though of course its direction varies. Moving closer
together, blue shift, increasing frequency. And moving far-
ther apart, red shift, a decrease in frequency.

Radio amateurs have been aware of the Doppler shift
within the context of space communications, ever since
they began bouncing signals off the surface of the Moon
nearly forty years ago. As the Moon is rising, moving
toward us (or more properly, as we are rotating toward it),
our echoes come back higher in frequency than the trans-
mitted signal. The setting Moon (moving away from us, or
more properly us away from it) gives us the opposite effect,
down Doppler, decreasing frequency.

The phenomenon was spectacularly evident to those
space communications pioneers who first recovered
Sputnik I's 20-MHz beeps on October 4, 1957.' However,
the Sputnik signals had so much chirp on them that more
than one observer overlooked the Doppler shift as yet
another manifestation of an instable transmitter. Today we
often design the transponders of communications satel-
lites with frequency inverting passbands, in an effort to
partially cancel this ever-present “designed-in drift.”

The easiest way to quantify the Doppler shift is to think
of it as a simple ratio. The Doppler change in frequency
f o is to the transmitted frequency (f o) as the relative veloc-
ity (v) is to the velocity of the transmitted wave (which we
know to equal ¢, the speed of light). We formalize this rela-
tionship as:

—

]
f0

ol<

{Equation 9]

The equation can also be solved for the relative veloc-
ity between the points of transmission and reception:

cxf
V=g d
(o]

[Eguation 10]

"Notes appear on page 7



which will enable us to determine the orbital velocity of a
communications satellite, from the maximum Doppler shift
observed on its telemetry beacon, or other transmitted sig-
nal.

SATELLITE SLEUTHING

This avocation has been raised to the level of high art-
form by Geoff Perry and athers of the legendary Kettering
Group in England, and the techniques discussed here
should certainly be attributed to them (Davidoff, 1990, 14-
12 to 14-17). The key to determining the orbital charac-
teristics of an “unknown” satellite is to observe
Doppler-induced changes in its apparent frequency, and
to graph them over time. If we can accurately observe
Time of Closest Approach (TCA), along with Acquisition
of Signal (AOS) and Loss of Signal (LOS) times, then we
can estimate the satellite’s orbital period. From that we
can compute altitude and velocity, thence estimate AOS,
LOS and TCA for future orbits.

The dedicated satellite sleuth relies upon not only
direct observation, but past experience in determining
orbital parameters. A thorough database of the charac-
teristics of known satellites is built up, to which a new-
comer can be compared in trying to determine its general
orbit, and speculate as to its mission.

SELECTING A SATELLITE

The true satellite sleuth delights in “discovering” new
satellites, and working out as many of their orbital char-
acteristics as possible, armed with little more than a receiv-
er with which to recover their signals. The purpose of the
present exercise is somewhat different: to demonstrate to
the student the relationships between the orbital param-
eters of a satellite, and to illustrate how a balance of forces
defines the orbit. Thus a truly “unknown” satellite is hard-
ly a requisite. In fact, the exercise has even more instruc-
tional validity if the measurements are made on a satellite
of known orbital characteristics, against which the stu-
dent’s results can be compared. Let us consider, for exam-
ple, analyzing the 70-cm CW signals from the
LUSAT-OSCAR 19 (MicroSat D).

This particular signal is chosen for my students’ first
exercise in orbital analysis for a number of reasons. The
437.127-MHz frequency is high enough to provide ample,
easily observed Doppler shift (remember, {4 varies direct-
ly with frequency). The 750-mW beacon signal is strong
enough to be readily received on relatively simple equip-
ment. CW is the preferred modulation mode for accurate
Doppler measurements, because the signal can be zero-
beat on a receiver with direct digital frequency readout.
Finally (and this is cheating), the orbits of low-altitude, cir-
cular, sun-synchronous, near-polar satellites such as all
four of the 1990 MicroSats are especially well suited to
the type of measurements required. In other words, if you
pick a satellite with the right orbital parameters, it's easy
to determine its orbital parameters#

CONDUCTING THE EXPERIMENT

We begin much as the satellite sleuth begins, mea-
suring Doppler shift over successive orbits and displaying
it graphically. The procedure, well documented in the lit-
erature (Talcott Mountain Science Center, 1975), is
repeated here for the benefit of those who might not have
seen it in its entirety.

Once able to successfully (and consistently) receive
the telemetry beacon from OSCAR 19, the student is
asked simply to measure, as accurately as possible, the
received signal frequency, at one minute intervals all the
way from AOS to LOS. This is done initially for two suc-
cessive orbits. The TCA of the satellite to the observer is
indicated by the maximum slope of the plotted Doppler
curves, as illustrated in Figs 1 and 2. These are of course
the familiar Doppler S-curves, which we've used since the
days of OSCAR VI. Their continuously varying slope (rate
of change, or first derivative) holds the key to evaluating
the satellite’s orbit.

The time difference between two successive TCAs is
a first order approximation of the satellite’s orbital period.
It is only an approximation, since the effect we are actu-
ally measuring involves not only the satellite’s orbital
motion, but also the eastward rotation of the Earth. For a
mcere precise measurement, we determine the elapsed
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Figure 3—LO-19, 23 Aug 91

time between successive overhead passes. If the satel-
lite is monitored for an extended period, eventually an orbit
is encountered which closely approximates a direct over-
head pass. This is evidenced by a maximum period of vis-
ibility (the difference between LOS and AOS), strongest
signals at TCA, most rapid rate of frequency change
around TCA, and maximum observed Doppler shift just at
AOS and LOS. For the LUSAT-OSCAR 19 spacecraft, Fig
2 represents just such an orbit.

Our objective now is to produce a Doppler S-curve for
the next overhead pass. With sun-synchronous satellites
(and this is precisely why we chose one), the orbit tends
to trace out identical ground tracks at one or two day inter-
vals. So if we're persistent, within the next couple of days
we'll see an S-curve which looks very much like Fig 2. In
this example, we see the result in Fig 3.

The only thing we have to watch out for is that the two
successive overhead passes must, as nearly as possible,
be identical in relative motion. If the first observation (say,
Fig 2) was made with the satellite ascending (moving from
South to North), we don’t want to use as our next orbit a
pass in which the satellite is descending (moving from
North to South). Directional beams should help to verify
that both observations were made with the satellite trav-
eling overhead in the same general direction.

Our Doppler S-curves (Figs 1 through 3) now contain
all the information we require to determine orbital period,
and from it, various other characteristics of the satellite
and its orbit.

ESTIMATING ORBITAL PERIOD

The Doppler S-curves shown in Figs 1 through 3
depict received frequency over time, for 70-cm telemetry
signals from the LO-19 satellite. Figs 1 and 2 represent
two successive orbits, while the data for Figs 2 and 3 were
taken one day apart. We will use the first pair of Figures
to roughly estimate the orbital period of LO-19, and the
second pair to refine our estimate.

Note in Fig 1 that the closest approach of the satellite
to the observer (as indicated by the greatest slope of the
Doppler S-curve) occurred at roughly 15 hours, 15 min-

6 QEX

utes, 36 seconds UTC. TCA for the successive orbit is
noted from Fig 2 as 16:55:42, or about 100.1 minutes later.
We thus have a rough estimate of orbital period, which
contains an assumed error related to the Earth’s rotation.

To correct the error, we note the TCAs for two suc-
cessive overhead descending passes (Figs 2 and 3),
which are seen to occur at 16:55:42 on one day, and then
16:26:48 the next. The elapsed time between these two
overhead TCAs is thus 23:31:06 (1411.1 minutes), which
must be nP, an integer multiple of the satellite’s nodal
orbital period.

But before we can accurately calculate P, we must
have a value for the integer n. This we can determine by
dividing the elapsed time between successive overhead
passes, by the estimated orbital period. Mathematically,

. nP
int (P—)

est

1411.1
int =14
( 100.1 )

If two successive overhead TCAs are indeed sepa-
rated by precisely (n = 14) orbits, then the exact orbital
period must be that elapsed time divided by fourteen, or
P =100.793 minutes. Relative to this refined estimate, we
see that our original estimate of orbital period, based upon
two successive orbits, was off by about 0.7%. If we now
compare our more exact measured value to that published

for LO-19’s orbital period [see Table 1], we see that we
have reduced our error by roughly a factor of a hundred.

ESTIMATING OTHER ORBITAL PARAMETERS

It turns out that, for a circular sun-synchronous orbit,
nearly all the important orbital parameters can be derived
from the satellite’s nodal period. This, after all, is why we
picked this particular satellite for our experiment to begin
with. I'll spare you the algebra and trig derivations; the per-
tinent equations are listed in the Appendix. With them, we
calculate altitude, velocity, orbital increment, visibility
angle, terrestrial range, access time, and Doppler shift for
the LO-19 satellite.

Table 1 summarizes our results. Our “observed” vai-
ues listed are either the results of direct student observa-
tion in the Penn College Telecommunications Lab, or
values mathematically derived from those measured
parameters. Similarly, the “theoretical” values shown are
either published parameters for the LO-12 satellite given
in Davidoff (1990, Appendices A and B), or values math-
ematically derived from those published parameters.

Note that the difference between observed and theo-
retical values® seldom exceeds a fraction of a percent.
Does this mean that my students are uncannily precise?
Hardly! Rather, we conclude that the experiment is struc-
tured to be forgiving of observational imprecision. We
derived period, after all, by averaging elapsed time over

3
1l

[Equation 11]
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Notes

'The word “beep” really is appropriate here, as the keyed sig-
nal was too long for a Morse “dit,” and too short for a “dah.”

*There is a direct analog here to successful moonbounce com-
munication (or any other exotic DX mode, for that matter):
If you know in advance the other station's call, it's about
3 dB easier to pick his call out of the noise!

*To motivate my students, | hesitate to call them “errors,” just
“differences of opinion.”

Appendix
Pertinent Constants and Equations
Inertia: F=mA
i v2
Acceleration: A= i
Gravity: F= Gl:gm
GM 1/2
Velocity: V= (—J
r
1/2
- . 3
Period: P=2pix|—
GM
Increment: ow = ﬂ%@ [+ Precession]

4 Nt m2

_ -1
G = 6673 x 1011 J3

Gravitational Constant:
Mass of the Earth: M = 5.975 x 1024kg

3
GM = 3.987 x 1014 T

GM Product: 2

Mean Radius
of the Earth:

Rg = 6.371 x 108 m

fo v
Doppler Shift: ty= e

R
A : . _ 1 E
Visibility Half-Angle: 0 = cos (Rgh)
Max. Visibility T Period 29
ax. Visibility Time:  t = Period x | ————
max 360 deg
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