
 1

An introduction to BasicDSP
Pieter-Tjerk de Boer PA3FWM and Niels Moseley PE1OIT

(published in SPRAT nr. 133, winter 2007/8)

In this article, we present the BasicDSP software, which makes building and modifying
simple radios in software as easy and accessible as in hardware.

Background
In recent years, there has been a growing interest among radio amateurs for Software
Defined Radio, SDR: radio signal processing done in software on a computer, rather than
in analog hardware. This digital signal processing (DSP) has several advantages over
analog signal processing: it does not suffer from the non-idealities of practical
components (temperature sensitivity, limited Q, etc.) allowing e.g. steeper filters, and is
very flexible (adaptive filters, new modulation schemes, etc.)

A typical amateur SDR setup consists of a circuit that mixes a part of the HF spectrum
down to frequencies in the audio range, which are fed to a PC sound card for conversion
from analog to digital for further processing (tuning, filtering, demodulation) in software.
The external hardware is often very simple, e.g. just a few ICs in the SoftRock kits;
however, the software is typically rather complicated and not very accessible to
experimenters.

At the G-QRP Mini-Convention, Jan Verduyn, G0BBL/PA5D, demonstrated the
BasicDSP program, which we wrote as a companion to PA3FWM's series of SDR articles
in the Dutch magazine `Electron'. In this article, we give a brief tutorial of this program,
ending with a minimal but functioning SDR program, and covering some elementary
digital signal processing theory along the way. The software can be downloaded from
http://wwwhome.cs.utwente.nl/~ptdeboer/ham/basicdsp/

Digital Signal Processing in BasicDSP
The first thing to understand about digital signal processing, is that it happens on a
sample-by-sample basis rather than continuously. The A/D converter measures its
(analog) input voltage periodically, e.g., 8000 times per second; this rate must be at least
twice the highest input frequency. Each measurement is called a sample and must be
processed by the software. Similarly, the D/A converter that drives the loudspeaker also
expects to get a new sample periodically. Thus, we see what a DSP program must do: get
a sample from the A/D converter, do some computations on it, send the result to the D/A
converter, and wait for the next sample.

In BasicDSP, you can specify the computations using a few lines of programming code,
to be executed once for each sample. All other tasks, such as interfacing with the
soundcard, are taken care of automatically by BasicDSP.

 2

Getting started

Try first the following minimal program:
out = in

Type this into BasicDSP's text entry field and
press the 'Run' button. The text entry field will
turn green to confirm that the program contains no
syntactical errors and is now running.

But what does it do? It simply copies the content
of the variable called 'in' (which contains the input
sample) into the variable called 'out', the content
of which is sent through your soundcard to your
computer's speakers. The input sample can be read
from either the line/mic input of your soundcard,
or a .WAV-file, or a locally generated sine wave
or white noise signal. Thus, you can now hear
either of those sources on your PC speakers.

Perhaps you find the sound to loud?
The following program attenuates it by 20 dB, which is the same as multiplying by 0.1:
out = in * 0.1

The attenuation can also be made variable:
out = in * slider1

‘Slider1’ refers to the setting of the first of four
controls that are located in the lower half of the
BasicDSP window.

in

out

s
l
i
d
e
r
1

A first-order low-pass filter can be programmed as follows:
a = a + slider1*(in-a)
out = a

We see a new variable being used here, arbitrarily
called 'a'. Each such a name is a reference to a
location in the computer's memory, in which
numbers can be stored temporarily; thus, the output
sample may depend on both the current input
sample, and on previous samples through
information stored in such variables.

in out
a

The program does the following: for every input sample read, it adds to 'a' a contribution
that is proportional to the difference between 'in' and 'a'.
Compare this with the circuit sketched: the voltage on the capacitor changes at a rate
which is proportional to the current through the resistor, which in turn is proportional to
the difference between the input and output voltages. We know the circuit is a low-pass
filter: slow changes of the input voltage are tracked by the output voltage, fast changes are

 3

not because the capacitor cannot charge and discharge quickly enough. Precisely the same
happens in the computer program: fast changes of 'in' are not tracked by the variable 'a',
slow changes are. The setting of 'slider1' in this example determines the cut-off frequency,
just like the resistor's value does in the analogue circuit.

We can also build an oscillator in BasicDSP. The first step for this is building a saw-tooth
generator:
sawtooth = mod1(sawtooth + slider1)
out = sawtooth

At every sample instant, this program adds the value of 'slider1' to the variable 'sawtooth'.
The function mod1 however leaves only the fractional part of this sum, so when the sum
reaches or exceeds 1, 1 is subtracted from it. Thus, if e.g. slider1 is set to 0.2, sawtooth
will successively get the values 0, 0.2, 0.4, 0.6, 0.8, 0.0 (not 1.0!), 0.2, and so on. This is
an oscillation with a period of 5 samples, which corresponds to a frequency of
8000/5=1600 Hz if the default samplerate of 8000 Hz is used.

To turn this into a sine wave, we use the sin1() function:
sawtooth = mod1(sawtooth+slider1)
osc = sin1(sawtooth)
out = osc

sin1() is the sine function taught in school, except that its argument just needs to cover 0
to 1 for a complete period of the sine wave, as opposed to 0 to 360 degrees for the regular
sin function. Thus, it converts our sawtooth into a sine wave.

Now, we can build a very simple direct-conversion radio-receiver:

samplerate = 48000
sawtooth = mod1(sawtooth+slider1)
osc = sin1(sawtooth)
mix = osc * in
lpfa = lpfa + slider2*(mix-lpfa)
lpfb = lpfb + slider2*(lpfa-lpfb)
out = lpfb

in out

m
i
x

l
p
f
a

l
p
f
b

osc

The first line sets the sample rate to 48000 Hz, the highest supported by most soundcards.
The next lines are our sine-wave oscillator, followed by a mixer (the mixing operation is a
multiplication), and finally two first-order low-pass filters.
The above program needs an input signal. That can either be taken from one of the
popular SDR downconverters such as the SoftRock kits, or from a recording of the output
of such a downconverter. A suitable .WAV file containing SSB signals is available at the
Flex Radio website: http://support.flex-radio.com/Downloads.aspx?id=59
This receiver program works, but it is very simple. Further improvements are possible,
such as a steeper filter, and rejection of the image frequency (using the quadrature mixer
found in most SDR front-ends).

