Chapter 16 – Complex Numbers

16.1 Basic Relationships

The Cartesian form of a complex number is a + jb, where $j = \sqrt{-1}$. The complex number a + jb is represented on the complex plane by the vector OP, for P with coordinates (a, b).

Fig 16.1

On occasions it is necessary to convert to Cartesian form to the polar form (i.e. $r(\cos\theta + j\sin\theta)$ and vise versa.

The polar form can also be expressed as $re^{j\theta}$ by Euler's Equation. Often we express $r(\cos\theta + j\sin\theta)$ as $r \ge \theta$ for brevity.

From Fig. 16.1 it is clear that the following relationships connect the polar and Cartesian forms -

 $a = r \cos \theta$ $b = r \sin \theta$ $r = \sqrt{a^2 + b^2}$ $\theta = \tan^{-1} \frac{b}{a}$

(the last coming from $\tan \theta = \frac{b}{a}$).

16.2 Converting Cartesian Form to Polar

To convert a + jb to $r \angle \theta$ we use $\tan \theta = \frac{b}{a}$ (i.e. $\theta = \tan^{-1} \frac{b}{a}$) to find θ , and $r = \frac{b}{\sin \theta}$ (from $\sin \theta = \frac{b}{r}$) to find r.

Note: when 'a' and/or 'b' are negative, this means the complex number lies in the 2^{nd} , 3^{rd} , or 4^{th} quadrant. The angle θ is thus affected, but not the amplitude, r. Hence, for placing a and b on the Slide Rule, we take their absolute values (i.e. |a| and |b|).

If ϕ is the angle obtained in any of the methods above (using the absolute values of a and b) then for the various quadrants θ is obtained by –

a) Second Quadrant (a<0, b>0) $\theta = 180^{\circ} - \varphi$ b) Third Quadrant (a<0, b<0) $\theta = 180^{\circ} + \varphi$

16 - 1

c) Forth Quadrant (a>0, b<0) $\theta = 360^{\circ} - \phi$

A. For S, T₁ and T₂ scales on the body of the Slide Rule.

Example 1: Convert 4 + 3j to polar form:

- 1. Set the hair line over 3 on the D scale.
- 2. Place the left index of the CI scale under the hair line. (in some cases the right index)
- 3. Reset the hair line over 4 on the CI scale.
- 4. Under the hair line read off 36.85° on the T₁ scale as the value for θ . (Use T₁ scale if $\frac{b}{-1} < 1$ and T₂ scale if

$$\frac{b}{a} > 1.$$
)

- 5. Reset the hair line over 36.85° on the S scale.
- 6. Under the hair line read off 5 on the CI scale as the value for r.

B. For S and T scales on the slide and a DI scale there are two cases.

For
$$\theta < 45^\circ$$
 (i.e. $\frac{b}{a} < 1$)

Example 2: Convert 4 + 3j to polar form.

- 1. Set the hair line over the left index of the DI scale.
- 2. Place the 3 of the C scale under the hair line.
- 3. Reset the hair line over the 4 on the DI scale.
- 4. Under the hair line read off 36.85° on the T scale as the value for θ .
- 5. Reset the hair line over 36.85° on the S scale as the value for θ .
- 6. Under the hair line read off 5 on the DI scale as the value for r.

$$\therefore 4 + 3j = 5 \angle 36.85^{\circ}$$

For
$$\theta > 45^\circ$$
 (i.e. $\frac{b}{a} > 1$)

Example 3: Convert 3+4j to polar form.

- 1. Set the hair line over the left index of the DI scale.
- Place the 3 of the C scale under the hair line. (Note, we have '3' here as the value of 'a', in contrast to the '3' in step 2 of Example 2 which was then the value for 'b').
- 3. Reset the hair line over the 4 on the DI scale.
- 4. Under the hair line read off 36.85° on the T scale, so that $\theta = 90^\circ 36.85^\circ = 53.15^\circ$.
- 5. Reset the hair line over 36.85° on the S scale as the value for θ .
- 6. Under the hair line read off 5 on the DI scale as the value for r.

$$3+4j = 5 \angle 53.15^{\circ}$$

Note: These two cases can be brought into one general method by using first the C scale, whichever of a and b is the smaller. Then if $\frac{b}{a} < 1$, the angle is taken as read off the T scale, otherwise for $\frac{b}{a} > 1$, we take the complement of the angle found on the T scale.

C. For S and T scales on the slide and no DI scale, there are two cases:

For
$$\theta < 45^\circ$$
 (i.e. $\frac{b}{a} < 1$)

16 - 2

Example 4: Convert 4 + 3j to polar form.

- 1. Set the hair line over 4 on the D scale.
- 2. Place the right index of the C scale under the hair line.
- 3. Reset the hair line over 3 on the D scale.
- 4. Under the hair line read off 36.85° on the T scale as the value for θ .
- 5. Place the 36.85° on the S scale under the hair line.
- 6. Below the right index of the C scale read off 5 on the D scale as the value for r.

$$\therefore 4 + 3 i = 5 \angle 36.85^{\circ}$$

For
$$\theta > 45^\circ$$
 (i.e. $\frac{b}{a} > 1$)

Example 5: 3 + 4j to polar form.

- 1. Set the hair line over 4 on the D scale.
- 2. Place the right index of the C scale under the hair line.
- 3. Reset the hair line over 3 on the D scale.
- 4. Under the hair line read off 36.85° on the T scale so that $\theta = 90^{\circ} 36.85^{\circ} = 53.15^{\circ}$
- 5. Reset the hair line over 36.85° on the S.
- 6. Under the hair line read off 5 on the D scale as the value for r.
 - $\therefore 3 + 4 \, i = 5 \angle 53.15^{\circ}$

Exercise 16(a)

e)

Convert the following to polar form:

(i)	8 + 6j =	(vi)	34 - 7.2j =
(ii)	5 + 12j =	(vii)	-7 + 25j =
(iii)	12 + 5j =	(viii)	2 – 3j
(iv)	-3 + 4j =		

(v) -41 - 11j =

16.3 Converting Polar Form to Cartesian

To convert $r \angle \theta$ to a + jb we use b = r sin θ to find b and a = $\frac{b}{\tan \theta}$ (from $\tan \theta = \frac{b}{a}$) to find a.

Note: for angles, θ , greater than 90° (that is complex numbers in the 2nd, 3rd, or 4th quadrant) we express the angle as ϕ (for ϕ <90°) by –

d) Second Quadrant (90°a< θ <180°) $\phi = 180^{\circ} - \theta$

Third Quadrant ($180^{\circ}a < \theta < 270^{\circ}$)

 $\phi = \theta - 180^{\circ}$

f) Forth Quadrant (270°a< θ <360°) ϕ = 360° - θ

A. For S, T₁ and T₂ scales on the body of the Slide Rule.

Example 1: Convert $13\angle 59^\circ$ to Cartesian form:

- 1. Set the hair line over 59° on the S scale.
- 2. Place the 14 of the CI scale under the hair line.
- 3. Reset the hair line over the index of the CI scale.
- 4. Under the hair line read off 11.15 on the D scale as the value for b.
- 5. Reset the hair line over 59° on the T₂ scale. (Use the T₁ scale if $\theta < 45^{\circ}$)
- 6. Under the hair line read off 6.7 on the CI scale as the value for a.
 - $\therefore 13 \angle 59^\circ = 6.7 + 11.15 j$

B. For S and T scales on the slide and a DI scale there are two cases.

For $\theta < 45^{\circ}$

Example 2: Convert $13\angle 31^\circ$ to Cartesian form.

- 1. Set the hair line over 13 on the DI scale.
- 2. Place the 31° of the S scale under the hair line.
- 3. Reset the hair line over the right index of the DI scale.
- 4. Under the hair line read off 11.15 on the C scale as the value for a.
- 5. Reset the hair line over 31° on the T scale.
- 6. Under the hair line read off 6.7 on the DI scale as the value for b. $\therefore 13 \angle 31^\circ = 11.15 + 6.7 j$

Example 1: Convert $13\angle 59^\circ$ to Cartesian form:

For the complement of $59^\circ = 90^\circ - 59^\circ = 31^\circ$

- 1. Set the hair line over 13° on the DI scale.
- 2. Place the 31° of the S scale under the hair line.
- 3. Reset the hair line over the index of the DI scale.
- 4. Under the hair line read off 11.15 on the C scale as the value for b.
- 5. Reset the hair line over 31° on the T scale.
- 6. Under the hair line read off 6.7 on the DI scale as the value for a. $\therefore 13\angle 59^\circ = 6.7 + 11.15 j$

Note: These two cases can be brought into one general method by using the angle as given, if it is less than 45° , otherwise we use its complement. If the angle is less than 45° , we read 'a' off the C scale and 'b' off the DI scale. If the angle given is greater than 45° , we read 'b' off the C scale and 'a' off the DI scale.

C. For S and T scales on the slide and no DI scale.

To convert $13\angle 31^\circ$ to Cartesian form, we evaluate –

 $a = 13 \cos 31^\circ = 11.5$ and $b = 13 \sin 31^\circ = 6.7$ to obtain 11.15 + 6.7j

Exercise 16(b)

Convert the following to polar form:

(i)	4∠60°	(v)	10.6∠216°
(ii)	4∠30°	(vi)	34∠304°
(iii)	6.5∠42°	(vii)	105∠110°
(iv)	6.5∠132°	(viii)	15∠143.15°

16.4 Miscellaneous Problems

Recall: $r_1 \angle \theta_1 \times r_2 \angle \theta_2 = r \times r_2 \angle \theta_1 + \theta_2$ $r_1 \angle \theta_1 \div r_2 \angle \theta_2 = r \div r_2 \angle \theta_1 - \theta_2$

Exercise 16(c)

Express the answer to the following in polar form:

(i) 35∠21°×19∠53°

- (ii) $4.7 \angle 34^{\circ} \div 8.6 \angle 41^{\circ}$
- (iii) $(4+3j) \times (2+3j)$ Express the answer to the following in Cartesian form:
- (v) $2.5 \angle 133^{\circ} \times 6.88 \angle 68^{\circ}$ (viii) $(-2-2j) \div (3-4j)$
- (vi) $42\angle 110^\circ \div 72\angle 140^\circ$
- (vii) $(3+37) \times (-2+5j)$

16 - 4

(iv) $(6+9j) \div (5+3j)$