A Complete Slide Rule Manual - Neville W Young

Chapter 13 - Pythagorean (P) Scale

13.1 The Form of the P Scale

The P scale is an inverted scale reading from right to left, hence the graduations are in red. The P scale is related to the D scale such that for a number " x " on the D scale, immediately below it on the P scale we have $\sqrt{1-x^{2}}$. This of course is only valid for $-1 \leq x \leq 1$ (i.e. $|x| \leq 1$), as we cannot have the square root of a negative number.

13.2 Calculating $\sqrt{1-x^{2}}$ (P and D scales)

(Note we must have $-1 \leq x \leq 1$ i.e. $|x| \leq 1$ for $\sqrt{1-x^{2}}$ to have a real value.)

Example 1: $\sqrt{1-0.06^{2}}=0.8$

1. Set the hair line over 0.6 on the D scale.
2. Under the hair line read off 0.8 on the P scale as the answer.

Example 2: $\sqrt{1-0.08^{2}}=0.6$

1. Set the hair line over 0.8 on the D scale.
2. Under the hair line read off 0.6 on the P scale as the answer.

Note: If $y=\sqrt{1-x^{2}}$ then $x=\sqrt{1-y^{2}}$, thus to find $\sqrt{1-x^{2}}$ we could either find x on the D scale and read $\sqrt{1-x^{2}}$ off the P scale, or find x on the P scale and read $\sqrt{1-x^{2}}$ off the D scale.

Exercise 13(a)

(i) $\sqrt{1-0.2^{2}}=$
(iii) $\sqrt{1-0.955^{2}}=$
(ii) $\sqrt{1-0.43^{2}}=$
(iv) $\sqrt{1-0.119^{2}}=$

13.3 Converting Sines to Cosines (and vise versa)

From the relationship $\sin ^{2} \theta+\cos ^{2}=1$ we can express:

$$
\begin{equation*}
\sin \theta=\sqrt{1-\cos ^{2} \theta} \tag{i}
\end{equation*}
$$

(ii) $\cos \theta=\sqrt{1-\sin ^{2} \theta}$

Thus, given the value of $\sin \theta$ we can read off directly the value of $\cos \theta$, and vise versa.
Example: $\sin 60^{\circ}=0.866$ then $\cos 60^{\circ}=0.5$

1. Set the hair line over 0.866 (i.e. $\sin 60^{\circ}$) on the D scale.
2. Under the hair line read off 0.5 (i.e. $\cos 60^{\circ}$) on the P scale as the answer.

Exercise 13(b)

(i) if $\sin 35^{\circ} 48^{\prime}=0.585$, then $\cos 35^{\circ} 48^{\prime}=$
(ii) if $\sin 90^{\circ}=1.000$, then $\cos 90^{\circ}=$
(iii) if $\cos 70^{\circ}=0.342$, then $\sin 70^{\circ}=$
(iv) if $\cos 81^{\circ} 42^{\prime}=0.1445$, then $\sin 81^{\circ} 42=$

13.4 Sines of large angels and Cosines of small angels

For sines of large angles (i.e. in the region 80 to 90) working from the S scale is very inaccurate, as you can see from a glance at this region S scale.

Take for example $\sin 84^{\circ}$, the best we could estimate using the S and D scales would be 0.994 . It would be impossible to make any more accurate estimation if the questing was $84^{\circ} 20^{\prime}$. A better method is as follows:

Example: $\sin 84^{\circ} 6^{\prime}=0.9947$

1. Set the hair line over $84^{\circ} 6^{\prime}$ (i.e. in the red graduations) on the S scale. $\left(84^{\circ} 6^{\prime}\right.$ in red graduation is the same as $5^{\circ} 54^{\prime}$ in black).
2. Under the hair line read off 0.09947 on the P scale as the answer.

The same situation arises for cosines of small angels. Therefore, using the fact $\cos 5^{\circ} 54^{\prime}=\sin 84^{\circ} 6^{\prime}$ we have:
Example: $\sin 5^{\circ} 54^{\prime}=0.9947$

1. Set the hair line over $5^{\circ} 54$ ' (in black) on the S scale.
2. Under the hair line read off 0.09947 on the P scale as the answer.

Note:
(a) For angles in red on the S scale, the P scale gives us the sine.
(b) For the angle in black on the S scale, the P scale gives us the cosine.

Exercise 13(c)

(i)	$\sin 61^{\circ}=$	(iv)
(i) $27^{\circ} 48^{\prime}=$		
(ii)	$\sin 78^{\circ} 30^{\prime}=$	(v)
(iii)	$83^{\circ} 24^{\prime}=$	(vi) $14^{\circ} 6^{\prime}=$
(ii)	$\cos 47^{\circ} 48^{\prime}=$	

13.5 Square Roots (numbers just less than 1, 100, etc.)

The square root of numbers a little less than 1,100 , etc, can be obtained using the D and P scales to a greater degree of accuracy than in the conventional way, with the D (or C) and A (or B) scales.

Example 1: $\sqrt{0.911}=0.9545($ Fig 13.4)
Express $\sqrt{0.911}=\sqrt{1-0.089}$

$$
=\sqrt{1-0.298^{2}}
$$

Note: We must have the form $\sqrt{1-x^{2}}$ to use the P scale. Thus we subtract 0.911 from 1 to obtain 0.089 , and express $0.081=(0.298)^{2}$ using the A and D scales.
Once we subtract 0.911 from 1, to obtain 0.089 the procedure is as follows:

1. Set the hair line over 0.089 (i.e. at 8.9) on the A scale.
2. Under the hair line read off 0.9545 on the P scale as the answer.

Example 2: $\sqrt{0.9755}=0.9877$
Express $\sqrt{0.9755}=\sqrt{1-0.0245}$

$$
=\sqrt{1-0.298^{2}}
$$

1. Set the hair line over 0.0245 (i.e. at 2.45) on the A scale.
2. Under the hair line read off 0.9877 on the P scale as the answer.

Note: For $\sqrt{97.55}$ we would express it as:

$$
\sqrt{100 x 0.9755}=10 \sqrt{0.9755}
$$

and obtain $\sqrt{0.9755}$ as in example 2
i.e. $=10 \times 0.9877$
therefore $=9.877$

Exercise 13(d)

$\begin{array}{ll}\text { (i) } & \sqrt{0.95}= \\ \text { (ii) } & \sqrt{92.5}= \\ \text { (iii) } & \sqrt{0.86}=\end{array}$
(iv) $\sqrt{0.69}=$
(v) $\sqrt{76}=$
(vi) $\sqrt{9826}=$
13.6 The Difference of Two Squares ($\sqrt{x^{2}-y^{2}}$ or $x^{2}-y^{2}$)

This is the form often encountered when using Pythagoras' Theorem to find the third side of a right triangle. We note that:
$\sqrt{x^{2}-y^{2}}=\sqrt{x^{2}\left(1-\frac{y^{2}}{x^{2}}\right)}$

$$
=x \sqrt{1-\left(\frac{y}{x}\right)^{2}}
$$

Thus, if we calculate $\frac{y}{x}$ using the C and D scales and transfer the result onto the P scale, on the D scale we have $\sqrt{1-\left(\frac{y}{x}\right)^{2}}$. Then we could easily multiply by x to obtain $x \sqrt{1-\left(\frac{y}{x}\right)^{2}}$ (i.e. $\sqrt{x^{2}-y^{2}}$.

This answer would be read off the D scale, thus to obtain $x^{2}-y^{2}$ we would read the answer off the A scale.
Example: $\sqrt{4.3^{2}-3.62^{2}}=2.32$
Express $\sqrt{4.3^{2}-3.62^{2}}=4.3 \sqrt{1-\left(\frac{3.62}{4.3}\right)^{2}}$

$$
=4.3 \sqrt{1-0.842^{2}}
$$

(evaluate $\frac{3.62}{4.3}=0.842$ in any of the usual ways.)

1. Set the hair line over 0.842 on the P scale. (The $=\sqrt{1-0.842^{2}}$ is on the D scale under the hair line.)
2. Place the right index of the C scale under the hair line.
3. Reset the hair line over 4.3 on the C scale.
4. Under the hair line read off 2.32 on the D scale as the answer.

Note: If instead of $\sqrt{4.3^{2}-3.62^{2}}$ we required $\left(4.3^{2}-3.62^{2}\right)$ on the A scale as the answer.

Exercise 13(e)

(i) $\sqrt{8^{2}-6^{2}}=$
(ii) $\sqrt{91^{2}-83.5^{2}}=$
(iii)
(iv) $13.3^{2}-11.1^{2}=$
(v) $105^{2}-98^{2}=$
(vi) $0.45^{2}-0.39^{2}=$

13.7 Further Application of the \mathbf{P} scale

1. To calculate the ordinates of an ellipse $\frac{x}{a}+\frac{y}{b}=1$. Transpose the equation to $y= \pm b \sqrt{1-\left(\frac{x}{a}\right)^{2}}$ and work from the P to D scale as in 13.6.
2. The following tables give a few other uses of the P scale.

Example	Set the H.L. over	Under the H.L. answer
$1-x^{2}$	x on P scale	on A scale
$\frac{1}{1-x^{2}}$	$\mathrm{x} \quad \mathrm{P}$	BI
$\sqrt{\left(1-x^{2}\right)^{3}}$	$\mathrm{x} \quad \mathrm{P}$	K
$\frac{1}{\sqrt{1-x^{2}}}$	$\mathrm{x} \quad \mathrm{P}$	D (or CI)
$\sqrt{1-x}$	$\mathrm{x} \quad \mathrm{A}$	P
$\sqrt{1-\frac{1}{x}}$	$\mathrm{x} \quad$ BI	P
$\sqrt{1-\frac{1}{x^{2}}}$	$\mathrm{x} \quad$ CI	P
$\sqrt{1-x^{\frac{2}{3}}}$	$\mathrm{x} \quad \mathrm{K}$	P

Example	Set HL Over	Under HL Place	Reset HL over	Under HL answer
$a \sqrt{1-x^{2}}$	Index of D scale	a on C scale	x on P scale	on C scale
$\frac{a}{\sqrt{1-x^{2}}}$	Index DI	a CI	$\mathrm{x} \quad \mathrm{P}$	CI
$\frac{\sqrt{1-x^{2}}}{a}$	x	P	$\mathrm{a} \quad \mathrm{C}$	Index C

Exercise 13(f)

(i)
$1-0.24^{2}=$
(ii) $\frac{1}{1-0.75^{2}}=$
(iii) $\sqrt{\left(1-0.9^{2}\right)^{3}}=$
(iv) $\frac{1}{\sqrt{1-0.43^{2}}}=$
(v) $\sqrt{1-0.76}=$
(vi) $\sqrt{1-\frac{1}{3.5}}=$
(vii) $\sqrt{1-\frac{1}{1.2^{2}}}=$
(viii) $\sqrt{1-0.83^{\frac{2}{3}}}=$
(ix) $13.1 \sqrt{1-0.36^{2}}=$
(x) $\frac{2.1}{\sqrt{1-0.87^{2}}}=$
(xi) $\frac{\sqrt{1-0.17^{2}}}{3.95}=$

A Complete Slide Rule Manual - Neville W Young
(xii) $\frac{2.6 \sqrt{1-0.46^{2}}}{5.8}=$

