A Complete Slide Rule Manual - Neville W Young

Chapter 3 - Division (C and D Scale)

3.1 Subtracting with Uniform Scales

Fig. 3.1 shows how we can subtract numbers using a pair of uniform scales (e.g. two ordinary rulers).

Fig 3-1
To Calculate 6-2:

1. Find 6 on the lower scale.
2. Place the 2 of the upper scale over 6 .
3. the left index (i.e. the 0) of the upper scale indicates the answer as 4 on the lower scale.

3.2 Simple Division

When we subtract numbers on the C and D scales we have division.

Fig 3-2
This is because the lengths we are subtracting are the logarithms of the numbers.
Example 1: $6 \div 2=3$ (Fig. 3-2)

1. Set the hair line over 6 on the D scale.
2. Place the 2 of the C scale under the hair line.
3. Below the left index of the C scale read off the answer as 3 on the D scale.

Note: The hair line on the cursor may be used for division in the following ways.
(a) To mark the numerator (i.e. number we are dividing into) on the D scale if it does not fall exactly on a graduation, so that the denominator (i.e. number we are dividing by) on the C scale can be set above it.
(b) Then to set over the index on the C scale so that the answer can be located on easily on the D scale.

Important Points.
(a) When we set up division on the C and D scale it appears seemingly upside down. To calculate $6 \div 2$ (i.e. $\frac{6}{2}$), we find 6 on the (lower) D scale and 2 is placed above it on the (upper) C scale, thus appearing on the Slide Rule as $\frac{2}{6}$.
(b) For division the answer is always indicated on the D scale by the index of the C scale. If the left index of the C scale runs off the end of the D scale, you will notice that the right index will come onto the D scale. Whichever index comes onto the scale, we can use that index to find the answer.

Example 2: $56 \div 7=8$

1. Set the hair line over 56 on the D scale.
2. Place the 7 of the C scale under the hair line.
3. Below the right index of the C scale read off the answer as 8 on the D scale.

Exercise 3(a)
(i) $\frac{43}{5.5}=$
(iii) $\frac{77}{35}=$
(ii) $\frac{5.7}{1.9}=$
(iv) $675 \div 326=$
(v) $196 \div 14=$
(vi) $6.6 \div 14.2=$

3.3 Locating the Decimal Point

The best method is to make a quick estimate of the answer. This can be accomplished by several different approaches.

Example 1:
$194 \div 4.15={ }^{\prime} 467$ '
(i.e. approx. $200 \div 4=50$)
therefore the answer is 46.7
Standard form (or scientific notation) may be used when very large or vary small numbers are involved.
Example 2:
$56000 \div 750={ }^{\prime} 746$ '
(i.e. approx. $\left(6 \times 10^{4}\right) \div\left(8 \times 10^{2}\right)=.75 \times 10^{2}$

Good general methods are:
(a) or large numbers divide both numbers by 10,100 , or 1000 etc. (whichever is applicable). That is, cancel corresponding zeros in both numerator and denominator (i.e. top and bottom).

Example 3:

$$
\begin{aligned}
& \frac{47000}{3240}=' 145 \text { ' } \\
& \text { (i.e. } \frac{50000}{3000}=\frac{50}{3} \approx 16 \text {) }
\end{aligned}
$$

therefore the answer is 14.5
(b) For small numbers multiply both by $10,100,1000$ etc., by moving the decimal point a certain number of places to the right as follows.

Example 4:

$$
\frac{0.42}{0.061}={ }^{\prime} 688 \text { ' }
$$

(i.e. approx. $\frac{0.4}{0.06}=\frac{40}{6} \approx 7$
therefore the answer is 6.88

Exercise 3(b)
Locate the decimal point for the following:
(i) $\frac{36}{4.1}={ }^{`} 878$,
(ii) $\frac{75.9}{2.48}={ }^{`} 306$ '
(iii) $\frac{800}{0.243}={ }^{\prime} 362$ '
(iv) $\frac{0.23}{30.4}={ }^{\prime} 756$ '
(v) $\frac{261}{0.012}={ }^{\prime} 2175$,
(vi) $\quad 9.42 \div 216=$ ' 436 '
(vii) $0.024 \div 0.08=$ ' 300 '
(viii) $520 \div 0.45=$ ' 1155 '
(ix) $0.084 \div 0.0025={ }^{\prime} 336$ ',
(x) $43500 \div 13.6=$ ' 32

Note:
(a) When we divide by a number less than 1 , the answer is always larger than the number we are dividing into.
(b) Unlike multiplication, with division we never run off the end of the D scale for the answer. Either the left or right index of the C scale will always be on the D scale.

3.4 Continuous Division

When dividing a number by 2 or more numbers, after each division, hold the answer on the D scale with the hair line and repeat the division process as many times as necessary. (For combined multiplication and division see Unit 4).

Exercise 3(c)

Miscellaneous Division.
(i) $\frac{360}{18}=$
(ii) $\frac{4800}{0.6}=$
(iii) $\frac{12.25}{35}=$
(iv) $\frac{1}{8}=$
(v) $\frac{43.75}{0.0304}=$
(vi) $3025 \div 55=$
(vii) $1925 \div 17.5=$
(viii) $\pi \div 2=$
(ix) $\pi \div 6=$
(x) $93 \div 9600=$
(xi) $\frac{219}{17 \times 28}=$
(xii) $\frac{35}{0.12 \times 0.47}=$
(xiii) $\frac{805}{104 \times 0.043}=$
(xiv) $\frac{1406}{52^{2}}=$
(xv) $\frac{19.22}{31^{2}}=$
(xvi) $0.00593 \div 2.66=$
(xvii) $0.00207 \div 0.000523=$
(xviii) $36400 \div 26=$
(xix) $20.25 \div 0.00045=$
(xx) $0.001035 \div 111=$

