A Complete Slide Rule Manual - Neville W Young

Chapter 3 – Division (C and D Scale)

3.1 Subtracting with Uniform Scales

Fig. 3.1 shows how we can subtract numbers using a pair of uniform scales (e.g. two ordinary rulers).

To Calculate 6 – 2:

- 1. Find 6 on the lower scale.
- 2. Place the 2 of the upper scale over 6.
- 3. the left index (i.e. the 0) of the upper scale indicates the answer as 4 on the lower scale.

3.2 Simple Division

When we subtract numbers on the C and D scales we have division.

Fig 3-2

This is because the lengths we are subtracting are the logarithms of the numbers.

Example 1: $6 \div 2 = 3$ (Fig. 3-2)

- 1. Set the hair line over 6 on the D scale.
- 2. Place the 2 of the C scale under the hair line.
- 3. Below the left index of the C scale read off the answer as 3 on the D scale.

Note: The hair line on the cursor may be used for division in the following ways.

- (a) To mark the numerator (i.e. number we are dividing into) on the D scale if it does not fall exactly on a graduation, so that the denominator (i.e. number we are dividing by) on the C scale can be set above it.
- (b) Then to set over the index on the C scale so that the answer can be located on easily on the D scale.

Important Points.

(a) When we set up division on the C and D scale it appears seemingly upside down. To calculate $6 \div 2$ (i.e. $\frac{0}{2}$),

we find 6 on the (lower) D scale and 2 is placed above it on the (upper) C scale, thus appearing on the Slide

Rule as $\frac{2}{6}$.

(b) For division the answer is always indicated on the D scale by the index of the C scale. If the left index of the C scale runs off the end of the D scale, you will notice that the right index will come onto the D scale. Whichever index comes onto the scale, we can use that index to find the answer.

Example 2: $56 \div 7 = 8$

A Complete Slide Rule Manual - Neville W Young

- 1. Set the hair line over 56 on the D scale.
- 2. Place the 7 of the C scale under the hair line.
- 3. Below the right index of the C scale read off the answer as 8 on the D scale.

Exercise 3(a)

(i)	$\frac{43}{5.5} =$	(iii)	$\frac{77}{35} =$
(ii)	<u>5.7</u> =	(iv) (v)	675 ÷ 326 = 196 ÷ 14 =
	1.9	(vi)	6.6 ÷ 14.2 =

3.3 Locating the Decimal Point

The best method is to make a quick estimate of the answer. This can be accomplished by several different approaches.

Example 1:

194 ÷ 4.15 = '467' (i.e. approx. 200 ÷ 4 = 50) therefore the answer is 46.7

Standard form (or scientific notation) may be used when very large or vary small numbers are involved. Example 2:

 $56000 \div 750 = `746'$ (i.e. approx. (6 x 10⁴) ÷ (8 x 10²) = .75 x 10²

Good general methods are:

(a) or large numbers divide both numbers by 10, 100, or 1000 etc. (whichever is applicable). That is, cancel corresponding zeros in both numerator and denominator (i.e. top and bottom).

Example 3:

$$\frac{47000}{3240} = `145'$$

(i.e. $\frac{50000}{3000} = \frac{50}{3} \approx 16$)
therefore the answer is 14.5

(b) For small numbers multiply both by 10, 100, 1000 etc., by moving the decimal point a certain number of places to the right as follows.

Example 4:

$$\frac{0.42}{0.061} = `688'$$

(i.e. approx.
$$\frac{0.4}{0.06} = \frac{40}{6} \approx 7$$

therefore the answer is 6.88

Exercise 3(b) Locate the decimal point for the following:

(i)
$$\frac{36}{4.1} = `878'$$
 (ii) $\frac{75.9}{2.48} = `306'$

3 - 2

(iii)
$$\frac{800}{0.243} = `362'$$

(iv) $\frac{0.23}{30.4} = `756'$
(v) $\frac{261}{0.012} = `2175'$
(vi) $9.42 \div 216 = `436'$
(vii) $0.024 \div 0.08 = `300'$
(viii) $520 \div 0.45 = `1155'$
(ix) $0.084 \div 0.0025 = `336'$
(x) $43500 \div 13.6 = `32$

Note:

- (a) When we divide by a number less than 1, the answer is always larger than the number we are dividing into.
- (b) Unlike multiplication, with division we never run off the end of the D scale for the answer. Either the left or right index of the C scale will always be on the D scale.

3.4 Continuous Division

When dividing a number by 2 or more numbers, after each division, hold the answer on the D scale with the hair line and repeat the division process as many times as necessary. (For combined multiplication and division see Unit 4).

Exercise 3(c)

Miscellaneous Division.

(i)	$\frac{360}{18} =$	(xi)	$\frac{219}{17x28} =$
(ii)	$\frac{4800}{0.6} =$	(xii)	$\frac{35}{0.12x0.47} =$
(iii)	$\frac{12.25}{35} =$	(xiii)	$\frac{805}{104x0.043} =$
(iv)	$\frac{1}{8} =$	(xiv)	$\frac{1406}{52^2} =$
(v)	$\frac{43.75}{0.0304} =$	(xv)	$\frac{19.22}{31^2} =$
(vi) (vii) (viii) (ix) (x)	$3025 \div 55 =$ $1925 \div 17.5 =$ $\pi \div 2 =$ $\pi \div 6 =$ $93 \div 9600 =$	(xvi) (xvii) (xviii) (xix) (xx)	$\begin{array}{l} 0.00593 \div 2.66 = \\ 0.00207 \div 0.000523 = \\ 36400 \div 26 = \\ 20.25 \div 0.00045 = \\ 0.001035 \div 111 = \end{array}$