
moredupsov.doc Wednesday, Wed Apr 28 1999 12:37 PM Page 1 of 11

The Problem With NODUPLICATES,
Continued

Jack Hamilton

First Health

West Sacramento, California

JackHamilton@FirstHealth.com



moredupsov.doc Wednesday, Wed Apr 28 1999 12:37 PM Page 2 of 11

What Should NODUPLICATES Do?

PROC SORT has two options to control whether "duplicate" output
records will be written:

� NODUPLICATES "checks for and eliminates duplicate
observations".

� NODUPKEY "checks for and eliminates observations with
duplicate BY values. This option differs from NODUPLICATES
because the NODUPKEY option compares only the BY values,
not the entire observation."

�

� Quoted from the SAS Procedures Guide, Version 6



moredupsov.doc Wednesday, Wed Apr 28 1999 12:37 PM Page 3 of 11

What's The Problem?

The problem is that NODUP doesn't always eliminate all
duplicates. There are two reasons:

• It does what it’s documented to do, not what you might expect it
to do. The documentation is perhaps more subtle than
necessary.

• There are bugs. They are not all fixed in the current version
(6.12). At least some of the bugs are gone in Version 8.



moredupsov.doc Wednesday, Wed Apr 28 1999 12:37 PM Page 4 of 11

What We Expect It To Do

From the name, and the short description, you might expect that a
dataset run through PROC SORT NODUP would come out with no
identical records.

What It Actually Does
The problem is in the fine print, which says “This option causes
PROC SORT to compare all variable values for each observation
to the previous one written to the output data set. If an exact
match is found, the observation is not written to the output data
set.”



moredupsov.doc Wednesday, Wed Apr 28 1999 12:37 PM Page 5 of 11

So, Why Aren’t Dups Found?

The problem is that duplicate records might not end up next to
each other during output, so the deletion won’t happen.

Consider the following example

data test;
inpu t A B $ @@;

cards;
1 A 2 B 2 A 3 C 3 X
4 D 1 A 3 C 3 C 5 E
run;
proc sort data=test nodup;

by b;
run;
proc print data=test;
run;



moredupsov.doc Wednesday, Wed Apr 28 1999 12:37 PM Page 6 of 11

The Results

OBS A B
1 1 A
2 2 A
3 1 A
4 2 B
5 3 C
6 4 D
7 5 E
8 3 X

Observations 1 and 3 are duplicates. Obs 3 was written because
it wasn’t the same as the previous record written (obs 2). PROC
SORT doesn’t know or care about observation 1 at this point.
Work through this example with pencil and paper, and you’ll see
why it happens.



moredupsov.doc Wednesday, Wed Apr 28 1999 12:37 PM Page 7 of 11

Two Workarounds

There are two easy workarounds: sorting by all the variables, or
using PROC SQL.

Sorting by all the variables

If you put every variable in the BY list, the problem probably won’t
occur, because duplicate observations will necessarily be together
on output. An easy way to sort by every variable is to put _ALL_
at the end:

proc sort data=test
out=nodups1 nodup;

by b _all_;
run;



moredupsov.doc Wednesday, Wed Apr 28 1999 12:37 PM Page 8 of 11

Using PROC SQL

Using the DISTINCT option in PROC SQL will also eliminate the
duplicates, probably:

proc sql;
create table nodups2 as

select distinct *
from test
order by b;

quit;



moredupsov.doc Wednesday, Wed Apr 28 1999 12:37 PM Page 9 of 11

But There Are Bugs

You might have noticed those “probably”s in my description of the
first two workarounds. In a perfect world, they would work. But
they don’t, or at least not every time.

Perhaps I shouldn’t call them bugs, because they’re documented
in the Usage Notes, but there are some counter-intuitive “features”
in the way sorting is handled in both PROC SORT and PROC
SQL. I won’t describe them all here, and I haven’t been able to
reproduce them all myself, but if the Usage Notes say the two
solutions above won’t always work, I’ll believe that they won’t.

Using FIRST./LAST. Logic

Using FIRST. or LAST. processing is more work to program, but if
coded properly it always works, or at least gives you a nice clean
abend if it doesn’t:



moredupsov.doc Wednesday, Wed Apr 28 1999 12:37 PM Page 10 of 11

proc sort data=test out=test2;
by b a;

run;
data nodups2;

set test2;
by b a;

if first.a;
run;

Unfortunately, you have to list all the variables; you can’t use
_ALL_ here (but see my "SQL Utilities" paper for ideas on how to
create that list).



moredupsov.doc Wednesday, Wed Apr 28 1999 12:37 PM Page 11 of 11

So, What To Do?

I have decided for myself that I will not use the NODUP option. If
you study all the Usage Notes, and never change to a new
release, and always run on the same hardware, you can figure out
when it’s safe. Those are not conditions I’m willing to live with.
It's easy to use alternative code, so that's what I do.

What About NODUPKEYS?
The Usage Notes indicate that problems might occur with
NODUPKEYS as well. It apparently doesn’t happen as often, and
I’ve never heard of a case of it happening, but why take the risk?
Again, the logic is easy to code in a data step.


