
Repeaters and beacons need

to be reliably controlled as

part of the conditions of their

licence. Good repeater sites rarely

coincide with amateur’s homes and

are often difficult to access. An RF

control link is an obvious solution – but

this raises the spectre of malicious

meddling with control functions.

Cryptography has a solution that

allows a control message to be sent

reliably and unencrypted (so it is legal

to send via amateur radio), which will

also detect any attempt to imitate or

repeat the message [1].

The two essential ingredients in

the process are cryptographically
secure hash functions and multi-
way handshakes.

Secure hash functions
A simple analogy for a hash function is
that of cooking a stew, reducing it, and
then liquidising it into a soup. The aroma
and taste from a spoonful tell you what the
constituents are but without giving a precise
description of the ingredients. The addition
�� � ����

�
	
 �

�����
�
	
 ¡�����
depending on the spice used.

A hash function is used to compress data
�� ��� ���
 ��#�
� ��
� �� � ��
� ���
� ;	

values generated are referred to as hashes.

At this point you may well ask ‘what
on earth uses a function that behaves like
an electronic black hole?’ The answer is
cryptography, and for this we have to blame
the beer served in the Eagle in Cambridge [2].
About 1967, Roger Needham and Michael
Guy were discussing the dangers of storing
passwords on the multi-access Titan computer
they were helping to build. Over a pint of
inspiration they realised that you could store
the hashes of the passwords instead of the
passwords themselves. When someone logged
on, the hash of their password was calculated

and compared with the list. So if a naughty
�
���� ����
�
	
 ����#���� ��
�
	
� ������=

impersonate another user because they didn’t
have the password. Since then, hashes have
become – along with block and stream ciphers,
cryptographic primitives – one of the main
building blocks of cryptographic protocols.

A good secure hash function has the
following properties:

ª It is virtually impossible to
calculate a message from its hash

ª It is virtually impossible to change
a message without changing the hash

ª �
 �� ���
����� ���������

� ���
#�
different messages with the same hash

ª A 1-bit change in the input affects each
	��	 ��
 #�
	 � ���������
� ��
���
�� ?�>�

Secure hash functions – also known as one-
way functions [3, 4] – have uses such as
digital signatures, message authentication
codes, and other forms of authentication.
They can also be used to detect duplicate
��
�� �����
�� ��
�
��� ��
�� ��� ��
checksums to detect data corruption.

The essential feature of hash functions
is that you can calculate the hash of any

stream of bits or bytes and get a unique
����
�� ���
�����
 ��
	�
 �

�� �� ��� ������

your own secret key as part of that input,
���=�� �

 � ����
�
�
 ���
�����

	�
 �� �����

to that item and your key.

Hence two people who share a secret key
��� ���������

 #�
	 ��
�
�
�
 �
��

of certainty that their messages have not
�

� ����
�

� �������
��� �� ��

��
�
��
�
by simply appending a secure hash to the
message – but without hiding the message.
A keyed hash system called the Message
Authenticator Algorithm was developed by
Donald Davies and David Clayden of NPL in
1983 and became part of the ISO 8731-2
Banking standard.

Here, we are assuming the hash-based
message authentication code (HMAC)
method of combining a key and data, using
the SHA-1 algorithm [5]. SHA-1 outputs a
�^?!��
 '�? ��

* 	��	�

Handshaking, or
‘who am I talking to?’
If you’ve ever been on either end of a
misdialled phone call you will realise how
�������
 �
 ��� �

� ��
�
��� #	� ��� ��

Using
Technical

in amateur radio
authentication

44 {�� �?�^

Part of a repeater’s control logic (photo by Dave Williams, G8PUO, RILGES repeater group).

Technical

May 2016 45

talking to. We all use certain clues that make
us trust that we know who is on the other
end of the line. Tone of voice, accent, subject
matter, time of day all contribute to that trust.

You may go as far as to ask the other
end about some shared private information

� ������
	
�� ��
�
�
�� }�#
�
�� ��������
you’ve been overheard, that secret must be
considered to be in the public domain and
cannot be used again.

Context is important too – as the
conversation continues, the context will
change and form a subtle backbone to the
whole dialogue.

Challenge-response handshaking [6] is
a method of generating trust between two
parties prior to them conducting business.
When there are hackers who want to subvert
the process, special measures have to be
taken to ensure that a high level of trust is
maintained throughout the dialogue. For
simplicity, each packet has the same four
�
�� �����
 ��� �
� ��

���
� �� ������

� ��
��5���
	
 ����
	 �
��
	
 5
�
� 	��	 ��
	

���

	�

 �
����

Initially, each party must challenge the
other so that the response is only known to
the challenger. This method uses a shared
secret key along with a hash function.

Consider the example where Alice needs
to tell Bob to do a task and report back on
the results. Initially, Alice challenges Bob
by sending a number that is used once only
(known as a ‘nonce’ – see later) and Bob replies
with the keyed secure hash of the nonce and
also a nonce of his own. In this case accurate
timestamps can be used as nonces.

In the data packet shown in Figure 1
we’ve added a message, a digest (see later)
and all three are processed to produce the
�
�
� }��	 ����
 ���
	�
 ���5

�

Figure 2 shows Bob’s reply, which is
both a response to Alice’s challenge and
also a challenge to Alice. After Alice has
�
���
� ���=� �
�����
 �� �	
�5���
	
 	��
his correct and the digest matches what she
previously sent, Alice can trust Bob.

Only when Alice’s second message to Bob
	�� �

� �
���
� �� ��� ��� ���
���
 |���
�
}
 ���
	
� �����
�
�� ��
 ��
	
 �
	
�
contents of that message – which can be
information, a request or a command etc.

��
	
 ���
 �
����

� ��� #�� � �
����
attack (recording of a previous packet),
the attack would fail because the new
Timestamp 2 and hence the new Keyed
}��	 � #���� �
 ����
�
�
 ��� ��
	
 �

��5
�
would not be able to create a valid message 3
packet without the secret key.

From now on, the back and forth dialogue
can be taken as trustworthy as long as the
messages contain fresh material (nonces)

��	
��
 ��� ��
 �
���
� �� 5
�
� �
���

hashes. Figure 4 shows a response to
message 3.

Field 1 Field 2 Field 3 Field 4

Timestamp 1 Message 1 Digest 1 (KH(T1))Alice → Bob Keyed hash 1

FIGURE 1: Format of a simple initial message from Alice to Bob.

Field 4Field 1 Field 2 Field 3

Timestamp 2 Message 2 Digest 2 (KH1)Bob → Alice Keyed hash 2

FIGURE 2: Bob’s response to Figure 1.

Field 4Field 1 Field 2 Field 3

Timestamp 3 Message 3 Digest 3 (KH2)Alice → Bob Keyed hash 3

FIGURE 3: Alice’s reply to Bob, establishing trust both ways.

Field 4Field 1 Field 2 Field 3

Timestamp 4 Message 4 Digest 4 (KH3)Bob → Alice Keyed hash 4

FIGURE 4: Bob replying to Alice.

The chain of digests or context in these
�
����
� �������
	
 �
��
��
 ��
	

messages. When each message is sent, the
sender notes what digest they expect to see
in the next reply. The timestamps introduce
freshness at every stage so that no packet is
ever repeated, meaning that the keyed hash
has to be recalculated for every packet.

The digest is a smaller version (64-bit)
of its hash input. In this case the suggestion
is a simple accumulator, where every input
byte is added into the accumulator and the
accumulator is rotated by 8 bits after each
����
���� ���
��������
	
 ���
 ���
�
 �
�� #�
	
the hash of the initial timestamp enhances
the uniqueness of the chain of digests.

Nonces / timestamps
Nonces are numbers that are used once only.
In cryptographic protocols they are often used
as a way of distinguishing one transaction
from another. In the present suggested
���
���� �
��
�
��� #��� �����
� ��������
that the time is of such accuracy that the
timestamps of successive transmissions will
always be different (eg a resolution of say
1 millisecond where the transmissions may
take several milliseconds).

Key security
Keys, like all secrets, only remain secret for
a certain length of time. In WW II, the US
cipher machine the M-209 was designed for
a key life of 24 hours. This meant that it was

assumed that the enemy was able to deduce

	
 5
� ��

� � ��� ���
	�
 ��� ��
�����
�����
was open to view.

Ofcom’s latest guidance (October 2015)
on encryption is in the context of RAYNET
activities and insists that keys must be
written in logbooks. It must be assumed
that as soon as the logbooks are able to
be seen, all the transmissions become
public knowledge. All parties involved
must understand this and tailor their
messages accordingly. Also, this raises
privacy issues where medical records
are involved and those involved should
consider extra logbooks that can be kept
under lock and key.

Because the method of authentication
described here does not hide the message,
those rules do not and must not apply.
The authentication keys must be kept
safely locked away.

Keys should be long, preferably in
excess of 64 bytes. This is especially
important where the key is an ASCII
string as there are fewer than 96 printable
characters in each byte. It’s not important
that you remember the key, so a jumble
of random words and numbers from a
newspaper is ideal.

Keith Lockstone, M0KIL
klockstone@yahoo.co.uk

