

"Understanding and testing of DMR standard"

Roger Kane

Managing Director, Vicom Australia



@CommsConnectAus#comms2014

Presentation Title: Understanding and Testing DMR Speaker: Roger Kane

DMR Overview

Digital Mobile Radio (DMR) is a suite of standards developed by the European Telecommunications Standards Institute (ESTI) for narrow band land mobile communications

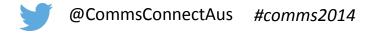
DMR Tier I:

direct mode communication without infra-structure

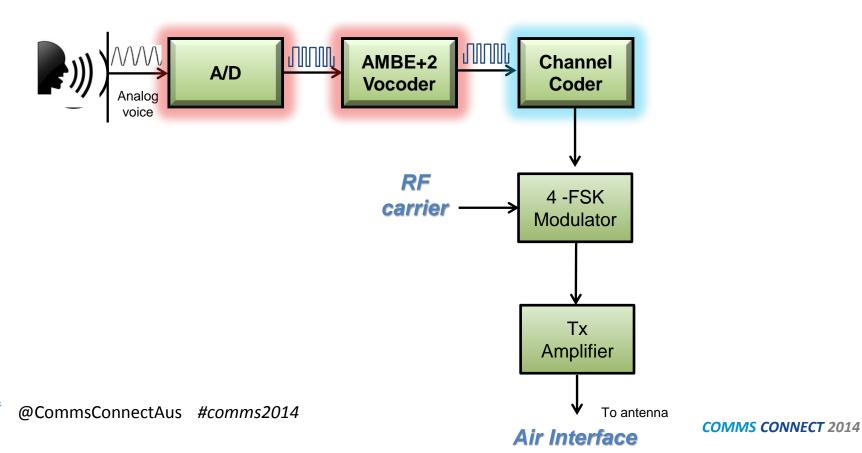
DMR Tier II:

direct mode and base station repeaters advanced voice features and integrated IP data services

DMR Tier III:

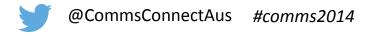

Trunking with a controller managing communication including simulcast and multicast

PARAMETER	VALUE
Channel spacing	12.5 K Hz
Modulation	4 - FSK
Modulation rate	9.6 kbps
Bits per symbol	2
Voice coder rate	DVSI AMBE+2™ (3.60 kbps)
Access format	2 - slot TDMA


DMR Specification

PARAMETER	VALUE
Channel spacing	12.5K Hz
Modulation	4 — FSK
Modulation rate	9.6 kbps
Bits per symbol	2
Voice coder rate	DVSI AMBE+2™ (3.60 kbps)
Access format	2 - slot TDMA

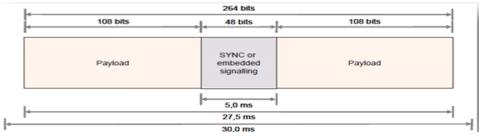
Digital Voice

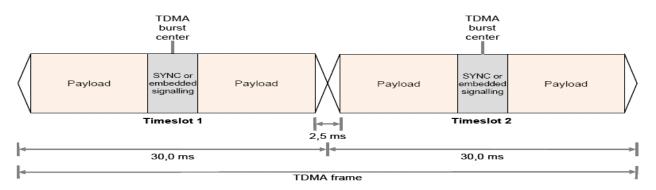


DMR Technology - Modulation

DMR uses 4FSK (Four level Frequency Shift Key) derived from the standard FSK modulation

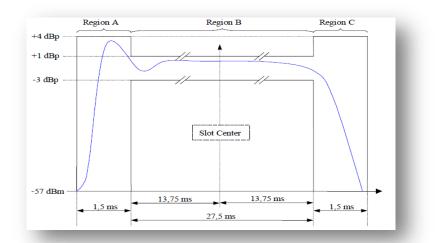
- 4FSK = four individual frequencies representing data values
- 2 data states "0" and "1" with 4 symbols transmitted so two bits per symbol
- Information bits are transmitted in pairs, each pair assigned to a frequency shift


Symbol	4FSK Deviation (Hz)
00	+648
01	+1944
10	-648
11	-1944



<u>DMR Technology – Two Timeslots in TDMA</u>

TDMA Slots – 30ms each



Slot 1 and Slot 2 – 60ms total

DMR Technology – Two Timeslots in TDMA

Normal Bursts Power Profile used for voice, data and control applications

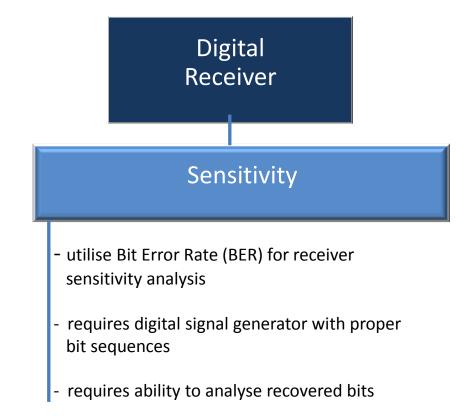
The Need for Testing

> Testing verifies system requirements and user needs are met

> Testing ensures 'availability of service' a paramount operational requirement

Testing ensures interoperability of new equipment and evolving standards

FM test method Vs Digital DMR test method


Leading the way in test and measurement Digital Transmitter Modulation Frequency Power Protocol Accuracy - Conventional (i) analog analyser PL & DPL - similar to FM - Burst power - FM uses deviation (ii) Colour Codes, Talk Goup, Call ID, with constant -Timing of the signal which does not work (iii) full digital demodulation and error envelope with 4FSK correction modulation called proper modulation - Trunking 4FSK analyser to perform (i) radio will not "communicate" without a (i) analysis synchronously **Control Channel** with the symbol clock (ii) complex messaging needed to get the radio (ii) symbol clock errors "talking" calculation (iii) interoperability with various OEM requires detailed analysis of messaging handling

COMMS CONNECT 2014

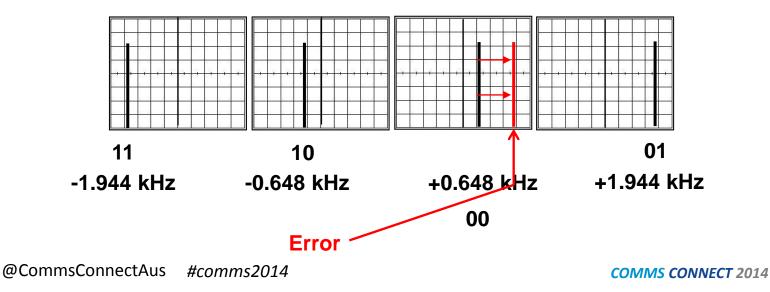
Vicom

FM test method Vs Digital DMR test method

Critical Tests

- MS Frequency Error:
- FSK Error:
- Symbol Deviation Error:
- Magnitude Error:
- Symbol Clock Error:
- Slot Power:
- Rx BER:

Max 2 ppm (50-600MHz); 1.5 ppm (>600MHz) Max Error < 5% Max Error +/- 10% (2138Hz and 1749Hz) Max Error \leq 1% Max Error \leq 24 mHz Slot 1, Slot 2, and Slot dBr RF Level @ 5% Rx BER

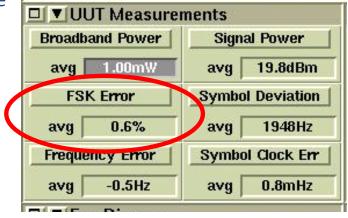


Significant parameter measurement

FSK error

What is this?

This measurement shows how closely the overall modulation is performing to the ideal


Significant parameter measurement

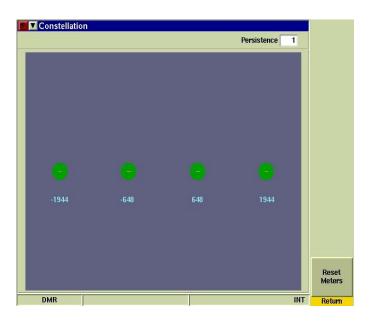
FSK error

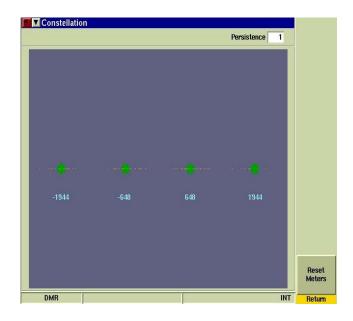
Why is this important?

FSK modulation measurements serve to check the signal quality requirements

- to achieve coverage
- immunity to interference

FSK error should not exceed 5%


Leading	the way	y in test and	measurement
---------	---------	---------------	-------------


Advanced Analys	sis					
Signal Pwr 37.36dBm						
	Bit 1	0	0	1	1	
Slot1 Pwr 37.36dBm	Bit 0	1	0	0	1	
olott i m j or soubin	Symbol	+3	+1	-1	-3	
Slot2 Pwr -37.41dBm	Target 4FSK Dev	+1.944	+0.648	-0.648	-1.944	
FSK Err 1.43%	Actual	1926.69Hz	640.99Hz	-636.65Hz	-1922.29Hz	
	Error	0.89%	1.08%	1.75%	1.12%	
Freq Err 8.71 Hz	1504					
	4FSK Error	1.37%	1.77%	4.39%	1.70%	
ym Cik Err <u>3.07mHz</u>	Peak		•			
	Mag	0.17%	0.24%	0.24%	0.35%	
Sym Dev 1921.59Hz	Error					
Sym Dev Tozrashiz	Mag Peak	0.47%	0.41%	0.58%	0.53%	
Mag Err 0.25%	-eak					Reset Meter
DMR				RF	INT	Retur

Constellation Tile

- Four points represent the four deviation states
- > The green plot fields indicate the expected location of the plot clusters
- > A wide line extend outside of the circle if the FSK error is bad or the symbol deviation is too large or too small

Significant parameter measurement

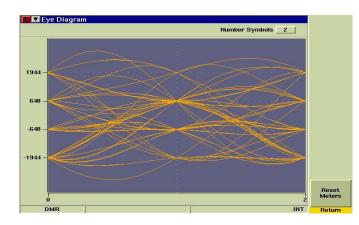
Another criterion for modulation Quality **SYMBOL CLOCK ERROR** What is this?

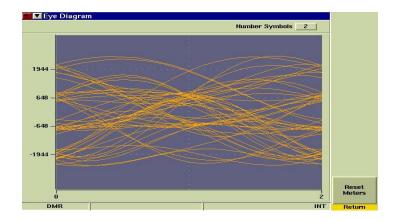
- Primary reference to ensure that the digital data is encoded and decoded correctly

Why is this important?

- Errors in symbol clock can cause digital jitter
- Excessive symbol clock error causes problem to symbol deviation performance

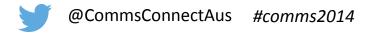
How is this measured?


- Measures over one 30ms slot
- Measured should not exceed +/- 48 mHz

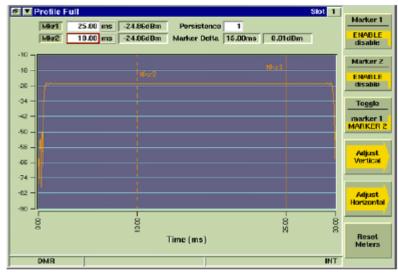


Broadband Pow	er Signal Power
avg 1.00m	W avg 19.8dBm
FSK Error	Symbol Deviation
avg 0.6%	avg 1948Hz
Frequency Erro	r Symbol Clock Err
avg -0.5H	avg 0.8mHz

<u>Eye Diagram Tile</u>


- Graph of symbol deviation versus time
 - four horizontal dashed lines represent deviations at symbol point
 - the vertical dashed line and the start and stop of the graph are locations at which the graph goes through a symbol point
 - a good signal lines should cross precisely through the point at which the vertical and horizontal dashed lines meet
 - a wider or narrower symbol deviation will the plot passing below and /or above the dashed lines

Burst-Power in TDMA


For the duration of the time slot:

- the Tx Power must remain constant
- rise and fall times must be quick enough to not to interfere with adjacent timeslots

Burst-Power in TDMA

The Power Profile Full Tile displays the **complete profile** of the signal's power reading over a period of time.

Burst-Power in TDMA

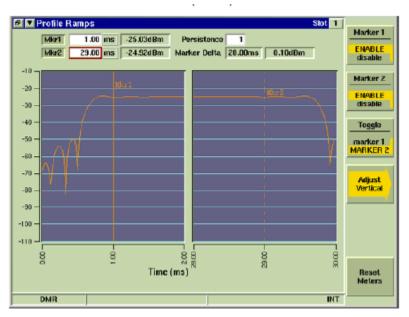


Fig. 2-17 Power Profile Ramps

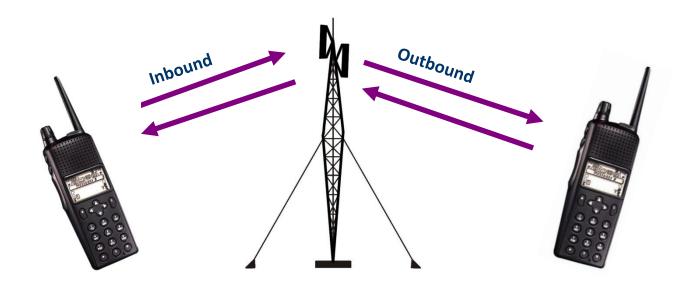
The Profile Ramps Tile displays the ramp profile of the signal's power reading over one slot.

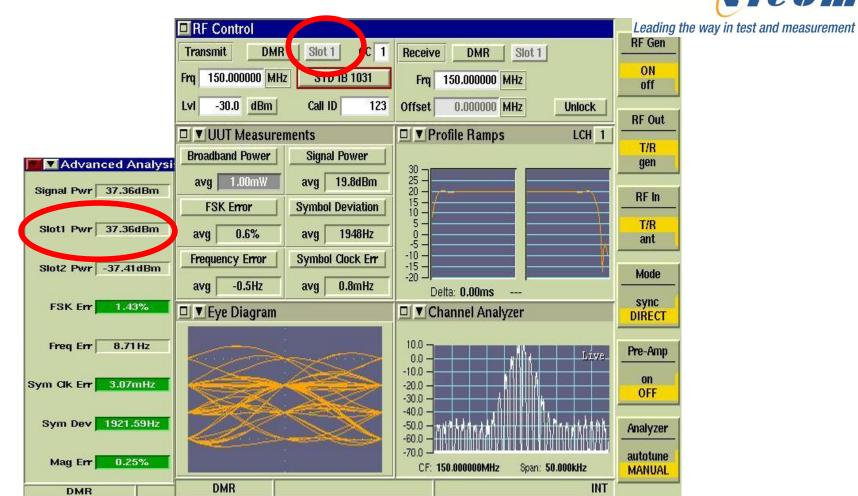
Receiver Testing

Test Patterns

- 1031
- Sync
- CAL and SILENCE
- Stored Speech

Digital 1kHz tone (1031 Hz) Receiver Sensitivity Test for 5%BER Repeater Testing Introduces 5% BER onto 1031 pattern subjective receiver sensitivity test


Duplex Radio & Repeater Testing


OB TSync Wake-Up Pattern for Duplex Radios

Inbound: Radio to Repeater Outbound: Repeater to Radio OB TSYNC Pattern (Wake-Up Burst) SYNC Pattern

Testing Radios Protocol Side

Color Code concept

Network access of DMR terminals are managed by a "colour code" instead of the traditional sub-audible tone

- To distinguish between adjacent and repeater stations with overlapping radio sites in order to detect co-channel interference

CALL ID

- This parameter is also referred to as the Destination ID or Group Address
- "ALL CALL" ID (16777215)

-	
Color Code	1
Call ID	123
Unit ID 1	6777010

Conference materials available soon at

www.comms-connect.com.au

