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Abstract-In this paper, we present a new speech model which we 
refer to as the Multiband Excitation Model. In this model, the short- 
time spectrum of speech is modeled as the product of an excitation 
spectrum and a spectral envelope. The spectral envelope is some 
smoothed version of the speech spectrum and the excitation spectrum 
is represented by a fundamental frequency, a voicedlunvoiced (V/W) 
decision for each harmonic of the fundamental, and the phase of each 
harmonic declared voiced. In speech analysis, the model parameters 
are estimated by explicit comparison between the original speech spec- 
trum and the synthetic speech spectrum. In speech synthesis, we syn- 
thesize the voiced portion of speech in the time domain and the un- 
voiced portion of speech in the frequency domain. To illustrate one 
potential application of this new model, we develop an 8 kbit/s Mul- 
tiband Excitation Vocoder. Informal listening clearly indicates that this 
vocoder provides high quality speech reproduction for both clean and 
noisy speech without the “buzziness” and severe degradation in noise 
typically associated with vocoder speech. Diagnostic Rhyme Tests 
(DRT’s) were performed as a measure of the intelligibility of this 8 
kbit/s vocoder. For clean speech with an  average DRT score of 97.8 
when uncoded, the coded speech has an average DRT score of 96.2. 
For speech with wide-band random noise with an  average DRT score 
of 63.1 when untoded, the coded speech has an average DRT score of 
58.0. When the VnrV decision for each harmonic of the fundamental 
is replaced by one V l W  decision for each frame with all other param- 
eters identical to the 8 kbit/s Multiband Excitation Vocoder, the DRT 
scores obtained are 96.0 for clean speech and 46.0 for the noisy speech 
case. 

I. INTRODUCTION 
HE problem of analyzing and synthesizing speech has T a large number of applications, and as a result has 

received considerable attention in the literature. One class 
of speech analysis/synthesis systems (vocoders) which 
have been extensively studied and used in practice are 
based on an underlying model of speech. For this class of 
vocoders, speech is analyzed by first segmenting speech 
using a window such as a Hamming window. Then, for 
each segment of speech, the excitation parameters and 
system parameters are determined. The excitation param- 
eters consist of the voiced/unvoiced decision and the pitch 
period. The system parameters consist of the spectral en- 
velope or the impulse response of the system. In order to 
synthesize speech, the excitation parameters are used to 
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synthesize an excitation signal consisting of a periodic 
impulse train in voiced regions or random noise in un- 
voiced regions. This excitation signal is then filtered using 
the estimated system parameters. 

Even though vocoders based on this class of underlying 
speech models have been quite successful in synthesizing 
intelligible speech, they have not been successful in syn- 
thesizing high quality speech. The poor quality of the syn- 
thesized speech is, in part, due to fundamental limitations 
in the speech models and, in part, due to inaccurate esti- 
mation of the speech model parameters. As a conse- 
quence, vocoders have not been widely used in applica- 
tions such as time-scale modification of speech, speech 
enhancement, or high quality bandwidth compression. 

One of the major degradations present in vocoders em- 
ploying a simple voicedhnvoiced model is a “buzzy” 
quality especially noticeable in regions of speech which 
contain mixed voicing or in voiced regions of noisy 
speech. Observations of the short-time spectra indicate 
that these speech regions tend to have regions of the spec- 
trum dominated by harmonics of the fundamental fre- 
quency and other regions dominated by noise-like energy. 
Since speech synthesized entirely with a periodic source 
exhibits a “buzzy” quality, and speech synthesized en- 
tirely with a noise source exhibits a “hoarse” quality, it 
is postulated that the perceived “buzziness” of vocoder 
speech is due to replacing noise-like energy in the original 
spectrum with periodic “buzzy” energy in the synthetic 
spectrum. This occurs since the simple voiced/unvoiced 
excitation model produces excitation spectra consisting 
entirely of harmonics of the fundamental (voiced) or 
noise-like energy (unvoiced). Since this problem is a ma- 
jor cause of quality degradation in vocoders, any attempt 
to significantly improve vocoder quality must account for 
these effects. 

The degradation in quality of vocoded noisy speech is 
accompanied by a decrease in intelligibility scores. For 
example, Gold and Tierney [7] report a DRT score of 7 1.4 
for the Belgard 2400 kbit/s vocoder in F15 noise down 
18.7 points from a score of 90.1 for the uncoded ( 5  kHz 
bandwidth, 12 bit PCM) noisy speech. In clean speech, 
a score of 86.5 was reported for the Belgard vocoder, 
down only 10.3 points from a score of 96.8 for the un- 
coded speech. They call the additional loss of 8.4 points 
in this noise condition the “aggravation factor’’ for vo- 
coders. One potential cause of this “aggravation factor” 
is that vocoders which employ a single voicedhnvoiced 
decision for the entire frequency band eliminate poten- 
tially important acoustic cues for distinguishing between 
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frequency regions dominated by periodic energy due to 
voiced speech and those dominated by aperiodic energy 
due to random noise. 

A number of mixed excitation models have been pro- 
posed as potential solutions to the problem of “buzzi- 
ness” in vocoders. In these models, periodic and noise- 
like excitations are mixed which have either time-invari- 
ant or time-varying spectral shapes. In models with time- 
invariant spectral shapes, a mixture ratio controls the rel- 
ative amplitudes of a periodic source and a noise source 
with fixed spectral envelopes [ 131, [ 141. In models with 
time-varying spectral shapes, voiced/unvoiced decisions 
or ratios control large contiguous regions of the spectrum 
[5], [16], [14]. The boundaries of these regions are usu- 
ally fixed and have been limited to relatively few (one to 
three) regions. Observations by Fujimara [5] of “de- 
voiced” regions of frequency in vowel spectra in clean 
speech, together with our observations of spectra of voiced 
speech corrupted by random noise, argue for a more flex- 
ible excitation model than those previously developed. In 
addition, we hypothesize that humans can discriminate 
between frequency regions dominated by harmonics of the 
fundamental and those dominated by noise-like energy and 
employ this information in the process of separating 
voiced speech from random noise. Elimination of this 
acoustic cue in vocoders based on simple excitation 
models may help to explain the significant intelligibility 
decrease observed with these systems in noise [7]. To ac- 
count for the observed phenomena and restore potentially 
useful acoustic information, a function giving the voiced/ 
unvoiced mixture versus frequency is desirable. 

One recent approach which has become quite popular 
is the Multipulse LPC Model [ l ] .  In this model, Linear 
Predictive Coding (LPC) is used to model the spectral en- 
velope. The excitation signal is modeled by multiple 
pulses per pitch period. One method for reducing the 
number of bits required to code the excitation signal is to 
allow only a small number of pulses per pitch period and 
then code the amplitudes and locations of these pulses. 
The amplitudes and locations of the pulses are estimated 
to minimize a weighted squared difference between the 
original Fourier transform and the synthetic Fourier trans- 
form. One drawback of this approach is that the pulses 
are placed to minimize the fine structure differences be- 
tween the frequency bands of the original Fourier trans- 
form and the synthetic Fourier transform regardless of 
whether these bands contain periodic or aperiodic energy. 
It seems important to obtain a good match to the fine 
structure of the original spectrum in frequency bands con- 
taining periodic energy. However, in frequency bands 
dominated by noise-like energy, it seems important only 
to match the spectral envelope and not spend bits on the 
fine structure. Consequently, it appears that a more effi- 
cient coding scheme would result from matching only the 
periodic portions of the spectrum with pulses, and then 
coding the rest as frequency dependent noise which can 
then be synthesized at the receiver. 

Inaccurate estimation of speech model parameters has 

also been a major contributor to the poor quality of vo- 
coder synthesized speech. For example, inaccurate pitch 
estimates or voiced/unvoiced estimates often introduce 
very noticeable degradations in the synthesized speech. In 
noisy speech, the frequency of these degradations in- 
creases dramatically due to the increased difficulty of the 
speech model parameter estimation problem. Conse- 
quently, a high quality speech analysis/synthesis system 
must have both an improved speech model and robust 
methods for accurately estimating the speech model pa- 
rameters. 

In this paper, we present a new speech model, referred 
to as the Multiband Excitation Model, in which the band 
around each harmonic of the fundamental frequency is de- 
clared voiced or unvoiced. In addition, we develop ac- 
curate and robust estimation methods for the parameters 
of this new speech model and describe methods to syn- 
thesize speech from the model parameters. To illustrate a 
potential application of the new speech model, we de- 
velop an 8 kbit/s vocoder and evaluate its performance. 
Both informal listening and intelligibility tests show that 
the 8 kbit/s vocoder developed has very good perfor- 
mance both in speech quality and intelligibility, particu- 
larly for noise speech. 

In Section 11, our new Multiband Excitation (MBE) 
Model for modeling both clean and noisy speech is de- 
scribed. In Section 111, methods for estimating the param- 
eters of the MBE Model are developed. Section IV dis- 
cusses methods for synthesizing speech from these model 
parameters. In Section V, the MBE analysis/synthesis 
system is applied to the development of a high quality 8 
kbit/s vocoder. Results of informal listening as a measure 
of quality and Diagnostic Rhyme Tests as a measure of 
intelligibility are presented for this 8 kbit/s vocoder. 

11. MULTIBAND EXCITATION SPEECH MODEL 

Due to the quasi-stationary nature of a speech signal 
s ( n ) ,  a window w ( n )  is usually applied to the speech 
signal to focus attention on a short time interval of ap- 
proximately 10-40 ms. The windowed speech segment 
sw ( n )  is defined by 

sw(n)  = w ( n ) s ( n ) .  ( 1 )  

The window w ( n )  can be shifted in time to select any 
desired segment of the speech signal s ( n ) .  Over a short 
time interval, the Fourier transform S ,  ( w )  of a windowed 
speech segment s,(n) can be modeled as the product of 
a spectral envelope H ,  ( w  ) and an excitation spectrum 
I E w ( 4 L  

S W ( 4  = H,(w)lE,(w)l. ( 2 )  
As in many simple speech models, the spectral envelope 
I H,( w )  1 is a smoothed version of the original speech 
spectrum 1 S ,  ( w  ) I .  The spectral envelope can be repre- 
sented by linear prediction coefficients [ 171, cepstral coef- 
ficients [21], formant frequencies and bandwidths [24], or 
samples of the original speech spectrum [3]. The repre- 
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sentational form of the spectral envelope is not the dom- 
inant issue in our new model. However, the spectral en- 
velope must be represented accurately enough to prevent 
degradations in the spectral envelope from dominating 
quality improvements achieved by the addition of a fre- 
quency dependent voicedhnvoiced mixture function. An 
example of a spectral envelope derived from the noisy 
speech spectrum of Fig. l(a) is shown in Fig. l(b). 

The excitation spectrum in our new speech model dif- 
fers from previous simple models in one major respect. 
In previous simple models, the excitation spectrum is to- 
tally specified by the fundamental frequency wo and a 
voicedhnvoiced decision for the entire spectrum. In our 
new model, the excitation spectrum is specified by the 
fundamental frequency wo and a frequency dependent 
voicedhnvoiced mixture function. In general, a continu- 
ously varying frequency dependent voicedhnvoiced mix- 
ture function would require a large number of parameters 
to represent it accurately. The addition of a large number 
of parameters would severely decrease the utility of this 
model in such applications as bit-rate reduction. To re- 
duce this problem, the frequency dependent voicedhn- 
voiced mixture function has been restricted to a frequency 
dependent binary voiced/unvoiced decision. To further 
reduce the number of these binary parameters, the spec- 
trum is divided into multiple frequency bands and a binary 
voicedhnvoiced parameter is allocated to each band. This 
new model differs from previous models in that the spec- 
trum is divided into a large number of frequency bands 
(typically 20 or more), whereas previous models used 
three frequency bands at most [ 5 ] .  Due to the division of 
the spectrum into multiple frequency bands with a binary 
voicedhnvoiced parameter for each band, we have termed 
this new model the Multiband Excitation Model. 

The excitation spectrum I E, (a) I is obtained from the 
fundamental frequency wo and the voicedhnvoiced pa- 
rameters by combining segments of a periodic spectrum 
I P,( w )  I in the frequency bands declared voiced with 
segments of a random noise spectrum 1 U, (a) I in the fre- 
quency bands declared unvoiced. The periodic spectrum 
1 P, ( w ) 1 is completely determined by wo. One method for 
generating the periodic spectrum I P, ( w ) 1 is to take the 
Fourier transform magnitude of a windowed impulse train 
with pitch period P. In another method, the Fourier trans- 
form of the window is centered around each harmonic of 
the fundamental frequency and summed to produce the 
periodic spectrum. An example of 1 P, ( w  ) I correspond- 
ing to wo = 0.04% is shown in Fig. l(c). The V/UV 
information allows us to mix the periodic spectrum with 
a random noise spectrum in the frequency domain in a 
frequency-dependent manner in representing the excita- 
tion spectrum. 

The Multiband Excitation Model allows noisy regions 
of the excitation spectrum to be synthesized with 1 V/UV 
bit per frequency band. This is a distinct advantage over 
simple harmonic models in coding systems [19] where 
noisy regions are synthesized from the coded phase re- 
quiring around 4 or 5 bits per harmonic. In addition, when 

I 
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W 

(g) 

Fig. 1. Illustration of Multiband Excitation Model. (a) Original spectrum. 
(b) Spectral envelope. (c) Periodic spectrum. (d) V/UV information. (e) 
Noise spectrum. (f)  Excitation spectrum. (8) Synthetic spectrum. 
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the pitch period becomes small with respect to the win- 
dow length, noisy regions of the excitation spectrum can 
no longer be well approximated with a simple harmonic 
model. 

An example of V/UV information is displayed in Fig. 
1 (d) with a high value corresponding to a voiced decision. 
An example of a typical random noise spectrum 1 U, ( w )  I 
used is shown in Fig. l(e). The excitation spectrum 
1 E ,  ( w ) I derived from I S, ( w  ) 1 in Fig. l(a) using the 
above procedure is shown in Fig. l(f). The spectral en- 
velope 1 H,  ( w ) I is represented by one sample 1 A ,  I for 
each harmonic of the fundamental in both voiced and un- 
voiced regions to reduce the number of parameters. When 
a densely sampled version of the spectral envelope is re- 
quired, it can be obtained by linearly interpolating be- 
tween samples. The synthetic speech spectrum 1 S, ( w  ) I 
obtained by multiplying I E ,  ( 0 )  I in Fig. l(f) by I H ,  ( w )  I 
in Fig. l(b) is shown in Fig. l (g) .  

It is possible [9] to synthesize high quality speech from 
the synthetic speech spectrum I S, ( w  ) 1 .  However, this 
algorithm introduces a significant delay and requires con- 
siderable computation. Consequently, we have included 
the phase of harmonics declared voiced as additional 
model parameters to avoid these problems. 

The parameters that we use in our model, then, are the 
spectral envelope, the fundamental frequency, the V/UV 
information for each harmonic, and the phase of each har- 
monic declared voiced. The phases of harmonics in fre- 
quency bands declared unvoiced are not included since 
they are not required by the synthesis algorithm (Section 
IV) . 

111. SPEECH ANALYSIS 

In many approaches [17], [21], [2], [6], [25], the al- 
gorithms for estimation of excitation parameters and es- 
timation of spectral envelope parameters operate indepen- 
dently. These parameters are usually estimated based on 
some reasonable but. heuristic criterion without explicit 
consideration of how close the synthesized speech will be 
to the original speech. This can result in a synthetic spec- 
trum quite different from the original spectrum. 

In our approach, the excitation and spectral envelope 
parameters are estimated simultaneously so that the syn- 
thesized spectrum is closest in the least squares sense to 
the spectrum of the original speech. This approach can be 
viewed as an “analysis by synthesis” method [22]. 

Estimation of all of the speech model parameters simul- 
taneously would be a computationally prohibitive prob- 
lem. Consequently, the estimation process has been di- 
vided into two major steps. In the first step, the pitch 
period and spectral envelope parameters are estimated to 
minimize the error between tQe original spectrum I S, ( w ) I 
and the synthetic spectrum I S, ( w )  I .  Then, the V/UV de- 
cisions are made based on the closeness of fit between the 
original and the synthetic spectrum at each harmonic of 
the estimated fundamental. 

The parameters of our speech model can be estimated 

by minimizing the following error criterion: 

where 

(4) 

This error criterion was chosen since it performed well in 
our previous work [8]. In addition, this error criterion 
yields fairly simple expressions for the optimal estimates 
of the sample I A ,  1 of the spectral envelope I H, ( w  ) 1 .  
Frequency dependent weighting functions can be applied 
to the original spectrum prior to minimization to empha- 
size high SNR regions. Other error criteria could also be 
used. For example, the error criterion given by 

can be used to estimate both the magnitude and phase of 
the samples A ,  of the spectral envelope. 

A .  Estimation of Pitch Period and Spectral Envelope 
The objective is to choose the pitch period and spectral 

envelope parameters to minimize the error of (3). In gen- 
eral, minimizing this error over all parameters simulta- 
neously is a difficult and computationally expensive prob- 
lem. However, we note that for a given pitch period, the 
best spectral envelope parameters can be easily estimated. 
To show this, we divide the spectrum into frequency bands 
centered each harmonic of the fundamental frequency. For 
simplicity, we will model the spectral envelope as con- 
stant in this interval with a value of A,. This allows the 
error criterion of (3) in the interval around the mth har- 
monic to be written as 

where the interval [a,, b,] is an interval with a width of 
the fundamental frequency centered on the mth harmonic 
of the fundamental. The error G, is minimized at 

n b, 

IAm( = (7) j” am IE , (w)  l 2  dw 

The corresponding estimate of A ,  based on the error cri- 
terion of ( 5 )  is given by 

[ b m  S , ( w ) E $ ( w )  dw 

Jam 

For voiced frequency intervals, the envelope parame- 
ters are estimated by substituting the periodic transform 
P ,  ( w )  for the excitation transform E ,  ( w )  in (7) and (8). 

T -- I 1  
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Note that the A, obtained has both magnitude and phase. 
An efficient method for obtaining a good approximation 
for the periodic transform P, ( w  ) in this interval is to pre- 
compute samples of the Fourier transform of the window 
w ( n )  and center it around the harmonic frequency asso- 
ciated with this interval. 

For unvoiced frequency intervals, the envelope param- 
eters are estimated by substituting idealized white noise 
(unity across the band) for 1 E, (a) I in (7) which reduces 
to averaging the original spectrum in each frequency in- 
terval. For unvoiced regions, only the magnitude of A, is 
estimated since the phase of A, is not required for speech 
synthesis. 

For adjacent intervals, the minimum error for entirely 
periodic excitation for the given pitch period is then 
computed as 

G = cem 
m 

(9) 

where 6, is E ,  in (6) evaluated with the I A, I of (7). In 
this manner, the spectral envelope parameters which min- 
imize the error E can be computed for a given pitch period 
P. This reduces the original multidimensional problem to 
the one-dimensional problem of finding the pitch period 
P that minimizes 6. 

Experimentally, the error E tends to vary slowly with 
the pitch period P. This allows an initial estimate of the 
pitch period near the global minimum to be obtained by 
evaluating the error on a coarse grid. In practice, the ini- 
tial estimate is obtained by evaluating the error for in- 
teger pitch periods. In this initial coarse estimation of the 
pitch period, the high-frequency harmonics cannot be well 
matched so the frequency weighting function applied to 
the original spectrum is chosen to deemphasize high fre- 
quencies. 

Since integer multiples of the correct pitch period have 
spectra with harmonics at the correct frequencies, the er- 
ror 6 will be comparable for the correct pitch period and 
its integer multiples. Consequently, once the pitch period 
which minimizes g is found, the errors at submultiples of 
this pitch period are compared to the minimum error and 
the smallest pitch period with comparable error is chosen 
as the pitch period estimate. This feature can be used to 
reduce computation by limiting the initial range of P over 
which the error 

To accurately estimate the voicedhnvoiced decisions 
in high-frequency bands, pitch period estimates more ac- 
curate than the closest integer value are required [lo]. 
More accurate pitch period estimates can be obtained by 
using the best integer pitch period estimate chosen above 
as an initial coarse pitch period estimate. Then, the error 
is minimized locally to this estimate by using successively 
finer evaluation grids. The final pitch period estimate is 
chosen as the pitch period which produces the minimum 
error in this local minimization. The pitch period accur- 
acies that can be obtained using this method are given in 

To illustrate our new approach, a specific example will 

is computed to long pitch periods. 

[IO]. 

be considered. In Fig. 2(a), 256 samples of female speech 
sampled at 10 kHz are displayed. This speech segment 
was windowed with a 256 point Hamming window, and 
an FFT was used to compute samples of the spectrum 
!S,(o) I shown in Fig. 2(b). Fig. 2(c) shows the error 
E as a function of pitch period P. The error E is smallest 
for P = 85, but since the error for the submultiple at P 
= 42.5 is comparable, the initial estimate of the pitch 
period is chosen as 42.5 samples. If an integer pitch pe- 
riod estimate is desired, the error is evaluated at pitch pe- 
riods of 42 and 43 samples, and the integer pitch period 
estimate is chosen as the pitch period with the smalle: 
error. If noninteger pitch periods are desired, the error E 
is minimized around this initial estimate using a finer 
evaluation grid. Fig. 2(d) shows the original spectrum 
overlayed with the synthetic spectrum for the final pitch 
period estimate of 42.48 samples. For comparison, Fig. 
2(e) shows the original spectrum overlayed with the syn- 
thetic spectrum for the best integer pitch period estimate 
of 42 samples. This figure demonstrates the mismatch of 
the high harmonics obtained if only integer pitch periods 
are allowed. 

To obtain the maximum sensitivity to regions of the 
spectrum containing pitch harmonics when large regions 
of the spectrum contain noise-like energy, the expected 
value of the error should not vary with the pitch period 
for a spectrum consisting entirely of noise-like energy. 
However, since the spectral envelope is sampled more 
densely for longer pitch periods, the expected error is 
smaller for longer pitch periods. This bias toward longer 
pitch periods can be calculated [lo], and an unbiased er- 
ror criterion E u B  is developed by multiplying the error g 
by a pitch period dependent correction factor to produce 

To obtain this result, the window w ( n )  was normalized 
to have unit energy. The error criterion E U B  has been nor- 
malized so that the minimum is near zero for a purely 
periodic signal and is near one for a noise signal. This 
unbiased error criterion significantly improves the perfor- 
mance for noisy speech. 

In practice, these computations are performed by re- 
placing integrals of continuous functions by summations 
of samples of these functions. However, evaluating the 
error criterion for all possible integer pitch periods in or- 
der to obtain an initial fundamental frequency estimate 
can be quite computationally expensive. Reasonable ap- 
proximations [lo] lead to a substantially more efficient 
method for computing E U B :  

03 

c w2(n)s2 (n)  - \ k ( P )  
(11) 

n = -m 
€LIB OD 

( 1  - P n =  c -m ..(.)) I= --* IS,(n)12dw 
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(e) 
Fig. 2 .  Estimation of model parameters. (a) Speech segment. (b) Original 

spectrum. (c) Error versus pitch period. (d) Original and synthetic ( P  = 
42.48). (e) Original and synthetic ( P  = 42) .  

where 
m 

9 ( P )  = P C q5(kP) (12)  
k =  -m 

and q5 ( m )  is the autocorrelation function of w2 ( n )  s ( n  ) 
given by 

m 

+ ( m )  = w2(n) s (n )w2(n  - m ) s ( n  - m ) .  (13)  

Minimizing (1 1) over P is equivalent to maximizing (12). 
This technique is similar to the autocorrelation method, 
but considers the peaks at multiples of the pitch period 
instead of only the peak at the pitch period. This suggests 

a computationally efficient method for maximizing \k ( P )  
over all integer pitch periods by computing the autocor- 
relation function using the fast Fourier transform (FFT) 
and then summing samples spaced by the pitch period. It 
should be noted that, in practice, the summations of (12) 
are finite due to the finite length of the window w( n ) .  For 
a rectangular window, the result given by (12) and (13) 
reduces to the result given in Wise et al. [27]. Since this 
autocorrelation domain method is somewhat less accurate 
than the frequency domain method discussed earlier [lo], 
the frequency domain method is used to refine the initial 
coarse fundamental estimate provided by the autocorre- 
lation domain method. 

B. Pitch Tracking 
Pitch tracking methods can easily be incorporated in 

this analysis system. Many pitch tracking methods em- 
ploy a smoothing approach to reduce gross pitch errors. 
One problem with these techniques is that in the smooth- 
ing process, the accuracy of the pitch period estimate is 
degraded even for clean speech. One pitch tracking 
method which we have found particularly useful, in prac- 
tice, for obtaining accurate estimates in clean speech and 
reducing gross pitch errors under very low signal-to-noise 
ratios, is based on a dynamic programming approach. 
There are three pitch track conditions to consider: 1) the 
pitch track starts in the current frame, 2) the pitch track 
terminates in the current frame, and 3) the pitch track con- 
tinues through the current frame. We have found that the 
third condition is adequately modeled by one of the first 
two. We wish to find the best pitch track starting or ter- 
minating in the current frame. We will look forward and 
backward N frames where N is small enough that insig- 
nificant delay is encountered ( N  = 3 corresponding to 60 
ms is typical). The allowable frame-to-frame pitch period 
deviation is set to D samples ( D  = 2 is typical). We then 
find the minimum error paths from N frames in the past 
to the current frame, and from N frames in the future to 
the current frame. We then determine which of these paths 
has the smallest error, and the initial pitch period estimate 
is chosen as the pitch period in the current frame in which 
this smallest error path terminates. The error along a path 
is determined by summing the errors at each pitch period 
through which the path passes. Dynamic programming 
techniques [20] are used to significantly reduce the com- 
putational requirements of this procedure. 

C. Estimation of V/UV Information 
The voiced/unvoiced decision for each harmonic is 

made by comparing the normalized error over each har- 
monic of the estimated fundamental to a threshold. When 
the normalized error over the mth harmonic 

(14) 
ern tn~ = I h, 

2~ a, 
- s (S&)12 dw 

is below the threshold, this region of the spectrum matches 
that of a periodic spectrum well and the rnth harmonic is 

11 - -  
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I Window SpeechSegment 1 
1 

Compute Error Vs. Pitch Period 
(Autocorrelation Approach) 

Select Initial Pitch Period 
(Dynamic Programming Pitch Tracker) 

Refine Initial Pitch Period 

Estimate Voiced and Unvoiced 
Spectral Envelope Parameters 

1 
I M&e V/UV Decision for 

Each Frequency Band I 
Select Voiced or Unvoiced 

Spectral Envelope Parameters 
for Each Frequency Band 

Fig. 3.  Analysis algorithm flowchart. 

marked voiced. When t ,  is above the threshold, this re- 
gion of the spectrum is assumed to contain noise-like en- 
ergy. A threshold value of 0.2 works well in practice. 
After the voicedhnvoiced decision is made for each fre- 
quency band, the voiced or unvoiced spectral envelope 
parameter estimates are selected as appropriate. 

D. Analysis Algorithm 
The analysis algorithm that we use in practice consists 

of the following steps (see Fig. 3). 
1) Window a speech segment with the analysis win- 

dow. 
2) Compute the unbiased error criterion of (10) versus 

pitch period using the efficient autocorrelation domain ap- 
proach (1 1). This error is typically computed for all in- 
teger pitch periods from 20 to 120 samples for a 10 kHz 
sampling rate. 

3) Use the dynamic programming approach described 
in Section 111-B to select the initial pitch period estimate. 
This pitch tracking technique improves tracking through 
very low signal-to-noise ratio (SNR) segments while not 
decreasing the accuracy in high SNR segments. 

4) Refine this initial pitch period estimate by minimiz- 
ing (10) using the more accurate frequency domain pitch 
period estimation method described in Section 111-A. 

5 )  Estimate the voiced and unvoiced spectral envelope 
parameters using the techniques described in Section 

6) Make a voicedhnvoiced deeision for each fre- 
111-A. 

quency band in the spectrum. The number of frequency 
bands in the spectrum can be as large as the number of 
harmonics of the fundamental present in the spectrum. 

7) The final spectral envelope parameter representation 
is composed by combining voiced spectral envelope pa- 
rameters in those frequency bands declared voiced with 
unvoiced spectral envelope parameters in those frequency 
bands declared unvoiced. 

IV. SPEECH SYNTHESIS 

In the previous two sections, the Multiband Excitation 
Model parameters were described, and methods to esti- 
mate these parameters were developed. In this section, an 
approach to synthesizing speech from the model parame- 
ters is presented. There exist a number of methods for 
synthesizing speech from the spectral envelope and exci- 
tation parameters. One approach is to generate a sequence 
of synthetic spectral magnitudes from the estimated model 
parameters. Algorithms [8] for estimating a signal from 
the synthetic short-time Fourier transform magnitude 
(STFTM) are expensive computationally and require a 
processing delay of approximately 1 s. This delay is un- 
acceptable in most real-time speech bandwidth compres- 
sion applications, and we have not considered this ap- 
proach further. 

In another approach, which we refer to as the frequency 
domain approach, an excitation transform is constructed 
by combining segments of a periodic transform in fre- 
quency bands declared voiced with segments of a noise 
transform in frequency bands declared unvoiced. The 
noise transform segments are normalized to have an aver- 
age magnitude of unity. A spectral envelope is con- 
structed by linearly interpolating between the spectral en- 
velope samples I A,,, I. The phase of the spectral envelope 
in voiced frequency bands is set to the phase of envelope 
samples A,. A synthetic STFT is then constructed as the 
product of the excitation transform and the spectral en- 
velope. The weighted overlap-add algorithm [8] can then 
be used to estimate a signal with STFT closest to this syn- 
thetic STFT in the least-squares sense. A problem can 
arise with this method when voiced speech is synthesized 
for large window shifts (large window shifts are required 
to reduce the bit-rate in speech coding applications). Since 
the voiced portion of the synthesized signal is modeled as 
a periodic signal with constant fundamental over the en- 
tire frame, when large window shifts are used, a large 
change in fundamental frequency from one frame to the 
next causes time discontinuities in the harmonics of the 
fundamental in the STFTM. 

A third apprach to synthesizing speech, which we refer 
to as the time domain approach, involves synthesizing the 
voiced and unvoiced portions in the time domain and then 
adding them together. The voiced signal can be synthe- 
sized as the sum of sinusoidal oscillators with frequencies 
at the harmonics of the fundamental and amplitudes set 
by the spectral envelope parameters. This technique has 
the advantage of allowing a continuous variation in fun- 
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White Noise 
Sequence ’ 

damental frequency from one frame to the next eliminat- 
ing the problem of time discontinuities in the harmonics 
of the fundamental in the STFTM. The unvoiced signal 
can be synthesized as the sum of bandpass filtered white 
noise. 

The time domain method was selected for synthesizing 
the voiced portion of the synthetic speech. This method 
was selected due to its advantage of allowing a continuous 
variation in fundamental frequency from frame to frame. 
The frequency domain method was selected for synthe- 
sizing the unvoiced portion of the synthetic speech. This 
method was selected due to the ease and efficiency of im- 
plementation of a filter bank in the frequency domain with 
the fast Fourier transform (FFT) algorithm. 

A block diagram of our current speech synthesis system 
is shown in Figs. 4-7. First, the spectral envelope sam- 
ples are separated into voiced or unvoiced spectral enve- 
lope samples depending on whether they are in frequency 
bands declared voiced or unvoiced (Fig. 4). Voiced en- 
velope samples in frequency bands declared unvoiced are 
set to zero, as are unvoiced envelope samples in fre- 
quency bands declared voiced. Voiced envelope samples 
include both magnitude and phase, whereas unvoiced en- 
velope samples include only the magnitude. 

Voiced speech is synthesized from the voiced envelope 
samples by summing the outputs of a band of sinusoidal 
oscillators running at the harmonics of the fundamental 
frequency (Fig. 5 ) :  

it&) = C A , @ )  COS (e , ( t ) ) .  (15) 
m 

The amplitude function A ,  ( t )  is linearly interpolated 
between frames with the amplitudes of harmonics marked 
unvoiced set to zero. The phase function 8, ( t )  is deter- 
mined by an initial phase +o and a frequency track w, ( t )  
as follows: 

(16) 

srn Replace Weighted Unvoiced 
Envelope - Overlap-Add Speech > 

The frequency track w, ( t )  is linearly interpolated be- 
tween the mth harmonic of the current frame and that of 
the next frame by 

where w o ( 0 )  and w o ( S )  are the fundamental frequencies 
at t = 0 and t = S ,  respectively, and S is the window 
shift. The initial phase +o and frequency deviation Aw, 
parameters are chosen so that the principal values of 8, ( 0 )  
and 8,(S) are equal to the measured harmonic phases in 
the current and next frame. When the mth harmonics of 
the current and next frames are both declared voiced, the 
initial phase +o is set to the measured phase of the current 
frame, and Aw, is chosen to be the smallest frequency 
deviation required to match the phase of the next frame. 
When either of the harmonics is declared unvoiced, only 
the initial phase parameter +o is required to match the 

+, 
Fig. 4. Separation of envelope samples 

Fig. 5 .  Voiced speech synthesis. 

phase function 8, ( t )  with the phase of the voiced har- 
monic (Aw, is set to zero). When both harmonics are 
declared unvoiced, the amplitude function A ,  ( t )  is zero 
over the entire interval between frames so any phase func- 
tion will suffice. 

Large differences in fundamental frequency can occur 
between adjacent frames due to word boundaries and other 
effects. In these cases, linear interpolation of the funda- 
mental frequency between frames is a poor model of fun- 
damental frequency variation and can lead to artifacts in 
the synthesized signal. Consequently, when fundamental 
frequency changes of more than 10 percent are encoun- 
tered from frame to frame, the voiced harmonics of the 
current frame and the next frame are treated as if followed 
and preceded respectively by unvoiced harmonics. 

Unvoiced speech is synthesized from the unvoiced en- 
velope samples by first synthesizing a white noise se- 
quence. For each frame, the white noise sequence is win- 
dowed and an FFT is applied to produce samples of the 
Fourier transform (Fig. 6). In each unvoiced frequency 
band, the noise transform samples are normalized to have 
unity magnitude. The unvoiced spectral envelope is con- 
structed by linearly interpolating between the envelope 
samples 1 A ,  I .  The normalized noise transform is multi- 
plied by the spectral envelope to produce the synthetic 
transform. The synthetic transforms are then used to syn- 
thesize unvoiced speech using the weighted overlap-add 
method. 

The final synthesized speech is generated by summing 
the voiced and unvoiced synthesized speech signals (Fig. 
7). 
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Voiced 

Synthesized 

Unvoiced 
Speech 

Fig. 7. Speech synthesis. 

V. DEVELOPMENT OF 8 KBIT/S MULTIBAND EXCITATION 
VOCODER 

Among many applications of our new model, we con- 
sidered the problem of bit-rate reduction for speech trans- 
mission and storage. In a number of speech coding appli- 
cations, it is important to reproduce the original clean or 
noisy speech as closely as possible. For example, in mo- 
bile telephone applications, users would like to be able to 
identify the person on the other end of the phone and are 
usually annoyed at any artificial sounding degradations. 
These degradations are particularly severe for most vo- 
coders when operating in noisy environments such as a 
moving car. Consequently, for these applications, we are 
interested in both the quality and intelligibility of the re- 
produced speech. In other applications, such as a fighter 
cockpit, the message is of primary importance. For these 
applications, we are interested mainly in the intelligibility 
of the reproduced speech. 

To demonstrate the performance of the Multiband Ex- 
citation Speeck Analysis/Synthesis System for this prob- 
lem, an 8 kbit/s speech coding system was developed. 
Since our primary goal is to demonstrate the high perfor- 
mance of the Multiband Excitation Model and the corre- 
sponding speech analysis methods, conventional param- 
eter coding methods have been used to facilitate 
comparison with other systems. 

The major innovation in the Multiband Excitation 
Speech Model is the ability to declare a large number of 
frequency regions as containing periodic or aperiodic en- 
ergy. To determine the advantage of this new model, the 
Multiband Excitation Vocoder operating at 8 kbit/s was 
compared to a system using a single V/UV bit per frame 
(Single Band Excitation Vocoder). The Single Band Ex- 
citation (SBE) Coder employs exactly the same parame- 
ters as the Multiband Excitation Speech Coder, except that 
one VIUV bit per frame is used instead of 12 and is a 
degenerate case of the MBE Coder (one frequency band). 
Although this results in a somewhat smaller bit rate for 
the SBE Coder (7.45 kbit/s), we wished to maintain the 
same coding rates for the other parameters in order to fo- 
cus the comparison on the usefulness of the V/UV infor- 
mation rather than particular modeling or coding methods 
for the other parameters. 

A. Coding of Speech Model Parameters 
A 25.6 ms Hamming window was used to segment 4 

kHz bandwidth speech sampled at 10 kHz. The estimated 
speech model parameters were coded at 8 kbit/s using a 
50 Hz frame rate. This allows 160 bits per frame for cod- 
ing the harmonic magnitudes and phases, fundamental 
frequency, and voiced/unvoiced information. The num- 

ber of bits allocated to each of these parameters per frame 
is displayed in Table I. The fundamental frequency is 
coded using 9 bits with uniform quantization. As dis- 
cussed in Section IV, phase is not required for harmonics 
declared unvoiced. Consequently, bits assigned to phases 
declared unvoiced are reassigned to the magnitude. When 
all harmonics are declared voiced, 45 bits are assigned for 
phase coding and 94 bits are assigned for magnitude cod- 
ing. At the other extreme, when all harmonics are de- 
clared unvoiced, no bits are assigned to phase and 139 
bits are assigned for magnitude coding. 

Coding of Harmonic Magnitudes: The harmonic mag- 
nitudes are coded using the same techniques employed by 
channel vocoders [ l l ]  (Fig. 8). In this method, the loga- 
rithms of the harmonic magnitudes are encoded using 
adaptive differential PCM across frequency. The log- 
magnitude of the first harmonic is coded using 5 bits with 
a quantization step size of 2 dB. The number of bits as- 
signed to coding the difference between the log-magni- 
tude of the mth harmonic and the coded value of the pre- 
vious harmonic (within the same frame) is determined by 
summing samples of the bit density curve of Fig. 9 over 
the frequency interval occupied by the rnth harmonic. The 
available bits for coding the magnitude are then assigned 
to each harmonic in proportion to these sums. The quan- 
tization step size depends on the number of bits assigned 
and is listed in Table 11. 

Coding of Harmonic Phases: When generating the 
STFT phase, the primary consideration in high quality 
synthesis is to generate the STFT phase so that the phase 
difference from frame to frame is consistent with the fun- 
damental frequency in voiced regions. Obtaining the cor- 
rect relative phase between harmonics is of secondary im- 
portance for high quality synthesis. However, results of 
informal listening indicate that incorrect relative phase 
between harmonics can cause a variety of perceptual dif- 
ferences between the original and synthesized speech es- 
pecially at low frequencies. 

Fig. 10 shows the method used for phase coding. The 
phases of harmonics declared voiced are encoded by pre- 
dicting the phase of the current frame from the phase of 
the previous frame using the average fundamental fre- 
quency for the two frames. Then, the difference between 
the predicted and estimated phase for the current frame is 
coded starting with the phases of the low-frequency har- 
monics. The difference between the predicted and esti- 
mated phase is set to zero for any uncoded voiced har- 
monics to maintain a frame-to-frame phase difference 
consistent with the fundamental frequency. The phases of 
harmonics in frequency regions declared unvoiced do not 
need to be coded since they are not required by the speech 
synthesizer. 

The phase differences for voiced regions are expected 
to cluster around zero due to the influence of the funda- 
mental frequency. Phase difference histograms were com- 
puted for several frequency bands. These histograms were 
used to develop 13 level Lloyd-Max quantizers [ 151, [ 181, 
by minimizing the average quantization error. 
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TABLE 1 
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Bits 

Bits Step Size (dB) 

1 8 

2 6.5 

Harmonic Phases 

Voiced/Unvoiced Bits 

Total 160 

Min (dB) Max (dB) I 

-4 4 

-9.75 9.75 

0.8 

f 0.4 O . I  

Estimated 
Phases 

Coded Phases 

u 

Fig. IO. Coding of phases 

clustering of voiced/unvoiced decisions. However, run- 
length coding requires a variable number of bits to exactly 
encode a fixed number of samples. This makes imple- 
mentation of a fixed rate coder more difficult. 

A simple approach to coding the voiced/unvoiced in- 
formation with a fixed number of bits while providing 
good performance was developed (Fig. 11). In this ap- 
proach, if N bits are available, the spectrum is divided 
into N equal frequency bands and a voiced/unvoiced bit 
is used for each band. The voiced/unvoiced bit is set by 
comparing a weighted sum of the normalized errors of all 
of the harmonics in a particular frequency band to a 
threshold. When the weighted sum is less than the thresh- 
old, the frequency band is set to voiced. When the 
weighted sum is greater than the threshold, the frequency 
band is set to unvoiced. The sum is weighted by the es- 
timated harmonic magnitudes as follows: 

Samples 

Fig. 8.  Coding of magnitudes. 

\ 0.2 t 

Frequency (kHz) 

Fig. 9. Magnitude bit density curve 

I 3 I 5 I -17.5 I 17.5 I 
-22.5 

-31.5 

0.5 

8 I 0.25 I -31.875 I 31.875 

Coding of V/UV Information: The voiced/unvoiced in- 
formation can be encoded using a variety of methods. We 
have observed that voiced/unvoiced decisions tend to 
cluster in both frequency and time due to the slowly vary- 
ing nature of speech in the STFTM domain. Run-length 
coding can be used to take advantage of this expected 

( A m  I E m  

lAml 
E k =  (18) 

where m is summed over all of the harmonics in the kth 
frequency band. 

Coding-Implementation: The 8 kbit/s MBE Coder 
was implemented on a MASSCOMP computer (68020 
CPU) in the C programming language. The entire system 
(analysis, coding, synthesis) required approximately 1 min 
of processing time per second of input speech on this gen- 
eral purpose computer system. The increased throughput 
available from special purpose architectures and conver- 
sion from floating point to fixed point should make these 
algorithms implementable in real time with several Digi- 
tal Signal Processing (DSP) chips. 

B. Quality-Informal Listening 
Informal listening was used to compare a number of 

speech sentences processed by the 8 kbit/s Multiband Ex- 
citation Vocoder and the 7.45 kbit/s Single Band Exci- 
tation Vocoder. For clean speech, the speech sentences 
coded by the MBE Vocoder did not have the slight “buz- 
ziness” present in some regions of speech processed by 
the SBE Vocoder. Fig. 12(a) shows a spectrogram of the 
sentence. “He has the bluest eyes” spoken by a male 
speaker. 

In this spectrogram, darkness is proportional to the log 
of the energy versus time (0-2 s ,  horizontal axis ) and 
frequency (0-5 kHz, vertical axis). Periodic energy is 
typified by the presence of parallel horizontal bars of 
darkness which occur at the harmonics of the fundamental 
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Fig. 12. Clean speech spectrograms. (a) Uncoded speech. (b) MBE vo- 

coder. (c) SBE vocoder. 

frequency. One region of particular interest is the / h /  
phoneme in the word “has.” In this region, several har- 
monics of the fundamental frequency appear in the low- 
frequency region, while the upper frequency region is 
dominated by aperiodic energy. The Multiband Excitation 
Vocoder operating at 8 kbit/s reproduces this region quite 
faithfully using 12 V/UV bits [Fig. 12(b)]. The SBE Vo- 
coder declares the entire spectrum voiced and replaces the 

aperiodic energy apparent in the original spectrogram with 
harmonics of the fundamental frequency [Fig. 12(c)]. This 
causes a “buzzy” sound in the speech synthesized by the 
SBE Vocoder which is eliminated by the MBE Vocoder. 
The MBE Vocoder produces fairly high quality speech at 
8 kbit/s. The major degradation in these two systems 
(other than the “buzziness” in the SBE Vocoder) is a 
slightly reverberant quality due to the large synthesis win- 
dows (40 ms triangular windows) and the lack of enough 
coded phase information. 

For speech corrupted by additive random noise [Fig. 
13(a)], the SBE Vocoder (Fig. 13(c)] had severe “buz- 
ziness” and a number of voiced/unvoiced errors. The se- 
vere ‘‘buzziness” is due to replacing the aperiodic energy 
evident in the original spectrogram by harmonics of the 
fundamental frequency. The V/UV errors occur due to 
dominance of the aperiodic energy in all but a few small 
regions of the spectrum. The voiced/unvoiced threshold 
could not be raised further without a large number of the 
totally unvoiced frames being declared voiced. The noisy 
speech sentences processed by the Multiband Excitation 
Vocoder [for example, see Fig. 13(b)] did not have the 
severe “buzziness” present in the Single Band Excitation 
Speech Coder and did not seem to have a problem with 
voiced/unvoiced errors since much smaller frequency re- 
gions are covered by each V/UV decision. In addition, 
the sentences processed by the MBE Vocoder sound very 
close to the original noisy speech. 

C. Intelligibility-Diagnostic Rhyme Tests 

The Diagnostic Rhyme Test (DRT) was developed to 
provide a measure of the intelligibility of speech signals. 
The DRT is a refinement of earlier intelligibility tests such 
as the Rhyme Test developed by Fairbanks [4] and the 
Modified Rhyme Test developed by House et al. [12]. 
The form of the DRT used here is described in detail in 
Voiers [26]. The DRT score is adjusted to remove the 
effects of guessing so that random guessing would achieve 
a score of zero on average. No errors in a DRT corre- 
spond to a score of 100. 

The DRT was employed to compare uncoded speech 
with the 8 kbit/s Multiband Excitation Vocoder (12 V/ 
UV bits per frame) and the Single Band Excitation Vo- 
coder ( 1  V/UV bit per frame). Two conditions were 
tested: 1) clean speech, and 2) speech corrupted by ad- 
ditive white Gaussian noise. Based on the informal listen- 
ing in the previous section, we expect the scores for the 
two vocoders to be very close for clean speech since only 
a slight quality improvement was noted for this case. For 
noisy speech, the MBE Vocoder provides a significant 
quality improvement over the SBE Vocoder which leads 
us to expect a measurable intelligibility improvement. The 
noise level was adjusted to produce approximately a 5 dB 
signal-to-noise ratio in the noisy speech. However, since 
amplitudes of the words on the DRT tapes differed sig- 
nificantly from each other, the SNR varied substantially 
from word to word. In these tests, we are interested in the 
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TABLE Ill 
DRT SCORES-CLEAN SPEECH 

System 

Uncoded 

8 kbps MBE 

7.45 kbps SBE 

- - 

TY Pe 

Mean 

S. D. 

Mean 

S. D. 

Mean 

S. D. 

- - 

- 

- 

Speaker 

98.2 96.6 98.7 

97.0 94.4 97.1 

.54 .39 

96.9 94.1 96.9 

.44 .55 

TABLE IV 
DRT SCORES-NOISY SPEECH 
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(b) 
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(C) 

Fig. 13. Noisy speech spectrograms. (a) Uncoded speech. (b) MBE vo- 
coder. (c) SBE vocoder. 

relative performance of the vocoders in the same back- 
ground noise which makes the noise level uncritical. 

DRT test tapes for three speakers for each of the six 
conditions ( 2  SNR’s X 3 coding conditions) were sub- 
mitted to RADC for evaluation. The DRT’s performed by 
RADC employed experienced listeners in a fairly con- 
trolled environment. The resulting DRT scores are pre- 
sented for clean speech in Table 111 and for noisy speech 
in Table IV. 

For clean speech, as expected, a couple of points are 
lost going from uncoded to coded due to low-pass filtering 
inherent in the vocoders and degradations introduced by 
coding. Also, the intelligibility scores are approximately 
the same for the MBE Vocoder and the SBE Vocoder. 

For noisy speech, the MBE Vocoder performs an aver- 
age of about 12 points better than the SBE Vocoder while 

System 

Uncoded 

8 kbps MBE 

7.45 kbps SBE 

Mean 

S. D. 

Mean 

S. D. - 

Speaker - 
RH 

69.3 

1.5 

- - 

64.5 

1.8 

49.9 

1.8 

- 

- 

7 Average 

96.0 

Average 

63.1 

1.8 

58.0 

1.6 

46.0 

1.6 

performing only about 5 points worse than the uncoded 
noisy speech. This demonstrates the utility of the extra 
voiced/unvoiced bands in the Multiband Excitation Vo- 
coder. 

VI. CONCLUSION 
In this paper, we presented a new speech model. We 

also presented methods for estimating the speech model 
parameters and methods for synthesizing speech from the 
estimated speech model parameters. The model was ap- 
plied to the development of a high quality 8 kbit/s vo- 
coder, and its performance was evaluated through both 
informal listening and DRT tests. The results indicate that 
the Multiband Excitation Model has a defnite advantage 
over a single band excitation model. 

There are various ways to improve the performance of 
the 8 kbit/s Multiband Excitation Vocoder. For example, 
the method we employed in coding the estimated model 
parameters is somewhat crude, and we have not devoted 
much effort to optimizing the coding method. Some ad- 
ditional efforts have the potential to improve the system 
performance significantly. 

In addition to speech coding, the Multiband Excitation 
Vocoder has potential usefulness in various other appli- 
cations. Since the Multiband Excitation Model separately 
estimates spectral envelope and excitation parameters, it 
can be applied to problems requiring modifications of 
these parameters. For example, in the application of en- 
hancement of speech spoken in a helium-oxygen mixture, 
a nonlinear frequency warping of the spectral envelope is 
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desired without modifying the excitation parameters [23]. 
Other applications include time-scale modification (mod- 
ification of the apparent speaking rate without changing 
other characteristics) and pitch modification. Since the 
Multiband Excitation Model appears to provide an intel- 
ligibility improvement over a system employing a single 
voicedhnvoiced decision for the entire spectrum, this 
model may also prove useful for the front ends of speech 
recognition systems. 
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