Short biography of Larry Cicchinelli

Amateur Radio Operator, K3PTO, since 1961, currently holding an Advanced class license

Education:

	Masters in Engineering Science - Pennsylvania State University - 1981

	Bachelor of Science in Electrical Engineering - Drexel Institute of Technology - 1969

Work:

	ZWorld, Inc

		Technical Support Manager - May 2000 to present

	Ford Motor Company: Visteon - 1967 to 2000

		Design and develop Automatic Test Equipment for Automotive Electronics - 30 years

		Design and build Test Equipment for Integrated Circuits - 3 years

Current interests: church activities, Ham Radio, home electronics projects and reading.

Email: K3PTO@ARRL.NET		Web Site: WWW.QSL.NET\K3PTO

This can be considered a draft proposal for the article. I would be happy to add to the content especially in the area of describing the circuits in the PLD. I could also add a description of the software internals. Please feel free to contact me at any time.

Let me know if you would like a picture of the completed assembly and/or the circuit board. I can also include schematics of the PLD internals but there would be four pages due to the complexity.

Revision History

 3-jun 2004	request by Circuit Cellar: removed embedded screen shots - inserted references to screen

			shots as BMP files.

24 jan 2004	text edits at Cicuit Cellar request - removed bulleted and numbered lists

			added SBLA_SCH.BMP

17 jan 2004	minor text edits - no technical changes

 1 Jan 2004	initial release

�
Single Board Logic Analyzer

Good test and measurement equipment is a prerequisite for the home hobbiest who is working with digital circuits of any complexity. This article describes an eight channel Single Board Logic Analyzer which you can build for about $60. All of the documentation (schematics, PC board artwork, etc) can be found on my web site. Also, the Visual Basic program which controls the LA and displays the results is there. The SBLA connects to any available parallel port (EPP 1.7) on your PC. There is a complete BOM at the end of this article.

This design is based on a previous device I built which utilizes up to 6 measurement cards and is configurable with any card combination of 8 channel LA or single channel DSO (see QEX Jan/Feb 2003). The data for this device is also on my web site. After building the DSO/LA I wanted to see what it would take to design a smaller LA where the entire circuit would fit on a single circuit board, hence its name. Since the bulk of the logic for the original device was achieved using a PLD it turned out to be fairly easy to modify it for this simpler device.

The logic of the SBLA consists of a PLD, RAM, oscillator and three supporting bi-directional buffers, see Figure 1. The primary function of two of the buffers is to isolate the PLD from the PC. I felt that the little added circuitry required was worth the effort to protect the PLD - the most expensive part of the circuit.

Here are the major goals I set for myself, all of which were accomplished, in designing this system:

single PC board which can be fabricated by the hobbiest, use as much of the previous PLD design as possible, eight channels with possible expansion to 16, use the same program as the DSO/LA, 50MHz sample rate, 128K samples per channel and utilize the same “INI” file for system configuration.

The SBLA design can be partitioned basically into three parts: the PLD, the rest of the hardware and

the Visual Basic program. The emphasis of this article is on the hardware. I will describe the GUI and INI file but will not be discussing the internals of the VB program. I have included screen shots, see Photos 1 through 3, which show the GUI main screen and some of the analysis capabilities of the software.

Since the bulk of the system logic is in the PLD I will begin by discussing its partitioning. There are several “blocks” within the PLD: Address Generator and Time Base, Trigger Control, Trigger Detect and

Trigger Latch

The PLD must be a 10ns device in order to handle the 10ns pulses from the 50MHz oscillator. However, the 12ns write cycle time of the RAM is adequate since the minimum time between address changes is 20ns. The RAM does have a minimum 10ns Write Eenable pulse width requirement which is just met with a 50MHz square wave with a 50% duty cycle. Also, the RAM has a zero hold time requirement between the /WE (clock) and the address bits. This allows the address to change at the same time the rising edge of the clock is clocking new data into the RAM.

�
Address Generator and Time Base

Both of these circuits use N-bit up counters. The Address Generator is 17 bits while the Time Base is six bits. One of the advantages of designing with PLDs is that the design software has built-in LSI functions. In order to use a counter, all I had to do was select it from a list of built-in functions, select which inputs and outputs I wanted to use and then define appropriate parameter values. Here are the parameters and signals I needed for the Address Generator: Direction = UP, Width = 17, Clock input, Asynchronous Clear input and Q outputs.

These are some of the other inputs and outputs just to give you an idea of what is available:

asynchronous load, carry in, carry out and clock enable.

The Time Base uses the same signals but is only six bits. It drives an eight input multiplexer which is used to select the sample frequency/period. Selection zero of the mux is used when reading the stored data back to the PC. Selection one is directly from the crystal oscillator. The remaining six inputs come from the Time Base divider. This is currently set as a simple binary divider. With a 50MHz oscillator the available sample periods are: 20ns, 40ns, 80ns, 160ns, 320ns, 640ns and 1280ns.

These values may seem strange but the VB program can do calculations using the sample period so it does not matter very much. I may decide to “enhance” the divider to give more conventional sample periods but these have served me quite well so far. A 40MHz oscillator will give more conventional sample periods: 25ns, 50ns, 100ns, etc. The program allows you to define the sample periods via the “ini” file.

The output of the Time Base multiplexer is used to drive both the Address Generator and the write signal (/WE) of the RAM.

�
Trigger Control

The Trigger Control subsystem starts with the pre- and post-trigger count circuits. These two circuits are made with four bit, pre-settable, down counters. They allow you to select from any one of 16 pre-trigger counts. The pre-trigger value can be set to a multiple (0 to 14) of 8192 samples starting with an offset of 4096. Those of you who are familiar with commercial LAs will recognize that this is considerably less flexible than they are. However, I have found that this capability is quite adequate to meet most requirements.

These counters are driven by the A12 signal from the Address Generator. It is this signal, when inverted, which provides the circuit its 8192 count resolution. The A12 signal changes state every 4096 samples, therefore it has a falling edge every 8192 samples. Since it starts out low, the first rising edge (occurring after 4096 samples) is the earliest that a Trigger Event can be detected.

The operation of the circuit is basically as follows: (1) set the pre- and post-trigger counters, (2) enable the system - allows the pre-trigger counter to count, (3) wait for the pre-trigger counter to count down to zero, (3) “wait” for a Trigger Event – latched by the Sample Clock, (4) store the Address Counter value at the Trigger Event, (5) enable the post-trigger counter, (6) wait for the post-trigger counter to count down to zero and then (7) signal the VB program that the system has completed its sampling.

Sampling of the data starts with step 2 above and terminates with the completion of step 6. The address counter is allowed to wrap around to a count of zero and begin counting up again. Since the pre-trigger value and the trigger event address are known, the software aligns the data properly for viewing.

There are a number of control signals which are generated by this circuit. Three of them are sent back to the PC as status information. Once the system has been enabled it displays each of these values as the capture cycle progresses.

Trigger Detect

The Trigger Detect circuit is very simple and, as a consequence, is limited in its capabilities. Since I wanted to keep the system as small and inexpensive as possible I have allowed only the first four channels to be used for triggering. The following possibilities are available: channel is disabled – trigger on any state, channel is enabled to trigger when the channel is a logic 1 and channel is enabled to trigger when the channel is a logic 0

The circuit is essentially an “and” gate so that the selected trigger condition for all four of the channels must be met in order to trigger the system. Again, this is considerably less flexible than commercial units, although I have found it adequate to meet my requirements. As I work further on the system I may be able to enhance its triggering capabilities. This will be largely a function of how much more logic is available in the PLD.

Trigger Latch

The Trigger Latch is perhaps the simplest of the subsystems in the Logic Analyzer. It is simply a 16 bit latch. The latch signal is created by the Trigger Control circuit when the trigger event is detected. The output of the latch is gated to the PC eight bits at a time. Please note that even though there are 17 address bits the latch is only 16 bits. This is again done as a cost saving measure. The 17th bit can be easily inserted by the software by looking at the data and determining if the address with bit 0 = 0 meets the trigger conditions. If it does not then address bit 0 must be a 1.

�
Remaining Circuits

Other circuits in the PLD include command function decode, Time Base selection latch ,Trigger condition values latch and gateing selected signals back to the PC.

The circuits external to the PLD mostly perform buffering and/or isolation:

U2 and U3 are 74HCT245s. Their main function is to isolate the PLD from the cable to the PC.

U4 is a 74AHCT245. I am using an AHC device here because I need the higher speed. The standard HCT devices are not fast enough for 50MHz operation. Also, I selected HCT devices instead of HC due to the output voltage levels of the PLD only going up to about 3.5 volts. All three could be AHCT but I do not like to use high speed devices except where required.

The 50MHz oscillator is a standard TTL/CMOS part with no special requirements other than 50% duty cycle.

Some construction notes

The devices mounted on side 1 of the board are: All connectors and headers (except H1 for programming the PLD), the two resistor networks, U5 - RAM, U6 - oscillator and the Bypass capacitors

The devices on side 2 are: U1 - PLD, U2, U3, U4 and H1 - PLD programming header

The power socket is mounted on the box.

Construction of the Logic Analyzer requires a few deviations from normal construction methods.

I mounted the PLD in a socket. The socket I have chosen is an SMD type with “J” leads. I chose this type in order to avoid having to drill 84 holes in the board and then route signals between pins. However, it does present one challenge to hand soldering – how to solder the leads. The method I adopted was to carefully bend the socket leads, one at a time, so that they protrude out from the side of the socket. This makes it look like an SOIC socket. The operation takes about 10 minutes and is not very difficult.

The RAM is also is a “J” lead package and, again, I bent the leads out to make it essentially an SOIC. I have not been able to find a pin compatible RAM in an SOIC package. There are fast RAMs available as SOICs but their pinout makes them more difficult to layout the board.

There are three “extra” headers on the board: J1, J2 and J3. These are mainly for expanding the system to 16 channels. By the time this article is printed I hope to have this feature fully implemented. However, the headers are also used as signal “feed thru” points. So, if you are not planning on implementing the second set of eight channels you will need to solder jumper wires in their places since the board does not have plated thru holes. If you choose to mount these connectors you will need to be careful since many of the pins must be soldered on both sides of the board. This can be easily accomplished by inserting the connector upside down and then pushing the plastic insulation piece closer to the board after soldering. I suggest breaking loose the plastic spacer from each pin before soldering.

There are several places where hand inserted feed thru wires must be inserted. They are plainly indicated in the documentation on my web site (WWW.QSL.NET\K3PTO).

The 10 pin header is only for programming the PLD and is not required for operation.

The 2.1mm jack and socket are for power input.

Bill of Materials

Most parts are available from DigiKey.

Part Type		DigiKey Part Number	Qty

74HCT245DW		296-1208-5-ND		2

74AHCT245DW		296-1117-5-ND		1

ATF1508AS-10JC84	ATF1508AS-10JC84-ND	1

CY7C109B-15NC	428-1033-ND		1

50MHz Oscillator	X121-ND		1

9 PIN D-M		182-709M-ND		1

25 PIN D-M		182-725M-ND		1

1K RN			4116R-1-102-ND	1

47K RN			770-101-R47K-ND	1

Header			WM6840-ND		1

Header			WM6508-ND		1

84 PIN PLCC Socket	ED80013-ND		1

2.1mm Jack		CP-5_ND		1

2.1mm Socket		CP-004A-ND		1

Cabinet			HM613-ND		1

25 pin D M-M cable	*174001CD		1 	*Jameco

The BOM does not contain the bypass capacitors I used since I had them in my stock and do not remember where I purchased them. Any good high frequency bypasses will do. I believe this list is complete but will update my web site as I find it necessary.

I also have not shown the printed circuit board. Since I made my own it would be difficult to determine the total price of the materials needed to etch it. However, I hope to have a board made by Far Circuits available by the time this is printed. If there is enough interest I will make a kit available which will include a programmed PLD and a printed circuit board.

�
The INI file

The program uses an INI file for configuration information. It is very similar in construction to the Windows 3 ini file types. I have attempted to put EVERY menu parameter into this file. I still prefer this technique as compared to putting everything in the Registry. There are some items in the INI file which are not currently available via the menus: parallel port address, list of available sample periods, and name to appear in the Title bar.

The first time the program is run it will look in the same folder as the program for DSO.INI. If it is not there the program will pop up a window which allows you to find one. Once the program is run it will save the path of the last used INI file in the Windows Registry and will use that INI file when the program is restarted. This is the only item stored inthe Registry.

The sample file as well as the Windows Help file fully describe the syntax of the INI file. You will want to edit it at least one time to “register” your name, which will appear on the title bar, and to insert the address of your parallel port. Once this is done the values will be copied to all subsequently saved INI files.

I recommend that you have an INI file associated with each “project” on which you are working. It saves a lot of time as compared to going through each of the menus.

Software

The program is written in Visual Basic 6. I obtained a printer port driver DLL from www.LVR.com. Since the program is based on my DSO/LA you will see a number of references to it. These can be ignored since the same program is used for both devices. I have not attempted to change every occurrence of “DSO/LA” since it does not impact the operation of the program. The Help system points out the differences where appropriate.

I have tried to make the program as easy and intuitive as possible to use. There are few menus and I believe they are reasonably easy to navigate. The main menu has the following selections:

File - this allows you to operate on the INI file as well as data. You can store and retrieve the acquired data in either binary or CSV formats. All configuration information is stored in an INI file of the same name as the data file but with the appropriate file type. You can also save and retrieve any INI file you wish.

Boards - name each channel as well as enable/disable and optionally invert selected channels

Trigger - select the trigger state for each channel and the pre-trigger count

Display - primarily the zoom and slide factors and the Time Base

Markers - enables/disables up to four time markers

Function Keys - shows and executes function key commands

Measurements - enables asynchronous and synchronous (SPI) decoding

Help - there is a fairly extensive help feature which uses the older style of Windows help

Debug - debug the hardware and load dummy data so you can “play” with the display capabilities

�
System Operation

The operation of the system is quite simple. As you can see from the screen shots there are not a lot of controls on the screen. Here is a brief decsription of some of them:

Arm: Initiates a capture and display cycle

Draw: Re-draw the data. This is used when you change some of the operating parameters and still want to use the already captured data.

Start and End Sample

Cursor Position

Zoom In and Out

Slide the view of the data forward or backward

Select up to 6 different views (screens) of the same captured data

The following sample screen shots, Photos1 through 3, show the serial communications between a microprocessor and a serial flash device. The Chip Select (CS), Clock and Serial In (SI) are generated by the microprocessor. The Serial Out (SO) is data transmitted by the serial flash. Note that each is a different “Screen” view. You can switch among the different screens by scrolling through them with the + and - controls.

�
Photo-1: This display (Screen 0) shows all of the data collected: 126,976 samples. You can see the results of two of the measurement capabilities of the system:

(1) the time between Marker 1 and the cursor: -4.649 msec, it is negative because the marker is earlier in time than the cursor.

(2) the decoded hex values of the serial data between the marker and the cursor.

Note that the background color of the SO signal indicates that the data has been inverted by the program - at the users request. Also, you can see that logic 1 is displayed in red while logic 0 is displayed in black.

					< insert Photo-1.BMP >

Photo-2: This display is from the same data as the previous one except that a shorter period of time (2000 samples) is being viewed. Note that it is Screen #1. Also, the marker and cursor have been moved to include only the initial two transactions - both of which are identical. These transactions tell the controlling program what model of flash device it is as well as verify that the flash is ready.

					< insert Photo-2.BMP >

Photo-3: This display is basically the same as the previous one except that an even shorter period of time

 (1000 samples) is being viewed. Note that it is Screen #2.

					< insert Photo-3.BMP >

Figure-1: This is a schematic of the printed circuit board. Since most of the actual Logic Analyzer is contained in
