
 Jul/Aug 2003 1

119 River Run Cir
Sacramento, CA 95833
k3pto@arrl.net

A PC-Based Digital Storage
Oscilloscope and Logic Analyzer

By Larry Cicchinelli, K3PTO

Build this handy multipurpose instrument for your test bench.

The device described in this ar-
ticle is a combination digital
storage oscilloscope (DSO) and

logic analyzer (LA). It interfaces to a
PC through a parallel (printer) port
as shown in Table 1. It is built using
several printed-circuit boards. The
system is designed to allow for six in-
put cards. Each card can be either
eight logic-analyzer channels or a
single analog channel (8-bit resolu-
tion).

A previous article (QEX, Jan 2000)
describes an eight-channel LA that I
built and have used quite a bit. The
knowledge and experience gained in
its development were instrumental in

the development of this project. The
original intent was to build a DSO
only; however, it soon became obvious
that most of the design was also use-
ful for implementing a logic analyzer
(see Fig 1). I used many of the ideas
from the original LA in the design of
this combination device. My main
goals for the DSO/LA were:
• Ease of construction—use printed

circuit boards
• Two analog channels
• Minimum 20-MHz sample rate
• LA channels
• Trigger selection to allow any com-

bination of analog, digital and LA
signals

• An initialization file (referred to in
the text as the INI file) that allows
the user to define almost all of the
operating parameters
The design consists of circuit boards

that stack one upon another (see
Fig 2). They are connected together via
“board stacking” connectors (see
Fig 3). This method allows me to de-
sign a system that is easy to modify,
expand and customize. It allows the
builder to implement up to 48 LA
channels (in multiples of eight) or a
maximum of six analog channels and
any combination thereof. The result-
ing assembly is fairly close to a
4.5-inch cube with two analog cards
and one LA card. Great care was taken
in the design of the circuit boards in
order to achieve this modularity. A
template board having just the inter-
board connectors was designed first.
It was then used as the basis for all
the boards.

I wanted to achieve a 20-MHz
sample rate so that the analog chan-
nels would be useful to 10 MHz. The

2 Jul/Aug 2003

Fig 1—A block diagram of the digital-storage oscilloscope/logic analyzer project.

Fig 2—A picture of my “sandwich”
construction before I converted several
circuits to PLDs.

A/D converter selected (ADS820) is
specified to a 20-MHz sample rate, a
60-MHz bandwidth and has 10-bit
resolution. Since the circuit uses only
the most significant eight bits, some
errors of the A/D can be ignored. A
higher-frequency A/D IC is available,
and it is pin compatible with the unit
I selected, but I doubt my ability to
implement a circuit board that would
allow the additional bandwidth. The
circuit appears in Fig 4.

Major Circuits
• Control—interfaces to the printer

port, source for all the static con-
trol signals.

• Trigger Address—stores the address
at which the trigger occurs.

• Trigger Control—develops most of
the dynamic control signals, pre/
post trigger count.

Fig 3—A wiring diagram of the connections between boards.

• Trigger Detect—detects the trigger
condition.

• Address Generator—17-bit address
= 132 k.

• Time Base—generates the sample
clock frequencies.

• LA—CMOS levels, eight channels,
132 k memory depth.

• A/D Converter—+0.5 to +4.5 V, 8-bit
resolution using a 10-bit A/D and
132 k memory depth.

Design History
During the various phases of build-

ing and debugging the circuits, I
developed several versions of some cir-

 Jul/Aug 2003 3

Table 1—Printer Port Signal Usage

Output Control Bits
Pin Printer Port Name Usage
1 /C0: Strobe RegSel 0
14 /C1: Auto-Linefeed RegSel 1
16 C2: Initialize RegSel 2
17 /C3: Select-Printer Strobe

Input Control Bits
Pin Printer Port Name Usage
10 S6: Ack PreTrigDone-L
11 /S7: Busy
12 S5: Paper-Out AddrClockEna-L
13 S4: Select Trigger Latch-L
15 S3: Error

Data Bits
Pin Printer Port Name Usage
2 - 9D0 - D7 Data
18 Ground

cuits. Initially, the above circuits were
built on seven individual circuit
boards. I managed to implement the
Address-Generator and the Trigger-
Address circuits on opposite sides of
the same board. I used this implemen-
tation to get the initial hardware and
software design working. The com-
pleted assembly was an approximately
4.5-inch cube with one LA and one
A/D board. Since I do not have
through-hole construction capability,
there were quite a few hand-wired
jumpers on the various boards.

I then decided to try my hand at
using programmable logic devices
(PLDs). Design number two combined
the Time-Base and Address-Genera-
tor circuits into a single PLD and the
Trigger-Control and Trigger-Detect
circuits into another PLD. The PLDs
are on opposite sides of the same cir-
cuit board. I had never used PLDs be-
fore, so this was a learning experience.
Getting the software to work with this
design was relatively easy, since I was
able to keep the design essentially the
same, with only some minor changes.
This design has five circuit boards.

Design three combines the follow-
ing circuits into a single PLD: Trigger
Address (Fig 5), Trigger Control
(Fig 6), Trigger Detect (Fig 7), Address
Generator and Time Base (Fig 8). This
yields a much more compact system
that requires only two circuit boards
more than the desired input boards.
Additional wiring is shown in Fig 9.1

I would like to encourage any of you
who are designing logic circuits to con-
sider PLDs. My experience was most
satisfactory. The free software is very
easy to use, especially since I had al-
ready debugged my initial circuitry. It
was only necessary to translate my
schematics to functions available in
the PLD design software. The “larger”
functions I needed were available as
library elements. To give you a better
idea of the ease of use of PLDs (Pro-
grammable Logic Devices), I will ex-
pand on the 17-bit counter example.

The address generator requires a
17-bit (131,072 count) synchronous
counter. A synchronous counter is re-
quired so that all the address bits
change at the same time, synchro-
nously. The discrete circuit I initially
implemented is shown in the Fig 10.
Notice that it uses five ICs. Even
though I use only one stage of the fifth
device, it is required to maintain syn-
chronous operation.

The PLD implementation is quite
a bit simpler (see Fig 11). I needed to
select the synchronous counter from
a list of device models, select and de-

fine the needed parameters and place
it in my schematic. A complete list of
possible parameters appears as table
B in the download package (see Note
3). The only inputs I needed were aclr
and clk, the only output was q[] and
the parameters I specified were direc-
tion and width.

Once the part was placed, I then
needed to “wire” the I/O ports to the
appropriate circuits or I/O pins. See
the AddrClock circuit of the Time Base
and Address Generator schematic.

When the schematic entry has been
completed, the next step is to “compile”
it. This basically assigns the schematic
elements to the internal circuit blocks
of the PLD and determines whether
or not the circuit fits. If the circuit does
not fit, there are several options avail-
able that can be used to reduce the
amount of resources used. Some of
these are:

1. Disabling JTAG (Joint Test
Action Group) capability.

2. Disabling globally assigned sig-
nals such as clocks and clears.

Once this stage of compilation is
complete, the pin assignments must
be made. This can be done automati-
cally or manually. I always chose
manually, because I wanted the PLD
I/O to allow the easiest printed circuit
board layout. The manual method is
really quite easy. I had previously de-
termined the signal-to-pin assign-
ments based on the PC board layout.
The PLD software presents a list of
signals as well as a “picture” of the
PLD. All I had to do was “drag and
drop” each signal onto the desired pin.

Now the final compilation phase
can be executed. This phase attempts

to “fit” the circuit into the PLD with
the pin assignments. The software I
used does several iterations to com-
plete the fitting process. I have seen
up to 20 iterations. If it is successful,
a file is created that is used to pro-
gram the PLD. If the process is not
successful, some pin reassignment will
be necessary.

Finally, it is time to program the
PLD. A programming device or equiva-
lent circuit is required. I was able to
obtain a programmer from the PLD
manufacturer; but, since the circuit
consists of a common IC and a few re-
sistors, it would not be difficult to build
one. The PLD I selected is capable of
in-system programming. This requires
only that I implement the appropri-
ate connector on the circuit board with
four connections to specific PLD pins.
These four pins can be used for I/O,
but I chose to not do that. The pro-
grammer connects to the printer port
of the PC and the connector on my
board. Once the PC software pro-
grammed the PLD, I removed the pro-
gramming cable from the board.

The circuit is now ready for the
“smoke” test! Since it is impossible to
probe the internal circuit points, I
strongly suggest that test points be
designed into the PLD circuit. At one
point of my design cycle, I had three
of them. These allowed me to ’scope
some of the critical timing points. Be-
cause I had previously implemented
identical circuits using discrete logic,
my debugging was minimal, so I did
not need many test points. Untested
circuits will probably require more. I
recommend that outputs be buffered
so that external loading of the I/O pins
does not adversely affect system op-
eration.

This was my first attempt at using
PLDs, and I found it to be much easier
than expected. The free software,
downloaded from the Web, is fairly in-
tuitive and comes with a tutorial. I ran
the tutorial through the first dozen or
so steps; then, like a typical engineer
and ham, went off on my own. I was
able to go from starting with no previ-
ous experience to a finished product
within a few weeks working an hour
or so several evenings a week. In the
download package (see Note 1), Table
B shows a complete list of the possible
I/O signals and parameters that may
be used to define the operation of the
counter; Table C lists the parts used
in each board.

Circuit Descriptions
I have followed a naming conven-

tion for the signal names to more eas-
ily determine their operation and
make the schematics and other docu-1Notes appear on page 00.

4 Jul/Aug 2003

Fig 4—A schematic of the A/D circuit
board. Leads from “a” to “a” and “b” to
“b” are wire jumpers as are all Vdd
connections.

 Jul/Aug 2003 5

Fig 5—A schematic of the PLD Trigger Address Latch circuit.

mentation easier to follow:
1. Dynamic signals have a “PL” or

“PH” suffix, indicating “pulse low” or
“pulse high.”

Example: SysReset-PL.
2. Static signals have an “H” or “L”

suffix indicating a “High” true or “Low”
true state.

Example: Read-Ch0-L.
3. Static signals, which are neither

high nor low true, do not have a suffix.
Example: TimeBaseSel0

In general, I have labeled only
signals that go between circuits.

Control Circuit
The main purposes of the Control

Circuit (Fig 12 and 13) are to provide
the interface to the PC (parallel port)
and develop the static signals used to
control the remaining circuits. The
printer-port control bits are used to
control the primary-decoder (U11)
function. The functions performed by

the primary decoder are:

• System Reset
• System Enable
• Secondary Decoder and Time Base

Select Strobe—U12
• Read Clock and Secondary Decoder

Read Strobe—U15
• Secondary Decoder Write Strobe—

U14

Except for the Time Base Select
signals, all of the signals generated by

6 Jul/Aug 2003

Fig 6—A schematic of the PLD Trigger Control circuit.

this circuit are low-true pulses.
There is also a bus transceiver

(U13) that controls the direction of
data flow between the PC and the
DSO/LA. It uses the ReadClock to de-
termine the data direction. When
ReadClock is low, read from the DSO/
LA; when it’s high, write to DSO/LA.
Although many of the circuits allow
for customization, this one does not,
since the software is written to corre-
spond with the functions it performs.

Time Base
The operation of the Time Base is

rather straightforward (see Fig 8).
There are three control bits (with pos-
sible expansion to four) that come from
the Control Circuit (TimeBaseSel).
These bits control a multiplexer that is
used to select from among eight signals
that can clock the Address Generator

(AddrClk-PH). Seven of these are also
the Sample Clock signal for both the
A/D and LA circuits (SampleClock-PH).
The eighth signal is for advancing the
Address Generator when the program
needs to read the data from the A/D and
LA RAMs. The 20-MHz oscillator and
Sample Clock are enabled by a signal
from the Trigger Control Circuit
(SampleClockEna-H).

Notice that the signal driving the
Address Generator goes through three
inverters, while the signal that drives
the Sample Clock only goes through a
single gate. There are two reasons for
this configuration:

1. The Sample Clock should be dis-
abled when reading from the A/D and
LA Circuits.

2. The Address Clock is delayed
slightly so that the input signals are
sampled a short time (two gate delays)

before the address bus is incremented.
This allows the input signals and ad-
dress bus to settle for almost a full
clock period before the data is sampled
and is really only significant at the
highest sample rate but is necessary
to meet the access time specification
of the RAM.

I elected to make the sample rate/
period circuit as simple as possible. I
have used binary dividers to generate
the various sample rates. Starting with
a 20-MHz clock the next rate is 10 MHz,
followed by 5 MHz and so on. The
sample periods with this circuit are: 50
ns, 100 ns, 200 ns, 400 ns, 800 ns, 1.6 µs
and 3.2 µs. These may seem like strange
values, but it really does not make any
practical difference in the interpreta-
tion of the displayed signals. Since the
software allows you to measure the time
between cursors, it accounts for the

 Jul/Aug 2003 7

Fig 7—A schematic of the PLD Trigger Detect circuit.

sample period. Also, the software allows
you to set the time scale.

The design of the system is such
that if you do not like the sample pe-
riods I have chosen, you can redesign
the circuit to develop the ones that you
like. You can specify the sample peri-
ods in the INI file. All you need to do
is relate the 3 or 4-bit decoder input
value to the sample period as follows:
SELECT_<decode value: 1 … 15> =
<sample period>. For example: SE-
LECT_1 = 50ns. The program correctly
interprets nanoseconds, microseconds
and milliseconds as units of time.

Address Generator
This is a 17-bit synchronous binary

counter that yields 217 = 131,072 ad-
dresses (see Fig 8). It is driven by the
Address Clock from the Time Base Cir-
cuit. The counter outputs are all set to
zero by the SysReset-PL signal from the
Control Circuit. Because of the way the
Pre and Post Trigger circuits operate,
the full count is not utilized. This will
be explained further in the discussion
of the Trigger Control circuit.

The original design of the circuit

called for 74HC161 binary counters
that are specified to 25 MHz with a 5-
V supply. When more than two units
are cascaded, however, there is a
glitch. I had not thoroughly read the
details of the specification and missed
the information on the glitch. I
thought that since they were rated to
25 MHz, I would not have a problem
since I was only going up to 20 MHz.
The glitch occurs because of internal
delays when using the Ripple Carry
Out. This limits the upper frequency
to 17 MHz when cascading. The solu-
tion was relatively simple: use
74AC161 devices instead. They are
rated at a much higher frequency but
draw quite a bit more current. Since I
have now converted the circuit to a
PLD, the above situation is no longer
applicable, but I thought it worth men-
tioning since it was part of my learn-
ing experience.

Trigger Detect
Those of you who have used com-

mercial LAs will recognize that the
triggering available with this design
is very limited. These units will usu-

ally have quite a few possibilities for
triggering such as:

• High level
• Low level
• Low to high transition
• High to low transition
• Either transition
• Various logic combinations of

selected signals

This circuit compares the current
state of the trigger inputs to those that
have been selected by the operator.
The circuit operates as an 8-bit AND
gate (see Fig 7). Each of the eight in-
put signals can be enabled or disabled
and inverted or not inverted. The
source for each of the eight inputs is
up to you. I have mine set up so that
the first six signals are channels 0
through 5 of the first LA board. The
remaining two inputs are from the two
A/D boards. This is one area where the
system is not very flexible. You can-
not dynamically select from among all
the possible inputs. You must prede-
termine which eight signals you will
use as possible triggers. If this is not
flexible enough for your applications,

8 Jul/Aug 2003

Fig 9—A schematic of the PLD board. Numbers without connector designations (J1 or J2) are on the PLD (EPM7128SLC84). See Table 2
for most signal connections.

you will need to implement a switch
of some kind. I am certainly open to
suggestions about how to make this
function more flexible.

Each exclusive-or gate is used as
programmable inverter. When its con-
trol input is low, the output follows the
input. When the control input is high,
the output will be the inversion of the
input. The following AND gate is used
to enable/disable the input signal.
When its control signal is low, the out-
put is forced high, independent of the
input signal. This basically creates a
match condition for the final eight-in-
put AND gate. If all the signal inputs
are disabled, there will be a continu-
ous match condition.

The original, discrete-logic version
of the circuit was quite different. The
8-bit latches were 74HC574s, very
similar to the PLD implementation.
However, the enable/disable circuit
used tri-state buffers (74HC126) and
the output AND gate was actually an
8-bit comparator (74HC688). The cir-
cuit required five ICs. If I were to
implement the circuit I designed for
the PLD as discrete ICs, it would re-
quire seven. Since the circuit is now
in a PLD, I can probably modify it to
meet some other requirements.

Trigger Control
The Trigger Control (Fig 6) was

perhaps the most difficult circuit to
design and get working as I wanted.
My goal was to have a programmable
pre-trigger capability—unlike my
original LA, which has a fixed amount
of pre-trigger. I have added “U” num-
bers to the schematic of the PLD

Fig 8—A schematic of
the PLD Time Base
and Address
Generator.

 Jul/Aug 2003 9

circuit in order to make it easier to ref-
erence the different parts of the cir-
cuit. Both U1 (the pre-trigger counter)
and U2 (the post-trigger counter) are
4-bit down counters. They are clocked
by the inverted A12 signal. As such,
they decrement every 8192 samples.

You can set the pre-trigger count to
any value between 0 and 14. The num-
ber of pre-trigger samples can be de-
termined by this formula: pre-trigger
samples = (pre-trigger count × 8192)
+ 4096. The post-trigger count is set
by the system as follows: post-trigger
count = 15 – pre-trigger count. The
total number of samples is (15 × 8192)
+ 4096 = 126976 = 217 – 4096.

Once the system is “armed,” the pre-
trigger counter starts counting down
to 0. When it reaches 0, the output of
U3A will go high on the next positive
transition of A12 (4096 samples later).
This enables a Trigger Match to be
detected. A Trigger Match will then
cause the Q outputs of U4A and U4B
to go high, thus enabling the post-trig-
ger counter. When it reaches 0, the
sample clock will be disabled and the
system will stop sampling.

Three status signals are monitored
by the program that allow it to deter-
mine the state of the system:

• PreTrigDone-L
• TrigLatch-L
• SampleClockEna-L

A message is displayed as the sys-
tem waits for each of these signals.
Please notice that each of these sig-
nals is derived from signals used in-
ternally by the Trigger Circuit. How-
ever, I have buffered them via sections
of U5 so that the wiring associated
with getting them to the PC does not
interfere with the circuit operation.

The PLD version of the circuit is
almost identical to the discrete ver-
sion. I would like to detail some of the
differences for those of you who wish
to convert a circuit to a PLD:

The carry out of PLD counters is
true when high and becomes active as
soon as the count reaches 0 or 15, de-
pending on the count direction. The
discrete device I used is a 74HC191.
Its carry out is true when low and is
gated with the clock so that it goes true
during the second half of the end count.

Both counter-control inputs, Count
Enable and Load, are true when high
for the PLD but are true when low for
the ’191.

The discrete version required an
AND function so I used a 74HC00 as a
NAND and then followed it with an-
other section to invert it. This is cer-
tainly not necessary in a PLD, since it
has built-in AND blocks.

Fig 10—The 17-bit counter
design implemented in logic
ICs.

10 Jul/Aug 2003

Fig 12—A schematic of the DSO/LA control board.

LA
This is another relatively simple

circuit (see Fig 14). All it must do is
apply eight input signals to the data
bus of the RAM and allow the data bus
to be read back by the PC. There are
two resistor networks in the input cir-
cuit. One insures that the input-switch
device has no floating inputs. The
other limits current in case of exces-
sive applied signal voltage. As can be
seen on the schematic, U42 and U43
create an eight-pole, two-position
switch controlled by the Read-ChN-L
signal. When Read-ChN-L is high, the
RAM data bus is connected to the in-
put signals, and the SampleClock-PH

Fig 11—The circuitry of the eight-channel logic analyzer achieved with ICs (left) or a PLD
(right).

 Jul/Aug 2003 11

signal writes the data to the RAM on
its rising edges. The SampleClock sig-
nal is high during the read operation.
When Read-ChN-L is low, the RAM
data bus is connected to the system
data bus, which is eventually read by
the PC. Each LA board has its own
Read-ChN-L from the Control circuit.

A/D
The circuit is somewhat similar in

operation to the LA except that the
eight data bits come from an A/D chan-
nel instead of individual digital
sources (see Fig 4). The ReadChN-L
signal is used to determine whether
the circuit is sampling A/D data or
transferring it to the PC. U55 is used
to connect the RAM data to the sys-
tem data bus when ReadChN-L is low.
When this signal is high it allows the
SampleClock-PH signal to clock the
A/D and write data to the RAM.

The A/D I selected (ADS820) re-
quires a single 5-V power supply and
has a maximum 20-MHz sample rate
and a full power bandwidth of 65 MHz.
There are faster pin-compatible ver-
sions available, but I did not feel that
I could adequately implement the cir-
cuits for higher frequencies. There is
nothing in the system design, however,
that would prohibit you from imple-
menting a faster A/D if you desire. The
RAM (CY7C109B-35) is good up to
about 28 MHz but has faster versions.
The -20 is a 50-MHz part.

When sampling the input signal, the
rising edge of SampleClock-PH initiates
an A/D conversion and writes A/D data
to the RAM. These types of A/D convert-
ers have a pipeline architecture. In the
ADS820, this causes a six-cycle latency
between when a signal is sampled and
when the converted data is available on
its output bus. In my design, this means
that I need to account for the latency
in the software so that I store the data
in the correct place.

There are two additional functions
on this card:

• Digital comparator
• Four-bit latch for controlling the

A/D buffer

The digital comparator allows the
user to set a trigger level that can then
be used to trigger the system. On the
schematic, notice that I have labeled
the RAM data bus as “High Speed
Bus.” I tried to be as careful as pos-
sible in routing these signals in order
to maintain signal integrity. The com-
parator is operating on the A/D
samples at the sample rate, as high
as 20 MHz. When the digitized signal
value is greater than the comparison
value stored in the upper four bits of
U54, the P>Q output of U53 will go

Fig 13—A photo of the Control circuit board and one 8-bit A/D board. Two of the five
jumpers are there to “fix” broken traces. The other three are designed-in because I could
not route them. There is one IC mounted on the underside.

high. This signal can be used to trig-
ger the system. I have implemented a
four-bit comparator so the resolution
is only 1 part in 16 (6.25%). I felt this
was a reasonable compromise so that
I could use the remaining four bits to
control the A/D buffer.

The timing requirements for writing
A/D data to the RAM can cause prob-
lems if the circuit design is not care-
fully considered. A careful inspection of
the A/D timing shows a “dead” time on
its data bus immediately following the
positive transition of the clock. Note
that writing to the RAM also occurs on
the rising edge. At first I thought this
might cause a problem. However, the
A/D specifications show that the data
is good for a minimum of 3.9 ns after
the rising edge, while the RAM specifi-
cations show a 0 ns input hold time for
the data. Although 3.9 ns does not seem
like very much, it is sufficient for the
circuit to operate properly.

A/D Buffer
This circuit (see Fig 15) is built on a

board that is not part of the “stack”

forming the main body of the instru-
ment. I wanted it as close as possible to
the signal source, so I designed a small
board that mounts directly to the front
of the LA/DSO housing and has the in-
put (BNC) connector mounted to the
board. This keeps the shortest possible
signal path to the buffering op-amp.
This is a simple dual op-amp circuit
that has three basic functions:

• Buffer the signal, which may be up
to 10 MHz.

• Adjust the signal to the 4-V range of
the A/D converter.

• Offset adjustment so that it is cen-
tered about 2.5 V.

• The circuit I designed has the fol-
lowing voltage ranges:

• –10 V to +10 V
 –5 V to +5 V
 –2 V to +2 V
 –1 V to +1 V

This particular op amp has rela-
tively high input and offset voltages
and currents so its dc characteristics
are not the best. Nonetheless, it is fast
enough to handle 10-MHz signals as

12 Jul/Aug 2003

Fig 14—A schematic of a logic-analyzer circuit board. Wires labeled “a,” “b,” “c,” “d,” “e” and “f” are jumpers. Letters “F” indicate a
connection between the two copper layers of the circuit board.

long as you do not require the full 8-
bit accuracy. There are op amps avail-
able that would be better, but they are
probably more expensive and this
great expense was not one of my pri-
mary design goals.

The input ranges are completely
flexible in that you can make them
whatever you want. The INI file allows
you to specify the ranges associated
with the 16 control values coming from
the A/D circuit.

Trigger Address
This is perhaps the simplest of the

circuits. It is simply a 16-bit latch that
is triggered by the output of the Trig-
ger Detect Circuit via the Trigger Con-
trol Circuit. This was done so that only
a single trigger event will cause the
address to be latched. I used a 16-bit
latch, implemented via two 8-bit
latches, because I did not want to build
the necessary additional circuitry for
the 17th bit. The program will read the
upper 16 bits and then determine if
the data actually meets the trigger
criteria. If it does not, then it must be
the next higher address. This little bit
of extra programming saved me sev-

eral ICs in the circuit design. However,
now that I am using a PLD, I may go
back and revisit this as I work on im-
proving the system.

System Operation
The operation of the DSO/LA is

fairly intuitive. You can get the basics
simply by seeing the pictures that fol-
low. There will be a complete Help file
available, which explains each of the
controls as well as the contents of the
INI file. Here is a brief explanation of
each of the menu items:
• File—typical file operations for read-

 Jul/Aug 2003 13

Fig 15—A schematic of the A/D input buffer and conditioning circuits.

Fig 16—Four address bus signals as
captured by an LA board as well as the
A12 signal as captured by an A/D board.

Fig 17—The same signals as Fig 16 but
zoomed in.

Fig 18—A view of A4 instead of A12. Also
the time base has been changed from
1.6 µµµµµs per sample to 100 ns per sample.
Notice that the signal fall-time can now be
seen.

ing and writing both INI and data
files.

• Boards—define the board for each
of the six channels.

• Trigger—define trigger conditions,
including the pre-trigger/post-trig-
ger values.

• Display—select Time Base, Zoom
factor, Slide factor and so on.

• Cursors—enable the four time-mea-
surement cursors.

• Function Keys—list the applicable
function keys.

• Debug—some hardware-debugging
aids as well as some dummy data
so you can “play” with the display.

Some General Comments and
Suggestions for Making Circuit
Boards

Make the traces as wide as you can.
Most of the boards I developed started
out with 20-mil traces. After complet-
ing the design, I would then go back
and make each trace as wide as pos-
sible. Where necessary, I narrow the
trace to fit between IC or connector
pins. The main reason for doing this
is to prevent the undercutting of traces
during etching.

Make the power and ground traces
even wider. This is done to lower their
resistance. One of the guidelines I fol-
lowed was to implement as many of
the signal traces as possible ignoring
the power. Since this was my first ef-
fort at double-sided circuit boards, and
I can’t implement feedthrough connec-
tions, I feel that wire jumpers for
power and ground leads is better than

running jumpers for signals. This al-
lowed me to use relatively heavy wires
for the power.

Implement a ground plane wher-
ever possible. This reduces the amount
of copper to be etched as well as giv-
ing more ground area.

Use a piece of scrap perforated
board as a drilling template for the
connector holes. Drill positioning by
eye does not work well when for a 35-
pin connector! I had some unused cir-
cuit boards from RadioShack with 0.1-
inch-spaced holes. I lined up the holes
with the positions to be drilled and
then taped the “perf” board to my cir-
cuit board. Looking through the board
with a 50-W lamp behind it makes this
relatively easy.

Some General Guidelines
Drill the fewest holes possible.

Looking closely at the photos, you may
notice that the IC sockets look a little
odd. I designed the boards as if using
SMD ICs. However, I did use mostly
normal DIP devices. I found IC sock-
ets that have the flat side of their pins
parallel to the long edge. This allowed
me to bend them to the side at a right
angle to the socket. I laid out the IC
traces to ensure at least 0.1” of trace
beyond the sides of the socket so that
the socket pins could be soldered in
place. I had to trim the leads on a few
sockets, but this is quite easy.

Position ICs on both sides of
the boards where necessary.
This was easily implemented due
mainly to the wide traces.

Keep the main circuit functions on
separate boards. This makes for a very
modular system that can be easily cus-
tomized. It also makes testing the in-
dividual circuits easier. This was very
important in the early designs so that
I could make changes. It is not quite
as important now that most of the cir-
cuitry is in PLDs.

Install “load” resistors on selected
inputs. This, again, makes it easier to
test the boards.

Install a few test points on each
board—especially at least one ground.
This makes it much easier for debug-
ging! I even put a few test circuits into

14 Jul/Aug 2003

the PLD in the first designs so I could
monitor some internal signals.

Figs screens 16 through 18 are
screen shots showing various features
of the DSO/LA. Fig 16 shows four ad-
dress bus signals as captured by an
LA board as well as the A12 signal as
captured by an A/D board. Fig 17
shows the same signals as the previ-
ous screen shot but zoomed in. Fig 18
shows A4 instead of A12. Also the time
base has been changed from 1.6 µs per
sample to 100 ns per sample. Notice

that the signal fall time can now be
seen. Several more features appear in
on screen, but some don’t show in the
B/W figures here:
• A different color for the A/D trace
• The analog voltage for the A/D chan-

nel is in the Status box near the
upper left corner. The background
color is the same as the one selected
for the trace.

• There is another cursor on the screen.
The system allows up to four more
cursors in addition to the main one.

• Horizontal grid lines for the A/D sig-
nal along with the Volts/Div next
to the Sample Period.

• The A/D Scale and Offset features

Notes
1A package containing additional details of

the PLD connections, possible PLD-
counter I/O signals and parameters, a de-
tailed parts list and PC-board etching
patterns is available from ARRLWeb. You
can download this package at http://
www.arrl.org/qexfiles/. Look for
0307CICC.ZIP.

