Digital Storage Oscilloscope and Logic Analyzer

I believe that most Amateur operators today will agree that our hobby is somewhere in the middle of the “Digital Revolution.” As such, we are using digital techniques more and more in our daily communications. The rapid growth and acceptance of PSK31 may be considered an indicator of this revolution. Those of us who like to “roll our own” and experiment with our equipment will recognize the importance of having good test equipment.

The device described in this article is a combination Digital Storage Oscilloscope and Logic Analyzer. It interfaces to a PC via a parallel (printer) port and is built using several printed circuit boards. The system is designed such that it allows for 6 Input Cards. Each card can be either 8 Logic Analyzer channels or a single Analog channel (8 bit resolution).

I am thinking of designing a serial interface for the device - if I get enough interest. However, I have not yet decided on the exact mechanism yet. It will probably be based on a microprocessor. The current parallel device can access the 130kbytes of data in about 1 second per board. Unless the PC and microprocessor serial ports can achieve 920K baud it will be somewhat slower. A serial interface would make this device available for use on those operating systems which do not allow direct access to the parallel port.

A previous article I wrote (QEX, Jan 2000) describes an 8-channel Logic Analyzer that I built, which I have used quite a bit since completing that article. The knowledge and experience I gained during its development was instrumental in my development of this project. My original intention was to develop only a DSO, however it soon became obvious that most of the design was also very useful for implementing a Logic Analyzer. I used many of the ideas from my original LA in the design of this combination device.

My main goals for the DSO/LA were:

Ease of construction - use printed circuit boards

Two analog channels

Minimum of 20 MHz sample rate

Logic Analyzer channels

Trigger selection to allow any combination of A/D and LA signals

Settable pre-trigger count

An initialization file (referred to in the text as the INI file) which allows the user to define almost all of the operating parameters

The design consists of printed circuit boards that stack one upon another. They are connected together via “board stacking” connectors. This method allowed me to design a system that is easy to modify, expand and customize. The builder can implement up to 48 Logic Analyzer channels (in groups of 8), or a maximum of 6 Analog channels or any combination in between. The resulting assembly is about 4.5” wide by 3.5” deep by 4” high with two Analog cards and one Logic Analyzer card. Great care was taken in the design of the printed circuits in order to achieve this modularity. A template board was first designed, having just the inter-board connectors, which was then used as the basis for all the boards.

I wanted to achieve a 20 MHz sample rate so that the analog channels would be useful to 10 MHz. The A/D converter selected (ADS820) is specified to a 20 MHz sampling rate, 60 MHz bandwidth, and has 10-bit resolution. Since the circuit uses only the most significant 8 bits some of the errors of the A/D can be ignored. There is a higher frequency A/D available which is pin compatible with the unit I selected, but I felt that I would not be able to implement a circuit board that would allow the additional bandwidth.

Major Circuits

Control - Interface to the Printer Port, source for all the static control signals

Trigger Control - Develops most of the dynamic control signals, Pre/Post trigger count

Trigger Detect - Detects the trigger condition

Trigger Address - stores the address at which the trigger occurs

Address Generator - 17 bit address = 132K

Time Base - generates the sample clock frequencies and the clock for the Address Generator

Logic Analyzer: CMOS levels, 8 channels, 132K memory depth

A/D Converter: +0.5 -> +4.5 volts, 8 bit resolution using a 10 bit A/D, 132K memory depth

Design History

While working through the various phases of designing, building and debugging my circuits, I developed several versions of them. Initially the above circuits were built on seven individual printed circuit boards with the Address Generator and the Trigger Address on a single board using both sides. I chose to use this design to get my initial hardware and software design working. The completed assembly, totaling seven boards, was approximately 4.5 x 3.5 x 5, equipped with one LA and one A/D board. Since I do not have through-hole capability there were quite a few hand wired jumpers on the various boards.

I then decided to try my hand at using PLDs. Design number two combined the Time Base and Address Generator into a single PLD and Trigger Control and Trigger Detect into another PLD. The two PLDs fit on opposite sides of the same printed circuit board. Never having used PLDs prior to this project, my development also served as a learning experience. Getting the software to work with this design was relatively easy, since I was able to keep the design basically the same with only some minor changes (detailed later). This design comprised of a total of 5 circuit boards.

The current design combines the following five circuits into a single PLD: Trigger Address, Trigger Control, Trigger Detect, Address Generator and Time Base. This yields a much more compact system that requires only two circuit boards in addition to the desired input boards.

I would like to encourage everyone designing logic circuits to consider PLDs. My experience was very satisfying. I found the free software very easy to use, especially since I was building upon my initial design, which was already debugged. All that was necessary was to translate my schematics into functions available in the PLD design software. The “larger” functions needed were available as library elements. Using the Address Generator as an example, the design calls for a 17-bit counter. The discrete logic implementation requires 5 four-bit synchronous binary counters. Using the PLD software library element, all I had to do was specify the desired circuit I/O: number of bits, control signals, etc. There were many parameters available for the counter but I only needed three of them. Then just place the symbol on the schematic page, label the signals and connect them. It was so much easier than I first thought it would be. About the only thing I had to be concerned with is that the PLD uses positive-true logic for it library elements while the discrete logic has many low-true signals. I simply had to be careful to insert and remove invertor devices as necessary.

To give you a better idea of the ease of use of PLDs (Programmable Logic Devices), I will expand on the 17-bit counter example mentioned in the text.

The address generator requires a 17-bit (131072 count) synchronous counter. A synchronous counter is required so that all the address bits change at the same time - synchronously. The discreet circuit I initially implemented is shown in the figure. Note that it uses 5 ICs. Even though I use only one stage of the fifth device, it is required to maintain synchronous operation.

The PLD implementation is quite a bit simpler. All I needed to do was select the synchronous counter from a list of device models, select and define the needed parameters, and place it in my schematic. A complete list of possible parameters appears at the end of the article. The only inputs I needed were aclr and clk, the only output was q[] and the parameters I specified were direction and width.

Once the part was placed, I then had to "wire" the I/O ports to the appropriate circuits or I/O pins. See the AddrClock circuit of the Time Base and Address Generator schematic.

When the schematic entry has been completed, the next step is to "compile" it. This basically assigns the schematic elements to the internal circuit blocks of the PLD and determines whether or not the circuit fits. If the circuit does not fit, there are several options available which can be used to reduce the amount of resources used. Some of these are:

1) disabling JTAG (Joint Test Action Group) capability.

2) disabling globally assigned signals such as clocks and clears.

Once this stage of compilation is complete, the pin assignments must be made. This can be done automatically or manually. I always chose manual, because I wanted the PLD I/O to be such that it allowed the easiest printed circuit board layout. The manual method was really quite easy. I had previously determined the signal to pin assignments based on the PC board layout. The PLD software presents a list of signals as well as a "picture" of the PLD. All I had to do was "drag and drop" each signal onto the desired pin.

Now the final compilation phase can be executed. This phase attempts to "fit" the circuit into the PLD with the pin assignments. The software I used does a number of iterations in order to complete the "fit" process. I have seen up to 20. If it is successful, a file is created which is used to program the PLD. If not successful, then some pin reassignment will be necessary.

It is now time to program the PLD. A programming device or equivalent circuit is required. I was able to obtain a programmer from the PLD manufacturer; but, since the circuit consists of a common IC and a few resistors, it would not be difficult to build one. The PLD I selected is capable of In-System Programming. All I needed to do was implement the appropriate connector on the circuit board with four connections to specific PLD pins. These four pins can be used for I/O, but I chose to not do that. The programmer connects to the printer port of the PC and the connector on my board. The last step is to use the software to program the PLD and then remove the programming cable from the board.

The circuit is now ready for the "smoke" test! Since it is impossible to probe the internal circuit points, I strongly suggest that test points be designed into the PLD. At one point of my design cycle, I had three of them. These allowed me to 'scope some of the critical timing points. Because I had previously implemented identical circuits using discrete logic, my debugging was minimal, so I did not need many test points. Untested, or first try, circuits will probably require more. I recommend that outputs be buffered so that external loading of the I/O pins does not adversely affect system operation.

This was my first attempt at using PLDs and I found it to be much easier than expected. The free software, downloaded from the Web, is fairly intuitive and comes with a tutorial. I ran the tutorial through the first dozen or so steps; and then, like a typical engineer and ham, went off on my own. I was able to go from starting with no previous experience to a finished product within a few weeks working an hour or so several evenings a week.

Circuit Descriptions

General Comments

I have followed a naming convention for the signal names in order to more easily determine their operation and make the schematics and other documentation easier to follow:

(1) Dynamic signals will have a PL or PH suffix indicating Pulse Low or Pulse High

	Example: SysReset - PL

(2) Static signals will have an H or L suffix indicating a High true or Low true state

	Example: Read-Ch0-L

(3) Signals which are neither high or low true do not have a suffix

	Example: TimeBaseSel0

In general I have labeled only signals that go between circuits.

Control Circuit

The main purposes of the Control Circuit are to provide the interface to the PC (parallel printer port) and to develop the signals used to control the remaining circuits. The printer port control bits are used to control the primary decoder (U1) function. The functions performed by the primary decoder are:

System Reset

System Enable

Secondary Decoder and Time Base Select - U2

Read Clock and Secondary Decoder Read Strobe - U5

Secondary Decoder Write Strobe - U4

Except for the Time Base Select signals, all of the signals generated by this circuit are low true pulses.

There is also a bus transceiver (U3), which controls the direction of data flow between the PC and the DSO/LA. It uses the ReadClock to determine the data direction: low = read from DSO/LA, high = write to DSO/LA.

Although many of the circuits allow for customization, this one does not since the software is written to correspond with the functions it performs. I had thought about converting this circuit to a PLD but I think a serial interface, discussed later, would be more useful.

�

Time Base

The operation of the Time Base is rather straightforward. There are three control bits (with possible expansion to four) that come from the Control Circuit (TimeBaseSel). These bits control a multiplexer that is used to select from among eight signals that can clock the Address Generator (AddrClk-PH). Seven of these are also the Sample Clock signal for both the A/D and Logic Analyzer Circuits (SampleClock-PH). The eighth signal is for advancing the Address Generator when the program needs to read the data from the A/D and Logic Analyzer RAMs. The 20 MHz oscillator and Sample Clock are enabled by a signal from the Trigger Control Circuit (SampleClockEna-H).

Notice that the signal that drives the Address Generator goes through several invertors, while the signal that drives the Sample Clock only goes through a single gate. There are two reasons for this configuration:

(1) The Sample Clock should be disabled when reading from the A/D and LA Circuits.

(2) The Address Clock is delayed slightly so that the input signals are sampled a short time (by the added invertors) before the address bus is incremented. This allows the input signals and address bus to settle for almost a full clock period before the data is sampled and is really only significant at the highest sample rate but is necessary to meet the access time specification of the RAM.

I elected to make the sample rate/period circuit as simple as possible. I have used binary dividers to generate the various sample rates. Starting with a 20 MHz clock the next rate is 10 MHz, followed by 5 MHz, etc. The sample periods with this circuit are: 50 ns, 100 ns, 200 ns, 400 ns, 800 ns, 1.6 us and 3.2 us. These may seem like unusual values but it does not make any practical difference in the interpretation of the displayed signals. Since the software allows you to measure the time between cursors, it accounts for the sample period. Also, the software allows you to set the time scale.

The design of the system is flexible, so if you prefer to use sample periods different from what I have chosen, the circuit can be redesigned to implement the ones you like. I will be more than happy to customize the PLD for anyone building this system. The sample periods must be defined in the INI file. Simply relate the decoder input value to the sample period as follows: SELECT_<decode value:1..15> = <sample period>

For example: SELECT_1 = 50ns

The program will correctly interpret ns, us and ms as units of time.

Address Generator

This is a 17-bit synchronous binary counter which yields 2^17 = 131072 addresses. It is driven by the Address Clock from the Time Base Circuit. The counter outputs are all set to zero by the SysReset-PL signal from the Control Circuit. Due to the way the Pre and Post Trigger circuits operate, the full count is not utilized. This will be explained further in the discussion of the Trigger Control circuit.

The original design of the circuit called for 74HC161 binary counters that are specified to 25 MHz with a 5 volt supply. However, when more that two units are cascaded there is a “glitch.” I had not thoroughly read the details of the specification and missed the information on the glitch. I thought that since they were rated to 25 MHz, I would not have a problem since I was only going up to 20 MHz. The glitch occurs due to internal delays when using the Ripple Carry Out. This limits the upper frequency to 17 MHz when cascading. The solution was relatively simple: use 74AC161 devices instead. They are rated at a much higher frequency but they also draw quite a bit more current.

Since I have now converted the circuit to a PLD, the above situation is no longer applicable, but I thought it worth mentioning since it was part of my learning experience.

Trigger Detect

Those of you who have used commercial Logic Analyzers will recognize that the triggering available with this design are very limited. These devices usually have quite a few possibilities for triggering such as:

high level

low level

low to high transition

high to low transition

either transition

various logic combinations and timing of selected signals

ignore the signal

My circuit allows only three possibilities:

high level

low level

ignore the signal

It compares the current state of the trigger inputs to those that have been selected by the operator. The circuit operates basically as an eight bit AND gate. Each of the eight input signals can be enabled or disabled and inverted or not inverted. The source for each of the eight is up to you. I set mine up so that the first six signals are channels 0 through 5 of the first Logic Analyzer board. The remaining two are from the two A/D boards. This is one area where the system is not very flexible. You cannot dynamically select from among all the possible inputs. You have to predetermine which eight signals you are going to use as possible triggers. If this is not flexible enough for your application, then you will need to implement some kind of switch. I am certainly open to ideas regarding how to make this function more flexible.

Each exclusive-OR gate is used as programmable invertor. When its “control” input is low, the output will follow the input. When the “control” input is high, the output will be the inversion of the input. The following AND gate is used to enable/disable the input signal. When its “control” signal is low, the output is forced high independent of the input signal. This basically creates a match condition for the final eight input AND gate. If all the signal inputs are disabled, then there will be a continuous match condition.

The original, discrete logic version of the circuit was quite different. The 8 bit latches were 74HC574s, very similar to the PLD implementation. However, the enable/disable circuit used tri-state buffers (74HC126) and the output AND gate was actually an 8-bit comparator (74HC688). The circuit required 5 ICs. If I were to implement the circuit I designed for the PLD as discrete ICs, it would require 7.

Since the circuit is now in a PLD, I can probably modify it to meet some other requirements.

Trigger Control

The Trigger Control was perhaps the most difficult circuit to design and get working the way I wanted it to. My goal was to have a programmable pre-trigger capability - unlike my original LA which has a fixed amount of pre-trigger. I have added “U” numbers to the schematic of the PLD circuit in order to make it easier to reference the different parts of the circuit. Both U1 (pre-trigger) and U2 (post-trigger) are 4-bit down counters. They are clocked by the A12 signal inverted. As such they decrement every 8192 samples.

You can set the pre-trigger count to any value between 0 and 14. The number of pre-trigger samples can be determined by this formula: pre-trigger samples = (pre-trigger count * 8192) + 4096. The post-trigger count is set by the system as follows: post-trigger count = 15 - pre-trigger count. The total number of samples is 15 * 8192 + 4096 = 126976 = 2^17 - 4096.

Once the system is “Armed,” the sample clock is enabled and the pre-trigger counter starts counting down. When the pre-trigger counter reaches 0 the output of U3a will go high on the next positive transition of A12 (4096 samples later). This enables a Trigger Match to be detected. A Trigger Match will then cause the Q outputs of U4a and U4b to go high, thus enabling the post-trigger counter and causing the current address to be latched. When it reaches 0, the sample clock will be disabled and the system will stop sampling.

There are three status signals monitored by the program which allow it to determine the state of the system:

PreTrigDone-L

TrigLatch-L

SampleClockEna-L

A message is displayed as the system waits for each of these signals. Note that each of these signals is derived from signals which are used internally by the Trigger Circuit. However, I buffered them via sections of U5 so that the wiring associated with getting them to the PC does not interfere with the circuit operation.

The PLD version of the circuit is almost identical to the discrete version. Below, I have detailed some of the differences for those of you who wish to convert a circuit to a PLD:

On the PLD I selected the carry out of the counters is high true and becomes active as soon as the count reaches 0 or 15, depending on the count direction. The discrete device I used was a 74HC191. Its carry out is low true and is gated with the clock so that it goes true (low) during the second half of the end count.

All counter control inputs are high true for the PLD but are low true for the ‘191.

The discrete version required an AND function so I used a 74HC00 as a NAND and then followed it with another section to invert it. This is certainly not necessary in a PLD, since it has built-in AND blocks.

Trigger Address

This is perhaps the simplest of the circuits. It is simply a 16-bit latch which is triggered by the output of the Trigger Detect Circuit via the Trigger Control Circuit. This was done so that only a single trigger event, which must occur following the pre-trigger count, will cause the address to be latched. I used a 16-bit latch, implemented by using two 8-bit latches, because I did not want to build the necessary additional circuitry for the 17th bit. The program will read the upper 16 bits and then determine if the data actually meets the trigger criteria. If it does not, then it must be the next higher address. This little bit of extra programming saved me quite a few ICs in the circuit design. However since my designing led me to utilizing a PLD, I may go back and revisit this as I work on improving the system.

Logic Analyzer

This is another relatively simple circuit. All it has to do is apply eight input signals to the data bus of the RAM and allow the data bus to be read back by the PC. There are two resistor networks in the input circuit. One is to insure that the input switch device (U2) does not have any floating inputs. The other is for current limiting in case of excessive applied signal voltage. As can be seen on the schematic, U2 and U3 create an eight pole - two position switch controlled by the Read-ChN-L signal. When Read-ChN-L is high, the RAM data bus is connected to the input signals and the SampleClock-PH signal writes the data to the RAM on its rising edges. The SampleClock signal is high during the read operation. When Read-ChN-L is low, the RAM data bus is connected to the system data bus which eventually is read by the PC. Each Logic Analyzer board has its own Read-ChN-L from the Control circuit.

Please note that the address bits driving the RAM are “scrambled.” This was done in order to make the circuit board layout easier. It was much easier to route the address signals to the RAM from J2 using this technique as opposed to routing the address lines to their “correct” pins. This is a common technique in industry. The RAM really does not care which signal from the address generator is connected to which address input. I have seen a number of RAM devices which do not assign specific address bits to its address inputs.

A/D

The circuit is somewhat similar in operation to the Logic Analyzer except that the 8 data bits come from an A/D instead of individual digital sources. The ReadChN-L signal is used to determine whether the circuit is sampling A/D data or transferring it to the PC. U5 is used to connect the RAM data to the system data bus when ReadChN-L is low. When this signal is high it allows the SampleClock-PH signal to clock the A/D as well as write data to the RAM.

The A/D I selected (ADS820) requires a single 5-volt power supply and has a maximum 20 MHz sample rate and a full power bandwidth of 65 MHz. There are pin compatible faster versions available, and there is nothing in the system design that would prohibit you from implementing a faster A/D if you desire. The RAM I am using (CY7C109B-35) is suitable for up to about 28 MHz but faster versions are also available. The -20 is a 50 MHz part.

When sampling the input signal, the rising edge of SampleClock-PH initiates an A/D conversion as well as writes A/D data to the RAM. These types of A/D converters have a pipeline architecture. In the ADS820, the result is a 6-cycle latency between when a signal is sampled and when the converted data is available on its output bus. For my design, all this means is that I need to account for the latency in the software so that the data is stored in the correct location.

There are two additional functions on this card:

digital comparator

4-bit latch for controlling the A/D buffer

The digital comparator allows the user to set a voltage level which can then be used to trigger the system. Notice on the schematic that I have labeled the RAM data bus as “High Speed Bus.” I exercised additional care in routing these signals, keeping them as short as possible, in order to maintain signal integrity. The comparator is operating on the A/D samples at the sample rate - as high as 20 MHz. When the digitized signal value is greater than the comparison value stored in the upper four bits of U4, the P>Q output of U3 will go high. This signal can be used to trigger the system. I implemented a 4-bit comparator so the resolution is only 1 part in 16 (6.25%). This was a reasonable compromise, which allowed me to use the remaining four bits to control the A/D buffer circuit.

The timing requirements for writing A/D data to the RAM can cause problems if the circuit design is not carefully considered. A careful inspection of the A/D timing shows a “dead” time on its data bus immediately following the positive transition of the clock. Note that writing to the RAM also occurs on the rising edge. Initially I thought this might cause a problem. However, the A/D specifications show that there is a minimum 3.9 ns output “hold” time on the data after the rising edge, while the RAM specifications show a 0 ns input “hold” time for the data. Although 3.9 ns does not seem like very much, it is sufficient to allow the circuit to operate properly.

Note that the address bits to the RAM are scrambled in a manner similar to the LA board.

A/D Buffer

This circuit is built on a PC board which is not part of the “stack” which forms the main body of the instrument. I wanted it to be as close as possible to the signal source. So I designed a small board which mounts directly to the front of the LA/DSO housing and which has the input (BNC) connector mounted to the board. This has the advantage of keeping the signal path as short as possible to the buffering op-amp.

This is a simple dual op-amp circuit which has three basic functions:

buffer the signal which may be up to 10 MHz

input attenuator to allow a -5 volt to + 5 volt input span

condition the signal to the 4 volt span of the A/D converter

offset adjustment to center the signal about 2.5 volts.

The circuit I designed does not make use of the four control bits available from the A/D card. I did not want to add this complexity to my circuit for the first design. This means that the basic input level is -5 volts to +5 volts. I use attenuator probes to extend the range as required. I will be designing a programmable attenuator board sometime in the near future and post it on my web site. The input ranges are completely flexible and you can make them whatever you want. The INI file allows you to specify the ranges associated with the 4 control bits (16 values) coming from the A/D circuit.

This op amp I used has relatively high input and offset voltages and currents so the DC characteristics are not ideal. It is fast enough to handle 10 MHz signals though - as long as you do not require the full 8 bit accuracy. There are op amps available which would be better but they are most likely more expensive and this was not one of my primary design goals.

System Operation

The operation of the DSO/LA is fairly intuitive. You can get a good idea simply by seeing the pictures which follow. There is a complete Help file available which explains each of the controls as well as the contents of the INI file. Here is a brief explanation of each of the menu items

File - typical file operations for reading and writing both INI and data files. Both binary and ASCII data files are supported. Binary for saving the waveforms so that the program may read them back. ASCII for compatibility with other programs such as spreadsheets. An INI file is saved with the same name as the data file.

Boards - define the type of board for each of the six input cards

Trigger - define the trigger conditions, including the pre-trigger/post-trigger values

Display - select Time Base, Zoom factor, Slide factor, etc.

Cursors - enable the four time measurement cursors and time grids

Function Keys - Lists the applicable function keys

Debug - some hardware debugging aids as well as some dummy data so you can “play” with the display. I was able to do about 90% of my debugging using this feature. Most of the rest was done with an analog voltmeter.

�
Future Enhancements

I am in the process of redesigning the layout of both the A/D and Logic Analyzer boards to make them easier to build. Both will probably have a PLD to replace the logic devices. This will also make it easier to layout. These new boards will be totally backwards compatible with the current design so that they can be installed in my current system.

As indicated at the beginning of the article I am looking into a serial interface. If I do one it will probably have Ethernet capability also. I have not completely thought this through yet, but with an Ethernet interface it then becomes easy to operate the unit over the Internet.

Once the data has been captured it can then be analyzed in many ways. Currently, I am simply displaying it. I plan to have several measurement capabilities added by the time this article is printed. Some I am considering are:

count the number of logic transitions between cursors

decoding of an ASCII bit stream

decoding of SPI - synchronous data with a clock

decoding I2C - more difficult than SPI but still a possibility

performing some limited math operations on both the LA and A/D data

possibly even a limited spectrum analysis - if I can develop or obtain some code.

I am open to suggestions by anyone who builds a system.

Some general comments and suggestions for making printed circuit boards:

Make the traces as wide as you can. Most of the boards I developed started out with 20 mil traces. After completing the design I would then go back and make each trace as wide as possible. Where necessary, I would “neck down” the trace in order to fit it between IC or connector pins. The main reason for doing this is to prevent undercutting of the traces during etching.

Make the ground traces even wider. This is done to give the least resistance for the ground leads. One of the guidelines I followed was to implement as many of the signal traces and grounds as possible ignoring the +V. Since this was my first effort at double-sided printed circuit boards and since I do not have the ability to implement feedthrus, I felt that running wire jumpers for the +V leads was better than running jumpers for signals. This allowed me to use relatively heavy wires for the power.

Implement ground “fill” where possible. This reduces the amount of copper which needs to be etched as well as giving more ground area.

Use a scrap piece of perforated board as a drilling template for the connector holes. Lining up the drill bit by eye does not work well when you need to insert a 35 pin connector! I had some unused circuit boards from Radio Shack which have 0.1” spaced holes. I lined up the holes with the positions to be drilled and then taped the perf board to my circuit board. Looking through the board with a 50 watt lamp behind it made it relatively easy.

When I started this project I did not have a drill press. I still do not. However, I did purchase an attachment for my electric drill which allows it to operate as a drill press. Without this device I could not have drilled th circuit boards.

I had a relatively bad experience with drills which have a thicker shank. The ones I purchased broke rather easily. In order to use the small bits in my drill I wrapped thin packaging tape around the upper part of the shank. This worked quite well as long as I was careful in the way I wrapped the tape.

For those holes which are not on 0.1” centers I used a center punch to mark the hole. I modified mine by cutting off some of the spring so that it would not make too large a dent in the circuit board material.

Check every connection for both continuity and soldering integrity. I was able to minimize trouble shooting by finding several assembly problems before installing ICs in their sockets and applying power. I also tested every printed wiring trace for continuity after installing all components except ICs.

If the etchant you use suggests etching at an elevated temperature - believe it! The etchant I used, Sodium Persulfate, works best at about 110F. I found that it does not work well at all below 100F.

Drill as few holes as possible. Looking closely at the photos, you may notice that the IC sockets look a little odd. I designed the boards as if I were using SMD ICs. However, I did use mostly normal DIP devices. I found IC sockets that have the flat side of their pins parallel to the long edge. This allowed me to bend them to the side at a right angle to the socket. I laid out the IC traces to insure at least 0.2” of trace beyond the sides of the socket so that the socket pins could be soldered in place. I had to trim the leads on a few sockets but this is quite easy.

Allow ICs on both sides of the boards where necessary.

�
Some General Construction Information

Each board has several points which require hand inserted feedthrus and jumpers. They are all labeled in copper. The feedthrus are labeled with an ‘F’. The jumpers are labeled with lower case letters showing both ends of the jumper. The silkscreen shows the locations of all resistors and capacitors. The leads of discrete resistors and capacitors are often used as feedthrus.

Be careful soldering the board-to-board connectors so that you do not get solder high up on the pin. If you do it will be more difficult to connect to the board below.

The IC socket for the oscillator on the PLD board is the only one in the system mounted as a “thru hole” socket.

Cut each board the same size: 4.25” x 3.5”

Inserting the wires into the sockets for the right angle connectors can be quite tedious. I used wire removed from 8 conductor telephone cable. It is flexible and is 8 different colors. At first I soldered the wires after crimping them by hand. I found that sometimes the solder would wick up into the contact area. The last several I wired I did not solder and they are holding up fine.

There are several connections from the Control board to the input boards. For several of these I simply put shrink tubing over the connector pin after crimping it rather than a housing cut to hold a single pin.

Remember that when you cut the board to board connectors to the appropriate size that you will loose a pin. I would also file the cut side just to make it look better.

Keep the main circuit functions on separate boards. This makes for a very modular system that can be easily customized. It also makes testing the individual circuits easier. This was very important in the early designs so that I could make changes. It is not quite as important now that most of the circuitry is in a PLD.

Install “load” resistors on selected inputs. This, again, makes it easier to test the boards. Floating inputs on CMOS devices can damage them.

Install a few test points on each board - especially at least one ground. This will make it much easier for debugging! I even put a few test circuits into the PLD in the first designs so I could monitor some internal signals.

Following is a complete list of the possible I/O signals and parameters which may be used to define the operation of the counter.

		INPUTS

Port Name	Required	Description / Comments

data[]		No		Parallel data input to the counter. Input port LPM_WIDTH wide. Uses load or sload.

clock		Yes		Positive-edge-triggered Clock.	

clk_en		No		Clock Enable input. Enables all synchronous activities. Default = 	1 (enabled).

cnt_en		No		Count Enable input. Disables the count when low (0) without

				affecting sload, set, or sclr. Default = 1 (enabled).

updown		No		Controls the direction of the count. High (1) = count up. Low (0)	= count down.

				Default = up (1). If the LPM_DIRECTION parameter is used, the updown port cannot be

				connected. If

				LPM_DIRECTION is not used, the updown port is optional.

cin		No		Carry-in to the low-order bit. 	If omitted, the default is 0.

aclr		No		Asynchronous Clear input. Default = 0 (disabled). If both aset

				and aclr are used and asserted, aclr overrides aset.

aset		No		Asynchronous set input.	Default = 0 (disabled). Sets q[] outputs to all 1's, or to the value

				specified by LPM_AVALUE. If both aset and aclr are used and asserted, aclr overrides

				aset.

aload		No		Asynchronous load input. Asynchronously loads the counter with the value on the data

				input. Default = 0 (disabled). If aload is used, data[] must be connected.

sclr		No		Synchronous Clear input. Clears the counter on the next active Clock edge. Default = 0

				(disabled). If both sset and sclr are used and asserted, sclr overrides sset.

sset		No		Synchronous set input. Sets the counter on the next active Clock edge. Default = 0

				(disabled). Sets q outputs to all 1's, or to the LPM_SVALUE value . If both sset and sclr

				are used and asserted, sclr overrides sset.

sload		No		Synchronous load input. Loads the counter with data[] on the next active Clock edge.

				Default = 0 (disabled). If sload is used, data[] must be connected.

�
		OUTPUTS

Port Name	Required	Description / Comments

q[]		No		Data output from the counter.	Output port LPM_WIDTH wide. 	Either q[] or at least

				one of the eq[15..0] ports must be connected.

eq[15..0]	No		Counter decode output Active high when the counter reaches the specified count value.

				(AHDL only) Either the q[] port or eq[] port must be connected. Up to c eq ports can be

				used (0 <= c <= 15). Only the 16 lowest count values are decoded. When the count

				value is c, the, the eqc output is set high (1). For example, when the count is 0, eq0 = 1,

				when the count is 1, eq1 = 1. Decoded output for count values of 16 or greater require

				external decoding. The eq[15..0] outputs are asynchronous to the q[] output.

cout	 	No		Carry-out (borrow-in) of the MSB. 	

		PARAMETERS

Parameter		Type	Required	Description

LPM_WIDTH		Integer	Yes	The number of bits in the count, or the width of 	the q[] and data[] ports, if they

					are used.

LPM_DIRECTION	String	No	Values are "UP", "DOWN", and "UNUSED". If the LPM_DIRECTION parameter is

					used, the updown port cannot be connected. When the updown port is not

					connected, the default for the LPM_DIRECTION parameter is "UP".

LPM_MODULUS		Integer	No	The maximum count, plus one. Number of unique states 	in the counter's cycle. If

					the load value is larger than the LPM_MODULUS parameter, the behavior of the

					counter is not specified.

This information is from the MAX+plus II help file. The software is available from the Atmel website: www.Atmel.com

�
The screen shots and photos have been purposely left out of the document because when Word imports JPG files they get VERY large. The file names are in the text.

Here are a few screen shots showing various features of the DSO/LA. Each screen shot shows the A13..A16 address bus signals as captured by a LA board as well as the A13 signal as captured by the A/D board. This one has the sample period set to 1.6us and the total samples displayed to 31744.

			<Capture_1>

Here are some of the A/D features:

A user selectable color for the A/D trace

The analog voltage for the A/D channel is in the Status box near the upper left corner. The background color is the same as the one selected for the trace.

Horizontal grid lines (user selectable) for the A/D signal along with the Volts/Div next to the Sample Period.

The A/D Scale and Offset features

These shots are not meant to show all the features of the device but a sampling of them. The help file is intended to describe the usage of all the controls and features.

�
This screen shot is zoomed in: total samples displayed is 124

			<Capture_2>

�
Here the sample period is 100ns. Notice that the signal rise time can now be seen, most of which is due to the lack of compensation on the resistive voltage divider in the A/D Preamp.

			<Capture_3>

�

The following pictures show the final system which I built. This first picture is the total assembled system in its enclosure:

			<box_full>

You can see the board-to-board connectors on the “front” of each of the boards. Other than power to the boards these connectors carry the address and sample clock signals. There are more connectors on the “rear” of the boards which carry mostly control signals. Note the A/D preamp board mounted to the front of the enclosure.

�
This picture shows the top of the Control board as mounted in the enclosure. Outside the box is the A/D board.

			<Control_A2D>

�
This picture shows the PLD and Logic analyzer boards.

			<LA_PLD>

