This document contains corrections to

Assembly Language Essentials

A Guide to Powerful Programming for Embedded Systems

Most references will noted as follows:

Page #, Line # (blank lines and figures are not counted)

original text

corrected text - bolded

43, 3

Total memory usage is 4 bytes:

Total memory usage is 6 bytes:

45, 19

Total memory usage is 4 bytes:

Total memory usage is 2 bytes:

58, Fig 4.3

R0 + R2

R0 = R0 + R2

58, last

add.

R2, R0
; add the MSBytes

add.1

R2, R0
; add the MSBytes

75, 4

Synchronous, Master, Mode = 2, 8 data bits

Synchronous, Slave, Mode = 2, 8 data bits

111, 17

abel and a text allocation directive.

Label and a text allocation directive.

111, 24

Another label with a byte allocation directive of three bytes.

Another label with a byte allocation directive of two bytes.

111, last

still labeled as 1:014

still labeled as 1:013

135, 18

; K = 1,
T = 1 + K + 0 + 1 = 3,

; K = 1,
T = 1 + K + 0 + 0 = 2,

139, additional note following Fig. 8.6

Note2: In the all Single Operand examples, even though the value for K is indicated, it does not enter into the timing calculation since the address mode of the argument is register.

147, 4

; K = 1,
T = 1 + 1 = 2,
B = 2 + 0 = 2

; K = 1,
T = 1 + 0 + 1 = 2,
B = 2 + 0 = 2

147-154
Timing for all Rotate instructions should be:

; K = 1,
T = 1 + 0 + 1 = 2,
B = 2 + 0 = 2

155, 1 & 2

Also notice that the exponent has seven bits in the MSByte and one bit in the next lower byte.

Also notice that the exponent has seven bits in the MSByte with the remaining bit(s) in the following byte.

157, 16

; T = 1 + K + 1 = 4,
B = 2 + 2 * K = 4

; T = 1 + K + 1 = 4,
B = 2 + 2 * K = 6

157, last

; T = 1 + K + 1 = 4,
B = 2 + 2 * K = 4

; T = 1 + K + 1 = 4,
B = 2 + 2 * K = 6

158, 8

; T = 1 + K + 10 = 13, B = 2 + 2 * K = 4

; T = 1 + K + 10 = 13, B = 2 + 2 * K = 6

158, last-1

; T = 1 + K + 5 = 8,
B = 2 + 2 * K = 4

; T = 1 + K + 5 = 8,
B = 2 + 2 * K = 6

159, 12

; T = 1 + K + 1 = 4,
B = 2 + 2 * K = 4

; T = 1 + K + 1 = 4,
B = 2 + 2 * K = 6

159, 22

; T = 1 + K + 1 = 4,
B = 2 + 2 * K = 4

; T = 1 + K + 1 = 4,
B = 2 + 2 * K = 6

160, 5

fpid.2

#0f15

; convert 15 to DP, store the result in R0

fpid.2

#15

; convert 15 to DP, store the result in R0

161, 6

; T = 1 + K + 1 = 6,
B = 2 + 2 * K = 1

; T = 1 + K + 1 = 6,
B = 2 + 2 * K = 10

165, 5-7

push.4

0b0101
; push R0 and R2 onto the stack as

; 4 byte values

; K = 2,
T = 1 + (3 * K) + 2 = 9,
B = 2

pushr.4

0b0101
; push R0 and R2 onto the stack as

; 4 byte values

; K = 2,
T = 1 + (2 * K) + 2 = 7,
B = 2

166, 22-23 (shown here as a single line for clarity)

; offset = address of destination - address of jmpr instruction + 2

; offset = address of destination - (address of jmpr instruction + 2)

168, 11-12 (shown here as a single line for clarity)

; offset = address of destination - address of callr instruction + 2

; offset = address of destination - (address of callr instruction + 2)

176, last-1

; K = 1,
T = 1 + 1 + 1 + 1 + 1 = 5, B = 2 + 2 + 2 = 6

; K = 1,
T = 1 + 1 + 1 + 1 = 4, B = 2 + 2 + 2 = 6

180, last-3 thru last-1

; T + 2 (new PSR based on new IPL,

; retrieve ISR address from the

; interrupt vector)

; T = 6

193, last-4

copy.4

#RAMTOP, SP

; set stack pointer to top of RAM –

copy.4
#RAMEND, SP
; set stack pointer to top of RAM –

