D-Star radio packet structure for the Digital Data (DD) mode

by Dick Rucker, KM4ML source: JARL protocol for D-Star; downloaded from here: http://www.arrl.org/FandES/field/regulations/techchar/D-STAR.pdf

Structure of a D-Star Digital Data (DD mode) packet:

sync	64 bit	Bit sync	1 0 1 0 for GMSK; 1 0 0 1 for QPSK		
pulses	14 bit	Frame sync			
flags	1 octet	Flag 1	see below		
	1 octet	Flag 2	see below		
	1 octet	Flag 3	see below		
r o	8 octets	RPT2	Destination repeater ≤ 8 ASCII chars; fill blanks with space characters		
u t	8 octets	RPT1	Departure repeater ≤ 8 ASCII chars; fill blanks with space characters		
i n	8 octets	UR	Companion's call sign ≤ 8 ASCII chars; fill blanks with space characters		
g	8 octets	MY call 1	Own station's call sign ≤ 8 ASCII chars; fill blanks with space characters		
	4 octets	MY call 2	Own station's call suffix ≤ 4 ASCII chars; fill blanks with space characters		
	2 octets	Packet Forward Check Sum (FCS)* = CRC-CCITT checksum: $G(x) = x^16 + x^12 + x^2$			
E t	2 octets	Length =	not found in standard Ethernet		
h e	6 octets	Source Address = same as standard Ethernet, but follows the Destination Adress			
r n	6 octets	Destination Address = same as standard Ethernet, but precedes the Source Address			
e t	2 octets	Type = same as standard Ethernet			
Day load	46-1500 octets	Data = smaller than standard Ethernet see Ethernet packet structure below			
	4 octets	Ethernet's Fo	CS^* , a CRC-32 checksum defined in ISO-3309: $G(x) = x^32 + x^26 +$		

octet = 8 bits without regard to word & byte boundaries

where flag 1 is defined as:

	0			
_	bit number			
MSB	7	1 = Digital Data follows; 0 = Digital Voice follows		
	6	1 = Repeater address(es) follow; 0 = this is a direct station-to-station contact		
	5	1 = an interruption exists; 0 = no interruption exists		
	1 = a control signal follows; 0 = a voice or data signal follows			
1 = this comes with urgent (EMR) priority >> receiver opens squelch; 0 = with				
_	bits 2,1,0 are r	ead as an octal value		
	111	= payload contains control data for the receiving repeater		
	110	110 = Auto-reply		
	101	101 = <unused></unused>		
	100 = Resend request			
	on = ACKnowledgement no = No response is available			
	001	= Relay is unavailable		
	000	= NULL		

Flag 2 = format descriptor

1 octet for future expansion

Flag 3 $\,$ = to be used to match control functions in future versions of the protocol

1 octet for future expansion

^{*}An FCS is used as the basis for Forward Error Correction (FEC)

D-Star radio packet structure for the Digital Data (DD) mode

Structure of an Ethernet frame:

E t	8 octets	Preamble	provides bit and frame synchronization in standard Ethernet	
h e	6 octets	Destination Address		
r n	6 octets	Source Address		
e t	2 octets	Туре		
Dayload	368-12000 oct	Data		
	4 octets	Ethernet FCS	s, a CRC-32 checksum defined in ISO-3309: $G(x) = x^32 + x^26 +$	

source = Douglas Comer, "Internetworking with TCP/IP", Prentice-Hall, 1988

Since that source was published, Ethernet has been standardized as IEEE 802.3.