
8 Reverse Engineering the Tytera MD380
by Travis Goodspeed KK4VCZ,

with kind thanks to DD4CR and W7PCH.

The following is an adventure of reverse engi-
neering the Tytera MD380, a digital hand-held ra-
dio that can be had for barely more than a hundred
bucks. In this article, I explain how to read and
write the radio’s configuration over USB, and how
to break the readout protection on its firmware, so
that you fine readers can write your own strange and
clever software for this nifty gizmo. I also present
patches to promiscuously receive audio from un-
known talkgroups, creating the first hardware scan-
ner for DMR. Far more importantly, these notes
will be handy when you attempt to reverse engineer
something similar on your own.

This article does not go into the security prob-
lems of the DMR protocol, but those are sufficiently

similar to P25 that I’ll just refer you to Why (Spe-
cial Agent) Johnny (Still) Can’t Encrypt by Sandy
Clark and Friends.59

8.1 Hardware Overview

Speaker

Microphone

SP- D- SP+

D+ MIC

The MD380 is a hand-held digital voice radio
that uses either analog FM or Digital Mobile Radio
(DMR). It is very similar to other DMR radios, such
as the CS700 and CS750 from Connect Systems.60

DMR is a trunked radio protocol using two-slot
TDMA, so a single repeater tower can be used by
one user in Slot 1 while another user is having a
completely different conversation on Slot 2. Just
like GSM, the tower coordinates which radio should
transmit when.

The CPU of this radio is an STM32F405 from
STMicroelectronics. This contains a Cortex M4, so
all instructions are Thumb and all function point-
ers are odd. The LQFP100 package of this chip
is used. It has a megabyte of Flash and 192 kilo-
bytes of RAM. The STM32 has both JTAG and a
ROM bootloader, but both of these are protected
by a Readout Device Protection (RDP) feature. In
Section 8.8, I’ll show you how to bypass these pro-
tections and jailbreak your radio.

There is also a radio baseband chip, the
HR C5000. At first I was reconstructing the pinout
of this chip from the CS700 Service Manual, but the
full documentation can be had from DocIn, a Chi-
nese PDF sharing website.

Aside from a bunch of support components that
we can take for granted, there is an SPI Flash chip
for storing the codeplug. “Codeplug” is a Motorola
term for the radio settings, such as frequencies, con-
tacts, and talk groups; I use the term here to distin-
guish the radio configuration in SPI Flash from the

59unzip pocorgtfo10.pdf p25sec.pdf #from Proceedings of the 20th Usenix Security Symposium in 2011
60The folks at Connect Systems are nice and neighborly, so please buy a radio from them.

76

code and data in CPU Flash.

80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

60
59

58
57

56
55

54
53

52
51

50
49

48
47

46
45

44
43

42
41

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

19
20

HRC_5000

HPVCC

HPOUT

HPGND

CDC_VREF

MIC2_N

MIC2_P

MIC1_N

MIC1_P

CDC_AVCC

LINEOUT

MICBIAS

PLL_AVCC

PLL_AVSS

XTALI

CKOut

MCLK

ADCDAT

BCLK

LRCK

DACDAT

DVCC

RF_TX_EN

RF_RX_EN

U_SCLK

U_CS

U_SDI

DVDD

U_SDO

RF_RX_INTER

RF_TX_INTER

SYS_INTER

TIME_SLOT_INTER

NULL

PWD

RESETn

TESTMODE

DVSS

C_SDO

C_SCLK

C_CS

M
cB

S
P_

R
xD

M
cB

SP
_T

xD

M
cB

S
P_

C
L
K
R

M
cB

SP
_F

SX

M
cB

S
P
_C

L
K
X

M
cB

SP
_F

SR

P
K
T
_R

X
_W

A
K
E

R
T
S

T
X
_R

Q
ST

T
X
_R

D
Y

S
T
D
B
Y
_E

N
A
B
L
E

D
V
D
D

V
_S

D
I

V
_S

D
O

V
_S

C
L
K

V
_C

S

C
_S

D
I

N
U
L
L

D
V
SS

D
V
C
C

D
C
D

C
_S

W

D
C
D

C
_V

D
D
50

D
C
D
C
_V

SS

D
C
D
C
_V

D
D
12

D
A
C
_I

V
O
U
T

D
A
C
_A

V
D
D
33

D
A
C
_A

V
SS

33

D
A
C
_Q

V
O
U
T

A
V
C
_V

G
B
_I

A
D
C
_I

V
IN

N

A
D
C
_I

V
IN

P

A
D
C
_A

V
D
D
33

_I

A
D
C
_A

V
D
D

A
D
C
_A

G
N
D

A
D
C
_A

V
D
D
33

_Q

A
D
C
_Q

V
IN

P

A
D
C
_Q

V
IN

N

A
D
C
_V

G
B
_Q

N
U
L
L

A
D
C
_A

G
N
D

8.2 A Partial Dump

From lsusb -v on Linux, we can see that the de-
vice implements USB DFU, most likely as a fork of
some STMicro example code. The MD380 appears
as an STMicro DFU device with storage for Internal
Flash and SPI Flash with a VID:PID of 0483:df11.

1 iMac% dfu−u t i l − l i s t
Found DFU: [0 4 8 3 : df11]

3 devnum=0, c f g =1, i n t f =0, a l t =0,
name="@Internal Flash

5 /0 x08000000 /03∗016Kg"
Found DFU: [0 4 8 3 : df11]

7 devnum=0, c f g =1, i n t f =0, a l t =1,
name="@SPI Flash Memory

9 /0 x00000000 /16∗064Kg"

Further, the .rdt codeplug files are SPI Flash
images in the DMU format, which is pretty much
just wrapper with a bare minimum of metadata
around a flat, uncompressed memory image. These
codeplug files contain the radio’s contact list, re-
peater frequencies, and other configuration info.
We’ll get back to this later, as what we really want
to do is dump and patch the firmware.

Unfortunately, dumping memory from the device
by the standard DFU protocol doesn’t seem to yield
useful results, just the same repeating binary string,
regardless of the alternate we choose or the starting
position.

1 iMac% dfu−u t i l −d 0483: df11 −−a l t 1 −s 0 :0 x200000 −U
f i r s t 1 k . bin

F i l t e r on vendor = 0x0483 product = 0xdf11
3 Opening DFU capable USB dev ice . . . ID 0483: df11

Run−time dev ice DFU ver s i on 011a
5 Found DFU: [0 483 : df11] devnum=0, c fg =1, i n t f =0, a l t =1,

name="@SPI Flash Memory /0x00000000 /16∗064Kg"
7 Claiming USB DFU In t e r f a c e . . .

Se t t ing Alternate Se t t ing #1 . . .
9 Determining dev ice s ta tu s : s t a t e = dfuUPLOAD−IDLE

abort ing prev ious incomplete t r a n s f e r
11 Determining dev ice s ta tu s : s t a t e = dfuIDLE , s ta tu s = 0

dfuIDLE , cont inu ing
13 DFU mode dev ice DFU ver s i on 011a

Device returned t r a n s f e r s i z e 1024
15 Limit ing default upload to 2097152 bytes

bytes_per_hash=1024
17 Sta r t ing upload : [####...####] f i n i s h e d !

iMac% hexdump f i r s t 1 k . bin
19 0000000 30 1a 00 20 15 56 00 08 29 54 00 08 2b 54 00 08

0000010 2d 54 00 08 2 f 54 00 08 31 54 00 08 00 00 00 00
21 0000020 00 00 00 00 00 00 00 00 00 00 00 00 33 54 00 08

0000030 35 54 00 08 00 00 00 00 83 30 00 08 37 54 00 08
23 0000040 61 56 00 08 65 56 00 08 69 56 00 08 5b 54 00 08

. . .
25 00003 c0 10 eb 01 60 df f8 34 1a 08 60 df f8 1c 0c 00 78

00003d0 40 28 c0 f0 e6 81 df f8 24 0a 00 68 00 f0 0e f f
27 00003 e0 df e1 df f8 10 1a 09 78 a2 29 0 f d1 df f8 f8 19

00003 f0 09 68 02 29 0a d1 df f8 00 0a 02 21 01 70 df f8
29 . . . [same 1024 bytes repeated]

In this brave new world, where folks break their
bytes on the little side by order of Golbasto Mo-
marem Evlame Gurdilo Shefin Mully Ully Gue,
Tyrant of Lilliput and Eternal Enemy of Big En-
dians and Blefuscu, to break them on the little side,
it’s handy to spot four byte sequences that could be
interrupt handlers. In this case, what we’re looking
at is the first few pointers of an interrupt vector ta-
ble. This means that we are grabbing memory from
the beginning of internal flash at 0x08000000!

Note that the data repeats every kilobyte, and
also that dfu-util is reporting a transfer size of
1,024 bytes. The -t switch will order dfu-util to
dump more than a kilobyte per transfer, but every-
thing after the first transfer remains corrupted.

This is because dfu-util isn’t sending the
proper commands to the radio firmware, and it’s get-
ting the page as a bug rather than through proper
use of the protocol. (There are lots of weird variants
of DFU, created by folks only using DFU with their
own tools and never testing for compatibility with
each other. This variant is particularly weird, but
manageable.)

8.3 Tapping USB with VMWare

Before going further, it was necessary to learn the
radio’s custom dialect of DFU. Since my Total Phase
USB sniffers weren’t nearby, I used VMWare to sniff
the transactions of both the MD380’s firmware up-
dater and codeplug configuration tools.

I did this by changing a few lines of my VMWare
.vmx configuration to dump USB transactions out

77

to vmware.log, which I parsed with ugly regexes in
Python. These are the additions to the .vmx file.

1 monitor = "debug"
usb . ana lyze r . enable = TRUE

3 usb . ana lyze r . maxLine = 8192
mouse . vusb . enable = FALSE

The logs showed that the MD380’s variant of
DFU included non-standard commands. In partic-
ular, the LCD screen would say “PC Program USB
Mode” for the official client applications, but not
for any 3rd party application. Before I could do a
proper read, I had to find the commands that would
enter this programming mode.

DFU normally hides extra commands in the
UPLOAD and DNLOAD commands when the block ad-
dress is less than two. (Hiding them in blocks
0xFFFF and 0xFFFE would make more sense, but if
wishes were horses, then beggars would ride.)

To erase a block, a DFU host sends 0x41 followed
by a little endian address. To set the address pointer
(block 2’s address), the host sends 0x21 followed by
a little endian address.

In addition to those standard commands, the
MD380 also uses a number of two-byte (rather than
five-byte) DNLOAD transactions, none of which exist
in the standard DMU protocol. I observed the fol-
lowing, which I still only partially understand.

Non-Standard DNLOAD Extensions
91 01 Enables programming mode on LCD.
a2 01 Seems to return model number.
a2 02 Sent only by config read.
a2 31 Sent only by firmware update.
a2 03 Sent by both.
a2 04 Sent only by config read.
a2 07 Sent by both.
91 31 Sent only by firmware update.
91 05 Reboots, exiting programming mode.

8.4 Custom Codeplug Client

Once I knew the extra commands, I built a custom
DFU client that would send them to read and write
codeplug memory. With a little luck, this might
have given me control of firmware, but as you’ll see,
it only got me half way.

Because I’m familiar with the code from a prior
target, I forked the DFU client from an old version
of Michael Ossmann’s Ubertooth project.61

Sure enough, changing the VID and PID of the
ubertooth-dfu script was enough to start dumping
memory, but just like dfu-util, the result was a
repeating sequence of the first block’s contents. Be-
cause the block size was 256 bytes, I received only
the first 0x100 bytes repeated.

Adding support for the non-standard commands
in the same order as the official software, I got a
copy of the complete 256K codeplug from SPI Flash
instead of the beginning of Internal Flash. Hooray!

To upload a codeplug back into the radio, I mod-
ified the download() function to enable program-
ming mode and properly wait for the state to return
to dfuDNLOAD_IDLE before sending each block.

This was enough to write my own codeplug from
one radio into a second, but it had a nasty little bug!
I forgot to erase the codeplug memory, so the radio
got a bitwise AND of two valid codeplugs.62

A second trip with the USB sniffer shows that
these four blocks were erased, and that the upload
address must be set to zero after the erasure.
0x00000000 0x00010000 0x00020000 0x00030000

Erasing the blocks properly gave me a tool that
correctly reads and writes the radio codeplug!

8.5 Codeplug Format
Now that I could read and write the codeplug mem-
ory of my MD380, I wanted to be able to edit it.
Parts of the codeplug are nice and easy to reverse,
with strings as UTF16L and numbers being either
integers or BCD. Checksums don’t seem to matter,
and I’ve not yet been able to brick my radios by
uploading damaged firmware images.

The Radio Name is stored as a string at 0x20b0,
while the Radio ID Number is an integer at 0x2080.
The intro screen’s text is stored as two strings at
0x2040 and 0x2054.

#s eekto 0x5F80 ;
2 struct {

ul24 c a l l i d ; //DMR Account Number
4 u8 f l a g s ; //c2 pr i va te , no tone

//e1 group , with rx tone
6 char name [3 2] ; //U16L chars

} contac t s [1 0 0 0] ;

61In particular, I used r543 of the old SVN repository, a version from 4 July 2012.
62See PoC‖GTFO 2:5.
63http://chirp.danplanet.com

78

CHIRP,63 a ham radio application for editing
radio codeplugs, has a bitwise library that expects
memory formats to be defined as C structs with base
addresses. By loading a bunch of contacts into my
radio and looking at the resulting structure, it was
easy to rewrite it for CHIRP.

Repeatedly changing the codeplug with the man-
ufacturer’s application, then comparing the hex-
dumps gave me most of the radio’s important fea-
tures. Patience and a few more rounds will give me
the rest of them, and then my CHIRP plugin can be
cleaned up for inclusion.

Unfortunately, not everything of importance ex-
ists within the codeplug. It would be nice to export
the call log or the text messages, but such commands
don’t exist and the messages themselves are nowhere
to be found inside of the codeplug. For that, we’ll
need to break into the firmware.

8.6 Dumping the Bootloader

Now that I had a working codeplug tool, I’d like a
cleartext dump of firmware. Recall from Section 8.2
that forgetting to send the custom command 0x91
0x01 leaves the radio in a state where the beginning
of code memory is returned for every read. This is
an interrupt table!

MD380 Recovery Bootloader Interrupts
0x20001a30 Top of the call stack.
0x08005615 Reset Handler
0x08005429 Non-Maskable Interrupt (NMI)
0x0800542b Hard Fault
0x0800542d MMU Fault
0x0800542f Bus Fault
0x08005431 Usage Fault

From this table and the STM32F405 datasheet,
we know the code flash begins at 0x08000000 and
RAM begins at 0x20000000. Because the firmware
updater only writes to regions at and after 0x0800-
C000, we can guess that the first 48k are a recovery
bootloader, with the region after that holding the
application firmware. As all of the interrupts are
odd, and because the radio uses a Cortex M4 core,
we know that the firmware is composed exclusively
of Thumb (and Thumb2) code, with no old fash-
ioned ARM instructions.

Sure enough, I was able to dump the whole boot-
loader by reading a single page of 0xC000 bytes from
the application mode. This bootloader is the one

used for firmware updates, which can be started
by holding PTT and the unlabeled button above
it when turning on the power switch.64

This trick doesn’t expose enough memory to
dump the application, but it was valuable to me for
two very important reasons. First, this bootloader
gave me some proper code to begin reverse engineer-
ing, instead of just external behavioral observations.
Second, the recovery bootloader contains the keys
and code needed to decrypt an application image,
but to get at that decrypted image, I first had to do
some soldering.

STFM32F405
LQFP100

PA
3

V
S
S

V
D
D

PA
4

PA
5

PA
6

PA
7

P
C
4

P
C
5

P
B
0

P
B
1

P
B
2

P
E
7

P
E
8

P
E
9

P
E
10

P
E
11

P
E
12

P
E
13

P
E
14

P
E
15

P
B
10

P
B
11

V
C
A
P
_1

V
D
D

V
D
D

V
S
S

P
E
1

P
E
0

P
B
9

P
B
8

B
O
O
T
0

P
B
7

P
B
6

P
B
5

P
B
4

P
B
3

P
D
7

P
D
6

P
D
5

P
D
4

P
D
3

P
D
2

P
D
1

P
D
0

P
C
12

P
C
11

P
C
10

P
A
15

P
A
14

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

PE2
PE3
PE4
PE5
PE6
VBAT

PC14
PC15
VSS
VDD
PH0

NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2

VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12

PC13

PH1

10
0

99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

8.7 Radio Disassembly (BOOT0 Pin)

As I stress elsewhere, the MD380 has three appli-
cations in it: (1) Tytera’s Radio Application, (2)
Tytera’s Recovery Bootloader, and (3) STMicro’s
Bootloader ROM. The default boot process is for
the Recovery Bootloader to immediately start the
Radio Application unless Push-To-Talk (PTT) and
the button above it are held during boot, in which
case it waits to accept a firmware update. There
is no key sequence to start the STMicro Bootloader
ROM, so a bit of disassembly and soldering is re-
quired.

This ROM contains commands to read and write
all of memory, as well as to begin execution at any
arbitrary address. These commands are initially
locked down, but in Section 8.8, I’ll show how to
get around the restrictions.

64Transfers this large work on Mac but not Linux.

79

To open your radio, first remove the battery and
the four Torx screws that are visible from the back
of the device. Then unscrew the antenna and care-
fully pry off the two knob covers. Beneath each knob
and the antenna, there are rings that screw in place
to secure them against the radio case; these should
be moved by turning them counter-clockwise using
a pair of sturdy, dull tweezers.

Once the rings have been removed, the radio’s
main board can be levered up at the bottom of the
radio, then pulled out. Be careful when removing it,
as it is attached with a Zero Insertion Force (ZIF)
connector to the LCD/Keypad board, as well as by
a short connector to the speaker.

The STMicro Bootloader is started by pulling
the BOOT0 pin of the STM32F405 high while
restarting the radio. I did this by soldering a thin
wire to the test pad near that pin, wrapping the
wire around a screw for strain relief, then carefully
feeding it out through the microphone/speaker port.

(An alternate method involves removing
BOOT0’s pull-down resistor, then fly-wiring it to
the pull-up on the PTT button. Thanks to tricky
power management, this causes the radio to boot
normally, but to reboot into the Mask ROM.)

8.8 Bootloader RE

Once I finally had a dump of Tytera’s bootloader,
it was time to reverse engineer it.65

The image is 48K in size and should be loaded to
0x08000000. Additionally, I placed 192K of RAM
at 0x20000000. It’s also handy to create regions for
the I/O banks of the chip, in order to help track
those accesses. (IDA and Radare2 will think that
peripherals are global variables near 0x40000000.)

After wasting a few days exploring the command
set, I had a decent, if imperfect, understanding of
the Tytera Bootloader but did not yet have a clear-
text copy of the application image. Getting a bit
impatient, I decided to patch the bootloader to keep
the device unprotected while loading the application
image using the official tools.

I had to first explore the STM32 Standard Pe-
ripheral Library to find the registers responsible for
locking the chip, then hunt for matching code.

1 /∗ STM32F4xx f l a s h regs from stm32f4xx . h ∗/
#@0x40023c00

3 typedef struct {
__IO uint32_t ACR; // access c t r l 0x00

5 __IO uint32_t KEYR; // key 0x04
__IO uint32_t OPTKEYR; // opt ion key 0x08

7 __IO uint32_t SR; // s t a t u s 0x0C
__IO uint32_t CR; // con t ro l 0x10

9 __IO uint32_t OPTCR; // opt ion c t r l 0x14
__IO uint32_t OPTCR1; // opt ion c t r l 1 0x18

11 } FLASH;

65The MD5 of my image is 721df1f98425b66954da8be58c7e5d55, but you might have a different one in your radio.

81

The way flash protection works is that byte 1
of FLASH->OPTCR (at 0x40023C15) is set to the pro-
tection level. 0xAA is the unprotected state, while
0xCC is the permanent lock. Anything else, such as
0x55, is a sort of temporary lock that allows the
application to be wiped away by the Mask ROM
bootloader, but does not allow the application to be
read out.

Tytera is using this semi-protected mode, so you
can pull the BOOT0 pin of the STM32F4xx chip high
to enter the Mask ROM bootloader.66 This process
is described in Section 8.7.

Sure enough, at 0x08001FB0, I found a function
that’s very much like the example FLASH_OB_RDP-
Config function from stm32f4xx_flash.c. I call
the local variant rdp_lock().

1 /∗ Sets the read p ro t e c t i on l e v e l .
∗ OB_RDP s p e c i f i e s the p ro t e c t i on l e v e l .

3 ∗ AA: No pro t e c t i on .
∗ 55: Read pro t e c t i on memory .

5 ∗ CC: Fu l l ch ip p ro t e c t i on .
∗ WARNING: When enab l ing OB_RDP l e v e l 2

7 ∗ i t ’ s no longer p o s s i b l e to go
∗ back to l e v e l 1 or 0 .

9 ∗/
void FLASH_OB_RDPConfig(uint8_t OB_RDP){

11 FLASH_Status s t a tu s = FLASH_COMPLETE;

13 /∗ Check the parameters ∗/
assert_param (IS_OB_RDP(OB_RDP)) ;

15
s t a tu s = FLASH_WaitForLastOperation () ;

17 i f (s t a tu s == FLASH_COMPLETE)
∗(__IO uint8_t ∗)

19 OPTCR_BYTE1_ADDRESS = OB_RDP;
}

66Confusingly enough, this is the third implementation of DFU for this project! The radio application, the recovery bootloader,
and the ROM bootloader all implement different variants of DFU. Take care not to confuse the them.

82

This function is called from main() with a pa-
rameter of 0x55 in the instruction at 0x080044A8.

0x080044a0 fd f 7a0 fd bl rdp_isnot locked
2 0x080044a4 0028 cmp r0 , 0

,=< 0x080044a6 04d1 bne 0x80044b2
4 | ; Change t h i s immediate from 0x55 to 0xAA

| ; to j a i l b r e a k the boo t l oade r .
6 | 0x080044a8 5520 movs r0 , 0x55

| 0x080044aa fd f 781 fd bl rdp_lock
8 | 0x080044ae fd f78b fd bl rdp_applylock

‘−> 0x080044b2 fd f 776 fd bl 0 x8001fa2
10 0x080044b6 00 f097 f a bl bootloader_pin_test

Patching that instruction to instead send 0xAA
as a parameter prevents the bootloader from lock-
ing the device. (We’re just swapping aa 20 in where
55 20 used to be.)

iMac% d i f f o ld . txt j a i l b r e a k . txt
2 < 00044 a0 fd f7 a0 fd 00 28 04 d1

55 20 fd f7 81 fd fd f7
4 −−−
> 00044a0 fd f7 a0 fd 00 28 04 d1

6 aa 20 fd f7 81 fd fd f7

8.9 Dumping the Application

Once I had a jailbroken version of the recovery boot-
loader, I flashed it to a development board and in-
stalled an encrypted MD380 firmware update using
the official Windows tool. Sure enough, the appli-
cation installed successfully!

After the update was installed, I rebooted the
board into its ROM by holding the BOOT0 pin high.
Since the recovery bootloader has been patched to
leave the chip unlocked, I was free to dump all of
Flash to a file for reverse engineering and patching.

8.10 Reversing the Application

Reverse engineering the application isn’t terribly dif-
ficult, provided a few tricks are employed. In this
section, I’ll share a few; note that all pointers in
this section are specific to Version 2.032, but similar
functionality exists in newer firmware revisions.

At the beginning, the image appears almost en-
tirely without symbols. Not one function or system
call comes with a name, but it’s easy to identify
a few strings and I/O ports. Starting from those,
related functions—those in the same .C source file—
are often located next to one another in memory,
providing hints as to their meaning.

The operating system for the application is an
ARM port of MicroC/OS-II, an embedded real-time
operating system that’s quite well documented in
the book of the same name by Jean J. Labrosse. A
large function at 0x0804429C that calls the operat-
ing system’s OSTaskCreateExt function to make a
baker’s dozen of threads. Each of these conveniently
has a name, conveniently describing the system in-
terrupt, the real-time clock timer, the RF PLL, and
other useful functions.

As I had already reverse engineered most of the
SPI Flash codeplug, it was handy to work backward
from codeplug addresses to identify function behav-
ior. I did this by identifying spiflash_read at
0x0802fd82 and spiflash_write at 0x0802fbea,
then tracing all calls to these functions. Once these
have been identified, finding codeplug functions is
easy. Knowing that the top line of startup text is 32
bytes stored at 0x2040 in the codeplug, finding the
code that prints the text is as simple as looking for
calls to spiflash_read(&foo, 0x2040, 20).

Thanks to the firmware author’s stubborn in-
sistence on 1-indexing, many of the structures in
the codeplug are indexed by an address just be-
fore the real one. For example, the list of ra-
dio channel settings is an array that begins at
0x1ee00, but the functions that access this array
have code along the lines of spiflash_read(&foo,
64*index+0x1edc0, 64).

One mystery that struck me when reverse engi-
neering the codeplug was that I didn’t find a missed
call list or any sent or received text messages. Sure
enough, the firmware shows that text messages are
stored after the end of the 256K image that the radio
exposes to the world.

Code that accesses the C5000 baseband chip can
be reverse engineered in a similar fashion to the
codeplug. The chip’s datasheet67 is very well han-
dled by Google Translate, and plenty of dandy func-
tions can be identified by writes to C5000 registers
of similar functions.

Be careful to note that the C5000 has multiple
memories on its primary SPI bus; if you’re not care-
ful, you’ll confuse the registers, internal RAM, and
the Vocoder buffers. Also note that a lot of registers
are missing from the datasheet; please get in touch
with me if you happen to know what they do.

Finally, it is crucially important to be able to
sort through the DMR packet parsing and construc-
tion routines quickly. For this, I’ve found it handy

67unzip pocorgtfo10.pdf hrc5000.pdf

83

to keep paper printouts of the DMR standard, which
are freely available from ETSI.68 Link-Local ad-
dresses (LLIDs) are 24 bits wide in DMR, and you
can often locate them by searching for code that
masks against 0xFFFFFF.69

8.11 Patching for Promiscuity
While it’s fun to reverse engineer code, it’s all a
bit pointless until we write a nifty patch. Complex
patches can be introduced by hooking function calls,
but let’s start with some useful patches that only re-
quire changing a couple of bits. Let’s enable promis-
cuous receive mode, so the MD380 can receive from
all talk groups on a known repeater and timeslot.

In DMR, audio is sent to either a Public Talk-
group or a Private Contact. These each have a 24-bit
LLID, and they are distinguished by a bit flag else-
where in the packet. For a concrete example, 3172 is
used for the Northeast Regional amateur talkgroup,
while 444 is used for the Bronx TRBO talkgroup. If
an unmodified MD380 is programmed for just 3172,
it won’t decode audio addressed to 444.

There is a function at 0x0803ec86 that takes a
DMR audio header as its first parameter and decides
whether to play the audio or mute it as addressed
to another group or user. I found it by looking for
access to the user’s local address, which is held in
RAM at 0x2001c65c, and the list of LLIDs for in-
coming listen addresses, stored at 0x2001c44c.

To enable promiscuous reception to unknown
talkgroups, the following talkgroup search routine
can be patched to always match on the first el-
ement of listengroup[]. This is accomplished
by changing the instruction at 0x0803ee36 from
0xd1ef (JNE) to 0x46c0 (NOP).

for (i = 0 ; i < 0x20u ; ++i) {
2 i f ((l i s t e ng r oup [i] & 0xFFFFFF)

== dst_l l id_adr) {
4 something = 16 ;

r ecogn i zed_l l id_dst = dst_l l id_adr ;
6 current_l l id_group = var_lgroup [i +16] ;

sub_803EF6C () ;
8 dmr_squelch_thing = 9 ;

i f (∗(v4 + 4) & 0x80)
10 byte_2001D0C0 |= 4u ;

break ;
12 }

}

A similar JNE instruction at 0x0803ef10 can be
replaced with a NOP to enable promiscuous recep-
tion of private calls. Care in real-world patches
should be taken to reduce side effects, such as by
forcing a match only when there’s no correct match,
or by skipping the missed-call logic when promiscu-
ously receiving private calls.

8.12 DMR Scanning
After testing to ensure that my patches worked, I
used Radio Reference to find a few local DMR sta-
tions and write them into a codeplug for my mod-
ified MD380. Soon enough, I was hearing the best
gossip from a university’s radio dispatch.70

Later, I managed to find a DMR network that
used the private calling feature. Sure enough, my
radio would ring as if I were the one being called,
and my missed call list quickly grew beyond my two
local friends with DMR radios.

8.13 A New Bootloader
Unfortunately, the MD380’s application consumes
all but the first 48K of Flash, and that 48K is con-
sumed by the recovery bootloader. Since we neigh-
bors have jailbroken radios with a ROM bootloader
accessible, we might as well wipe the Tytera boot-
loader and replace it with something completely
new, while keeping the application intact.

Luckily, the fine folks at Tytera have made
this easy for us! The application has its own
interrupt table at 0x0800C000, and the RESET
handler—whose address is stored at 0x0800C004—
automatically moved the interrupt table, cleans up
the stack, and performs other necessary chores.

1 //Minimal is t boo t l oader .
void main () {

3 //Function po in t e r to the app l i c a t i on .
void (∗ appmain) () ;

5 //The handler address i s the s to red in the
// i n t e r r up t t a b l e .

7 uint32_t ∗ r e s e thand l e r =
(uint32_t ∗) 0x0800C004 ;

9 // Set the func t i on po in t e r to t ha t va lue .
appmain = (void (∗) ()) ∗ r e s e thand l e r ;

11 //Away we go !
appmain () ;

13 }

68ETSI TS 102 361, Parts 1 to 4.
69In assembly, this looks like LSLS r0, r0, #8; LSRS r0, r0, #8.
70Two days of scanning presented nothing more interesting than a damaged elevator and an undergrad too drunk to remember

his dorm room keys. Almost gives me some sympathy for those poor bastards who have to listen to wiretaps.

84

8.14 Firmware Distribution

Since this article was written, DD4CR has managed
to free up 200K of the application by gutting the
Chinese font. She also broke the (terrible) update
encryption scheme, so patched or rewritten firmware
can be packaged to work with the official updater
tools from the manufacturer.

Patrick Hickey W7PCH has been playing around
with from-scratch firmware for this platform, built
around the FreeRTOS scheduler. His code is al-
ready linking into the memory that DD4CR freed
up, and it’s only a matter of time before fully-
functional community firmware can be dual-booted
on the MD380.

– — — – — — — — – — –
In this article, you have learned how to jailbreak

your MD380 radio, dump a copy of its application,
and begin patching that application or writing your
own, new application.

Perhaps you will add support for P25, D-Star,
or System Fusion. Perhaps you will write a proper
scanner, to identify unknown stations at a whim.
Perhaps you will make DMR adapter firmware, so
that a desktop could send and receiver DMR frames
in the raw over USB. If you do any of these things,
please tell me about it!

Your neighbor,
Travis

85

D
ATE:

Approve:

C
heck:

of
Page:

R
EV:

M
odel:

Filenam
e:

File N
O

.:

D
esigner:

3
6

PETER

1.0
2014.08.11

R
314

180R

LED303
RED

R
315

220R

LED301
GREEN

Q
301

D
TC

144EE
Q

302
D

TC
144EE

R
316
47K

C
316

103 R
317
47K

C
317

103 R
318
47K

C
318

103 R
319
47K

C
319

103

R
320

0R

R
321

10K

1
EC

1
2

G
1

6
EC

0

7 G0

4
EC

3
5

G
2

3
EC

2

8 G0

SW
302

C
O

D
E-SW

ITC
H

C
320

104

R
362

4K7
R

363
4K7

C
362

104

1
C

SN
2

SO
6

SC
K

5
SI

4
VSS

3
W

PN

7
H

O
LD

N

8
VC

C

U
302

W
25Q

128FVSIG

4
SD

A

3
SC

L

2
G

N
D

5
VPP

1
R

STO

6
VD

D

U
307

H
R

_V3000S

C
307

104

C
305
104

C
306

104

C
308

105

5 PE614 NRST1 PE22 PE33 PE44 PE57 PC13_ANTI_TAMP8 PC14_OSC32_IN9 PC15_OSC32_OUT12 OSC_IN13 OSC_OUT73 VCAP_215 PC016 PC117 PC218 PC320 VREF-23 PA0_WKUP24 PA162 PD1563 PC664 PC765 PC866 PC967 PA8

72
PA13

25
PA2

26
PA3

29
PA4

30
PA5

31
PA6

32
PA7

33
PC

4
34

PC
5

35
PB0

36
PB1

37
PB2

38
PE7

39
PE8

40
PE9

41
PE10

42
PE11

43
PE12

44
PE13

45
PE14

46
PE15

47
PB10

48
PB11

68
PA9

69
PA10

51PB12 52PB13 53PB14 54PB15 55PD8 56PD9 57PD10 58PD11 59PD12 60PD13 61PD14 49VCAP_1 74VSS_2 10VSS_5 27VSS_4 99VSS_3 22VDDA 21VREF+ 19VDD 50VDD_1 11VDD_5 28VDD_4 100VDD_3 75VDD_2 6VBAT

76
PA14

77
PA15

78
PC

10
79

PC
11

80
PC

12
81

PD
0

82
PD

1
83

PD
2

84
PD

3
85

PD
4

86
PD

5
87

PD
6

88
PD

7
89

PB3
90

PB4
91

PB5
92

PB6
93

PB7
94

BO
O

T0
95

PB8
96

PB9
97

PE0
98

PE1
70

PA11
71

PA12

U
301

STM
32F405VG

T6

C
303
8P

C
302
8P

R
313

10K

1

TP301
JTAG

_SW
C

LK

R
306

10K

R
305

N
C

1
TP303
BO

O
T0

C
343

105

C
345

103

R
336

22K

C
332

153 R
335

15K

C
333
183

C
312

103

C
313

103

3
VEE2

2
VEE1

1
N

C

4
O

U
T

5
VC

CU
303

PST9124

R
342

10K
C

338
104C

339
103

R301 1K

R
339
4K7C

335
392

R
338

4K7
C

336
183

R
341

2K2

1

TP305
JTAG

_R
ESET

C
337

105

R
310

10K

R
304
N

C

R
340

22K

1

TP304
JTAG_SWDIO

R
311

1K
R

312
1K

C
352

105

R
303

10K

C
344

105

C360
104

C361
104

R350 NC

R
391
1K

R
370

1K

R334
0R

1
3 X301

8M
H

z

R308 1K

R3091K

C
301

10P

C
304

10P

1
4

2
3

X302
32.768KH

z

D
304

N
C

R
392

1K

R
393

220R

C
340
N

C

Q
303

N
C

R348 1K

R
349

47K
C

341

104

R
352

1K

54321 6 7

FPC
301

PTT_PAD

R
345

10K

R355 100R

R354 100R

R
359

1K
R

358
1K

R
357

1K
R

356
1K

1
H

O
LD

/IO
3

2
VC

C
3

R
ESET#

4
D

N
U

5
D

U
N

6
C

S2#
7

C
S1#

8
SO

/IO
1

9
W

P#/IO
2

10
VSS

11
D

N
U

12
D

N
U

13
N

C
14

VIO
/R

FU
15

SI/IO
0

16
SC

K

U
305

N
C

C
350

N
C

R
364

N
C

R
367

N
C

R
365

N
C

R
366

N
C

R
347
N

C

C
349

N
C

R
360

1K
R

380
1K

R
302
1K

D
305

KD
S160E

BAT301
M

S412F-FL26E

BAT+

3V3

3V3

FLASH
_SD

O

FLASH
_SC

LK

FLASH
_C

S0

FLASH
_SD

I

EC
N

0
EC

N
1

EC
N

2
EC

N
3

R
X_LED

TX_LED

3V3

3V3

BSHIFT

LCD_D1

APC
/TV

M
O

D
2_BIAS

LC
D

_D
4

LC
D

_D
5

VO
X

BU
SY

5RC

U
SB_D

+

LC
D

_R
D

SC
L

3V3
LC

D
_W

R

K1

3V3

VO
L_O

U
T

3V3

SAVE

5TC

EC
N

1
EC

N
2

EC
N

3

EC
N

0

LCD_RS
LCD_RST

LC
D

_D
2

LC
D

_D
3

K2K3

U
SB_D

-

PLL_LD
PLL_CS

LCD_D0

SD
A

DMR_SLEEP

TIME_SLOT_INTER
SYS_INTER

RF_TX_INTER
RF_RX_INTER

Q
T_D

Q
T_IN

R
SSI

LC
D

_D
6

2T/5T/D
TM

F_O
U

T

BATT

LAMP

FM
_SW

C
TC

/D
C

S_O
U

T

PO
W

_C

D
M

R
_SW

VC
O

VC
C

_SW

EXT_PTT

LC
D

_C
S

FLASH
_SC

LK
FLASH

_SD
O

FLASH
_SD

I I2S_FS
I2S_C

K
I2S_R

X
I2S_TX

R
F_APC

_SW

2T/5T

BEEP

W
/N

_SW

C5000_RST

M
IC

PW
R

_SW

32.768K_OUT
32.768K_IN

32.768K_IN

TX_LED

BSH
IFT

32.768K_OUT

DMR_SDO

DMR_CS
DMR_SCLK

DMR_SDI

PTT_KEY
3V3

K3
LC

D
_D

6
LC

D
_D

7

LC
D

_D
7

3V3

PLL_DAT

PLL_CLK

FM
_M

U
TE

V_CS
V_SCLK
V_SDO
V_SDI

FLASH_CS1
FLASH_CS2

SPK_C
AFC

O
R

X_LED

SD
A

SC
L

3V3

3V3

FLASH
_SD

O FLASH
_C

S2
FLASH

_C
S1

FLASH
_SC

LK
FLASH

_SD
I

BAC
K3V3

3V3

PTT_KEY

FLASH
_C

S0

86

C
he

ck
:

Ap
pr

ov
e:

D
AT

E:
of

Pa
ge

:
R

EV
:

M
od

el
:

Fi
le

na
m

e:

Fi
le

 N
O

.:

D
es

ig
ne

r:

2
6

PE
TE

R

1.
0

20
14

.0
8.

11

R
22

6
N

C

R
23

8
1K

R
23

2
10

K

L2
02

BL
M

18
AG

60
1S

C
24

4

22
0P

R
22

7
N

C

R
23

1
10

K

C
24

1
22

0P

R
23

6
1K

1
H

PV
C

C
9

C
D

C
_A

VC
C

12
PL

L_
VD

D
33

66
AD

C
_A

VD
D

33
_Q

67
AD

C
_A

VD
D

33
_I

76
D

AC
_A

VD
D

33
79

D
C

D
C

_V
D

D
33

32
VD

D
12

53
VD

D
12

69
AD

C
_A

VD
D

12
_I

64
AD

C
_A

VD
D

12
_Q

77
D

C
D

C
_V

D
D

12
80

D
C

D
C

_S
W

18
BC

LK
17

LR
C

K
16

M
C

LK
19

AD
C

D
AT

39
R

ES
ET

N
45

D
BI

ST
_I

N
38

TE
ST

_M
O

D
E 21VSS12 33VSS12 52VSS12 3HPGND 13PLL_VSS33 65ADC_AGND_Q 68ADC_AGND_I 73DAC_AVSS33 78DCDC_VSS 41V_SDI 42V_SDO 43V_SCLK 44V_CS 59RF_RX_EN 60RF_TX_EN 61ADC_VBG_Q 14XTAL 15CLKOUT 62ADC_QVINN 63ADC_QVINP

4
C

D
C

_V
R

EF
71

AD
C

_I
VI

N
N

70
AD

C
_I

VI
N

P
34

C
_S

D
I

35
C

_S
D

O
36

C
_S

C
LK

37
C

_C
S

48
TI

M
E_

SL
O

T_
IN

TE
R

49
SY

S_
IN

TE
R

50
R

F_
TX

_I
N

TE
R

51
R

F_
R

X_
IN

TE
R

55
U

_S
D

O
56

U
_S

D
I

57
U

_S
C

LK
58

U
_C

S
2

H
PO

U
T

72
AD

C
_V

BG
_I

10
LI

N
EO

U
T

74
D

AC
_Q

VO
U

T
75

D
AC

_I
VO

U
T

22 MCBSP_RXD23 MCBSP_TXD24 MCBSP_CLKR25 MCBSP_FSX26 MCBSP_CLKX27 MCBSP_FSR28 PKT_RX_WAKE29 RTS30 TX_RDY31 STDBY_ENB47 PWD40 VDD3354 VDD3346 DBIST_OUT20 DACDAT8 MIC1_P5 MIC2_P11 MICBIAS7 MIC1_N6 MIC2_N

U
20

1
H

R
_C

50
00

C
23

3
10

2

C
23

2
10

4

R
22

9
10

R

C
23

5
10

4
C

23
6

10
U

/1
0V

C
22

7

10
3

C
22

8
10

U
/1

0V

C
23

0

10
4

C
22

5
10

4

C
24

0

10
4

C
23

9

10
4

C
22

6
10

4

C
27

9

10
5

C
27

6

10
3

C
27

8

10
3

C
28

0

10
3

C
28

1

10
5

C
28

2

10
3

C
28

3

10
5

C
28

4

10
3

C
26

9

10
5

C
27

0

10
3

C
27

1

10
5

C
27

2

10
3

C
27

4

10
4

C
27

3

10
4

R
24

9
10

0R

R
23

3
10

K
R

23
4

10
K

R
23

5
N

C
C

23
4

N
C

R
22

5
1K

C
22

4
10

5
1

1
2

-V
3

3
4

4

5
+V

U
20

3
TC

75
S5

1F

R
24

0
10

K

R
24

1
22

K

C
24

8
10

2

C
25

0
10

5

R
24

3
22

0K

R
24

4
10

0K

C
25

3
47

0P
C

25
2

10
4

R
25

3
1K

C
23

1
10

P

L2
08

BL
M

18
AG

60
1S

C
24

9
10

5

C
23

8
10

5

C
29

0

10
4

C
29

1

10
U

/1
0V

C
23

7

10
3

C
31

0

10
4

C
31

1

10
4

C
26

1
10

4

R
25

8
10

K

C
26

0
10

3

R
26

7
2K

2

R
26

1
10

R

C
26

8
47

0P

Q
20

1
D

TC
14

4E
E

EC
26

4
10

0u
F/

6.
3V

C
26

3
10

4

1
2L2
01

BL
M

21
PG

22
1S

R
26

5
10

0K

C
26

2
10

4

C
25

7

10
3

C
26

7
10

4

R
25

9
1K

C
26

6

10
5

Q
20

2
FM

M
T7

17

R
26

8
10

R

Q
20

3
D

TC
14

4E
E

C
25

8
10

5

1
O

U
TP

U
T1

2
VC

C

3
O

U
TP

U
T2

4
G

N
D

5
N

F2

6
IN

PU
T2

7
IN

PU
T1

8
N

F1

U
20

4
TD

A2
82

2D

R
26

0
10

R

R
26

6
47

K

R
29

9
N

C

1

2
3

Q
20

4
ST

23
02

1

2
3

Q
20

7
ST

23
02

R
28

0
10

K
C

28
6

10
5

C
28

9

10
3

C
28

7

10
3

C
28

5

10
4

+

EC
25

9
10

uF
/1

0V

+

C265
22U/10V

1
N

C

2
G

N
D

4
VC

C

3
O

U
TX2

01
29

.4
91

2M
H

z

L2
03

47
uH

123

45

SW
40

1
VO

L-
SW

IT
C

H

A3
V3

3V
3

3V
3

AD
C

_I
N

_N

A3
V3

BA
T+

3V
3

3V
3

D
M

R
_V

C
C

VO
L_

O
U

T

V_CS
V_SCLK

V_SDO
V_SDI

2T/5T/DTMF_OUT
MIC_OUT

DMR_SLEEP

D
M

R
_C

S
D

M
R

_S
C

LK
D

M
R

_S
D

I

IF
_O

U
T

VO
L_

O
U

T

M
O

D
2

M
O

D
1

I2
S_

R
X

I2
S_

TX
I2

S_
C

K
I2

S_
FS

D
M

R
_S

D
O

R
F_

R
X_

IN
TE

R
R

F_
TX

_I
N

TE
R

SY
S_

IN
TE

R
TI

M
E_

SL
O

T_
IN

TE
R

PO
W

_S
W

BA
T+

AF
C

O

SP
K_

C

EX
T_

SP
K+

SP
K-

C5000_RST

87

