
Op25 documentation
April, 2017
===========

This file contains notes on the new version OP25 receiver (rx.py) which
replaces the prior version scope.py. The primary differences are:
 * The dependency on WX is completely removed. By default OP25 runs in
 a console window in text-only mode.
 * An optional real-time plot can be selected when launching rx.py:
 contellation, datascope (eye pattern), or symbol trace.
 * cqpsk versus fsk4 mode is now selected as a command line parameter.
 * most rx.py command-line parameters are compatible with scope.py.
 * reduced CPU consumption, as the frame assembler block now runs as a
 sink-only GR block.
 * dependency on 14.04 is completely removed. Should now run in later
 ubuntu and fedora versions with only minor changes (not yet tested).

ADDITIONAL REQUIRED PACKAGES
============================
sudo apt-get install gnuplot-x11

EXAMPLE COMMAND LINE
====================
./rx.py --args 'rtl' --gains 'lna:49' -f 456.7e6 -T tsys.tsv -q -1 -S 1000000 -P symbol -o 50000 -w
2> stderr.2

Running stderr to a file (e.g., "2> stderr.2") is recommended to avoid
screen misprinting.

NOTE: For phase1 voice the "-V" option is not used. Instead the
"-w" option is used (see AUDIO SERVER section, below). For P25 phase 2/TDMA,
the "-2" option is required in addition to the "-w" option.

TERMINAL OPERATION
==================
After starting rx.py if plotting is in use a separate gnuplot window
should open. You must click on the terminal window to restore it to
focus, otherwise all keystrokes are consumed by gnuplot. Once in the
terminal window there are several keyboard commands:
 h - hold
 l - lockout

 s - skip
 q - quit program
 , - decrease fine tune by 100Hz
 . - increase fine tune by 100Hz
 < - decrease fine tune by 1200Hz
 > - increase fine tune by 1200Hz
 1 - toggle fft plot
 2 - toggle constellation plot (cqpsk)
 3 - toggle symbol plot
 4 - toggle datascope plot (fsk4)
 5 - toggle mixer plot
There are also two experimental commands (should not be used in -T mode)
 f - manually change frequencies
 t - if currently tuned to a CC, autostart scanning talkgroups

The "t" command allows trunk tracking without setting up a trunking TSV
file. However running with the -T <filename> command line option is
preferred as that allows use of white/black lists and talkgroup tags files.

If the terminal window freezes there may have been a crash. Press Ctrl-Z
to suspend the program and examine stderr.2 for error messages. If there
is a traceback please report the full traceback (and the command line) to
the mail list.

REMOTE TERMINAL
===============
Adding (for example) "-l 56111" to the rx.py command starts rx.py but does
not attach a curses terminal. Instead the program runs as normal in the
foreground (hit CTRL-C to end rx.py as desired). To connect to a running
instance of rx.py, (in this example)
 ./terminal.py 127.0.0.1 56111
NOTE: rx.py and terminal.py need not run on the same machine. The machine
where terminal.py is running need not have an SDR device directly attached;
but GNU Radio (and OP25) must be available.

WARNING: there is no security or encryption on the UDP port.

EXTERNAL UDP AUDIO SERVER
=========================
Starting rx.py with the "-w -W host" options directs udp audio data to
be sent over the network to the specified remote host. It can then be
received and played back with either of the following methods:
1. Execute ./audio.sh on a remote machine equipped with python2.7,

 libasound.so.2 and the sockaudio.py file.
-or-
2. Execute the command:
 nc -kluvw 1 127.0.0.1 23456 | aplay -c1 -f S16_LE -r 8000

NOTE: audio underruns are to be expected when using nc | aplay as the
pcm stream is interrupted every time a radio transmission ends. The
sockaudio player is designed to handle this more gracefully, and generally
only underruns due to high cpu utilization or reception/decoding errors.

INTERNAL AUDIO SERVER
=====================
Starting rx.py with the "-U" command line option enables an internal udp
audio server which will play received audio through the default ALSA
device. Optionally you may specify which ALSA device to use by setting
the "-O audio_out" option along with "-U".

As of this writing (Aug 2017) it is still necessary to specify the "-w"
(wireshark) option if using either the internal or external audio server.

PLOT MODES
==========
Four types of plotting are currently implemented, via the -P parameter:
 * fft
 * constellation
 * datascope
 * symbol
The symbol mode is allowed both in fsk4 and cqpsk modes. The datascope
mode works only with fsk4 demod mode (-D fsk4). The constellation mode
only works when the cqpsk demod mode is selected (or defaulted).

A couple of notes specific to plot mode:

1. At program startup time the gnuplot window is given the focus after
it opens. Before you can enter terminal commands you need to click on
the terminal window once to make it the active window.

2. In some cases the gnuplot window is displayed on top of the terminal
window used by OP25. If so it may be necessary to move one or the other
of the two windows.

COMMAND LINE OPTIONS
====================

Usage: rx.py [options]

Options:
 -h, --help show this help message and exit
 --args=ARGS device args
 --antenna=ANTENNA select antenna
 -a, --audio use direct audio input
 -A, --audio-if soundcard IF mode (use --calibration to set IF freq)
 -I AUDIO_INPUT, --audio-input=AUDIO_INPUT
 pcm input device name. E.g., hw:0,0 or /dev/dsp
 -i INPUT, --input=INPUT
 input file name
 -b Hz, --excess-bw=Hz
 for RRC filter
 -c Hz, --calibration=Hz
 USRP offset or audio IF frequency
 -C Hz, --costas-alpha=Hz
 value of alpha for Costas loop
 -D DEMOD_TYPE, --demod-type=DEMOD_TYPE
 cqpsk | fsk4
 -P PLOT_MODE, --plot-mode=PLOT_MODE
 constellation | fft | symbol | datascope | mixer
 -f Hz, --frequency=Hz
 USRP center frequency
 -F IFILE, --ifile=IFILE
 read input from complex capture file
 -H HAMLIB_MODEL, --hamlib-model=HAMLIB_MODEL
 specify model for hamlib
 -s SEEK, --seek=SEEK ifile seek in K
 -L LOGFILE_WORKERS, --logfile-workers=LOGFILE_WORKERS
 number of demodulators to instantiate
 -S SAMPLE_RATE, --sample-rate=SAMPLE_RATE
 source samp rate
 -t, --tone-detect use experimental tone detect algorithm
 -T TRUNK_CONF_FILE, --trunk-conf-file=TRUNK_CONF_FILE
 trunking config file name
 -v VERBOSITY, --verbosity=VERBOSITY
 message debug level
 -V, --vocoder voice codec
 -n, --nocrypt silence encrypted traffic
 -o Hz, --offset=Hz tuning offset frequency [to circumvent DC offset]
 -p, --pause block on startup
 -w, --wireshark output data to Wireshark

 -W WIRESHARK_HOST, --wireshark-host=WIRESHARK_HOST
 Wireshark host
 -u WIRESHARK_PORT, --wireshark-port=WIRESHARK_PORT
 Wireshark udp port
 -r RAW_SYMBOLS, --raw-symbols=RAW_SYMBOLS
 dump decoded symbols to file
 -R RX_SUBDEV_SPEC, --rx-subdev-spec=RX_SUBDEV_SPEC
 select USRP Rx side A or B (default=A)
 -g GAIN, --gain=GAIN set USRP gain in dB (default is midpoint) or set audio
 gain
 -G GAIN_MU, --gain-mu=GAIN_MU
 gardner gain
 -N GAINS, --gains=GAINS
 gain settings
 -O AUDIO_OUTPUT, --audio-output=AUDIO_OUTPUT
 audio output device name
 -U, --udp-player enable built-in udp audio player
 -q FREQ_CORR, --freq-corr=FREQ_CORR
 frequency correction
 -d FINE_TUNE, --fine-tune=FINE_TUNE
 fine tuning
 -2, --phase2-tdma enable phase2 tdma decode
 -Z DECIM_AMT, --decim-amt=DECIM_AMT
 spectrum decimation

MULTI-RECEIVER
==============
The multi_rx.py app allows an arbitrary number of SDR devices and channels
to be defined. Each channel may have one or more plot windows attached.

Configuration is achieved via a json file (see cfg.json for an example).
In this version, channels are automatically assigned to the first device
found whose frequency span includes the selected frequency.

As of this writing (winter, 2017), neither trunking nor P25 P2/TDMA are
supported in multi_rx.py. The rx.py app should be used for P25 trunking,
for either P1/FDMA or P2/TDMA.

Below is a summary of the major config file keys:
demod_type: 'cqpsk' for qpsk p25 only; 'fsk4' for ysf/dstar/dmr/fsk4 p25
filter_type: 'rc' for p25; 'rrc' for dmr and ysf; 'gmsk' for d-star
plot: 'fft', 'constellation', 'datascope', 'symbol'
 [if more than one plot desired, provide a comma-separated list]

destination: 'udp://host:port' or 'file://<filename>'
name: arbitrary string used to identify channels and devices

bug: 'fft' and 'constellation' currently mutually exclusive
bug: 'gmsk' needs work

Note: DMR audio for the second time slot is sent on the specified port number
plus two. In the example 'udp://127.0.0.1:56122', audio for the first slot
would use 56122; and 56124 for the second.

The command line options for multi_rx:
Usage: multi_rx.py [options]

Options:
 -h, --help show this help message and exit
 -c CONFIG_FILE, --config-file=CONFIG_FILE
 specify config file name
 -v VERBOSITY, --verbosity=VERBOSITY
 message debug level
 -p, --pause block on startup

OP25 Multiprotocol Digital Voice TX

The OP25 project in 2009 released an encoder and software TX for P25 (conventional phase I
C4FM/FDMA) based on the fullrate IMBE codec contribution from Pavel Yazev.
With the addition of a software AMBE halfrate encoder the OP25 Group now releases an
updated TX with voice encoders for-

● P25
● DMR
● YSF
● DSTAR

This release was tested using a PC soundcard connected to the direct modulator input (i.e.,
9,600 data port) of an Icom IC-820H configured for high speed data operation [AMOD/PACT
switch set to PACT]. Not all PCs tested successfully so perhaps the choice of sound card isn't
irrelevant, or the interface circuit needs more work... The software TX drives the audio output at
optimum (close to full) signal levels; no output level adjust is provided within the app. Soundcard
gain/loss must be carefully adjusted using a Linux sound mixer app so that the proper FM
deviation is achieved (see below).

This release has also been tested with the HackRF SDR; other SDR devices supported by
gr-osmosdr should work as well.

INSTALLATION
After cloning the repo change to the top level directory:
git clone https://git.osmocom.org/op25
cd op25

Next install OP25:
./install.sh

You may be asked for your password for permission to install the OP25 files in the system
libraries.

STARTING THE PROGRAM
After installing OP25 cd to the op25/gr-op25_repeater/apps/tx subdirectory. Here's an example
command line:
python dv_tx.py -r -f ~/uncompressed.wav -p dstar -c dstar-cfg.dat

Hackrf Example:
python dv_tx.py -p dmr --args hackrf -q -21 -Q 925187500 -c dmr-cfg.dat -f ~/file1.wav -F
~/file2.wav -r

In this example we've selected the dstar protocol with input from a wav file (must be standard
rate 8000/S16_LE/mono). Below is a full list of options.
Multiprotocol Digital Voice TX (C) Copyright 2017 Max H. Parke KA1RBI
Usage: dv_tx.py [options]

Options:
 -h, --help show this help message and exit
 -a ARGS, --args=ARGS device args
 -b BT, --bt=BT specify bt value
 -c CONFIG_FILE, --config-file=CONFIG_FILE
 specify the config file name
 -f FILE1, --file1=FILE1
 specify the input file slot 1
 -F FILE2, --file2=FILE2
 specify the input file slot 2 (DMR)
 -g GAIN, --gain=GAIN input gain
 -i IF_RATE, --if-rate=IF_RATE
 output rate to sdr

https://greatscottgadgets.com/hackrf/
https://greatscottgadgets.com/hackrf/
https://osmocom.org/projects/sdr/wiki/GrOsmoSDR
https://osmocom.org/projects/sdr/wiki/GrOsmoSDR

 -I AUDIO_INPUT, --audio-input=AUDIO_INPUT
 pcm input device name. E.g., hw:0,0 or /dev/dsp
 -N GAINS, --gains=GAINS
 gain settings
 -O AUDIO_OUTPUT, --audio-output=AUDIO_OUTPUT
 pcm output device name. E.g., hw:0,0 or /dev/dsp
 -o OUTPUT_FILE, --output-file=OUTPUT_FILE
 specify the output file
 -p PROTOCOL, --protocol=PROTOCOL
 specify protocol
 -q FREQUENCY_CORRECTION, --frequency-correction=FREQUENCY_CORRECTION
 ppm
 -Q FREQUENCY, --frequency=FREQUENCY
 Hz
 -r, --repeat input file repeat
 -R, --fullrate-mode ysf fullrate
 -s SAMPLE_RATE, --sample-rate=SAMPLE_RATE
 output sample rate
 -t TEST, --test=TEST test pattern symbol file
 -v VERBOSE, --verbose=VERBOSE
 additional output

MULTI-CHANNEL TRANSMITTER
The multi_tx.py demonstration app transmits four RF channels, one for each of the supported
protocols. It requires SDR hardware (such as the HackRF); any device supported by the
gr-osmosdr driver and libraries should work. Example command line:
python multi_tx.py --args hackrf --gains rf:0,if:0 -q -19.5 -Q 442187500 -f ~/rand3.wav -R
The "-Q" (frequency) option gives the frequency of the first of the four channels; the remaining
channel frequencies appear at regular intervals (default spacing is 100 KHz). The channels are,
starting at the lowest frequency: dmr, p25, dstar, and ysf. The ysf channel format may be set to
"wide", using "-R" (default=narrow). The "-q" option is needed for PPM correction (unless a time
base such as GPSDO is used). The input file ("-f" option) requires WAV format, 8000
samples/sec, S16_LE. Audio from the WAV file is transmitted on all frequencies. However if the
"-A" option is given, program content for the second DMR time slot is instead taken live from the
sound card audio input port ("-I" option).

GENERAL
Input audio may come either from WAV files (8000/S16_LE/mono) or from the PC microphone /
line input connector. If -f filename (or -F filename in DMR mode) is selected the input is read
from file(s); otherwise the GR audio source is selected. Likewise output is sent to the soundcard
unless -o is given. When using files the -r option can be specified to replay the input file(s) in a

continuous loop. Without this option the program exits at EOF. The -p protocol option is used to
select which of the four DV standards (dmr, dstar, p25 or ysf) is to be used. The dmr and ysf
modes also utilize a configuration file, specified using the -c filename parameter. See the
specific section (below) for more details on the configuration file.
There currently appears to be an audio bug that causes the audio to sound "overdriven" or
"clipped". The dstar and to a lesser extent the ysf-halfrate coder is most affected by this; dstar
suffers from an audio level pumping or AVC malady. UPDATE (Mar. 2017) A hack was added
that greatly reduces this problem in ysf. At this point only dstar seems in need of further work.
Note: in general the program currently doesn't currently send "header" or "terminator" packets
which typically appear once at the start/end of voice transmissions. Instead we rely on the ability
inherent in all of these protocols to start receiving even for transmissions already in progress.
For two of the four protocols (dstar and ysf in fullrate mode) this means we forfeit an opportunity
to transmit the station callsign. This needs to be fixed in a future release...

OPERATION
Proper FM deviation is set by adjusting the output levels using the 'alsamixer' app while
monitoring with an FM deviation meter. The "Datascope" option in the scope.py OP25 gui app
(running on a separate PC) can also be used to view the deviation. If this method is used
scope.py must first be calibrated using a known accurate station. The test station is then
adjusted to have the same deviation as the known station (leaving all receiver parameters
unchanged other than perhaps the frequency). Note: if the sound interface has multiple audio
bands (e.g., bass, treble, etc.) all such settings should be set to midrange; a flat response is
required.

DMR
DMR operates in Base Station (BS) mode and is 2-slot TDMA with both slots operating in Group
Voice mode. [DMR Mobile Station mode utilizes time-slotted channel access and is not directly
compatible with the usual FM transmitter hardware without serious modification]. The
configuration file parameters that you are most likely to change are the Station Address (sa) and
Group Address (ga) parameters [the latter is also known as the talkgroup ID]. See the
comments in the sample DMR config file dmr-cfg.dat (supplied). It is also possible to disable one
or both channels if desired.

DSTAR
As of this writing DSTAR mode has an audio clipping bug causing the speech to have a
distored, overdriven character. Given sufficient time this should be quite fixable. Also the "slow
speed data" feature needs to be implemented. Until this is done the config file (if present) is
ignored. As mentioned, the -g gain parameter can be used to adjust the input gain, although this
doesn't fully cure all dstar quality issues.

P25

The P25 coder was the earliest modulation format supported in OP25. It operates with a fixed
NAC (Network Access Code) of 0x293 and transmits fullrate voice.

YSF
The ysf mode supports both halfrate (default) and fullrate voice, with some clipping distortion
noted in the halfrate mode. Fullrate mode is enabled using the -R option. The halfrate mode
also supports the interspersed callsign and repeater ID data, but this is currently untested. See
the sample ysf config file ysf-cfg.dat (supplied).

CREDITS
Too many to list; thanks to Matt Ames, Pavel Yazev, Jonathan Naylor, unknown author(s) of
DSD (DSDAuthor), Mathias Weyland, Sylvain Munaut; undoubtedly others.

©Copyright 2017, Max H. Parke KA1RBI

