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PREFACE 

The term “modern physics” is outdated. There is really nothing modern about the 

experiments you will perform since many of them were originally completed some 

75-100 years ago. The lab PHYS 340 is a laboratory course focusing on important 

experiments in modern physics. The course is really a sequence of experiments 

designed to study the properties of electrons, photons and electron-photon 

interactions. Fundamental questions, raised in the late 1800's and early 1900's, 

centered on these important issues and led the way to the formulation of quantum 

physics. 

 

During this course, you will have the opportunity to 

 repeat some very important experiments and gain experience with a 

variety of experimental techniques, 

 analyze and synthesize non-trivial experimental data, and 

 gain experience in writing a lab report on the experimental work you have 

performed. 

 

It is a pleasure to acknowledge the able and enthusiastic help of Carolyn Smith during 

the past three years. Her expert advice made it easy and fun to develop new 

experiments. Eric Dedrick and Josh Guffin worked during the summer months to test 

out the new experiments. One of us (RR) would also like to acknowledge many 

helpful conversations with Prof. Lazlo Gutay (Purdue), Prof. Terry Toepker (Xavier 

University) and Prof. John Hsieh (University of Arizona) during the initial phases of 

the upgrade. Their thoughtful comments provided a much-needed direction to the 

early work. Lastly, Prof. Andy Hirsch (Purdue) deserves much credit for helping to 

secure funds from the Purdue Administration to purchase new lab equipment for the 

lab. 

 

 

S. Savikhin   

R. Reifenberger 

October, 2002 
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PHYS 340 

Lab Procedures and Practices 
 

1.  Notebook Keeping 
 

One of the most important skills of an experimental physicist is keeping a good lab 

notebook. The details of laboratory notebook-keeping are patterned after standard 

notebook-keeping practices in professional physics research organizations.  If these 

practices seem excessively legalistic, it is because they are, in part, to insure that 

notebook records of research and development will be legally binding to protect the 

inventor’s claim to an original discovery.  Countless legal contests have been decided 

by a properly kept, properly witnessed research notebook.  Learn to do it correctly 

now and it will be of life-long value to you. 

 

Type of Notebook — A Bound, “quadrille-lined” (coarsely gridded graph paper) 

computation notebook  Avery Dennison No. 43-648 or equivalent is recommended for 

this course. The two important aspects are its bound nature, which makes it more 

lasting and prevents pages from being removed, and the quadrille ruling, which 

facilitates quick plotting of graphs and sketching of apparatus. 

 

General Rules —  

1. Every page of your notebook should be numbered.   

2. All entries must be legible to others, written in ink and in serial order,  

3. No blanks are to be left for filling in later (exception: Table of Contents as 

described below).   

4. Any additional loose information sheets, such as ideas jotted down on separate 

paper at odd time, computer graphs or graphs on millimeter paper, occasional 

photocopies of pertinent tables or figures, etc., must be permanently affixed, 

preferably with glue or transparent tape.  No erasures, white-outs or scribble-outs are 

allowed.  Corrections are done by putting a line through the erroneous entry and 

writing the correct entry above or to the side. Large mistakes, i.e., many lines or an 

incorrect drawing, can be marked by an “X” across the whole thing, with a dated 

comment on why it is X’d out.  
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Table of Contents —  

1. The first few pages of the notebook should be reserved for a Table of Contents.  At 

the very least it should contain the starting page number of each experiment.  Greater 

detail would be useful in looking up material about which you or the instructor have 

questions. 

 

Dates — All pages should be dated.  This assures that the diary aspect of the 

notebook is maintained.  It is also essential in cases where experimental priority needs 

to be established.   Do not write on a page with an earlier date.  Exceptions:  i) if there 

is an interruption of thought or experiments, you can insert a comment on the old 

page giving directions to the continuation.  ii) If you discover later that some material 

on an old page is wrong, you can line it out and give directions to a current page 

explaining why it is wrong.  If you wish to add columns to an earlier table, you can 

photocopy the table (reduced in size if you wish), glue it to the current page (state the 

page from which it was copied), and write in your new columns.  If you summarize 

previous results into neater form, be sure to state which pages are being summarized. 

 

Units — All dimensioned quantities must have units associated with them. 

 

Uncertainties and significant figures —  Not only should a numerical value be 

given but also a justification for that value; e.g., “the smallest division is 0.1 mm and 

I can interpolate to 1/4 division so error is about .03 mm”. If there is a parallax error, 

include that as well.  If there is a systematic error, note that too; e.g., “end of tape was 

broken off so starting point was 2.5.” Regarding significant figures, every number 

should be quoted to a value commensurate with its associated measurement error. A 

recorded value such as (3.04175.021)108 m/s is poor form. These concepts are 

discussed in further detail later in this section.   

 

Pre-Class Preparation —  

 Refer to books you have already read (including lab handouts) 

 Outline goal of experiment – make sure this is clear 

 Outline the basic theory: derive equations, this is preferable to simply copying. 

You may use more than one source. If you cannot get the same results as the lab 

manual, consult with your TA or professor. 

 Outline (roughly) experimental setup and procedures. 

 

Note: You can cut and glue schematics or diagrams from lab handouts and paste them 

into your notebook, though drawing by yourself is preferable as the process of 

drawing will often force you to understand how something works. 

 

Your instructors may want to examine your preparation before you start an 

experiment.  Pre-class preparation is one of the most important parts of the 

experiment. In the real world of science, preparation and planning for an experiment 

take a large share of the time.  Building and debugging the apparatus, data analysis, 

and writing the results take much of the rest of the time.  Actual data taking often 
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occupies very little of the time.  This is why Advanced Lab students are expected to 

devote a considerable amount of time to work done outside the lab. 

 

In-class Lab Work —  Do not collect a lot of data in meaningless tables. After you 

get some preliminary set of data – analyze it: calculate correlation coefficient(s), plot 

it if necessary. As soon as you get some results, graph them on the spot and make a 

rough calculation to see if your results are reasonable.  Many people have spent hours 

collecting beautiful lists of worthless numbers because they omitted this step.  Make 

sure things are going right before you continue too far.  The preliminary graph need 

not be a work of art, but nonetheless should be included in your lab notebook.  When 

you do your final analysis at home, you should re-draw the graph on good graph 

paper or do a computer plot, with (possibly) more suitable scales, better captions, etc.  

More about this later!  

 

Tables — When it is possible, try to incorporate tables into your notebook.  Good 

tables are both compact and easy to follow.  They call attention to the numbers and 

relations between them.  Head each column with a name and/or symbol.  Don’t forget 

to label the table columns with units. Tables are especially effective in collecting 

together the important results of an experiment.  Don’t be afraid to use them. 

However, avoid lengthy multi-page tables, which are better suited for computer file 

storage. 

 

Sample Calculations — Demonstrate your method of data analysis by showing at 

least one complete sample calculation.  The rest of the data may be analyzed a 

calculator or computer, but all of the results should be tabulated.  The sample 

calculation should not be just a string of numbers and combinatorial signs but should 

give a description of what you are doing and why.  The latter is especially important 

if there is more to be done than substituting into an expression derived in the 

introduction. You should indicate which data table your values came from so that the 

procedure can be quickly verified.  This will be most helpful when you get 

unreasonable results. 

 

Diary Function — A little before the end of each lab session you should write a brief 

diary or journal entry describing in a few sentences what has been done during the 

period.   

 

End-of-Class Check — At the end of each lab session you are required to have your 

notebook entries briefly examined and initialed by your TA.  Although time will not 

allow them to thoroughly review your work, certain helpful comments and 

suggestions may be made at this time. This is not simply a legalistic watch over what 

you are doing.  In a sense it is proper research notebook procedure followed by all 

good research organizations in one form or another.  In order to insure legality of the 

notebook priorities, notebook entries are signed and dated by an independent person 

or persons who understand the contents. 
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Final Write-up — This should be done before starting a new experiment, or at least 

in the week that you start the next experiment.  It should be a summary of the 

experiment you just completed in not more than two pages.  It should include your 

best value for the experimentally determined quantity and your best assessment of the 

uncertainty on this value.   

 There should be a comparison with the “accepted” value taken from 

handbooks or other sources.  It should include a discussion of the appropriateness of 

the procedure as you see it, difficulties you experienced, sources or error and their 

magnitude, and your major source of error with possible ways to reduce it. It is here 

that you should apply any known corrections to your raw value, giving adequate 

justification for the corrections.  You are offering the world an experimental value 

and you are now justifying its merit, accuracy and precision.  It is frequently 

appropriate to suggest, based on your experience in doing the experiment, how one 

could improve on the experiment in the future. 

Although the final write-up should not exceed two pages, it may make reference 

to notebook pages where more details can be found.  If done properly, the final write-

up paves the way toward easy production of a formal paper on the experiment.  It will 

also be examined first and with the most scrutiny by graders who may not have time 

to examine every other detail of your notebook. 

 

2.  Notebook Problems 
 

It is easy to list some common problems when trying to keep a good lab notebook.  

The items listed below are indicators that your efforts to succeed in this course may 

not be paying off. 

 

• You spend no time writing in your notebook before starting a new lab. 

 

• The entries in your lab notebook are essentially dated one week apart. 

 

• You make no attempt to re-derive important equations in your notebook. 

 

• You staple many graphs (or spreadsheets) onto one page of your notebook.  

 

• No error estimates are included when you quote your final result. 

 

\• There is no final write-up.  Remember, you should analyze and organize 

everything in your notebook before writing a final report. Feel free to appear 

disorganized and make mistakes; but be prepared to reorganize your thoughts in 

a better way on the next page!  

 

• You attach graphs (or data tables) to your notebook without giving them an 

identifying number, e.g.  ‘Graph 2’ or ‘Plot 4’ or ‘Table II’. 

 

• You spend time copying data from ‘loose’ data sheets into your notebook.  

(Note:  If your lab partner records data during a lab period while you adjust the 
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apparatus, we can make you a photocopy of the data before you leave the lab 

that can be pasted into your notebook.) 

 

• You are overly concerned when your values do not match accepted results.  In 

fact, when this happens, you actually have a real opportunity to learn something!  

By tracking down the source of the discrepancy, you will learn how to design 

effective experiments. 

 

In most instances, the habit of keeping a good notebook is just as important as the 

acquisition of good data.  In fact, these two activities are closely related. 

 

. 

Notebook Grading Guidelines 

 
Formatting  

 

All pages must be numbered. Entries must be written in ink and dated. Information 

should be entered in chronological order without blank pages left for filling in later. 

Graphs and printouts must be permanently fixed to a blank page in the appropriate 

location. Each experiment should start a new page and notebook sections must be 

titled as outlined in this guide. 

 

Prelab  

 

Theory: Theory for the experiment must be summarized in paragraph form using 

equations where appropriate. Lists of equations are not acceptable. The summary 

should relate the quantity of interest to the physical measurements taken in the lab. 

 

Procedure:  The experimental setup must be described with references to appropriate 

figures if necessary for clarity. The summary must be specific in detailing which 

values were chosen for all independent variables. A diagram of the experiment must 

accompany the description of procedure. 

 

Data: All data should be tabulated in an orderly fashion. For large data sets taken by 

computer, it is sufficient to record the location (file name, email, etc.) of the data. All 

measurements must have accompanying units. Experimental uncertainties are to be 

quantified and justified.  

 

Postlab: 

 

Analysis: A partial analysis can and should be done after the first day of an 

experiment to ensure that data have been correctly recorded and procedures have 

been correctly followed. A complete analysis must follow the final day's data 

collection. Analysis must present the results including the related uncertainties. A 

sample calculation of results must be recorded. Sources of uncertainty should be 
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discussed. Raw data must be presented in graphical form unless inappropriate. A 

discussion of final uncertainty calculations should be included. 

 

Final Write-up: The experiment should be briefly summarized, including 

experimental goals and methods. Results must be discussed and any deviations from 

expected outcomes must be addressed. A discussion of how measurement 

uncertainties affected the results should be included. Any statements made must be 

justified with logical arguments and experimental observations. Improvements to the 

experiment may also be suggested. The implications of the results should also be 

addressed.  

 

Sample Notebook Grading Rubric 
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3.  Formal Paper Requirements 
 

All students are required to submit two or more formal lab reports (see your syllabus 

for details).  These formal reports should resemble scientific papers to be submitted 

for publication.  Examples of such papers are available in the Advanced Lab file at 

the main desk in the Physics Library.  In addition, you are encouraged to read a few 

published papers in the American Journal of Physics. It is important that you gain an 

understanding of the contents and style of these papers.  When in doubt, you should 

follow rules for manuscripts submitted to the American Journal of Physics. A copy of 

these rules is also available in the Physics Library. 

The formal paper should have the following items in the order shown:  

 

 I. Title page containing:   

 1. Title  

 2. Authors’ name  

 3. Abstract  

 II. Text containing divisions such as:   

 1. Introduction  

 2. Theory  

 3. Experimental apparatus and procedure  

 4. Data, analysis, results and uncertainties  

 5. Discussion of results  

 6. Conclusion  

 7. Acknowledgments  

III. List of references in the required order and style 

 IV. Additional information containing:   

 1. Appendices (if necessary) containing detailed theoretical 

derivations, error analysis, etc.   

 2. Tables with table captions  

 3. Figures and captions  

 

 

Formatting Guidelines: Here are some suggested text formatting guidelines. Note 

that MS-Word and LaTeX templates are available from your TA and/or the class 

website.  

 

• Margins: 1” on all sides 

 

• Font: consistent throughout: Garamond (preferred) or Times New Roman 

 

• Body Text: Size—12pt; Alignment—Justify; Spacing—1.5 space; Body Text 

includes the Abstract but does not include section headings. 

 

• Report Title: Size—28pt; Alignment—Center; Followed by a line running 

across the page. 
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• Author:  Size—14pt; Alignment—Left; Text Decoration—Bold, Italics; Do 

not give your address or school affiliation. 

 

• Abstract: Indent the text by 0.5” (~5 spaces) on both the left and right side. 

 

• Major Section Headings: Size—18pt; Alignment—Left; Text Decoration—

Bold, Small Caps. 

 

• Minor Section Headings: Size—14pt; Alignment—Left; Text Decoration—

Bold. 

 

 

Grammar: Correct English grammar and spelling must be used throughout the 

report. The use of commas, colons, semi-colons, dashes, and parentheses should be 

generally correct so as to not distract the reader. Reports should have few or no 

spelling mistakes. The past tense should be used for most of the report. 

 

Page Limits:  Although there is no page limit on your formal papers, they should be 

complete, organized and concise.  In the real world of science, many journals have 

page limits and others require you to pay page charges (more pages = more $ out of 

your research grant!).  Use Strunk and White’s Element of Style to learn how to be 

concise. 

 

References: References are listed at the end of the paper in the order in which their 

citations appear in the body text. Reference “1.” will be the first citation in the body 

text, etc. References are cited in the text as “[1]” after the cited information. 

 

Equations: Equations should be well typeset. Use a typesetting program like LaTeX 

or an equation editor like MS Equation Editor, Maple, Mathematica, or Wolfram 

Alpha to write your equations; then paste them into your report. Equations do not 

need to be numbered unless you want to refer to them in the text. 

 

4. Formal Lab Report Section Contents 
 

Abstract 
Summarize your lab report in one paragraph.  Your abstract should be limited to 

roughly 250 words.  It should contain the essence of your paper, including the major 

numerical results (with uncertainties).  Give a sentence or two of background, 

summarize your procedure, and state your results. Be sure to state any inferences you 

might make from your results. The purpose of an Abstract is to aid the reader to 

decide whether the paper is relevant to their research interests and is worth reading.  

Write this section last, after you know exactly what is in your report.  

 

Introduction 

Introduce the subject matter, give some context and then introduce your specific 

experiment.  Define “what” and show “why”, but leave “how” to the main text.  
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Provide a brief historical and conceptual background with a set of helpful references 

to help your reader dig deeper.  Emphasize the significance of the subject matter in 

science and its relation to your present work.  Conclude your introduction with a brief 

outline of your paper so that your reader knows what to expect and could skip and 

select more easily, especially if it is a long paper. 

 

Theory 

Experiments are meant to 1) test the predictions or extend the realm of predictions 

of theories, or 2) measure indirectly some physical quantities by way of theoretical 

relations between quantities that can be measured directly.  Purpose 1) may be 

accomplished by comparing the result of 2) with other known or verified quantities or 

values.  Display the relevant theory. Express what is to be tested or measured in a 

working equation or a set of working equations.  Derive these equations.  Relate the 

equations to the variables or parameters to be measured.  Note that all equations must 

be punctuated like sentences, i.e., they must end with commas or periods. Use 

conceptual or schematic diagrams to help clarify your derivations.  Cite references to 

any facts or arguments you have adopted.  Move the derivation to an Appendix if it is 

too long. 

 

Experimental apparatus and procedure 

Describe the means through which each of the variables and parameters you have 

identified in the working equation(s) is to be measured.  Procedure should be 

summarized in paragraph form. Bullet-point or chronological listing of steps (i.e., 

Then . . . Next . .  .etc.") is not acceptable. The summary must be specific in detailing 

which values were chosen for all independent variables. Use geometrically and 

conceptually accurate diagrams and figures to help your written  description.  Give all 

necessary quantitative information with proper units and reliable uncertainties.  Use 

tabular form if appropriate.  Cite references for each piece of special equipment, so a 

reader could procure the same if so desired. Include any references to design 

schematics or tables of parts. Be sure to mention any anomalies in the way you took 

your data. (e.g., you had to repeat a data set because of discovered calibration issues.) 

 

Data, analysis, results and uncertainties 

Describe what you did with the data and present the results.  Analyze the 

uncertainties, present any sources of error, and explain how you arrived at the final 

uncertainty in your measurement. You might briefly mention any anomalies in the 

data, but save the discussion of their implications for the Discussion section.  Use 

graphics to make your work more easily understood in view of what you have 

presented in the previous sections.  Tabulate only important information that cannot 

be presented graphically.  There is no need to waste your time to reproduce endless 

tables of numbers in a formal lab report!  Avoid this procedure at all costs.  Short 

tables of final results are acceptable, especially if you think they might be of use to 

other researchers.  In real science journals, long tables are typically published only in 

electronic form, as computer-readable files. Move detailed analysis and sample 

calculations into appendices.  Be very careful with significant figures and 

uncertainties. 
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Discussion of results 

Discuss the implications of your results. Discuss how the sources of error affected 

your data and give justification for your statements. Compare your results to accepted 

or expected values.  Evaluate any discrepancy in terms of accuracy and precision of 

your measurements.  This is where you really get to show how much you have 

thought about your results and what they mean. Propose plausible consequences of 

your results on the theory.  Suggest possible improvements for the next generation of 

experiments. 

 

Conclusion 

The conclusions section should summarize the results and their implications in the 

context of the experiment topic. .  Be realistic here and don’t make extraordinary 

claims.  No new information can be presented that didn’t appear earlier in the report. 

 

 

Acknowledgment 

Give credit to institutions and individuals that made your work possible and 

successful; e.g., who provided you with the necessary equipment, the setting up and 

execution of the experiment, discussions, and encouragement.  Normally, your lab-

mate and you should be co-authors of your formal report, but for this course, each 

writes his or her own paper.  So, do not be afraid to acknowledge your lab-mate. 

Please remember, however, that this is a scientific paper:  acknowledging your dog 

for keeping you company while writing up the report is not acceptable. Here is an 

example of an acknowledgment: 

Acknowledgment:  I would like to thank Prof.  J. Hsieh from the Physics 

Department at the University of Arizona for providing a copy of the University of 

Arizona’s advanced lab manual.  Much of the material found in Secs.  4-6 of the 

PHYS 340 document ‘Procedures and Practices’ were adapted from the write-up 

which Prof.  Hsieh provided. 

 

References 

The citing of references serves two purposes.  First, it’s a good way to give credit 

to the workers who came before you, and second, it provides a valuable lead to 

workers who come after you.  Many journals have their own specific format for citing 

references to published literature, so considerable variability can be found from 

journal to journal.  For many physics-related journals, an appropriate format for citing 

references is as follows:  

Journal article:  

[citation number]. Author1, Author2, Author3, Journal’s abbreviated name, 

Journal volume (usually in bold face print), page (year). For example, an acceptable 

journal reference might look like this:  

1. J. Jones, K.L. Mack and K.B. Stuart, Phys.  Rev.  77, 2084 (1962). 

Book:  
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[citation number]. Author1, Author2, BookTitle (usually in italics), publisher, city 

where published, year when published, page numbers (if appropriate). An acceptable 

book citation might look like this:  

2. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University 

Press, Cambridge, 1995, pgs.  20-37.  

 

In the case of URLs, there is no need to underline them. 

 

Appendices 
Details that require extensive space to derive or issues that might break the logical 

flow of the paper belong in the appendices. Appendices MUST be referred to in the 

main text of the paper. 

 

Figures and tables.  

Graphs of data must be neatly drawn, preferably using a computer.  Make sure 

the axis labels are easy to read and in a large enough font to be legible.  Examples of 

acceptable and unacceptable graphing procedures are given in Appendix A.  Graphs 

of few (i.e., < 20) data points must have error bars on all data points.  A line of best fit 

should be included on all linear data.  Figures and tables are traditionally attached to 

the manuscript on separate pages, one figure/table per page to make future copying 

easier. You may also choose to insert figures/tables into main text at the appropriate 

place as it is done in lab manuals. Tables should be used only where graphs would be 

inappropriate. Place captions on the same page as the corresponding figure or table. 

Each caption should begin with the figure/table number.  They should be numbered in 

the order that they first appear in the text. All figures and tables must be referred at 

least once in the body text. (e.g. “see Figure 1”) 

 

 

5. What is a Writing-Emphasis Course?  
 

The writing-emphasis portion of PHYS 340 is inherent in the required formal papers 

and notebook keeping that you will perform during the semester. 

The formal papers will be judged in two ways with approximately equal weight:  

i) the quality of the scientific content and ii) quality and clarity of the writing.  The 

scientific content will be judged by the quality and appropriateness of the theory, 

experimental procedures, data analysis, and error analysis.  The writing will be 

judged by the organization into a proper format, acceptable to a scientific journal (like 

American Journal of Physics), by details such as spelling, grammar, sentence 

structure, figures, tables, etc.  but most of all by whether the student has clearly and 

concisely presented the information and arguments required to interpret and report 

the results of the scientific work. It is important to realize that the most important 

aspects of scientific writing are conciseness and clarity. Other researchers will greatly 

appreciate your papers if they are short, to the point, and easy to follow. Flowery 

prose and lengthy digressions are to be avoided at all costs.  



 16 

To be honest, you will be repeating some ground-breaking experiments that have 

been performed in the past.  Your research will not be original and you should make 

no attempt to claim that it is.  It is a fair question to ask ‘Why should I repeat old 

experiments? ’ Repeating classic experiments is an excellent way to better place time-

tested results into a context that has meaning for you.  In addition, you will learn 

some useful experimental techniques that will be of value to you in the future, 

especially if you maintain an interest in highly technical subjects. 

The writing of a good formal report and the keeping a good notebook is 

perhaps the most difficult aspect of this course. It requires a careful, thoughtful 

approach that is difficult to teach, and is best learned through experience.  You will 

always be able to obtain some experimental data, but properly analyzing the data and 

understanding the context in which the data should be viewed is challenging.  It is 

important for you to realize that performing an excellent experiment can only be 

achieved by a long process that requires you to make many decisions along the way.  

Each decision by itself may seem insignificant, but a thoughtful sequence of decisions 

will lead to a good notebook and an excellent lab report.  The only way to learn this 

process and become proficient in it is to immerse yourself in the task at hand.  Those 

willing to commit the time to PHYS 340 will learn this valuable research skill. 

Grades in the notebook(s) will not intentionally be divided into separate parts.  

Quality of the writing (clarity, grammar, sentence structure, and spelling), however, 

will account for a non-negligible portion  of your notebook grade.  Write so that if 

you opened your notebook 30 years from now, you could still understand what you 

did.  The text, Elements of Style by Strunk and White, is recommended for the 

purpose of learning how to write clearly and concisely. Another excellent (and easy 

to read!) book is The Craft of Scientific Writing by Michael Alley.  

 

 

6.  Use of Spreadsheet Programs 
 

This course will require you to extensively analyze data and fit data to theoretical 

expressions.  The use of computer spreadsheet programs with graphing capabilities 

like Excel is invaluable in this regard.  Tutorials in the use of spreadsheet programs 

will not be included in this course, since this skill is often taught in a high school 

curriculum.  If you have any questions about how to use spreadsheet programs to 

analyze or plot your data, please see your T.A. or professor as soon as possible. 

 

7.   Some Useful References Worth Consulting 
 

1. Philip R. Bevington and D. Robinson, Data Reduction and Error Analysis for the 

Physical Sciences 3
rd

 Ed. , McGraw-Hill (2002). 

2.  Louis Lyons, A Practical Guide to Data Analysis for Physical Science Students, 

Cambridge University Press, Cambridge (1991). 

3.  John R. Taylor, An Introduction to Error Analysis, 2nd Edition, University 

Science Books; Sausalito, CA, (1982).  
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4.  G.L. Squires, Practical Physics, 3rd edition, Cambridge University Press, 

Cambridge (1985). 

5.  G.P. Harnwell and J.J. Livingood, Experimental Atomic Physics, McGraw-Hill, 

NY (1933). 

6.  A.C. Melissinos, Experiments in Modern Physics, Academic Press, New York, 

1966. 
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Appendix A:  PHYS 340 Graphing Standards 

 

A graphical comparison between data and theory is a very convincing way to 

demonstrate that you have correctly taken a set of data and that you understand its 

significance.  Sloppy graphs casts doubt on your ability to carefully take data and 

analyze it correctly.  In addition, given the capabilities of today’s spreadsheet 

programs for graphing, there is really no excuse for a poorly drawn graph. 

Figure 1 shows examples of an unacceptable and an acceptable graph.  The 

unacceptable graph lacks a graph title, does not have units on the x and y axis, uses  

too small of a symbol to represent the experimental data, does not include error bars 

on the data, and does not indicate the meaning/origin of the line through the data. 

Formal reports containing such untidy graphs will be marked down accordingly.  

In the case when the number of data points is very large and/or error levels are 

small compared to data values, error bars may be omitted. In this case, the scattering 

of data points on the graph (statistical ‘noise’) provides a visual measure of the error 

level. Any additional error should be, however, clearly mentioned in the text or figure 

caption (see Fig. 2 for example). 
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Figure 1:   Examples of (a) unacceptable and (b) acceptable graphs.   
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Figure 2. Examples of acceptable graphs containing more than 100 data points. In the 

first graph, multiple curves are plotted on one graph. In this case, each curve is 

denoted by a letter which must be explained briefly in the figure caption. In this 

particular example, the data points comprising each curve are so closely spaced, they 

appear as a continuous line. Due to the large number of data points, ‘noise’ in the 

measurement in the second graph is visible without the need to include individual 

error bars. 
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Notes on Analyzing Data 
 

A major aspect of experimental physics (and science in general) is the 

measurement of physical quantities and analysis of experimentally obtained data. 

While there are a lot of books devoted to this problem, in the next paragraphs we will 

summarize some of the important ideas that will be needed to successfully analyze 

data acquired in PHYS 340. Students are advised to consult one or more of the 

references listed in the previous section for more detailed discussions of the topic. 

 

1. The importance of estimating errors.  
Suppose you are asked to measure the length of a piece of notebook paper. This 

seems pretty straightforward. You grab a ruler and proceed with a measurement. The 

ruler shows 276 mm. Does it mean the length is 276.0000 mm? Most probably not. 

Why? Because the distance between the neighboring marks on your ruler is 1 mm. By 

saying 276 mm you cannot exclude, for example, length 276.2 or 259.9 mm. Thus 

any time you use a measuring device you assume a particular precision (or error) in 

your measurement. In this case it is probably ~0.5 mm, as the distance between the 

closest marks is 1 mm. The result of the measurement is not just the length of the 

paper but also the error of this measurement: (276.00.5) mm. In a scientific 

experiment, both parts of measurement are important. Suppose you measure the 

length of the next sheet of paper to be (275.50.5) mm. Within the error of your 

measurement these two sheets of paper have the same length. 

 

2. Precision (or Accuracy) of a Measurement. 
Here’s what’s meant by absolute uncertainty and relative uncertainty:  

 

absolute uncertainty    relative uncertainty  

27.6  0.1 
003623188.0

6.27

1.0
  

 

 All those digits don’t mean much when calculating the relative uncertainty, so 

round off to  0.004, or, expressed as a percent,  0.4%. 

 

3. Combining Uncertainties.  
Suppose that you measure two quantities A and B. Suppose you measure A to an 

accuracy of A and B to an accuracy of B. 

How do you algebraically combine these uncertainties?  

 a) When adding:  

    (A  A) + (B  B) = (A + B) + ? 

 

there are four possibilities:  
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 (A + A) + (B + B) = (A + B) + (A + B) 

 (A + A) + (B - B) = (A + B) + (A - B) 

 (A - A) + (B + B) = (A + B) - (A - B) 

 (A - A) + (B - B)  = (A + B) - (A + B). 

 

Clearly, the worst case scenario will be  

 

     (A+B) (A+B) .   (1) 

 

This is often called the case of correlated errors. 

 

 b) When subtracting:   

 (AA) - (BB) =?   

Again consider four cases.  From above, it should be obvious that the worst case 

(correlated error) will be given by 

 

     (A-B) (A+B)    (2) 

 

c) When multiplying, the correlated (worst case) scenario is given by  

 























A

A

B

B
AB

ABBAAB

BAABBAABBBAA

neglectsmall







1

)(

))(()()()()(

,



   (3) 

 

d) When dividing  

 ?




BB

AA




 

 

After some algebra, you find that  

 

    





















B

B

A

A

B

A

BB

AA 




1   .   (4)  

 

Remember:  

 relative uncertainties add when multiplying or dividing. 

 absolute uncertainties add when adding or subtracting  
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4. Systematic and random errors.  

 

X1 X2 X3 X4 X6 X5 X8 X7 

Xtrue X 

 

 

X1 X2 X3 X4 X6 X5 X8 X7 

Xtrue X 

 

 

Figure 1:  Spread in the measurement of some quantity x in the absence of 

systematic error (left) and presence of systematic error (right). 

 

 

If error in your measurements is random, then the average value should be close 

to the actual value. In the case of systematic error, that is not true. This situation may 

occur when, for example, using a clock that is running slow to measure some time 

period. Random errors are inevitable, while systematic errors can be taken into 

account or eliminated. 

 

5. Average value and standard deviation. 

 

In order to decrease the influence of random error multiple measurements xi are 

taken and averaged: 

 

     



n

i

ix
n

x
1

1
    (5)  

 

How close is this average value x  to the actual value X ?  If we have a set of 

measurements we can find an average error for a single measurement. The commonly 

accepted value to characterize error is called standard deviation , or root mean 

square (rms): 

 

      



n

i

i Xx
n 1

22 1
    (6) 

 

Since the actual value X  is usually unknown, we must use x  instead. It can be 

shown [1] that in this case: 

 

      






n

i

i xx
n

s
1

22

1

1
   (7) 

 

The value s characterizes the error in a single measurement of value X  and is a 

good approximation to σ. If we take several measurements of the same value x and 

average them, the resulting value x  must on average be closer to the actual value X  
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than a single measurement. It can be shown [1] that standard deviation n for the 

average value x of n measurements is: 

     
n

s
n  .    (8) 

This quantity is often referred to as the standard error of the mean. It implies that 

if every measurement has a random, uncorrelated error, you will need to make four 

times as many measurements to double the precision of your mean value.  

 

Distribution of measurements 
 

A series of measurements may be represented as a histogram (Fig. 2). It is usually 

very difficult to see any trends after taking just a few data points.   

 

 

Figure 2. A simple histogram after taking just five data points (n=5). There was only 

one data point falling into range of x marked as A, B and D, and two measurements 

in region C. 

 

If you make more measurements and use smaller bins, you’ll eventually get a data set 

when analyzed using a histogram that might look like this. 

 

 

Figure 3. A histogram after taking hundreds of measurements.  

 

In a limit of large n the distribution of data is given by continuous distribution 

function f(x), so that f(x)dx is the probability that a single measurement taken at 
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random will lie in the small interval between x and x+dx. The average value for the 

data set can be then found as: 

     




 dxxfxx )( ,   (9) 

and the standard deviation of the data set is defined as: 

   








 dxxfxxdxxfXxx )()()(
2222 .  (10) 

In many cases, the error distribution function is well described by a Gaussian (also 

called a normal distribution) (see Fig. 4) given by: 

    

 
2

2

2

2

1
)( 



Xx

exf




     (11) 

 

 

fwhm 

X 

 

Figure 4. Gaussian distribution function. 

 

The standard deviation  for Gaussian distribution can be also expressed as: 

 

   fwhm
fwhm

 425.0
)2ln(22

   (12) 

 

where fwhm stands for full width at half maximum, which can be easily estimated 

graphically. 

 

Suppose now that you perform a single measurement of a quantity that results in a 

value x, and you also know that the standard deviation of this measurement is . 

Since the Gaussian distribution is a continuous function which approaches zero only 
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at infinity, in principle your measured value x can lie anywhere between - and +.  

What is the probability that your measured value x lies within an interval  of the 

actual value X that we are trying to measure? Since f(x)dx is the probability of 

measuring a value between x and x+dx, the probability of measuring x between X -  

and X + is given by the integral 








X

X

dxxf )( . Substituting the functional form of the 

normal distribution (Eq. 11) for f(x) gives a probability of 0.68.  

 

Using this method, you can show that the probability that your measurement of x lies 

between  

X     is  68% 

X  2  is  95% 

 X  3  is  99.7% 

X  4  is  99.994% . 

 

Therefore, in a situation where your measurement errors are uniform and random, and 

there is no systematic error, there is very little chance of measuring a value that is 

several  away from the actual value. Such measurements are often called outliers, 

and usually warrant further investigation. 

 

 

6. Combining ’s. 

 

Let us now go back to the case when we need to add two values A and B, where 

the standard deviations are A and B, correspondingly. What would be the standard 

deviation of the sum A+B? As we already know, the errors should be added for the 

worst case scenario (Eq. 1). However, if errors in A and B are random and 

mutually uncorrelated, they tend to cancel to some extent, as there is a 50% 

probability that they have different signs in one measurement set. It can be shown, 

that the standard deviation of the sum (or difference) is: 

 

   22

BABA    (uncorrelated errors) . (13) 

 

Notice that AB  A+B. If A=B=, then 2 BA . 

 

Similarily, the relative standard deviation C/C for product (or ratio) of A and B is: 

 

   

22




















BAC

BAC 
 (uncorrelated errors),  (14) 

 

where C=AB or C=A/B. 

 

Note, that this is true only if errors are uncorrelated and not systematic.  
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7. A simple example 

 

Suppose you need to evaluate the charge to mass ratio of an electron.  This is to 

be done using the following equations  

 

 
22

2

RB

V

m

q
 ,    

 (15) 

 where  B=kI. How would you analyze the error in 
m

q
?   

 Suppose you measure I, V and k as follows:  

   

   I=(1.40.1) A 

   V=(1402) V 

   k=coil constant=(7.50.5)10-4 T/A 

 

You also measure R, the radius of the electron’s orbit, by measuring its diameter 

D. Since the smallest marking on the ruler is 1 mm and you have to determine the 

positions of both sides of the electron orbit, the precision of such a measurement is 

not better than 2mm = 0.2 cm. To reduce random error you may want to take several 

measurements. Suppose you make three measurements of D: 

  

   D1=6.0 0.2 cm R1=D1/2=3.00.1 cm 

   D2=5.80.2 cm R2=2.90.1 cm 

   D3=5.70.2 cm R3=2.850.1 cm 

  

Using Eqs. 5 and 7, the average value of R and the standard deviation  for one 

measurement  will be  

   92.2
3

85.29.20.3



R cm 

   08.0
2

07.002.008.0 222




s  

According to Eq. 8, for the average of 3 measurements the standard deviation 3 

will be 

   05.0
3

08.0
3   

  

 However, the ruler we use has a precision of only ~0.1 cm. Using Eq. 13 we can 

account for both errors: 

   11.01.0 22

3  R cm 

and we have  

   R= (2.920.11) cm 
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Now we calculate: 

 

     2224

22222

0011.00292.01.04.110)5.05.7(

)2140(2

22








m

q

RIk

V

RB

V

m

q

 (16) 

 

Omitting errors we get the value of kgC
m

q
/1098.2 11   

Using Eq. 14 we can write: 
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Note the factors “2” in the equation above. These stem from the fact that 

corresponding values are squared in Eq. 16, i.e. we have products kk , II and RR. 

Since kk is a product of two correlated values, we must use Eq. 3 – the relative 

errors simply add up. 

  

 

kgCmq

mq

/1063.0
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0011.02
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1.02
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And the final result for the ratio can be written as: 

 

   kgC
m

q
/10)63.098.2( 11    (uncorrelated errors). 

 

Here we used Eq. 14 since values V, k, I and R are uncorrelated. If we assume, just for 

example, a correlated case, we must use Eq. 3 and 4 – i.e. add relative errors: 
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


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
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


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
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
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
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RIkVnq

RIkVnq  222

/

/
 

 

and kgCmq /1010.1 11

/                                          (correlated, worst case errors) 

 

The accepted value is 1.761011 C/kg.  It’s easy to make a simple plot including 

error bars to graphically illustrate this result.   
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Figure 6:   A plot showing the measured value with error bar.  The dotted horizontal 

line represents the accepted value.  The q/m axis has units of 10
11

 C/kg.  

 

The measured value of q/m is ~2 higher than the accepted value. The probability 

for that to happen is only ~5%, which strongly suggests the presence of some 

systematic error in our measurement. 

8. Least Squares Fit. 

 

Suppose you measure some data points y as a function of a variable called x. 

After the measurements, you will have a set of data points 

 

   x1, y1 

   x2, y2 

   …… 

   xN, yN 

 

Sometimes you might know that the data should fit a straight line (e.g., from 

theoretical considerations). The equation of a straight line is  

 

 y=mx+b 

 

where the slope m might equal ‘a certain quantity of interest’ and the intercept b 

might equal ‘some other quantity of interest’.  
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Figure 7:   A plot showing the best straight line fit to a collection of data points.  

 

In short, if you could determine m and b, these values may contain estimates for 

useful quantities.  One way to determine m and b is to plot the data and use a ruler to 

draw a straight line through the points.  Then, by calculating m and b from the straight 

line drawn, you have produced some weighted average estimate of m and b from all 

your data. 

 

A simple example:  Suppose you are asked to determine  experimentally and 

suppose you already know that for circles 

  

circumference =  (diameter)  

 

One way to proceed might be to make a variety of circles of different diameters 

and then measure the circumference of each one.  You might plot the data as follows:  

 

 
Figure 8:   A plot of how the measured values for the circumference of different 

circles might vary as a function of the measured diameter.  Note that in this example, 

the intercept of the best straight line through the data MUST pass through the co-

ordinate origin.  

 

Clearly, the slope of a straight line through the data contains useful information 

since =slope.  
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Q: How can you determine the ‘best value’ for the slope and intercept without 

prejudice or personal judgment?  

A: Use the principle of least squares.  

 

Assume you draw N circles and make measurements of each circumference and 

diameter. Let the independent variable (the diameter) be represented by the symbol d.  

Let the dependent variable (the circumference) be represented by the symbol C. Also 

assume the d values are accurate.  After the measurement process, you’ll have a set of 

numbers (d,C):  

 

d1, C1 

d2, C2 

…….. 

dN, CN 

 

It is conventional to map these numbers into the parameters (x,y) as follows  

 

x1=d1, y1= C1 

x2=d2, y2= C2 

…….. 

xN=dN, yN= CN 

 

Let the difference between the ‘best line’ through the data and each individual 

data point be represented by (yi). One unambiguous way to specify the ‘best line’ 

through all the data can be defined by the condition that the sum of all the (yi)
2 have 

a minimum value. 

How are the individual yi defined?  Graphically, they are indicated in the plot 

below.  Note that at this point of the analysis, the straight line drawn need not be the 

best straight line through the data. 

 

 
Figure 9. A least squares analysis requires you to calculate the deviation of each data 

point from the ‘best’ straight line.  
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Mathematically, you can calculate the yi as follows. Suppose you define a 

quantity Yi such that Yi=mxi+b where the symbols m and b are somehow chosen to 

represent the ‘best’ straight line through the data, whatever that means.  Calculate 

 

 yi=yi-Yi=Ci-(mdi+b) 

 

Least squares fitting requires that (where the switch in notation from (C,d) to (y,x) has 

been made)  
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Write  [yi-(mxi+b)]2=M. The conditions for M to be a minimum are  
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Performing the derivatives and setting them equal to zero gives, after some algebra, 

two unique equations for the ‘best’ m and b. 
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Once we have m and b, then also calculate the intermediate quantity y: 
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It can be shown that the uncertainty in the slope m and intercept b is given by 

 

    
  


22

ii

ym

xxN

N
  

    
  





22

2

ii

i

ym

xxN

x
  



 33 

  

You can conclude that the best values for m and b are  

 

 mm     bb 

 

This means that there is a 68% chance of the real m lying between m-m and m+m. 

Likewise, there is a 68% chance of the real b lying between b-b and b+b. 

Since the least squares fitting formulae involve sums over various combinations 

of measured data, the least squares fitting procedure is especially easy to implement 

in spread sheets like Excel.  In fact, most spread sheet programs have pre-

programmed least square fit routines available as analysis tools. 

 

In cases where your data points have different individual error values associated 

with them, it will be necessary to perform a weighted least squares fit, where the 

formulas are more complicated (see e.g., Bevington & Robinson, p 103). A sample 

spreadsheet for this purpose is provided on the course website.  
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Abstract.  

 

In this work we determined the magnitude of Earth’s gravitational field g by 

measuring free fall times for various objects released at different heights and using 

the Newton’s 2
nd

 law. We found that g=9.810.08 N/kg, which is in good agreement 

with the commonly accepted value of 9.8 N/kg.  
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Introduction. 

 

Humankind has known from historical times that all material objects fall towards 

Earth if not supported. Moreover, all live creatures on Earth consciously or 

unconsciously use this phenomenon in everyday life. However, it has long been 

believed that heavier objects fall faster than lighter ones, and there was no exact 

theory to describe the motion of an object. Only in the 17
th

  century, when Isaac 

Newton stated his famous motion laws and gave an exact relationship between force, 

mass, and acceleration, the quantitative description of motion became possible. In the 

following paper, we have used the laws of motion to measure the magnitude of the 

gravitational field of Earth. 

 

 

Theory. 

 

Newton’s 2
nd

 law states that any object would accelerate at a constant rate a if 

subjected to a constant force F [1]: 

 

    a=F/m    (1) 

 

where m, the proportionality coefficient, is called mass of an object. The mass of an 

object should not be confused with its weight, as it is an intrinsic property of an 

object to resist acceleration (inertia), while weight refers to a force which attracts one 

object to Earth or some other usually larger object. While mass is constant
1
, weight 

may be different on different planets, or even in different places on the same planet. 

 

We can rewrite Eq. 1 in a more conventional form: 

 

    F=ma    (2) 

 

 

 

 

Surface of Earth 

F=mg 
h 

 
Fig. 1. Any object is a subject to force F=mg toward Earth 

 

                                                 
1
 We consider only nonrelativistic case. 
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The force at which an object is attracted to Earth, or its weight, is also proportional to 

its mass (Fig. 1) [2]: 

 

    Fweight=mg   (3) 

 

where g is proportionality coefficient. By comparing Eq.  2 and Eq. 3, one can see 

that g has the same units as a. Moreover, if an object is subjected to gravitational 

force we can combine Eqs. 2 and 3: 

    ma=mg   (4)   

or 

    a=g    (5) 

 

The last equation states that an object in free fall will accelerate toward earth with 

constant acceleration equal to g. The units of g are therefore m/s
2
, the same as for 

acceleration. Sometimes, however, units of N/kg are used to reflect the nature of g.   

 

Since acceleration is a second derivative with respect to time of an object’s position , 

we can rewrite Eq. 5 in the following form: 

     

    g
dt

hd


2

2

   (6) 

 

where h is a height of an object from the surface of Earth. Integrating Eq. 6 we get: 

 

    gtgdt
dt

dh
t

 
0

   (7) 
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t
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The last equation shows that g can be easily determined if one measures free fall 

times t as a function of height h. In fact, a single pair of (h,t) is sufficient to uniquely 

determine the value of g. In this work, however, we will measure fall times for 

various heights to test the validity of Eq. 9 as well. 

 

 

Experimental apparatus and procedures 
 

In the first part of the experiment a 0.5 kg solid aluminum ball was dropped down 

from different floors of a 10-story building and fall times were measured by a stop 

watch. The heights to different floors were measured by a conventional ruler. 
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Figure 2. Experimental setup for measuring fall times as a function of height. T – 

translation stage, S – automated shutter, PE – piezo-electric detector, B – metal ball. 

 

In the second experiment fall times from heights up to 2 meters were measured by an 

automated setup (Fig. 2). Here, a container filled with small metal balls B and 

equipped with computer controlled shutter S is attached to a caret of a vertical 

translation stage T. A computer program slowly moves the caret T and releases metal 

balls at specified heights, one at a time. Simultaneously, the computer timer is started 

when the ball is released. The ball falls onto a piezo-electric detector PE that sends a 

stop signal to the computer timer. The precision of the timer is 1 ms, and the height is 

determined to an accuracy of 5 mm. The experimental apparatus is described in 

more details in [3]. 

 

1. Data analysis, results and uncertainties.  
      

Part 1. The results of the first experiment are shown in Fig. 3. Here, the error in fall 

time measurement was estimated to be 0.2 s and is mostly determined by the reaction 

time of the experimentalist. The height was measured by a ruler to ±2 cm precision. 

Error bars for height are not shown in Fig. 3 since they are smaller than the size of the 

dots that represent the measured points.  

 

The general shape of this graph is well described with the quadratic dependence 

defined by Eq. 8, the solid line in Fig. 3 represents the expected dependence with the 

value g=9.8 m/s
2
. To analyze these data further, we used Eq. 9 to calculate the value 

of g for each data point, and the result of this calculation is shown in Fig. 4. 
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Figure 3. Dependence of fall time on height. The solid line is theoretical simulation 

using Eq. 8 and g=9.8 m/s
2
. Error bars for measured values along X-axis are not 

shown as they are smaller than the size of the circles.   
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Figure 4. The calculated value of g for different heights. The solid line corresponds 

to the average value 9.45 m/s
2
. 
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 The indicated error bars were calculated using the worst case scenario for each data 

point using the following equations: 
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In Eq. 10,  g is the value calculated using equation (9), h=0.002 m and t=0.2 s are 

errors in measuring height and time, correspondingly.  g
+
 and g

-
 are error levels in 

positive and negative side of the calculated g value. Based on these results, the 

average value of g can be calculated using least square fit as (9.52) m/s
2
. 

Corresponding straight line at g=9.5 m/s
2
 is also shown in Fig. 4. 

 

Part 2. In part II the computer measured 200 (h,t) points and the resulting dependence 

is shown in Fig. 5. The error level in these measurements is much smaller and is 

reflected in the visible noise in the curve. 
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Fig. 5. Fall time versus height measured by computer controlled apparatus. 



 40 

The data obtained by using automated data acquisition setup was analyzed in two 

ways. 
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Figure 6. Left: the data h(t) fitted using least square by Eq. (9), the best fit 

was obtained for g=9.81 m/s
2
. Right: the g was calculated for every height h 

resulting in g(h) graph, which was then averaged (solid line) resulting in 

g=9.81 m/s
2
. 

 

First, the data was fitted as is by Eq. (9) using linear least square fitting method. The 

best fit was obtained for g=9.81 m/s
2
 as shown in Fig. 6, left. In order to analyze the 

precision of this measurement we calculated the values of g for every height (Fig. 6, 

right). That allowed us to find the average value for g=9.81 m/s
2
. Along with the 

average, we also calculated standard deviation 1=0.14 m/s
2
, which reflects error 

level in one measurement. Since we averaged results of 200 independent 

measurements, standard deviation for the average is  = 200/14.0 = 0.01 m/s
2
. 

Using the declared errors for timer (1 ms) and position (5 mm), we can estimate 

measurement error using the following equation: 
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For the highest and lowest drop, g is 0.03 and 0.08 m/s
2
, respectively. Since this 

error may be systematic, it cannot be averaged out and has to be combined with , 

resulting in error level 0.08 m/s
2
. 

 

 

1.1 Discussion 

While the data obtained in these experiments is well described by the Newton’s 2
nd

 

law, there are some deviations for larger heights as can be seen in Fig. 3. We believe 

that this is due to the friction of the air, which becomes larger at higher speeds and for 
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which our theory does not account. Indeed, qualitatively the presence of friction must 

slow down objects and make fall times longer, and that is exactly the effect we see for 

height 30 m (Fig. 4). For the same reason for the highest drop (30 m) the value of g 

turned out to be smaller than average, and smaller than expected beyond error level 

(Fig. 5). Therefore, measurement for heights 30 m are not reliable. On the other 

hand, error levels for heights below 10 m become increasingly larger (Fig. 5) due to 

very short fall times, which are hard to measure manually. The optimal height for 

such measurements is 10-25 meters. 

The second experiment minimizes the effect of air friction by using drop heights 

below 3 meters. Using computer controlled automatic timer makes precision far 

superior to manually controlled timer and allows us to measure g with extremely high 

precision - ~1% versus 20% in the first experiment.  

 

1.2 Conclusion 

 

Using fall times we were able to measure the magnitude of Earth’s gravitational field 

g. The first method, where we used manual timer, resulted in g=(9.52) m/s
2
, while 

the second measurement using computer controlled experiment refined this value to 

(9.810.08) m/s
2
. Both measured values are in excellent agreement with the 

commonly accepted value of g=9.8 m/s
2
, though the computer driven experiment is 

clearly more precise. 
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Getting Started with Computerized Data Acquisition 
 

 
Login: 

 

When you prepare to use the 340 computers, you will find a 

login screen.  Use your Purdue Career account to log in. 

 

After logging in, the screen should look something like the 

picture to the right (only fragment is shown) 

 

 

  

CASSY Lab is the name of the software we will be using to 

perform data acquisition.  CASSY is started via the familiar 

Start-Programs-CASSY Lab-CASSY Lab, as shown in the 

picture below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 43 

The CASSY program will then start opening main window: 

 

 
 

Then after a few seconds one may get an error message: 

 

 
 

If you get this error message, just ignore it and click OK. 
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The following window then appears:  

 

 
 

At this point things should be ready to go.  Note that the CASSY sensor has been 

located on COM1.  The other COM ports should remain turned off. 

 

After clicking on the CASSY tab, you will see a picture of the CASSY box.  This 

picture may vary depending on what equipment is being interfaced to the CASSY 

sensor: 

 

 
 

Click on each of the ‘interface’ boxes to activate them. 
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Let’s now begin a simple demonstration. 

 

A light emitting diode is made from the junction of a P-type and an N-type 

semiconductor, with light being produced by the recombination of elections and holes 

at the junction.   There are many references which explain how solid state devices 

work.  For our purposes, we need only to know that the current (and emitted 

radiation) grows exponentially with the applied voltage.  There also exists a threshold 

voltage below which no power will be radiated.  We want to find this threshold 

voltage. 

 

We being by constructing a circuit as follows 

 

 
 

Now we click on the Input A section of the CASSY and select current (I_A) as the 

type of measurement to make, and then click on Input B and select voltage (U_B) as 

the measurement parameter.   The following window will appear: 
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Current should be set for the smallest parameter possible (-0.1 A to 0.1 A ) and 

voltage should be set for  -3V to 3V.  (We may also zoom in later in the graph 

window. Now we click on the DISPLAY tab and set the voltage U_B for the x axis 

and I_A for the y axis. 
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Let’s now put in a “measurement condition” in the bottom box.  Let’s say we want to 

read a data pair for every 0.01 volt change in the applied potential, the absolute value 

of the change in the voltage parameter should be greater than or equal to 0.01; the 

measurement condition should be abs( delta( UB1 ) ) >= 0.01. Note that when typing 

in the commands that they are case sensitive. 

 

 

 
 

We now vary the voltage and can begin to see a rise in the current passing through the 

diode (as well as begin to see a glow through the LED).  Let’s see if we can fit a 

function to this data. 
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We right click, choose fit function, and then select free fit.  We then select the type of 

curve we want to fit and highlight the region of the graph we want to fit.  Constants 

and the function fitted are near the bottom of the screen. 

 

Now let’s copy our graph and our data to a word document so we can paste it into our 

lab notebooks and lab reports. 

 

 



 49 

 
 

We copy the graph as a metafile so that it may be edited later, and the pasted version 

follows, 

 

 
IA1

A

0
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UB1 / V 

0.5 1 1.5
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We can also copy our data as the list of (x,y) numbers for further processing (in 

Excel, for example): 

 

 
 

And paste it into this word document (or just a simple text editor like Notebook) so 

we can print it out and save it should we need it later. 
U_B1 / V I_A1 / A 

1.829 0.0088 

1.817 0.0079 

1.806 0.0072 

1.793 0.0064 

1.781 0.0057 

1.770 0.0051 

1.755 0.0044 

1.740 0.0036 

1.728 0.0030 

1.712 0.0025 

1.692 0.0018 

1.680 0.0016 

1.667 0.0012 

1.649 0.0009 

1.637 0.0007 

1.619 0.0002 

1.596 0.0004 

1.569 0.0003 

etc… 
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Physics 340 Laboratory 

A New Piece of Matter: The Determination of e/m for 

Electrons 
 

Objective:  To determine the charge to mass ratio of electrons.   

 

Apparatus:  Vacuum tube (Bainbridge); Helmholtz coil pair; calibrated meters to 

measure current and voltage; 300 V power supply; 6.3V AC power supply; Sargent-

Welch interface box. 
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Introduction 
The first experimental evidence for the granular nature of electricity can be found in 

Michael Faraday’s work on electrochemical processes in 1839. Prior to Faraday’s 

work, electricity was considered a ‘fluid’ that could be added or subtracted in a 

continuous fashion from objects.  It was subsequently discovered that metals emitted 

negative electrical current when heated, illuminated by light, or subjected to a strong 

electric field. It was theorized that the negative current was comprised of particles 

each carrying a negative charge (now known to be 1.602 10-19 C). These negative 

particles were thought to be universally present whenever a negative current was 

emitted from an electrode. Surprisingly, they were not apparently related to the 

particular metal from which the emitting electrode was fabricated, thus providing 

strong evidence for their fundamental nature.  In 1874, George Johnstone Stoney 

suggested they be called ‘electrons’, although the general scientific community   

remained skeptical about their existence for several decades. 

 

Early attempts to measure the mass of electrons proved futile.  To address this issue, 

various direct experiments were devised.  For instance, if a metal sphere of 1 meter 

radius is charged to a potential of -1106 V, you can quickly estimate that about 

71014 electrons must be added.  Yet attempts to directly measure the mass increase 

of such an electrified sphere from the added electrons yielded no conclusive results.  

As a consequence, it was argued that the mass of an electron must be very, very small 

compared to any atomic masses that were known in the late 1800’s. 

 

Indirect methods were therefore sought to measure the mass of these negatively 

charged particles.  J. J. Thomson in 1897 was the first to partially succeed in this 
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endeavor by measuring their charge-to-mass ratio.  Robert Millikan completed the 

story in 1910 by measuring the quantized electron charge in his famous oil-drop 

experiment. These two experiments eliminated any lingering doubts about electrons as 

bona fide sub-atomic particles, and both men eventually received Nobel prizes.  

 

Thomson’s experiments combined both ingenious insight and the use of newly 

improved vacuum pumps and charge measuring devices (electrometers). Using clever 

calorimetric techniques, he measured the temperature rise of thin metal targets 

inserted into a glow discharge tube (first produced by Faraday, when two metal plates 

were inserted inside an evacuated glass tube and raised to a high electrostatic 

potential). This strategy enabled Thomson to calculate the energy imparted to the 

metal targets by the invisible particles responsible for producing the glow. By 

assuming the invisible particles followed Newton’s laws of motion (at the time, there 

was no reason to suspect that this might be the case), he was able to estimate the 

velocity of the particles responsible for the glow discharge.  He also used crossed 

electric and magnetic fields to further study the motion of these invisible particles.   

 

As a result, Thomson concluded (within the accuracy of his measurements) that a 

negatively charged particle with a mass to charge ratio of 1.30.210-11 kg C
-1

 was 

responsible for producing the glow discharge.  This mass to charge ratio was roughly 

103 times smaller than any ratio previously recorded for atoms or molecules.  For this 

reason, he felt confident in announcing laboratory confirmation of electrical particles 

(‘corpuscles’, in his words).  The modern, accepted value for the mass to charge ratio 

of an electron is 0.56856296530.000000000110-11 kg C
-1

 (or more commonly used: 

the charge to mass ratio = 1.758 820 088(39) x 10
11

 C kg
-1 

). 

 

In this experiment, you will perform an experiment similar to Thomson’s original 

work.  By measuring the deflection that a magnetic field produces on a beam of 

electrons having a known energy, you will deduce a value for the charge to mass ratio 

of electrons. 

 

Theory  

A charged particle moving in a magnetic field experiences a force F


 given by 

 

 BvqF


 , (1) 

 

where q is the charge of the particle, v


is the particle’s velocity, and B


 is the 

magnetic field.  If v


 is perpendicular to B


, the resultant trajectory is circular.  Using 

Newton’s laws of motion, the radius of the electron orbit is given by 

 

 
Bq

vm
R 


 , (2) 

 

where m is the mass of the charged particle.   
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Although R and | B


| in Eq.  2 can be measured experimentally, determining the 

magnitude of the velocity is more problematic.  Progress can be made by using 

conservation of energy considerations.  If a charged particle is initially at rest and is 

accelerated through an electric potential difference V, then the kinetic energy after 

acceleration is equal to the change of the potential energy qV. From the conservation 

of energy principle we know that 

 qV
vm


2

2
. (3) 

By eliminating the velocity | v


| from Eqs.  (2) and (3), we obtain  

 

 
2

2

2

RB

V

m

q
 . (4) 

Since the charge of an electron is particularly important, we often use its special 

symbol e instead of q.  

 

To calculate the e/m ratio for an electron, we need to know the accelerating potential 

V, the value of the magnetic field B and the radius R of the circular path of the 

electron beam.  Since it is hard to detect a single electron, we will use a beam of 

electrons in which all have approximately the same kinetic energy.   

Experimental Method  
In this experiment, a beam of electrons is produced by an electron gun (Fig. 1) 

composed of a filament surrounded by a coaxial anode (i.e., an electrode with a 

positive charge). Electrons thermally emitted from the filament are accelerated by a 

known potential difference V  between the filament and the anode.  The source of 

electrons in this experiment is a metal plate called the cathode.  The cathode is often 

coated with metal carbonates having a low work function.  This enhances electron 

emission from a material in which the free electrons are only slightly bound, 

producing measurable emission currents for modest filament temperatures.  

 

Figure 1:   A schematic diagram of a simple electron gun showing the filament (heating 

power supply not shown), the cathode, the anode and the accelerating voltage V. 
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The cathode can be either in thermal contact with the filament, or be designed to 

perform the function of both the cathode and filament combined.  Thus by heating the 

cathode, electrons gain enough energy via thermal excitation to emerge from the 

cathode surface as free particles.  This process is called thermionic emission.  The 

kinetic energy and velocity of the electron beam may be calculated using Eq. (3). 

 

During its manufacture, the air in the e/m tube is evacuated and the tube is backfilled 

with a small quantity of helium gas at a pressure of 1 Pa (approx.  100,000 times 

smaller than atmospheric pressure) before permanent sealing is performed.  The 

electron beam leaves a visible trail in the tube because some of the electrons collide 

with helium atoms and promote them into an electronically excited state. These 

excited He atoms thereafter emit visible light as they return into ground state (i.e., 

they fluoresce). The visible light observed in 1838 by Faraday was the faint glow 

produced when electrons collided with residual gas atoms left inside the tube by the 

inefficient vacuum pumps that were then in use. 

 

Experimental Equipment  
A side view of the e/m apparatus is shown in Fig. 2. The important aspects of this 

apparatus are the vacuum tube containing the electron gun (see Fig. 3), which 

produces a narrow beam of electrons of known energy having a velocity nearly 

perpendicular to an applied magnetic field. The latter is produced by a pair of coils 

arranged in a Helmholtz configuration. 

 

 

 
Figure 2:   A photograph of the e/m apparatus (note that the setup depicted here uses a different 

illuminated scale device). 
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A pair of identical Helmholtz coils separated by a distance equal to their radius 

produces a uniform and measurable magnetic field along the central horizontal axis of 

the coils. If the electron beam is directed at a right angle to the field, this magnetic 

field then deflects the beam into a circular path via the Lorentz force.  By measuring 

the accelerating potential, the current to the coils, and the radius of the circular path of 

the electron beam, e/m can be calculated from Eq.(4). 

 

 

Figure 3:   A close-up picture of the e/m electron gun.  From this 

view, the electron beam emerges to the right. 

 

The Helmholtz coils for the e/m apparatus you will use each have 130 turns.  The 

magnitude of the magnetic field B produced at the axial mid-point of the Helmholtz 

pair is proportional to the current through the coils I and can be calculated using 

Ampere’s law, yielding: 

 

 kII
a

N
B 

55

8 0 , (5) 

 

where N is the number of turns in each Helmholtz coil, a is the radius of each coil in 

meters, and 0 is the permeability of free space (0 =410-7 T
.
m/A).  

The field constant for these coils, k = B/I (in T/A), gives a measure of how many 

Teslas result when 1 A of current passes through the coils.  A DC power supply 

provides the current to the Helmholtz pair.  Using the current adjust knob of the e/m 
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apparatus, you can adjust the value of the current through coils to be between roughly 

1 and 2 A. 

 

In principle, the magnetic field needed to produce the observed curved paths for the 

electron beam is small, so the possible effect of the Earth’s magnetic field (roughly 

3.1×10
−5

 T at the equator, 5.5×10
−5

 T in Indiana) should be considered.  One way to 

minimize any effects due to the Earth’s field is to rotate the apparatus so the local 

geomagnetic field is parallel to the motion of the electron beam. A small compass is 

provided to establish the direction of magnetic north. You should establish whether 

the Earth’s magnetic field is important relative to the error margins of this particular 

experiment, and if so, how the tube and the coils should be rotated in order to achieve 

the proper orientation. Note that the effect of permanent magnets may be substantial - 

any permanent bar magnets should be far removed from the apparatus when this 

procedure is performed. 

 

The power supply provides two necessary voltages:   

 

 A fixed, low voltage, 6.3V AC voltage for heating the filament of the e/m tube.  

CAUTION:  The voltage to the heater of the filament should never exceed 

6.3 volts.  Higher voltage will burn out the filament and destroy the e/m tube.  

 

 An adjustable (0 - 300V) DC voltage used for acceleration of electrons between 

the cathode and the anode.  You can adjust the value of that voltage by turning 

the knob labeled:  “DC VOLTAGE ADJUSTMENT”. The scale around the knob 

is only for estimation purposes.  You will need to read the value of the 

accelerating voltage from a separate voltmeter using the 0 - 300V scale. 

 

 

 

 

Figure 4:   Electrical connections for e/m apparatus. 
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Fig. 4 shows the electrical connections for the e/m apparatus. The control panel of the 

e/m apparatus is straightforward.  All connections are labeled.  An illuminated scale is 

provided with the experimental setup. You will use it to place a virtual scale at the site 

of the electron ring by using the reflection off of the plate glass. By aligning the 

electron beam up with its image in the reflected scale, you can measure the radius of 

the beam path without parallax error. 

 

Experimental Procedure 

 

1. Flip the toggle switch up to the “e/m MEASURE” position. 

 

2. Turn the current adjust knob for the Helmholtz coils and knob labeled “DC 

VOLTAGE ADJUSTMENT” on the POWER SUPPLY to the zero position 

(counterclockwise). 

 

3. Before applying any power, check to make sure that all connections correspond 

to the wiring diagram shown above.  To avoid a possible shock hazard, check 

that shielded connector cables are used for the high voltage power supply 

connections. If you do not have full confidence that the circuitry is OK - ask your 

TA to check it for you. 

 

4. Calculate the field constant k of the Helmholtz coils and write it in your lab 

notebook now. 

 

5. Turn the power supply on.  The filament inside the tube should begin to glow red.  

Then, plug the low voltage (Helmholtz coils) cable into the wall socket labeled 

“A”. 

 

6. Slowly turn the current adjust knob for the Helmholtz coil clockwise. Watch the 

ammeter and take care that the current does not exceed 2A. Set the value at 

1.4A. 

 

7. Wait 2 minutes for the cathode to warm-up.  Then apply an accelerating voltage 

of 200V. You will see the electron beam emerge from the electron gun and it will 

be curved by the field from the Helmholtz coils. You may need to increase the 

voltage to slightly above 200V if the beam does not initially emerge from the 

electron gun or initially makes only a very small ring (< 2 cm diameter).  

 

8. Check that the path of the electron beam is slightly helical so that it does not 

strike the back of the electron gun shield. If it strikes the gun, the shielding box 

becomes charged and the electron velocity emerging from the gun can be 

noticeably lower as it requires extra energy to overcome the negative field 

produced by the shield. Why do you think it is possible to produce a helical path?  

If the trajectory is not helical and strikes the gun, then ask the TA to rotate the 

tube.  As you rotate the tube, the socket will also turn – there is no need to 
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remove the tube from its socket.  If needed, adjust the knob labeled “FOCUS” to 

get the sharpest trajectory.  

 

9. Estimate the angle of the emerging electron beam with respect to the magnetic 

field. Resolve the velocity of the electrons into two components – one 

perpendicular to B


 and one parallel to B


. The perpendicular component is to be 

used in equations 2 - 4. Is the difference between the total speed and its 

perpendicular component significant? If it is, then the electron orbital radius is      

| v


| sin  , where  is the angle between magnetic field vector B


 and electron 

speed v


. You will then need to use a revised version of Eq. 4: 

 

 
22

2sin2

RB

V

m

q 
 ,  (6) 

 

10. You will next be making a series of (V,R) pair measurements  which will be later 

used to calculate e/m. Think of the best way to record these data in your 

notebook. 

 

11. Set the value of the current through the coils to 1.4A and the accelerating voltage 

to 200 V. Remember to read the value of the accelerating voltage from the 

voltmeter - not from the scale on the power supply.  Carefully measure the radius 

of the electron beam.  Look through the tube at the electron beam.  To avoid 

parallax error, move your head to align the electron beam with the reflection of 

the scale.  

 

12. Repeat measurements for the same value of current:  I = 1.4A, but for the 

following values of accelerating voltage:  V = 220V, 240V, and 260V. 

 

13. Change the value of magnetic field B by setting the current through the coils to 

1.6A. Repeat measurements for V = 220V, 230V, 260V and 290V. 

 

14. Change the value of magnetic field B by setting the current through the coils to 

1.8A. Repeat measurements for V = 220V, 230V, 260V, and 290V. 

 

15. In order to obtain reasonable estimates for e/m, repeat the above set of 

measurements two more times. 

 

16. Turn the current adjust knob for the Helmholtz coils and the knob labeled “DC 

VOLTAGE ADJUSTMENT” to the zero position (counterclockwise). 

 

17. Turn the power off. 

 

Data Analysis 
The acquisition of data in this experiment is straightforward.  The challenge is to 

interpret the data in a meaningful way and to arrive at realistic uncertainties for the 

various quantities that are used in the final computation of e/m.  If the experiment is 
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performed as described above, you will have 12 sets of data from which to calculate 

e/m.  By repeating the data acquisition three times, you will therefore have 36 

independent data sets to estimate a best value for e/m. 

 

Think about how best to present your data.  Should you just perform a straightforward 

average of all 36 independent measurements?  If you average the values of e/m 

obtained under the same experimental conditions, can you obtain an estimate for the 

accuracy of your experimental techniques? Are the e/m values calculated in your 

experiment the same as the known value of e/m within the error of experiment? Is 

there any evidence of systematic error?  Note that there are only three measured 

values in this experiment: R, B (inferred from I) and V. The R measurement accuracy 

can be easily estimated.  Using a gaussmeter, we have also checked the actual B 

values within the vacuum tube area. They were the same within 5% of the values 

predicted by Eq. 5. The only parameter which could not be independently verified was 

the energy of the electrons. If there is considerable discrepancy between the known 

and measured e/m values, estimate the actual energy of the electrons emerging from 

the electron gun as a function of accelerating voltage V.  

 

Other issues that you might want to consider are estimates of the magnitude of the 

electron’s velocity in this experiment.  Are relativistic corrections required?  Can you 

estimate the spread in the energy of the electrons in the beam by estimating the spread 

in radius of the beam’s trajectory?   

 

These are some of the issues you must consider when analyzing your data and writing 

your report.  Whatever issues you choose to pursue, always try to be as quantitative as 

possible.  At the end of the day, be sure to include a clear and concise discussion of 

your best estimate for e/m and how it compares to accepted values. 
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RR, SS 2001, ML 2012 

 

Physics 340 Laboratory 

Blackbody Radiation: The Stefan-Boltzman Constant 
 

Objective:  To measure the energy radiated by a blackbody cavity as a function of 

temperature.   

 

References:   
1. Experimental Atomic Physics, G.P. Harnwell and J.J. Livingood, McGraw-Hill, 

NY (1933), pgs.  50-58. 

2. Modern Physics, 2nd Edition, Kenneth Krane, Wiley and Sons, NY (1996), pgs.  

77-83 and pgs.  320-322. 

3. Radiation Processes in Astrophysics, G. Rybicki and A.P. Lightman, Wiley-VCH, 

NY (1985), Chapter 1. 

 

Apparatus:  Electrical furnace, NiCr-Ni thermocouple, variac, CASSY interface, 

computer, water-cooled radiation shield and plastic tubing, Moll’s thermopile.   

 

Introduction:  
Following James Maxwell’s unification of electricity and magnetism in the late 

1860’s and his prediction of electromagnetic radiation, an intense effort followed to 

detect and generate this new type of radiation.  After the realization that light itself 

was an electromagnetic wave, there was an explosion of interest to understand in 

detail how light was generated.  This led to a series of fundamental studies 

characterizing many different types of light sources.  The results of these studies 

were so puzzling that they eventually provided the groundwork for the formulation of 

quantum physics. 

 

One subject of particular interest during this time was the characterization of light 

emitted from a hot object.  As known from prehistoric times, any object heated to a 

high enough temperature emits visible light.  As early as 1802, Count Rumford 

(Benjamin Thompson) suggested that blackening the surface of an object enhanced 

its thermal radiative properties. Consequently, the radiation emitted from a well-

characterized object like a hollow cavity came to be known by a variety of names 

such as blackbody radiation, temperature radiation, or cavity radiation.  It was 

discovered that such radiation depends only on the temperature of the cavity and this 

fact differentiates it from other types of radiation such as that emitted from a glow 

discharge tube.  It was quickly realized that blackbody radiation emitted in the visible 

region of the electromagnetic spectrum only becomes appreciable when the 

temperature of the cavity is above 500-550 °C (about 800-850 K). Blackbody 

radiation emitted at lower temperatures had to be detected by other than optical 

means. 
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Figure 1:   A schematic diagram showing the essential ingredients 

of the Stefan radiation experiment.  A cavity held at temperature T 

is shielded by a constant temperature shield with an aperture area 

A1 from a broadband radiation detector having an active area A2.  

 

The first quantitative measurements of the energy transferred by radiation between a 

body and its surroundings were reported by John Tyndall in 1867. Whereas 

traditional transfer of energy between two objects via convection and conduction 

process requires an intervening material medium, heat radiation does not.  The 

energy is transferred by electromagnetic waves. A diagram illustrating the essential 

features of such a radiation experiment is shown in Fig. 1. In 1879, Josef Stefan’s 

work suggested that the luminosity (total emitted power at all wavelengths, in Watts) 

of a blackbody cavity of surface area A varied with the temperature of the cavity as 

T4, giving an empirical relationship known as Stefan’s Law: 

 

 L=AT4 ,  (1) 

 

where  is a proportionality constant now known as the Stefan-Boltzmann constant. 

 

No fundamental understanding of this empirical result was achieved until five years 

later, when Ludwig Boltzmann used the theory of radiation pressure and the laws of 

thermodynamics to derive the correct temperature dependence inferred by Stefan.  

The significance of  was not appreciated until 1900, when Max Planck realized that 

it could be expressed in terms of a combination of fundamental constants. 

Experimentally,  was measured with increasing precision from the 1890’s 

(=5.4510-8 W m
−2

 K
−4

) to the 1930’s (=5.7370.01710-8 W m
−2

 K
−4

). Thus 

knowing  and the surface area of any object (assumed to be a blackbody), the power 

emitted into a vacuum can be calculated. Today, the Stefan-Boltzmann law plays a 

prominent role in astrophysics, allowing the surface temperatures of distant stars and 
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planets to be inferred from measurements of their distances and apparent 

brightnesses.  

 

In this experiment, you will repeat Stefan’s measurements using computer-assisted 

data acquisition techniques and you will obtain an estimate for the Stefan-Boltzmann 

constant . 

  

Theory:   
 

At the close of the nineteenth century, a major unresolved problem in classical 

physics involved a major discrepancy between the predicted spectrum of a blackbody 

and what was actually observed in the lab. By using Maxwell’s equations and the 

laws of thermodynamics, Lord Rayleigh had derived that a blackbody spectrum (the 

energy emitted per unit frequency) should vary as ν4T, where ν is the observed 

photon frequency. This prediction held true for low frequencies, but unfortunately it 

predicted that an ever increasing number of photons would be produced at the highest 

frequencies (the so-called ‘ultraviolet catastrophe’).  

 

In late 1900, Max Planck came upon a brilliant solution to the problem, by making a 

crucial modification to the blackbody model. Whereas Rayleigh had described the 

photons inside a blackbody cavity as standing waves with nodes at the cavity walls, 

each with equal energy kT,  Planck suggested that the energies of the standing waves 

were in fact quantized, and were integer multiples of hc/λ,  where h is Planck’s 

constant (6.62606957(29)×10
−34

 J s).    Thus, at high frequencies (i.e., short 

wavelengths such as ultraviolet), each photon carried significantly more energy, and 

since photons will tend to occupy the lowest energy states first according to statistical 

mechanics, comparatively few UV photons will be produced for a given amount of 

thermal energy available in the blackbody cavity.  This solution to the ultraviolet 

catastrophe cemented the failure of classical physics as a complete description of 

nature and was instrumental in launching the modern era of quantum mechanics.  

 

Planck’s formulation involved a consideration of the density of quantum states 

available to the photons in the blackbody cavity per unit frequency interval. To 

derive the average energy per photon state he used the Boltzmann factor (e
-E/kT

) and 

his quantum wave energy hν.  Multiplying all these quantities together, and 

accounting for two possible polarizations of the photons, his predicted blackbody 

spectrum was  

)1(

2
/2

3




kThec

h
B




 ,  (2) 

 

which is now known as the Planck function (a more comprehensive derivation can be 

found in the list of references accompanying this write-up).  

 

In this experiment you will be measuring two main properties of a blackbody: its 

internal temperature (using the thermocouple), and its emitted radiation field (using 

the thermopile).  The latter is traditionally described using such quantities as specific 
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intensity (brightness), flux, and luminosity.  We have already defined luminosity as 

the total energy output of a blackbody over all frequencies.  This is typically 

impossible to measure in the lab, as it would require you to capture and record every 

single photon emitted.  Instead you will be observing the blackbody radiation (in our 

case, from an oven) that escapes through a small aperture of area A1, using a 

thermopile having an opening aperture area A2 , located a distance D away (Figure 1).  

 

It is convenient to describe the measured energy dE from a small bundle of light rays 

crossing a small aperture of area dA in a time dt in terms of a specific intensity Iν, 

which is defined such that  

 

 dddtdAIdE  .   (3) 

 

In this formulation the directions of all the rays lie within a small solid angle dΩ , are 

approximately perpendicular to the aperture dA, and have photon frequencies lying 

within a small range dν.  The solid angle is the two-dimensional equivalent of a 

standard angle, and refers to the apparent area subtended by an object. For example, 

the Moon has an apparent radius of 0.25 degrees (4.36 x 10
-3

 radians) as seen from 

Earth, and thus subtends π (4.36 x 10
-3

)
2
 = 6 x 10

-5
 steradians on the sky.  

 

Eq. (3) provides the definition of specific intensity Iν (often called brightness) in 

units of W m
-2

 Hz
-1

 steradian
-1

, and pertains to rays propagating only along a very 

narrow direction.  In real life however, glowing objects emit rays in all directions, 

many of which will make it to our detector. Imagine you set up a small flat aperture 

of small area dA whose normal lies at some angle θ to the surface of a blackbody as 

in Figure 2. Then we can define the radiative flux from the blackbody as  

 

 dIF  cos ,    (4) 

 

which in spherical coordinates becomes 

 









 ddIF sincos

2

0 0  
 .  (5)  

 

You may notice that flux is an observer-based quantity, since to evaluate the right 

hand side, we integrate the brightness of the object over all possible directions – 

however Iν is non-zero only along those directions where our line of sight intercepts 

the object. In other words, if we move the object farther away, its solid angle (and 

therefore its flux) decreases as 1/D
2
, giving rise to the familiar inverse-square law for 

light.  
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        Blackbody 

θ 

dA 

D 

normal 

R 

θc 

 
 

Figure 2. Sketch showing the geometry used in the definition of radiative flux.  The 

effective area of the detector is proportional to the cosine of the observation angle θ. 

The blackbody subtends an apparent angular radius θc = sin
-1

(R/D). 

 

To illustrate this effect, imagine locating your detector a distance D from a spherical 

blackbody of radius R and uniform surface intensity I (let’s assume that your detector 

can receive all photon frequencies, and has its normal vector pointing directly at the 

blackbody). According to Eq. (5), the measured flux will be  

 

,sin
2

0 0









doscdIF

c

  
   (6) 

 

where from simple geometry,  θc = sin
-1

(R/D) is the apparent angular radius of the 

blackbody. Performing the integration gives  

 

.

2











D

R
IF     (7) 

 

Thus for a fixed spherical blackbody of surface intensity I and radius R, the flux 

varies as 1/D
2
, confirming the inverse-square law of light.  

 

We can now use Eq. (7) to derive the flux per unit area radiating from the surface of 

a spherical blackbody by setting R = D: 

 

IF  .    (8) 

 

Multiplying this by the surface area A of the blackbody yields its total luminosity: 

 

IAL   .   (9) 

 

Comparing this with Eq. (1), we can see that for a spherical blackbody 

 



 4T
I  .    (10) 
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Now according to Planck’s radiation law, the left hand side of Eq. (10) should be 

equivalent to Planck’s function Bν (Eq. 2) integrated over all photon frequencies. An 

integration of Eq. (2) by parts gives the predicted blackbody luminosity per unit 

surface area: 

32

444

15

2

hc

Tk
B


  .   (11) 

 

Comparing this to Eq. (10), we find that the Stefan-Boltzmann constant is in fact a 

combination of several other fundamental constants: 

32

45

15

2

hc

k
  ,    (12) 

 

which has an experimentally determined value of 5.670373(21)×10
−8

 W m
−2

 K
−4

. 

 

In practice, any object (not necessarily a hollow cavity) heated to a temperature T 

emits radiation. Experiment shows that the maximum power radiated per unit area 

comes from a cavity and is specified by Eq. (2). The emitted luminosity per unit area 

of any arbitrary object held at temperature T is specified by the non-ideal blackbody 

formula  

L = T4 ,       (13) 

 

where  is known as the emissivity of the emitting object.  By definition, an ideal 

blackbody has =1. Every material has a characteristic emissivity; for instance, 

tungsten has =0.2. 

 

Experimental Considerations:  

 

It is difficult to accurately measure the total emissive power radiated from a 

blackbody.  This would require a detector that collects the radiation emanating from 

the blackbody in all directions.  In general, only a small fraction of the emitted 

energy can be collected. Therefore, careful attention must be paid to the geometrical 

arrangement of the blackbody and detector in order to allow a correct interpretation 

of the data.  Also, careful measurements must take into account any energy absorbed 

by the intervening air column, which can be difficult to control if air conditioners or 

fans are continually circulating air through the laboratory room. 

 

In addition, a broad-band detector must be designed to accurately measure the 

incident power over a wide range of wavelengths.  In this experiment, you will use a 

thermopile to accomplish this function.  A thermopile is a blackened disk of known 

dimension that is thermally anchored to a series of thermocouple junctions.  A 

thermocouple is a junction formed when two wires, each made from a dissimilar 

metal, are joined together in an intimate fashion.  A thermocouple junction is known 

to develop a voltage across it that depends on temperature.  In this way, the 

temperature of the disk can be measured in terms of a voltage difference that 
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develops across a thermocouple junction.  A thermopile refers to a number of 

thermocouple junctions connected in series (see Fig.  3). This serves to increase the 

voltage output of the device, allowing more accuracy in any measurement. 

 
Figure 3:   A schematic diagram showing the essential elements of a thermopile 

comprised of 4 thermocouple junctions made from constantan-manganin wire. 

 

A thermopile must be calibrated by the manufacturer.  Using this calibration, a 

measured thermopile voltage can be converted into an incident power (or received 

flux if the active area of the thermopile is known). For the thermopiles that you will 

use, the calibration lies between 30 V/(W m-2) and 70 V/(W m-2) for 

homogeneous irradiance of the front surface (see the Appendix). The Moll’s 

thermopile has sixteen thermocouples comprised of constantan and manganin wires 

connected in series.  It is sensitive to radiation spanning a range from 150 nm to 15 

m and has a response time of 2-3 seconds. 

 

A schematic diagram of the relevant geometry employed in this experiment is 

sketched in Fig.  1.  The blackbody radiation emerges from a circular hole of radius   

r = (A1/π)
1/2

.  The detector is separated from the cavity opening by a distance D.  In 

analogy with our earlier derivation of Eq. (7), the flux received at the thermopile is  
2











D

r
IF  .   (14) 

 

We now substitute I = σT
4
/π (Eq. 10) and r = (A1/π)

1/2  
into Eq. (14)

 
to give 

 

2
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D
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F




 .     (15) 

  

Thus a plot of the energy detected per unit time versus T4 should be a straight line if 

Stefan’s Law is correct.  It follows that the Stefan-Boltzmann constant can be 

determined from the best slope m through the data using 
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1

2

A

D
m


  . (16) 

 

Experimental Technique:  

 

First, familiarize yourself with the data acquisition software that you will use with 

this experiment.  The CASSY system is designed to allow flexible and easy data 

acquisition from this important radiation experiment. 

 

Fig.  4 is a photograph of the assembled Stefan radiation equipment and Fig.  5 is a 

schematic wiring diagram. 

 

 

 

A special blackbody insert must be installed into the oven. The metal disk with the 

hole in front of the oven is cooled by water. Failure to keep it at room temperature 

will result in additional radiation emitted from the disk and will make the data 

acquired unusable. Use the small pump to circulate water through the disk. Since 

some of the parts of the oven are not covered by this disk, an additional radiation 

shield made of aluminum foil should be attached (Fig. 4, bottom). 

 

Connect a variable voltage supply (variac) to the oven (the blackbody cavity) and 

insert a NiCr-Ni thermocouple into the back-side of the oven.  Position the thermopile 

Figure 4: A photograph showing the Stefan 

apparatus. The additional radiation shield 

(aluminum foil) is not shown but is essential for 

acquiring correct data (see text). At the left is a 

photograph showing the radiation shield installed 

in front of the oven. 
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approximately 0.15 m in front of the oven.  Make sure that the protective glass cover 

is removed  from the entrance of the thermopile.   

 

 

Figure 5:   A schematic wiring diagram for the Stefan apparatus. 

 

 

Data Acquisition Procedure:   
 

(a) Note the manufacturer’s serial number of your thermopile, and then record its 

output voltage with the oven at room temperature.  At this time, make sure you know 

how to acquire data with the CASSY system.  This measurement serves as the zero-

point reference for all your future measurements.  Set the distance D between the 

detector and the cavity opening to about 0.15 m.  Measure the diameter of the cavity 

opening and calculate its area (A1). Also, be sure you write down the ambient 

temperature of the room. 

 

(b) Set up the CASSY system to record the oven temperature and the thermopile 

voltage. Set the display to show temperature as x-axis and thermopile voltage as y-

axis. Set the measurement interval to 500 ms and the recording condition to n=1 or 

delta(&JA11)>2 (the command is case sensitive). The latter condition means that the 

measurement should be taken only when the first point is acquired (n=1) or when 

temperature (&JA11) increases by 2. See that the number of points to be accumulated 

is left blank, or set it to maximum possible value. Also, set the measurement mode to 

Average 100 ms for both temperature and voltage detector. This serves to minimize 

the effects of short-timescale voltmeter noise in your measurements.  
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 (c) Start the measurement and turn the variac up to 100 V. At this setting it will 

take approximately 20 minutes for the temperature to reach 400 °C. At the highest 

temperatures, the outside of the oven is very HOT, so do not touch it without oven 

mitts. The data will be accumulated automatically. 

 

 (d) When the oven temperature reaches a constant temperature of approximately 400 

°C, stop the measurement and decrease the variac voltage to ~90V. Save the data you 

just acquired.  

 

(e) See that the temperature stabilizes at ~400 °C, tune the variac voltage slightly 

down if temperature keeps rising, or up if it goes down (by few volts). Note that it 

may take a minute or so before changes in voltage reflect in temperature change. 

Once the temperature is reasonably stable, make a series of measurements in which 

you vary the distance between the thermopile and the entrance to the blackbody. Be 

sure to cover distance between ~5 cm to the full length of the rail and acquire about 

20 points. Remember to wait after each move before you take the measurement as the 

detector has long time constant.  

 

(f) Choose another distance (greater than the 0.15 m used in step (b)) between the 

thermopile and the entrance to the blackbody.  Set up the measuring condition to n=1 

or delta(&JA11)<-2. Start new data acquisition (the previously accumulated data will 

be cleared automatically), set the variac to zero, and then turn off the variac. The new 

set of data will be recorded as the oven returns to room temperature. 

 

(g) When you are finished, make sure you turn off the cooling water, replace the 

protective glass cover over the entrance of the thermopile, and copy any useful data 

onto a thumb drive or your network account for further analysis. 

 

Data Analysis:   
 

(a) Analyze your data as function of distance between the thermopile and the 

entrance to the blackbody.  How well does it follow a D-2 relationship expected from 

Eq.  16?  For what values of D would you expect a D-2 behavior to accurately hold?  

For each distance, calculate the value of  using Eq. 16. Plot your calculated value of 

T as a function of distance. What can you say about this graph? 

 

(b) Analyze your data as a function of temperature during the warming phase of the 

oven.  Remember to correct your data for the energy radiated away from the 

thermopile detector at room temperature.  This requires you to plot Fin(T)-Fin(TRT) 

vs.  (T4-TRT
4) , where TRT is the temperature of the room. From this plot, measure the 

slope and extract an estimate for the Stefan-Boltzmann constant. Alternatively, you 

may analyze the original data using Eq. 16, and estimate the value of  from that. 

Calculate the value of  for several temperatures and plot  versus T. Is it constant? 

If not, what might be the reason? 
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(c) In the same way, analyze your data as a function of temperature during the 

cooling phase of the oven. 

 

(d) Tabulate your two estimates of in a clear way. What is your best estimate for 

the Stefan-Boltzmann constant? Make sure you include a realistic discussion of 

errors in your measurements of A1 and D. What is the resulting uncertainty in ?  

(e) Discuss any significant sources of unaccounted error that you believe are relevant 

to this experiment. Is it possible that these errors account for the difference between 

your measured value of and the accepted value?  

 

 

 

 

Appendix:  Moll’s Thermopile Calibrations  

 

    Manuf. Specs.        Calibrated by SS  

(Fall 2001) 

 Serial No.  999415:  35.5 V/(W m-2)         525 V/(W m-2) 

 Serial No.  009561:  44.3 V/(W m-2)           665 V/(W m-2) 

 Serial No.  009562:  63.4 V/(W m-2)           925 V/(W m-2) 

 Serial No.  009576:  39.7 V/(W m-2)         595 V/(W m-2) 
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AL,ML Fall 2012 

 

Physics 340 Laboratory 

Quantization of the Radiation Field:  The Photoelectric 

Effect 

 

Objectives  

•  Understand how ejection of photoelectrons from a metal surface depends on the 

frequency and intensity of incident light.   

•  Measure Planck's constant and the work function.   

 

Theory1 

 The photoelectric effect is one of several processes by which electrons may be 

removed from the surface of a metal.  It is found that when electromagnetic 

radiation with sufficiently high energy is directed onto a metallic surface, 

electrons may be ejected from the surface.  The ejected electrons are called 

photoelectrons.   

Metal

Incident light

>
>

>

>

Photoelectrons
 

The key experimental facts about the photoelectric effect are the following.   

(1) The emission of photoelectrons will not occur at all, if the frequency of the 

incident electromagnetic radiation is less than a certain frequency called the 

cutoff frequency.  Below the cutoff frequency there would be no 

photoelectrons regardless of the intensity of the incident light.   

(2) The maximum kinetic energy of the ejected photoelectrons depends on both 

the frequency of the incident electromagnetic radiation and the metal itself.   

(3) If the frequency of the incident radiation is larger than the cutoff frequency, 

then the number of emitted photoelectrons is proportional to the intensity of 

the radiation.  

                                                 
1
  Nicholas J. Giordano, College Physics, Ed. 2, Brooks/Cole, Cengage Learning, 2013, pp. 982-990.  
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 Because classical electromagnetism is unable to explain these experimental 

facts, a quantum theory of light is required for a satisfactory explanation.   

 

A.  Electrons in Metals  

 Although the outermost valence electrons in a metal are free to move within a 

metal (that is why metals usually are good conductors), the electrons are 

constrained within the metal.  The binding energy of the electrons least tightly 

bound to the metal is denoted by the work function W0 of the metal.  If energy 

greater than the work function is supplied to one of these electrons, that electron 

can be ejected from the metal surface.  This process is known as the photoelectric 

effect.   

 

B.  The Incident Light Rays 

 The electromagnetic light rays that strike the metal surface can supply the 

outer electrons with the energy they need to leave the metal.  According to 

quantum theory, these apparently continuous electromagnetic waves are actually 

quantized, consisting of discrete quanta called photons.  Each photon has energy 

E that depends only on its frequency f (or wavelength ) and is given by the 

following equation.   

  

E = hf =
hc

l
   ,   where :    h =  Planck constant =  6.63 ´10-34  J ×s =  4.14 ´10-15  eV ×s 

 

  

1 eV =  1.602 ´10-19  J ,      1 J =  6.242 ´1018  eV ,     c =  2.998 ´108  m/s 

 The energy of photons is directly proportional to their frequency.  In the 

photoelectric effect, a single photon interacts with a single electron at the metal 

surface; it cannot share its energy among several electrons.  Photons with a 

frequency f greater than the cutoff frequency f0 will cause the emission of 

photoelectrons, whereas photons with a frequency less than f0 will not cause the 

emission of photoelectrons.   

 

C.  The Photoelectric Effect Equation 

 In photoelectric emission, light strikes a material, causing electrons to be 

emitted.  The classical wave model predicted that as the intensity of incident light 
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was increased, the amplitude and thus the energy of the wave would increase.  

This would then cause more photoelectrons to be emitted.  The quantum model, 

however, predicted that higher frequency light would produce higher energy 

photoelectrons, independent of intensity, while increased intensity would only 

increase the number of the electrons emitted (or photoelectric current).   

 Einstein applied Planck’s theory and explained the photoelectric effect in 

terms of the quantum model using his famous equation for which he received the 

Nobel Prize in 1921.  The equation states that the maximum possible kinetic 

energy of ejected electron (KEmax) is equal to the energy of the incident photon 

(hf) minus the minimum work needed to eject electron (the work function W0).   

  

KEmax = hf -W0  

 The photoelectrons measured outside the metal surface will have kinetic 

energies ranging from 0 to KEmax.  One may notice that the photoelectric equation 

is basically another way to express the conservation of energy principle!   

 

D.  Measuring the Work Function and the h/e Ratio Using a Photocell 

   

 Some photoelectrons travel toward the stopping electrode (anode) and, upon 

reaching it, constitute a current, which flows through the circuit.  As we increase 

the voltage V, some of the less energetic photoelectrons will be repelled from the 

anode and the current will decrease.  At some voltage V = VS (the stopping 

voltage), the most energetic photoelectrons will be stopped just in front of the 

anode and current will cease to flow.  For this condition:   

  

eVs = KEmax          e = the charge of an electron =1.60 ´10-19C{ }.
 

 Therefore, using Einstein’s equation,   
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hf = eVS + W0       (1) 

 When solved for VS, the equation becomes:   

VS = (h/e)f - (W0 /e)      (2) 

 If we draw VS versus f for different frequencies of incident light, the graph 

will show the linear dependence, with the slope equal to h/e and the y-intercept 

equal to -W0 /e.  The accurately measured value of the h/e ratio is equal to:   

h/e = 4.136*10
-15

 V*s      (3) 

 We are going to use a mercury vapor lamp as the light source for the 

photoelectric experiment.  The light from the mercury lamp looks white.  

However, the mercury lamp does not produce a continuous spectrum (a rainbow) 

of all colors from red to violet.  Instead, it produces only four lines (frequencies) 

in the visible range and one in the near ultraviolet.  We will use a diffraction 

grating (like the one used in the diffraction grating experiment) to separate 

various frequencies (i.e., colors) of the light.   

 

E.  Why the h/e ratio is important?   

 The h/e (Planck's constant / electron charge magnitude) is the ratio of two 

fundamental constants.  These constants are present in all theories of atomic, 

quantum, and elementary particle physics.  It is essential to know their numerical 

values!  The electron charge magnitude e was measured before the photoelectric 

effect was discovered.  However, the photoelectric effect was one of the first 

measurements of h/e (and therefore the value of h).   

How does this apparatus work?  

 The photodiode tube and its associated electronics have a small capacitor, 

which becomes charged by the photoelectric current.  When the potential on this 

capacitance reaches the stopping potential of the photoelectrons, the current 

decreases to zero and the anode-to-cathode voltage stabilizes.  This final voltage 

between the anode and cathode is therefore equal to the stopping potential of the 

photoelectrons.   

 To let you measure the stopping potential, the anode is connected to a built-in 

amplifier with ultrahigh input impedance (>10
13

 W), and the output from this 
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amplifier is connected to the output jacks on the front panel of the apparatus.  This 

high impedance, unity gain (VOUT/VIN = 1) amplifier allows us to measure the 

stopping potential with an ordinary digital voltmeter.  That amplifier does not 

actually amplify the voltage.  Its sole purpose is to provide the ultrahigh input 

impedance, i.e., to measure the potential difference (almost) without using any 

current.   

 Due to the ultra high input impedance, once the capacitor has been charged 

from the photodiode current, it takes a long time to discharge this potential 

through some leakage.  Therefore, a shorting button "PUSH TO ZERO" enables 

the user to quickly remove the charge and to reset the apparatus.   

 

Procedure: 

Activity 1:  Measurements of the h/e Ratio and the Work Function.   

1.1.  You will need to use the following pieces of equipment:  mercury lamp with 

a single slit; small converging lens; diffraction grating; the photoelectric cell 

apparatus (also called the "h/e apparatus") and a digital voltmeter.   

1.2.  First, assemble the pieces of the apparatus according to the drawing below:   

 

30-40 cm 

Mercury 
lamp 

Converging 
lens 

Diffraction 
grating 

Photoelectric 

cell 

10-15cm ~30-50 cm 

1.21 
Digital 

voltmeter 

Single 
slit 

Yellow or green 

filter (if needed) 

 

1.3.  The distances shown in the above picture are approximate.  You will have to 

adjust them more precisely later during this experiment.   
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1.4.  Make sure that a piece of the black cardboard with a single vertical slit is 

covering the front opening of the mercury lamp.   

1.5.  Turn on the mercury lamp and allow 2-3 minutes for warm up.  Do not turn 

off this lamp until the experiment is over.   

CAUTION!  The light from the lamp contains some ultraviolet (UV) 

components, which can burn living tissue.  Therefore, you should avoid 

looking directly at the lamp, and, if you do not already wear glasses, you 

should wear the plastic safety glasses provided for you  (glass and plastic are 

opaque to UV light).   

1.6.  Make sure that the digital multimeter is connected to the photoelectric cell 

and that the multimeter is turned on and set to 2 V DC (V=) range.   

1.7.  Make sure that the photoelectric cell is turned on.  Actually, the on/off 

switch turns on the high impedance amplifier.   

1.8.  Adjust the position of the converging lens to get a sharp, white image of the 

single slit (the one in front of the mercury lamp) on the small white reflective 

mask of the photoelectric cell.   

1.9.  The light from the mercury lamp looks white.  However, the mercury lamp 

does not produce a continuous spectrum (a rainbow) of all colors from red to 

violet.  Instead, it produces only four lines (frequencies) in the visible range 

and one in the near ultraviolet.  This is called line spectrum for Mercury.   

 The values of frequency and the corresponding wavelength of the line 

spectrum for Mercury are:   

Color Frequency (Hz) Wavelength (nm) 

Yellow (visible) 5.187*10
14

 578.0 

Green (visible) 5.490*10
14

 546.1 

Blue (visible) 6.879*10
14

 435.8 

Violet (visible) 7.409*10
14

 404.7 

Ultraviolet (hardly visible) 8.203*10
14

 365.5 
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1.10.  The diffraction grating separates these lines, so we will use only one 

color (i.e., one wavelength) at a time.  Please recall your observations from 

the last part the "Diffraction Grating" experiment.  To make the separation of 

lines even better, use yellow and green filters for yellow and green lines, 

respectively.  These filters have magnets built in, so they can be easily 

attached to the front of the white reflective mask (see the text and the picture 

below).   

 When making this experiment, it is essential that only a single color 

(i.e., single frequency) goes through the photocell window.  With two 

colors reaching the photocell, we would not know the frequency of the 

incident light.   

1.11.  The diffraction grating creates two first-order patterns, one on the left side 

of the white, un-diffracted line, and one on the right side.   
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UV Violet Blue Green Yellow UV Violet Blue Green Yellow White 

First order 
diffraction pattern 

(left) 

First order 
diffraction pattern 

(right) 
Undiffracted light 

(zero order pattern) 

 

 The second order patterns are also visible and they are located further away 

from the un-diffracted white line.  The order of colors for the second order 

pattern is the same as for the first order pattern.   

1.12.  Move the photoelectric cell until the yellow light shines directly on the 

opening in the "White Reflective Mask" (see the picture below).  Rotate the 

photocell so that the same light that falls on the opening in the "White 

Reflective Mask" also falls on the window in the photodiode mask.  You 

need to open the "Light Shield" to be able to see the photodiode mask that is 

inside the black enclosure.  Careful adjustment of the position and orientation 

of the photocell is essential to get good results!   
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1.13.  Close the "Light Shield".  Then, press the red "PUSH TO ZERO" button 

on the side panel of the photocell box to discharge any accumulated potential 

in the unit's electronics.  This will assure that the apparatus records only the 

potential due to the light shining on the photocell.  Be careful not to change 

the position of the photocell when you push the red button!   

1.14.  Wait approximately 30 sec. to get a stable reading on the voltmeter.  Then, 

write the voltage value on your data sheets.  It is a direct measurement of 

the stopping potential VS for the photoelectrons.   

1.15.  Repeat steps 1.12 - 1.14 for green, blue, violet, and ultraviolet light.  Use 

filters only for yellow and green light.   

Note:  The white reflective mask on the photocell is made of a special fluorescent 

material.  This allows you to see the ultraviolet line as a blue line, and it also 

makes the violet line appear bluer.  You can see the actual colors of the light if 

you hold a piece of white paper in front of the mask.   

1.16.  Move the photocell to the other side of the zero order maximum (white 

line) and repeat measurements twice for all five colors.  In other words, repeat 

steps 1.12 - 1.15 for the other set of the first order diffraction pattern.   

1.17.  Compare the values of the stopping voltage from both data sets.  If your 

data from both runs are close to each other (ask your TA if you are not sure), 

then calculate the average values of the stopping voltage VS1.  Hint:  for the 

UV line the stopping voltage should be ~2 V.   

1.18. Make a graph of the average stopping voltage VSAV vs. frequency f.  Find 

and draw the best-fit straight line (do not just connect the points!) that 

approximates the behavior of your points (again, for both values of light 

intensity).   

 You should prepare the final version of the graph using a computer-graphing 

program (e.g., MS Excel that is available in all ITaP labs).  These programs 

offer ‘linear fit’ or ‘trendline’ options to obtain the value of the slope and the 

y-intercept of the best-fit line.   

1.21.  Using the slope and the y-intercept values from the graph, calculate the 

values of the h/e ratio and the work function W0.  See the Theory section, part 

D.  Be sure to include units.   

1.22.  Turn off the mercury lamp, photocell and digital multimeter.   
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Conceptual Questions 

1.  Assume that the frequency of the incident light is large enough to overcome the 

work function, i.e., the photoemission of electrons is already occurring.  How 

does the number of photoelectrons emitted from a metal surface change as the  

frequency of the incoming light increases?  Does the number of photoelectrons 

emitted from a metal surface depend on the work function of the metal?  Does it 

depend on the light intensity?   

2.  Consider two photoelectric photocells that have cathodes made from different 

materials.  The incident light has the same frequency for both photocells.  Would 

the stopping voltage be the same for both photocells?   

 

 

 

 

 



 81 

  

RR Oct 2001 

SS Dec 2001 

MJ Oct 2009  

 ML Oct 2012 

 

   Physics 340 Laboratory 

  Scattering of Photons from Electrons: Compton Scattering 

 

 

 Objective: To measure the energy of high energy photons scattered from electrons in 

a metal as a function of scattering angle. 

 

 References:   

 1.  A.H. Compton, Phys. Rev.  21, 715 (1923) 

  A.H. Compton,  The Spectrum of Scattered X-Rays, Phys. Rev.  22, 409   

  (1923) 

2.  A.C. Melissinos,  Experiments in Modern Physics, Academic Press, New   

     York, 1966, p. 252-65.  

3.  K. Krane,  Modern Physics, 2nd Ed., Wiley and Sons, New York, 1996, p.  

     83-87.  

 

Apparatus:   

    • Set of low-activity (1 μCi) ɣ-ray calibration sources 

      (
22

Na, 
54

Mn, 
57

Co, 
60

Co, 
109

Cd, 
133

Ba, and 
137

Cs)  

    • Photo-multiplier tube attached to a NaI(Tl) scintillator crystal with a lead shield  

    • High voltage power supply  

    • Multi-channel analyzer PC peripheral interface  

    • High-activity (5 μCi) 
137

Cs source encased in a lead shielding/collimator  

    • Aluminum rod for scattering ɣ-rays 

    • Movable carriage for changing observing angle  

 

Introduction: 

In 1923, Compton considered the problem of high energy photon (ɣ-ray) 

scattering from solids. Experimentally, he found that low energy (~ a few MeV) 

monochromatic photons scattered by metals change their frequency and that the 

frequency change depends on the scattering angle. This proved to be problematic, 

since at that time, light scattering was understood in terms of diffraction in which the 

scattered (diffracted) wave does NOT change frequency. Compton’s experiments and 

his theoretical analysis of them came to be known as Compton scattering. 

Historically, his experiments are important because they provided further compelling 

evidence that photons do behave as particles which obey conservation of momentum 

and energy laws. Compton was awarded the Nobel prize in 1927 for his seminal 

work. 

Compton’s experiment can be understood by considering the interaction of the 

incident photons with the electrons that comprise a metal. If the quantized nature of 



 82 

electromagnetic radiation is taken into account (electromagnetic radiation consists of 

photons, each of which has the same energy, E = hν, where ν is frequency and h is 

Planck’s constant), and relativistic kinematics are used to describe the scattering 

process, the change in wavelength is understandable as a straight forward 

consequence of total energy and momentum conservation during a scattering process 

in which an incoming photon loses some of its energy to an electron with mass me. 

The basic kinematic diagram illustrating this interaction is sketched in Figure 1. 

 
 

Figure  1: A schematic diagram showing the kinematic variables used to describe the 

scattering of an incident photon with energy E from an electron with mass me, initially at rest. 

 

For a beam of incident photons, each of which has the same energy E = hν, there will 

be photons emerging at various angles θ with respect to the incident photon direction. 

The energy Eʹ of a photon emerging at an angle θ can be calculated using relativistic 

kinematics and is described by the expression  

 

  cos1/1
'

2 


cmE

E
E

e

.               (1) 

 

From Equation 1 it can be seen that in order to obtain a large Compton shift (i.e.,  a 

large value of E - Eʹ ), the incident photons should have an energy E  that is 

comparable to the rest-energy of the electron: me c
2
 = 511 keV. In this experiment, 

you will be investigating how an aluminum rod scatters a collimated beam of 662 

keV gamma rays emitted by a 
137

Cs source. 

 

 

Experimental Considerations 

 

NaI(Tl) Crystal Scintillator 

The energies of gamma rays from the decays of radioactive isotopes can be measured 

using an inorganic crystal scintillation detector. A crystal of sodium iodide, doped 

with a small admixture of thallium, is used as the active detector element. An incident 

photon can scatter from the electrons in the crystal, which then deposit their energy in 

the crystal by ionizing other atoms in the crystal lattice. The electrons that are 

liberated in this way eventually recombine with the holes left in the lattice and emit 

photons with a range of wavelengths that peaks at about 400 nm, in the violet region 

of the visible spectrum. In this way, the number of photons produced is proportional 
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to the energy of the incident photon. Because sodium iodide is a hygroscopic crystal, 

it must be sealed in an aluminum can to prevent it from absorbing moisture from the 

air which would ruin its optical properties. 

 

Photo-multiplier Tubes (PMT) 

A photo-multiplier tube is a vacuum tube that produces an electrical pulse that has an 

amplitude proportional to the amount of light that is incident on a thin, semi-

transparent glass window. The inside surface of the window has a very thin coating of 

metal alkali metals, which have low work-functions, allowing an incident photon to 

eject an electron via the photoelectric effect. This surface is held at a large negative 

electric potential relative to other elements in the photo-multiplier tubes and the 

ejected electrons are accelerated away from the photo-cathode and can gain several 

hundred eV before they impact the first dynode. Dynodes are coated with a material 

such as beryllium copper oxide, that will emit several low-energy electrons when hit 

by an incident electron. Several dynode stages with increasing electric potentials 

allows the charge of the electron initially ejected from the photo-cathode to be 

multiplied by a factor as large as 10
5
 or 10

6
, producing an electric pulse at the output 

that has an amplitude large enough to be easily measured by relatively 

unsophisticated electronics. 

Photo-multiplier tubes require a high voltage power supply to provide the 

accelerating potentials across the dynodes. Typical operating voltages are of order 1 

kV but the circuit used to provide the voltages to the dynodes usually draws less than 

1 mA of current. The gain of a photo-multiplier typically varies with the applied 

voltage according to VG  , where β can be as large as 5 or 6. Therefore, even small 

changes in the operating voltage can result in large changes in the gain. For this 

reason, precise photon energy measurements need a high voltage power supply that is 

very stable in time. 

Although the output of a photo-multiplier tube is proportional to the amount 

of incident light, the power supply may not be able to deliver enough current to 

produce very large pulses from, for example, high energy photons incident on a 

NaI(Tl) crystal. In addition, the available current may be insufficient even for 

moderate pulses at very high rates. Thus, it is possible that the gain of a photo-

multiplier tube is slightly non-linear, becoming slightly less than expected for large 

pulses. 

 

Multi-channel Analyzer (MCA) 

A multi-channel analyzer (MCA) detects electrical pulses at its input, measures the 

amplitude (or charge), and stores the resulting measurements in a histogram. The 

signal from the PMT is connected to the input MCA where it can be amplified by a 

pre-amplifier with a selectable gain. A discriminator triggers the electronics to 

measure the amplitude of a pulse when the signal from the pre-amplifier exceeds a 

specified threshold. This threshold can be set to 1-2% full scale to ignore the large 

number of very small pulses due to electronic noise in the system. The amplitudes of 

triggered pulses are measured using a 10-bit analog-to-digital converter (ADC) and 

are stored in memory as a histogram. 
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The  dead-time is the fraction of the time in which the MCA is measuring and 

analyzing pulses. If the dead-time is significantly larger than a few percent, then the 

probability that two photons could arrive at the same time becomes significant. This 

could degrade the energy resolution or bias the energy measurement. Therefore, keep 

the dead-time low by increasing the discriminator threshold or by reducing the 

intensity of the beam to which the PMT is exposed. 

 

ɣ-ray Spectra of Radioactive Isotopes 

 

During this lab you will be measuring ɣ-ray radiation from several different 

radioactive isotopes, including 
137

Cs and 
22

Na. These isotopes emit radioactivity via 

beta decay.  In this process, the weak interaction in the atom can change a proton into 

a neutron or vice versa. In order to conserve mass and charge, this transformation is 

accompanied by the emission of a beta particle (electron or positron) and either a 

neutrino or  antineutrino, (e.g.,  enp , or  epn ).  The decay scheme 

of 
137

Cs is shown in Figure 2.  The isotope has a half-life of 30.23 years, and 94% of 

the time it decays to an excited energy state of 
137

Ba, while the reminder of the time it 

decays directly to the ground state of 
137

Ba. In both cases it releases a neutrino and an 

electron, with the latter typically being immediately absorbed by the metal casing of 

the sample. The reason why 
137

Cs makes a good ɣ-ray source for investigating 

Compton scattering is due to the fact that the 
137

Ba isotope only lives for ~2.5 minutes 

on average in the excited energy state before dropping to the ground state, emitting a 

661.7 keV ɣ-ray photon in the process. Thus 
137

Cs produces a clean, steady ɣ-ray 

spectrum, with only a single emission line. 

 

 
 

 

Figure 2:   A schematic of the energy decay scheme of  137Cs. 

 

 

Before you begin your investigation of Compton scattering with 
137

Cs, you must first 

calibrate your detector with one of the calibration sources provided by your T.A. 
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Most of these isotopes decay in a similar fashion to 
137

Cs, producing one or more ɣ-

ray emission lines. One calibration source, 
22

Na, however, has a slightly more 

complicated decay scheme (Figure 3). It decays into an excited state of 
22

Ne, but 

unlike 
137

Cs, in this case a positron and antineutrino are emitted.  The positron 

typically lasts only very briefly before combining with an electron in the sample or its 

metal casing. The two particles annihilate each other and release their rest mass 

energy (E = mec
2
) in the form of two ɣ-rays, each with energy 0.511 MeV 

(    ee ). Meanwhile, the 
22

Ne remains only briefly in its excited state 

before dropping to the ground state, emitting a 1.274 MeV ɣ-ray in the process. The 

ɣ-ray emission spectrum of Na thus consists of two peaks at 0.511 MeV and 1.274 

MeV. In Figure 3 there is also a third peak, caused by instances when two of these 

different energy photons happen to hit the detector simultaneously. 

 

 
 
Figure 3:   The observed energy spectrum for the decay of 

22
Na (note the vertical log scale). 

The inset shows the 
22

Na energy decay scheme. 

 

The spectrum of Figure 3 is simply a histogram showing the number of counts the 

PMT system has accumulated in each energy channel. By using the known intrinsic 

energies of the ɣ-ray emission lines of the calibration isotopes, you will determine the 

relation between energy (in keV) and channel number for your 

scintillator+PMT+MCA system.  A simple analogy would be if you were given a 

thermometer with equally spaced markings but no labelling –-- you might choose to 

calibrate it to measure degrees Celsius by noting its readings when it is first placed in 

an ice bath (0°C), and then a pot of boiling water (100°C) . A booklet of ɣ-ray 

spectrum charts for various isotopes is provided for your reference in the lab room, 

ask your T.A. for help if you cannot locate it.   
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 Radiation Safety – IMPORTANT! 

 

 The calibration sources used in this lab have very low radioactivity and do not 

present an exposure risk. The stronger, 
137

Cs source is contained in a lead shield 

which collimates the emitted photons into a narrow beam so that they are directed 

away from an experimenter. Nevertheless, it is useful to use good source handling 

practices. In particular,   

 

    • Maximize the distance between you and a source whenever possible (use the 

inverse-square law to your advantage!). For example, use tongs to handle and position 

the calibration sources.  

 

    • Reduce the time exposed to a source of radiation. Do not spend an unnecessary 

amount of time in front of the 
137

Cs source beam when positioning the photo-

multiplier tube.   

 

    • Use shielding to prevent exposure. Keep the lead shield in place on the high 

activity 
137

Cs source when you are not taking data with it. 

 

    • Avoid unintentional ingestion of radioactive isotopes. Although all the sources 

used in this lab are sealed and cannot contaminate the surfaces in the lab, it is good 

laboratory practice to avoid ingestion of any contaminated material. Therefore, do not 

eat, drink, apply cosmetics, smoke, or chew gum or tobacco in the lab. Also, it is a 

good idea to wash your hands after working in the laboratory.  

 

 Calibration Procedure 
  

    1.  Dependence of  MCA channel number on PMT voltage  

 

The purpose of this step is to determine the possible effects of voltage 

fluctuations on the MCA channel output spectrum. 

 

        - Turn on the high voltage using the software ‘Adjust-HV’ tab and click ‘on’. 

 

        - Set the high voltage to approximately 950 volts and the internal pre-amplifier 

gain to 8.  

 

        - Select a calibration source such as 
54

Mn,
 60

Co, or 
22

Na, which have well-

defined peaks in the energy range 1-2 MeV.  

 

        - Verify that the energy resolution is good enough to clearly resolve the peaks. 

Adjust the high voltage and coarse gain setting if necessary such that a peak in 

the 1-2 MeV energy range occurs somewhere between channels 400 and 800.  

 

        - Measure the centroid of the peak as the high voltage is varied over the range    

± 50 volts.  
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        - Plot the measured channel position as a function of voltage on a log-log plot. 

Compare the relationship with )/( oo VVCC  , where Co is the channel 

position at a reference voltage Vo . 

 

        - Calculate the percentage change in the centroid peak channel position that 

would result if the power supply output voltage fluctuated by 0.1%.  

 

 

    2.  Calibration of MCA channel number  

 

For the Compton scattering part of the lab you will study photons with energies 

less than 1 MeV. Therefore, the gain should be adjusted so that the photon 

peak from the 
137

Cs calibration sample is located near channel 500. This is 

typically achieved with a high voltage of approximately  950 V, and the pre-

amplifier gain set to  16.   

 

        - Set the high voltage and pre-amplifier gain so that the 
137

Cs peak lies 

somewhere between channels 500 and 700.  

 

        - Record the spectra of several calibration sources, recording their peak positions 

estimated using the peak finding analysis provided by the MCA interface 

software.  

 

        - With the high voltage and gain selected above, not all of the peaks will be 

within the range of channels analyzed by the MCA. Identify which sources 

have well-defined peaks in the range of channels that you can observe and look 

up the energies of these peaks in the spectrum charts that are provided. 

 

        - You can save a spectrum to a thumb drive using ’Save-as’ and selecting the 

’TKA’ file format. Each line of this file consist of the number of counts in each 

of the 1024 channels and is suitable for importing into Microsoft Excel.  

 

        - Plot a graph of channel number vs energy (in keV) for the set of isotope peaks 

that you have studied.  Fit this curve first to a straight line and then a 2
nd

 order 

polynomial. Which functional form provides the best fit to the data? Your final 

choice of fit is your calibration curve, which you will use to convert channel 

numbers into keV energy units.  

  

 

  Study of Compton Scattering 
  

    1.  Estimate the angular resolution of the photo-multiplier tube as shown in 

Figure 4. By assuming an equal probability of detection across the face of the 

detector, the uncertainty in the angle measurements can be estimated from the 
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variance of a uniform probability distribution of width Δθ, which is 

12/)( 22   . 

    2.  Remove the lead cover from the 
137

Cs source and position the PMT on the 

movable carriage at approximately 5°. Locate and measure the position of the 
137

Cs peak and compare this with your earlier results from the 
137

Cs 

calibration source.  

    3.  Place the aluminum scattering rod on the holder, making sure it is aligned 

directly in front of the beam.  Repeat the measurement in step 2, recording 

sufficient data to obtain an accurate estimate of the peak position. Record the 

live-time over which data was accumulated, the angle and the measured 

centroid of the peak.  

 

    4.  Repeat the previous step for an angle of 10°.  

 

    5.  Return to the angle used in step 2 and measure the peak position again to 

determine if it has drifted for any reason.  

 

    6.  Repeat steps 3 and 4 for angles up to 90°, always returning to the initial 

position of  5° to monitor changes in the PMT gain. Because the intensity of 

photons scattered at large angles decreases, you will have to accumulate data 

for longer periods at larger angles.  

 

 

 

Figure 4:   How to estimate the uncertainty in the scattering angle. 

 

Data Analysis 
 

1. Using your fitted curve to the MCA channel number as a function of photon 

energy, convert the channel numbers of the measured peak positions to 

energies.  
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2. Measure the mean and RMS of the distribution of photon energies recorded 

with the PMT at 5°. The RMS of this distribution can be used to estimate the 

uncertainty on any given measurement since it reflects the size of any 

uncontrolled fluctuations in gain. 

 

3. Tabulate θ, peak position, peak energy (Eʹ) and their uncertainties for all 

angles at which data were taken. Include this table in your report. Make sure 

you explain and show sample calculations for the uncertainties in these 

quantities.  

 

4. Plot 1/Eʹ as a function of cos1 . State what can be concluded from this plot. 

Be sure to include both horizontal and vertical error bars in your plot.  

 

 

5. Perform a least-squares fit of a straight line to the data plotted above. From the 

slope, determine a value of the rest energy of the electron mec
2
.  Be sure to 

show a detailed calculation of the uncertainty in this quantity in your lab book. 

Discuss how your value compares with the accepted value.  
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Appendix:  Genie 2000 Reference Sheet 
 

2.  Introductory comments 

The PC contains a Multi-Channel Analyzer (MCA) board that accepts signals from a 

Photomultiplier Tube (PMT) and processes them in such a way as to make histograms 

of the counts vs. channel number. A program called Genie 2000 serves as a link 

between the MCA board and the computer. Genie 2000 program splits the monitor 

screen in half, with the upper half displaying the MCA data and the lower half 

comprising the Report Window. 
 

 To start the computer MCA controller 

From the Start menu, choose Programs and then Genie 2000. Select Gamma 

Analysis and Acquisition.  When the program has loaded, select Open Datasource 

from the File menu and then click detector.  In the file listing, choose Compton. 

 

 To set data acquisition time (Live Time) 
Menu Sequence:  

MCAAcquire Setup,  

Select Live Time,  

Input the time,  

hit OK 

 

 To use the peak locator to find the centroid of a peak 

Menu sequence: 

AnalyzePeak LocateUnidentified 2nd Diff 

Then, use the following settings: 

Start Channel   1 

Stop Channel   1024 

Significance Threshold 3.00 

Tolerance   1.00 keV (Energy) 

Then, check Generate Report and click Execute. 

 

 To Print the Scatterplot 

Menu Sequence:  

FileData Plot 
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 To save numerical data 

Menu Sequence: 

AnalyzeReporting 

Then use the following settings: 

Start On  New Page 

Template Name 340dump.tpl 

Output to  Screen 

Section Name  All 

Activity Units  Ci 

Multiplier  1 

Then, click the Execute button.  The counts are printed to the report window in 

channel order, starting from channel 1.  Once the data is in the report window, it must 

be copied to the Clipboard and pasted into a text editor, where it can be saved. 

 

Menu Sequence: 

OptionsReport WindowCopy Contents to Clipboard 

 

The Clipboard can then be pasted into Notepad to create a permanent copy.  For 

instance, the Notepad contents can  be Saved as a file on the Desktop.  Using Excel, 

the file just created can be imported using the Text Import Wizard. When doing this, 

it's important to start the import at Row 9. Once the data is in Excel, information 

about channel number (or  energy) can be added, subtraction of background can be 

performed, and plots can be generated in the normal way. 

 

 To clear your data 

Menu Sequence: 

MCAClearData, 

Or Click the Clear button in the upper left part of the screen. 

 

 To clear the report window 

 

Menu Sequence: 

OptionsReport WindowClear Contents 
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RR August 2000 

SS December 2001  

Physics 340 Laboratory 

Discrete Electron States in an Atom:   

The Franck-Hertz Experiment 
 

Objective:  To measure the first excitation potential and the ionization potential of 

mercury atoms and to show that the energies of bound electrons are quantized.   

 

References:  
1. J. Franck and G. Hertz, Verhand Deut.  Physik Ges.  16 ,10 (1914). 

2. A.C. Melissinos, Experiments in Modern Physics, Academic Press, New York, 

1966, pgs.  8-17. 

 

Apparatus:  Franck-Hertz tube, furnace, Kiethley Model 485 picoammeter, Wavetek 

Model DM2 digital voltmeter (optional), CASSY interface, 10 K potentiometer, a.c.  

power supply for the furnace (Variac), two 1.5 V batteries, 0-100V d.c.  power supply 

to accelerate electrons, 0-10 V d.c.  Lambda power supply for heating the filament, 

Fluke Model 51 digital thermometer.   

 

Introduction 
An electron bound in an atom does not behave like a classical mechanical system, 

which can absorb arbitrary amounts of energy. Instead, as suggested by Bohr in 1913, 

an electron in an atom can exist only in definite discrete stationary states, with 

energies Eo, E1,... . In this model, atomic excitations are represented by transitions of 

an electron, bound to the atom, from its ground state energy to a higher level.  

Excitation to increasingly higher energies is facilitated by energy levels that lie closer 

together.  Eventually, excitation beyond the ionization energy of the atom produces 

an electron which is no longer associated with the atom. Such an electron enjoys a 

continuum of available energy states. The essential features of this scheme are 

represented by an energy-level diagram as shown schematically in Fig. 1. 

Horizontal lines in this figure represent “allowed” values (measured along the 

vertical axis) of the total energy (Ekin+Epot) of the most weakly bound electron in the 

atom.  Notice that these discrete values are negative, indicating that these states are 

“bound” states of the electron; i.e.  work has to be done in order to remove the 

electron from any of these states or “levels”. In particular, the lowest lying level 

E(0)
ground, called the “ground state”, has the largest negative energy.  When not 

excited, the electron and thus the atom stays in the ground state.  Removal of an 
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electron from an atom is called “ionization”. Thus, in order to ionize the atom in its 

ground state, an amount of work equal to -E(0)
ground (or larger) has to be supplied to 

the atom.   

“Excitation” of the atom occurs when the electron in its ground state absorbs 

energy, after which it is promoted to one of the higher bound states E(i)
excited. 

Electrons in atoms can be excited in a number of ways, such as bombarding atoms by 

free electrons or illuminating atoms by light. 

 

 
Figure 1:   A schematic diagram showing the energy levels of an atom.  The heavy 

solid lines represents the vacuum level and separates the quantized states from the 

continuum. 

 

If an atom is supplied with energy by excitation from a free electron, then a bound 

electron can take up energy from the free electron only in quantized amounts E 

equal to the difference in energy between the excited level and the ground state. 

 
)0()()()(

ground

i

excited

after

kin

before

kini EEEEE   

  
)(before

kinE  - kinetic energy of the bombarding free electron before collision,  
)(after

kinE - kinetic energy of the bombarding free electron after collision,  
)(i

excitedE - i-th excited state of the atom, and  
)0(

groundE  - ground state of the atom.   

 

If an atom is bombarded with electrons whose kinetic energy are less than the first 

excitation energy of the atom, no exchange of energy between the bombarding 

electrons and the electrons bound to the atom can take place.  (This of course neglects 

any small amount of energy that may be transferred in elastic collisions when the 

whole atom recoils without being electronically excited.) Thus, the electron in the 
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atom remains in the ground state )0(

groundE . If )(before

kinE  is equal to or greater than )(i

excitedE -

)0(

groundE , the electron in the atom can be promoted into the first excited state. 

If a free electron is accelerated through mercury vapor having an appropriate atom 

number density, the probability of exciting the E1 transition is much larger then 

exciting any other Ei transition.  Thus in a sequence of n collisions with n different 

mercury atoms, the bombarding electron can convert nE1 energy into atomic 

excitations.  Bohr’s quantum ideas were well supported by many studies of 

electromagnetic radiation from atoms where photons with definite energies were 

either emitted or absorbed.  The historical significance of the Franck-Hertz 

experiment is that it provided convincing proof that energies of atomic systems are 

quantized not only in photon emission and absorption but also under particle 

bombardment. 

   

The energy levels of Hg 
In this experiment, you will probe the energy levels of a Hg atom.  A neutral 

mercury atom has 80 electrons.  These 80 electrons are distributed in a configuration 

specified by 

 

1s2,2s2,2p6,3s2,3p6,3d10,4s2,4p6,4d10,4f14,5s2,5p6,5d10,6s2.  

 

It is convenient to divide these 80 electrons into two broad categories often referred to 

as inner shell and outer shell electrons. We know that 78 of these electrons reside in 

inner shells (1s,2s,2p, etc.) and 2 of these electrons reside in the outermost 6s shell. 

At low energy bombardment, only one of the two outermost electrons in the 6s 

shell is promoted to an excited state referred to as a triplet 6 3P1 state as shown in 

Fig.  2. The most probable excitation to this triplet state requires a 4.86 eV energy 

transfer to the bound electron of the mercury atom. The probability of excitation to 

higher levels of the 6s electrons or the probability of excitations of any inner shell 

electron is very low and need not concern you in this experiment.   
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Figure 2:   A term diagram showing the lowest lying energy levels for a mercury 

atom. 

In general, the excited states are unstable, and the atom exists in that state only for 

a short time, typically 1 to 10 nanoseconds.  When it returns to the ground state, an 

amount of energy =E(i)
excited-E(0)

ground=Ei is released in the form of 

electromagnetic radiation.  The wavelength of the radiation emitted when the first 

excited state decays into the ground state (E=4.86 eV) is 255 nm. 

 

 
 

Figure 3:   A schematic diagram illustrating the essential features of the Franck-Hertz 

experiment. 
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Experimental Considerations 

 

The experiment described below is essentially the same as that performed by J. 

Franck and G. Hertz in 1914. Suppose a beam of electrons is produced between a 

heated cathode and an extraction grid G1 that is biased positively with respect to the 

cathode.  Electrons passing through G1 are accelerated toward the grid G2 in a 

vacuum tube that has been evacuated of air molecules (See Fig.  3) by a positive 

voltage VG2 applied with respect to G1. At the grid G2, the kinetic energy of the 

electron is Kkin=eVG2, where e is the magnitude of the electron’s charge and VG2 is 

the potential difference between G1 and G2.
2
 Because of this kinetic energy, most 

electrons pass through the grid and reach the anode after being decelerated by the 

retarding potential VR, provided that |VR|<|VG2+VG1|. 

Now suppose mercury vapor at low pressure is let into the tube.  This can be 

achieved by inserting a drop of mercury into a heated vacuum tube.  As long as 

eVG2<E1, the accelerated electrons may undergo many “elastic” collisions with Hg 

atoms, but they do not lose much energy because the Hg atom is much heavier than 

the electron.  The electrons thus drift to the anode, through G2, causing an anode 

current Ia.  

However, when )0()1(

12 groundexcitedG EEEeV  , it is possible to transfer the free 

electron’s kinetic energy to an internal electronic excitation of the Hg electron.  Thus 

the incident electron is left with zero kinetic energy, i.e. zero velocity.  If the collision 

takes place close to G2 the electron cannot re-gain enough speed to reach the anode. 

To accomplish this, a slight retarding potential VR must be maintained between 

the G2 and the anode (see Fig. 3). Note that VR is retarding only for negatively 

charged particles.  This prevents electrons that suffer inelastic collisions close to G2 

from reaching the anode.  The collective effect of many electrons suffering one such 

inelastic collision is the appearance of a minimum in the anode current Ia when 

plotted as a function of the accelerating potential VG2. 

As the accelerating potential becomes larger (VG2>E1/e), an electron can excite 

an atom at larger distances from G2. Thus after an inelastic collision, the electron can 

accelerate towards G2 and gain again enough kinetic energy to overcome the 

retarding potential and reach the anode.  As a result, the anode current should then 

increase.  Now suppose VG2=2E1/e. At a point approximately halfway between G1 

and G2, the electron reaches an energy E1. This electron may undergo an inelastic 

collision, midway between cathode and grid, with a Hg atom. After colliding with the 

                                                 
2
 Since the energy of an electron accelerated in electric field is proportional to the potential difference, 

it is often measured in eV (electron-Volts) units, i. e. an electron accelerated by 1 V potential 

difference acquires energy 1 eV; 1 eV=1.60210
-19

 J. 
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Hg atom, the electron is left with zero kinetic energy in the electric field, halfway 

between G1 and G2. Since the electron is half way between the grids, it will 

accelerate and gain E1 energy as it approaches the second grid G2. In the vicinity of 

the grid it may again make a second inelastic collision with a second Hg atom, giving 

up its energy.  This electron will be unable to reach the anode.  This results in a 

second dip. 

This reasoning makes it understandable that Ia not only decreases at VG2=E1/e 

but in general at VG2=nE1/e. Between the values (n-1)E1/e and nE1/e the current 

Ia increases monotonically with increasing VG2. The dips that occur at discrete 

potentials are an indication of the quantized character of the energy loss process.  The 

first dip corresponds to the case when there is one inelastic collision in front of G2 

with one Hg atom, the second when there are two inelastic collisions with two 

different Hg atoms, one is half way between G1 and G2, the second at G2, etc. 

 

Experimental Technique:   

 

A specially designed vacuum tube shown in Fig.  4 contains a small amount of Hg 

that is partially evaporated when the tube is heated inside a furnace.  By heating the 

vacuum tube, the vapor pressure of of Hg can be adjusted.  Besides the anode, the 

acceleration grid G2 and the cathode, the tube has an extractor electrode - grid G1. 

This grid helps to removes the charged cloud of electrons that forms in the region of 

the heated filament and cathode.  The space charge cloud impedes electron emission 

from the cathode and thus reduces the flow of electrons towards the grid G2. 

 

  
 

Figure 4:   A photograph of a modern Franck-Hertz tube.   

 

The temperature of the oven is measured using a Fluke Model 51 digital 

thermometer.  This instrument measures the voltage from a thermocouple junction 

and converts the voltage to a temperature using a calibration table stored inside the 

instrument.  Make sure that the junction is in the proper position i.e.  approximately 5 

cm down from the lid between the tube and inner copper cylinder.  If the 

thermocouple junction touches the heating element and it is not insulated, it may 

cause a short circuit. 

A photograph of the apparatus is given in Fig.  5 
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Figure 5:   A photograph of the apparatus used to measure the first excitation energy for 

Hg atoms shown with optional Voltmeter MD2. To record data using computer attach 

CASSY interface (not shown) as follows: connect UB1 in parallel with (or instead of) 

voltmeter MD2, and connect analog output of the picoammeter Kiethley 485 to UA1 

(voltmeter) input of CASSY interface. 

 

Setting up Cassy Lab program for data acquisition. 

Start Cassy Lab program and initialize both voltmeters. Set the display x-axis to show 

UB1 (VG2) and y-axis  to show UA1 (proportional to current). Set both voltmeters to 

measure mean signals, i. e. to average signals during 100 ms. This will dramatically 

reduce the noise by suppressing electrical noise at frequencies above 10 Hz. The main 

source of noise is induced by AC current in power lines (60 Hz). Set the data 

acquisition period also to 100 ms. Leave total data acquisition time blank. Next, 

check the Condition box in measurement window and type in the following condition: 

n=1 or delta(UB1)>0.05 

The above setting tells the program to take the next data point (UB1, UA1) if the first 

point is being measured (n=1), or when the UB1 value changes by more than 0.05V. 

The condition is checked every 100 ms, as specified by data acquisition period. 
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Figure 6:   A wiring diagram to measure the first excitation energy for Hg atoms. For 

computerized data acquizition, CASSY interface UB1 is connected in parallel with 

(or instead of) DM2, and Kethley 485 picoammeter analog output is connectet to 

UA1 voltmeter input of the Cassy interface. 
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MEASUREMENT OF FIRST EXCITATION POTENTIAL OF 

MERCURY  

Set-up Sequence:   
(a) Turn on the Kiethley 485 picoammeter and the Lambda power supply.  

Make sure the Lambda power supply is set to the 7V range. 

(b) Turn the oven Variac to 40 V and then switch it on.  When the temperature 

reaches about 170 C reduce the setting to what is marked on each Variac by an 

arrow so that the temperature increases slowly to 195oC. Under no 

circumstances let the oven temperature exceed 210oC. The tube will explode. 

The final Variac setting and temperature should be such as to allow you to 

obtain three to five good peaks in the anode current as the grid voltage VG2 on 

G2 is varied.  Always vary the oven power gradually, not by more than 4 

divisions on the Variac at a time. 

(c) Wire the circuit as shown in Fig.  6. Do not connect the batteries and do not 

plug in the filament power supply at this time.  Set the Wavetek Model DM2 (if 

used) to the 20 V d.c.  scale, and set the UB1 Cassy voltmeter to 30V range.  

Set the Kiethley 485 picoammeter to the 2 A scale.  Since the picoammeter is 

an extremely sensitive instrument, keep it on the 2 A scale when taking 

preliminary data.  Set the UA1 Cassy voltmeter (which monitors picoammeter 

output) to 3V. Set the d.c.  power supply which provides the accelerating 

voltage to 30 V. 

(d) Have your wiring checked by the lab instructor.  Make sure the initial setting 

of the 10K potentiometer is such that VG2=0 V. 

(e) Connect the two 1.5 V batteries which are used for VR and VG1. Set VG2 to 

20V. Raise the filament voltage VF until the Kiethley 485 reads roughly 0.020 

A (20 nA). Under no circumstances should filament voltage exceed 7V as it 

may be permanently damaged! Take your time because the tube filament 

changes temperature slowly as the the voltage across it is adjusted.  The final 

value of VF will be somewhere between 4V and 7V, depending on the age of the 

tube. 

(g) After adjustment of VF the anode current should remain rather constant when 

the circuit is wired correctly, the contacts are tight, and the vapor in the tube is 

in thermal equilibrium.  If the current fluctuates wildly, tighten the wire contacts 

on the banana plugs and panel-jacks and wait for thermal equilibrium. See that 

the heater shield wire is connected to common ground. 

 

Data Acquisition:   
(a) When the current has stabilized, increase the acceleration voltage VG2 to 30 

V. Select the highest sensitivity range on picoammeter in which there is no 

signal overload. Check that the Cassy UA1 voltmeter range is suitable for 

measuring picoammeter output voltage. Record the conversion factor between 

UA1 reading and actual current, you will need it later to convert the data 

accumulated by Cassy Lab program to current. 

(b) Decrease the acceleration potential VG2 to zero. 
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(c) Start data acqusition program. Immediately the first data point should appear 

(something like (0.001,   0.002). If more points appear then stop the data 

acquisition and ask your instructor to check data acquisition settings. 

(d) Increase VG2 up to 30V at a moderate pace (~1 V/s). As VG2 rises by 

>0.05V, the next data point will be measured by the program automatically. You 

should be able to see the graph Ia versus VG2 as it is being measured. Stop data 

acquisition as you reach 30V. Rescale the Cassy graph if necessary for better 

view. You must be able to observe at least 2 oscillations in current. If you do not 

see them consult your instructor. If everything looks right proceed to the next 

step. 

(e) Discard the data you have accumulated, set the VG2 to 0 again, start data 

acquisition and repeat the measurement. But this time increase VG2 slowly to 

30V. See that not more than few points are measured every second (i.e. spend 

~5 minutes for the whole range), as the condition is checked only 10 times a 

second. The anode current (Ia) as function of VG2 will be recorded 

automatically. Save your data. 

 

Data analysis.  
(a) Make a preliminary print of your data and insert it into your notebook. Don’t 

forget to record all the conditions alongside the graph: oven temperature, VG1, 

and the filament voltage VF. 

(b) Based on this graph, roughly estimate  the first excitation potential of the 

mercury (E1) by measuring the distance (in Volts) between the local maxima 

preceding the first and second local minima in the anode current.  Also, estimate 

the standard deviation in measuring E1 from your measurements.  Check 

whether the accepted value for =4.86 eV falls within the range that you 

found experimentally. 

(c) From the same graph, determine the contact potential Vcontact between the 

cathode and G2 by subtracting the value of the first excitation potential E1 

from the value of VG2 at the first local maximum that you measured.  Estimate 

the error involved. The contact potential is caused by the difference in work 

functions between the materials used to fabricate the cathode and G2. 

Note: for final report you must convert UA1 voltage into actual current. Don’t 

forget to record conversion factor in your notebook! 

 

Repeat measurement for lower anode current: 

(a) Set the VG2 to 20V and reduce the filament voltage until the Kiethley 485 

reads roughly 0.005 A (5 nA). Repeat the measurement of Ia(VG2) as described 

above. 

(b) Perform preliminary analysis of your data. Do the values for E1 and Vcontact 

depend on anode current (filament voltage)? 
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MEASUREMENT OF THE IONIZATION POTENTIAL OF MERCURY  
If a free electron is given sufficient energy, it is possible to excite an electron 

from the ground state of a Hg atom into the continuum, thus producing a positive Hg 

ion.  Since a Hg ion is quite a bit heavier than the bombarding electrons, it’s velocity 

will be small and it will have a shorter mean free path between collisions than the 

bombarding electrons.  In order to detect these ions, you must therefore reduce the 

vapor pressure of the mercury inside the tube by lowering its temperature. In this 

experiment, you will measure the onset of the ion current produced by Hg ions 

formed during the collision of electrons with mercury atoms.  To measure this 

quantity, the anode is made slightly negative with respect to the cathode.  Thus, the 

electrons cannot reach the anode, which becomes a positive ion collector (See Fig.  

7). 

 

Figure 7:   A wiring diagram for measuring the ionization energy of Hg atoms. 

Connection to CASSY interface is the same as in the previous experiment (not 

shown). 

 

Set-up Sequence:   

(a) Lower the Variac setting to obtain a stable oven temperature of 150o C.  

(b) Remove the battery VG1.  

(c) Reconnect VR as is shown in Fig.  7.  

(d) Change the measuring condition in the Cassy Lab program to: 
 n=1 or delta(UB1)>0.02 

(accumulate data points every 0.02V). 
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Data Acquisition:   
Set VG2 to zero and set picoammeter sensitivity to 2 nA. Record the ion current Ii 

versus VG2 as described in the first part. Increase VG2 slowly while observing Ii value. 

At ~12V Ii will suddenly rise very rapidly. Stop measurement when Ii reaches ~1.5 

nA. Switch the picoammeter to 20 nA and repeat the measurement, this time let the 

current rise to  15 nA. Don’t forget to record conversion factors for converting Cassy 

voltmeter values to actual current.   

 

Data Analysis:   

(a) You have measured the ion current Ii as a function of the accelerating potential 

VG2. Plot these measurements on a Ii vs.  VG2 graph. You do not need to show error 

bars since there are ~500 points in your graph, the error can be estimated visually by 

the scattering in data points.     

(b) In most cases, the current Ii remains zero for small VG2 then suddenly increases 

dramatically.  Devise a procedure to determine your best estimate for the value of 

VG2 at which Ii starts rising. From this value subtract the value of the contact 

potential, you obtained in part 1 for this experiment.  The result is the ionization 

potential of mercury.  Estimate the error in your result and then compare it with the 

accepted value of 10.38 eV. Sometimes, Ii as a function of VG2 behaves somewhat 

differently.  At a value of VG2 smaller than the ionization potential you will measure 

a small increase in the current.  When you increase VG2 further, the value of Ii will 

remain fairly constant until suddenly the current will start rising very fast.  Develop a 

procedure to determine the value of VG2 for which the dramatic increase in Ii sets in.  

You obtain the ionization potential by subtracting the contact potential from this 

value.  A good explanation of this phenomenon is given in the book by A.C. 

Melissinos. 

(c) Discuss your errors.  How important is the temperature of the tube?  How 

sensitive are your measurements to VF?  Do you understand the purpose of the 100 

K resistor in the circuits you have constructed?  Do you understand why you have 

used a shielded BNC cable when measuring the anode current?  Did the current 

reverse polarity when measuring Ia and Ii. Why?  
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RR 9/00 

SS 12/01  

Physics 340 Laboratory 
The Electronic Structure of Solids:   

Electrical Resistance as a Function of Temperature 

 

Objective:  To measure the temperature dependence of the electrical resistance of a 

metal and semiconductor and to interpret the observed behavior in terms of the 

underlying band structure of the solids.   
 

Apparatus:  Electrical furnace, NiCr-Ni thermocouple, variac power supply for 

furnace, CASSY power/interface, current module (524-031), thermocouple module 

(524-045), computer, Pt resistor, semiconductor resistor. 
 

References:   

1. W. Pauli, Z. Physik 31, 373 (1925).  

2. E. Fermi, Z. Physik 36, 902 (1926).  

3. P.A.M. Dirac, Proc.  Roy.  Soc.  London A 115, 483 (1926).  

4. E. Wigner and F. Seitz, Phys Rev.  43, 804 (1933) and Phys. Rev.  46, 509 

(1934).  

5. N.F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys, 

Oxford University Press, Oxford, 1936.  

6. D. Halliday, R. Resnick and J. Walker, Fundamentals of Physics; 5th Edition, 

Wiley and Sons, New York, 1997; Part 5, pgs. 1053-69.  

7. K. Krane, Modern Physics, 2nd Ed., Wiley and Sons, New York, pgs.  309-29 

and pgs.  344-62.  
 

Introduction 
An understanding of how much current flows through a conductor for a given 

applied voltage resulted from Georg Ohm’s thorough work in 1827. The empirical 

relationship known as Ohm’s Law has remained valid over the years and is still 

widely used today.  Although Ohm’s work focussed primarily on metals, studies by 

Seebeck in 1821 and by Faraday in 1833 reported anomalies in current flow through a 

class of materials we now know as semiconductors.  Interestingly, the temperature 

dependence of current flow measured by Faraday in semiconductors was quite 

different than the temperature dependence of current flow in metals first reported by 

Davy in 1820. The fundamental origin of this difference remained unexplained for 

about a century until the development of quantum mechanics. 

Following the successful quantum theory of electronic states in isolated atoms, 

attention turned toward a better understanding of electronic states in molecules and 

solids.  Only with the completion of this effort was it possible to understand the 

implications of the simple observations about the temperature dependence of current 

flow made in the early 1800s. 

It is now well established that any property of a solid, including its electrical 

resistance, is in some way controlled by the electronic states of that solid.  As a way 
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of introducing the important differences between the electronic structure of metals 

and semiconductors, you will measure the temperature dependence of the electrical 

resistance of samples made from these two important classes of materials.  Before 

beginning these measurements, it is useful (without paying undue attention to many 

of the details) to review i) the modifications to electron states as we move from the 

atomic to the molecular to the solid state and ii) a simple physical model for current 

flow in solids. 
 

Theoretical Considerations 
A. Electronic Structure 

The important features of an isolated atom are a nucleus surrounded by a 

complement of electrons that are associated with it in a specifically defined manner.  

The Pauli exclusion principle requires these electrons to be non-uniformly distributed 

around the nucleus in regions of space, forming ‘shells’ of charge known as atomic 

orbitals.  The total negative charge of the electrons exactly balances the total positive 

charge contained in the nucleus.  Most importantly, the electrons, because they are 

confined to a limited region of space, acquire quantized energy levels. 

As atoms are brought together to form a molecule, the outermost electrons from 

one atom will interact with the outermost electrons of a neighboring atom.  This 

interaction is subtle and a variety of theories have been devised to explain it 

accurately.  The end result is a profound modification to the allowed energies and 

spatial arrangement of the electronic states.   
 

 
Figure 1:   In a), a schematic diagram of a butadiene molecule C4H6. The bonding  

electrons are indicated by the heavy sticks between atoms.  The delocalized 

electrons, which extend both above and below the plane of the diagram, are 

schematically indicated by the dotted path along the length l of the butadiene 

molecule.  In b), the allowed energies for the electrons in the molecule assuming l is 

0.55 nm.  The two lowest states are filled. Higher vacant energy states (n=3, 4, 5 . . ) 

are available for occupation.  The HOMO (highest occupied molecular orbital) and 

the LUMO (lowest unoccupied molecular orbital) are also labeled.   
 

To understand the nature of these modifications, it is useful to briefly consider a 

simple molecule like butadiene (C4H6). This molecule is a coplanar arrangement of 4 
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carbon atoms combined with six hydrogen atoms.  Each carbon atom contributes 4 

electrons; each hydrogen atom contributes 1 electron. During the synthesis of this 

molecule, interactions between electrons cause a significant rearrangement of 

negative charge.  Many of the electrons become localized in regions of space that lie 

between two atoms, forming states known as  bonds.  These states are covalent in 

nature and are fully occupied, containing a charge equivalent of two electrons.  The 

negative charge carried by these  bonds effectively screens the electrostatic 

repulsion that is present between the atomic nuclei. 

Each carbon atom brings one more electron than required to form the 9  bonds in 

butadiene.  These extra electrons assume the lowest energy configuration possible 

which results in a delocalized occupied state referred to as a  orbital in the molecule.  

A schematic picture of these two different electron states is given in Fig.  1(a). As 

will become clear below, because of the delocalized nature of these  states, one 

might conclude that the butadiene molecule forms an extremely simple example of a 

tiny one-dimensional metal.  If one could somehow connect clip leads to either end 

and apply a potential across it, one might expect current to flow through a single 

butadiene molecule in much the same way as it does through a copper wire!  

As suggested in Fig.  1(a), the  electrons are confined to an extended region of 

space of length l by the attraction of the positively charged nuclei.  Within this region 

of space, the  electrons are free to wander about.  Whether this space has a zig-zag 

nature or is perfectly straight is not of much consequence here.  The important point 

is that whenever electrons are delocalized over a finite region of space, they take on 

quantized energy values.  The allowed energy levels En can be estimated using the 

well known particle-in-a-box result  

 

 
2

2
2

8ml

h
nEn   (1) 

 

where n is an integer quantum number, h is Planck’s constant and m is the electron’s 

mass. 

Let us now find the number of electrons which occupy the quantized  electron 

states.  If each carbon atom brings 4 electrons and each hydrogen atom brings one, 

then the butadiene molecule has a total of 22 electrons.  Of these 22 electrons, 18 are 

tied up in forming the  bonds.  Thus there must be four electrons occupying the  

electron system.  Furthermore, the Pauli exclusion principle allows only two electrons 

at each possible energy. A schematic of the resulting energy states and their 

occupation can be sketched as shown in Fig.  1(b). 

This simple discussion has a number of similarities with the more complicated 

situation when ~1023 atoms per cm3 are brought together to form a solid.  These 

similarities include:  

• the existence of a pool of delocalized electrons,  

• the existence of quantized energy states,  

• the occupation of a certain fraction of these quantized states, and  

• the presence of an energy gap between the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO). 
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All of these basic principles are important when qualitatively discussing the electron 

states of a three-dimensional solid.  To simplify the discussion, it is convenient to 

partition the solid into ‘atomic-cells’ known as Wigner-Seitz cells.  Each atom in the 

solid will be surrounded by a Wigner-Seitz cell which takes on an interesting 

geometrical shape dictated by the exact arrangement of atoms in the solid as shown in 

Fig.  2. 

 

 
Figure 2:   Wigner-Seitz cells for a) a face-centered cubic crystal structure and b) a 

body-centered cubic crystal structure. 

 

The degree of interaction between all the electrons in the solid is now enormously 

complicated and depends not only on the shape, range and density of the relevant 

atomic orbitals but also the exact geometric arrangement of the atoms forming the 

solid.  If it turns out that for a particular atomic shell configuration, certain electrons 

are localized to a region of space near the center of a Wigner-Seitz cell, then little 

modification to these electron states will result.  These states will be dominated by the 

nucleus and will strongly resemble isolated atomic states.  If, on the other hand, 

certain electrons become concentrated outside the nucleus, near the boundaries of a 

Wigner-Seitz cell, then these electron states will be governed by new boundary 

conditions and their allowed energy levels will change accordingly. 

The ability to predict the modifications to different atomic orbitals when atoms 

are condensed into a solid is now well established, thanks to extensive work spanning 

a fifty year period beginning in the 1930’s.  The results of these studies indicate three 

predominant orbital types (s/p, d and f) that exhibit different behavior as more and 

more atoms are brought together.  The trends exhibited by these three different orbital 

types are shown schematically in Fig.  3. 

 

 
Figure 3:   A schematic to illustrate the evolution of energy states in progressing 
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from 1, 2, 3, . . . to N atoms. When N is large, the separation between electron states 

is so small that a continuous band of energies is formed.  The s/p, d, and f 

classification scheme is not a rigid one, but is useful for descriptive purposes. 

 

For electrons having atomic s/p and and d character, there are appreciable 

interactions between electrons located in the edges of the Wigner-Seitz cells, causing 

the energy of each and every atomic orbital to shift slightly from its well defined 

atomic value.  The resulting perturbed states are separated from each other by a very 

small energy difference (on the order of 10-8 eV). These perturbed states are said to 

form a continuous ‘band’ of energies between well-defined upper and a lower limits. 

These energy bands profoundly control the electronic properties of all solids.  The 

width of each band is largely determined by the degree of interaction between the 

atomic states that populate them.  Strong interactions result in wide s/p bands; weak 

interactions produce narrow d or f bands.  The energy gaps between the bands are a 

reflection of the separation in energy between the discrete atomic states of an isolated 

atom.  The population of each band is determined by the number of excess electrons 

left over after the bonding of each atom, one to the other, has been accomplished. 

A consequence of this picture is that a simple phenomenon, like the passage of 

current through a material, will depend on what electronic states are available to carry 

the current.  In turn, the available states are determined by whether a band is partially 

or completely filled.  In addition, the statistical nature of exciting an electron from a 

filled to a vacant energy level must be properly taken into account.  Surprisingly, the 

ability of a specific solid to carry current as a function of applied voltage and 

temperature is determined by all of these factors discussed above. 

   

B. Ohm’s Law 

Electron conduction in a solid is governed by the empirical result discovered by 

Ohm in 1827 which states that the current density J is related to the applied electric 

field E by the relation 

 

 J=E  . (2) 

 

The proportionality constant  is known as the electrical conductivity of the solid 

through which the current flows. (To simplify the discussion, we neglect the inherent 

vector nature of J and E and the subsequent tensor nature of .) Ohms Law is often 

stated in terms of an applied voltage V and the resulting current I as 

 

 RII
A

L
V 


 (3) 

 

where A is the cross-sectional area (assumed to be uniform over the the length L of 

the solid) and =-1 is known as the resistivity of the material. The factor 
A

L
 is 

identified as the resistance R of the material under study. 

 

C. Toward a Microscopic Theory 
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The first question confronting anyone trying to construct a microscopic model for 

current flow is ‘How do you treat the electrons? ’ Are they particles or waves?  Many 

models have been developed which answer this question in a variety of different 

ways.  The most complete models are quantum mechanical and treat the electron as a 

wave.  The more intuitive models treat the electron as a particle.  In what follows, we 

adopt this latter approach. 

At a microscopic level, current is ultimately related to the directed motion of 

charge carriers (electrons) having a charge q. An important question is the net number 

of the charge carriers crossing a fiducial plane per unit time.  This question can be 

answered from rather elementary considerations. 

Electrons have a velocity (105 m/s) which is related to their energy in the solid.  

However, these velocities cause no net displacement of the electrons in a material 

since on average, there are as many electrons traveling in any one direction as in the 

opposite direction. Thus, the velocity related to the electron’s energy is not effective 

in producing a net current flow.  The situation changes when an electric field E is 

applied.  Now electrons are accelerated by the electric field and each electron 

acquires an additional component of velocity, vd - the so-called drift velocity (510-

3 m/s in a field of 1 V/m), due to the applied electric field. 

The current density can be written as the product of the number of charge carriers 

per unit volume n and the mean drift velocity vd imposed by the applied electric field:  

 

 J=nqvd  . (4) 

 

Comparing Eqs.  1 and 2 gives the result that 

 

 
E

nqvd . (5) 

 

Treating the electron’s as independent particles, the equation of motion for a charge 

carrier of mass m in an electric field is given by 

 

 qE
dt

dv
m d   . (6) 

 

Since there are many carriers participating in current flow, it is reasonable to expect 

that each charge carrier will experience many collisions as it travels through a solid. 

For this reason it makes sense to statistically define a mean time  between collisions.  

Alternatively, you can define a drift mean free path ld=vd which is a measure of how 

far the charge carrier will drift between collisions. 

With this definition, an estimate for the mean drift velocity of a charge carrier is 

given by 

 

 
m

qE

dt

dv
v d

d  . (7) 
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One finally has  
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or, equivalently,  
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From this expression for , the resistance R of a material can be calculated if the 

geometry of the sample is known (see Eq.  3). 

The task at hand is to develop a model for the temperature dependence of the 

resistance of a material.  This can be accomplished by considering the temperature 

dependence of each non-constant term in Eq.  9. 

  

D. Temperature Dependence of Electrical Resistance for a Metal 

To evaluate the various factors appearing in Eq.  9 for a metal, we must have a 

good model to calculate the relevant quantities.  This is difficult when you must take 

into account 1023 electrons per cubic centimeter.  Under these circumstances, the 

best way to proceed is to use statistics. 

Since electrons are fermions, Fermi-Dirac statistics must be used (see the 

Appendix). The mean number of electrons in any state with energy E is given by 

2f(E) where f(E) is the Fermi-Dirac distribution function and the factor of 2 is due to 

the two available values for spin of an electron.  As the energy of the electrons 

increases above the bottom of a band, the number of available states increases.  Each 

state can hold two electrons.  These states are filled until all electrons in the band are 

used.  A rather abrupt transition from filled to unfilled states then takes place at an 

energy called the Fermi energy.  A consequence of Fermi-Dirac statistics is that at 0 

K, all states less than the Fermi energy EF are filled and all states above EF are 

empty. 

As the temperature is raised above 0 K, electrons just below EF can be thermally 

excited to unfilled states just above EF. States affected by this transition are located 

roughly within a 2kT range about EF.  

An important issue is the location of the Fermi energy with respect to the energy 

bands of a metal.  What we know by counting available states is that for most metals, 

the Fermi energy is located somewhere inside a band.  Furthermore, typical values of 

EF are much greater than kT for temperatures easily attainable in a laboratory.  This 

implies that only a small number of unfilled electron states within 2kT of EF are 

readily accessible by thermal excitation.  This important insight is indicated on the 

schematic diagram in Fig.  4. Under these circumstances, you can show that n is 



 111 

essentially independent of temperature.  Furthermore, vd is essentially independent of 

temperature and very nearly the same for all electrons within 2kT of EF. It follows 

that the temperature dependence of  is determined by the temperature dependence of 

the mean free path ld. 

 

 

Figure 4:   The location of the Fermi energy in a metal and semiconductor.  The 

Fermi-Dirac distribution function at finite temperatures is also indicated.  As the 

temperature increases more electrons occupy unfilled states above the Fermi energy.  

As suggested in the diagram, the main difference between a metal and a 

semiconductor is the location of the nearest unfilled states.  

 

For temperatures near room temperature, it is reasonable to expect that ld will be 

determined by scattering from atoms undergoing thermal motion. A simple model 

predicts that ld is related to the cross-sectional area A occupied by atoms vibrating in 

the solid due to thermal motion.  An estimate of this area can be obtained by 

assuming that an atom undergoes a rapid random vibration from its rest position by 

some amount r.  It follows that 

 

 2rA  . (10) 

 

Treating the vibrating atom as an harmonic oscillator, the average potential energy of 

such an oscillator is proportional to the square of its displacement, r2. From the 

equipartition theorem, the average potential energy is also known to equal kT/2. It 

follows that Ar2T. Since the mean free path will decrease as A increases, we might 

expect that ld1/AT-1. Thus in a metal, you might anticipate that the temperature 

dependence of the resistivity  will be given by 

 

 (T)T  . (11) 

 

E. Temperature Dependence of Electrical Resistance for a Semiconductor 
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For a semiconductor, the situation is a bit more complicated. Semiconductors are 

characterized by filled energy bands.  The nearest unfilled states to carry current are 

separated from the filled states by an energy gap EG (see Fig.  4). If EG>>kT, then n, 

ld, and vd all become temperature dependent.   

Under these circumstances, Fermi-Dirac statistics in principle still apply except 

the Fermi energy is now located at a distance EG/2 above the edge of the filled band 

(often called the valence band). This situation is shown in Fig 4(b). For energy gaps 

such that EG>>kT, the number of electrons in the unfilled states is quite small and the 

Fermi-Dirac distribution is well approximated by the Maxwell-Boltzmann 

distribution function as discussed in the Appendix. 

Using Maxwell-Boltzmann statistics, the carrier concentration follows a thermal 

excitation model since no unoccupied states are available unless an electron is excited 

across the energy gap.  Within this model, the probability of an electron being excited 

by an energy W is given by 

 

 n=noe-W/kT (12) 

 

where W, the activation energy, turns out to equal EG/2.  

Because the nearest unfilled states that carry current are now far up the tail of the 

Fermi-Dirac distribution curve, a Maxwell-Boltzmann analysis of the most likely drift 

velocity is required.  It is well known that this analysis gives a most probable velocity 

that scales as T1/2. Equivalently, for a dilute gas of electrons, the drift velocity vd can 

be estimated from an equipartition of energy argument which also gives vd 

proportional to T1/2. The mean free path may again be taken proportional to T-1, 

following the same arguments given above.   

Putting all this together gives the temperature dependence of  for a 

semiconductor as 

 

   kTEGeTT
2/2/3~  . (13) 

 

Note that for small variations in T, the temperature dependence of the exponential 

term is usually the dominant factor. 

It should be mentioned that this discussion is approximately valid for a pure 

semiconductor (often called an intrinsic semiconductor). If the semiconductor 

contains significant impurities, then additional energy levels are introduced and the 

above discussion must be modified to take them into account. 

 

F. Summary 

An understanding of the temperature dependence of the resistance of metals and 

semiconductors requires an appreciation of the energy states in a solid.  In addition, a 

transport model for current flow must be in place.  In the discussion above, a number 

of simple approximations have been used in order to give a framework for estimating 

the temperature dependence of the resistivity.  The striking difference expected for 
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the temperature dependence of the resistance between metals and semiconductors 

forms the motivation for the measurements that will be performed. 

 

Experimental Considerations  
There are a number of techniques to measure electrical resistance R of an 

unknown resistor and each technique has its advantages and disadvantages.  The two 

most common methods employed in accurate measurements of R are known as the 2-

wire and 4-wire techniques as illustrated in Fig.  5. Although it may seem trivial, it is 

important to understand the differences between these two techniques. 

 

 

 
Figure 5:   (a) A 2-wire measurement of resistance (note only TWO wires are 

connected to the resistor) showing the relative position of the ammeter and voltmeter 

with respect to the resistor R. The voltmeter reads a voltage Vm and the ammeter 

reads a current Im. (b) A 4-wire measurement of resistance.  Note that FOUR wires 

are connected to the resistor.  Once again, the voltmeter reads a voltage Vm and the 

ammeter reads a current Im. In both cases, the heavy lines represent the lead wires 

from the voltage source to the resistance being measured.   

 

In the 2-wire method (see Fig.  5(a)), a voltmeter is connected across a voltage 

source and the current flowing to a resistor R is measured with an ammeter.  If the 

voltmeter measures a voltage Vm and the ammeter measures a current Im, then the 

measured resistance Rm is given by Vm/Im. Ideally, Rm should equal R, but this may 

not be the case.  The difficulty is that the ammeter has an internal resistance ra and 

the wires between the voltage source and the resistor have a resistance rw. Thus, Vm 

includes not only VR, the voltage dropped across the resistor R, but also va, the 

voltage dropped across the ammeter, and vw, the voltage dropped across the wires in 

the circuit.  So, Vm=VR+va+vw, and the measured resistance will not be R but  
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From this we see that the resistance measured using a 2-wire method inevitably 

includes the resistance of the ammeter and lead wires.  If the sum of these two 

resistances is comparable to R then serious inaccuracies will result.  The common 

ohmmeter uses this 2-wire technique and gives an accurate measure of R only if R is 

large compared to rw. 

In a 4-wire scheme, the voltmeter is connected directly across the resistor R and 

now the reading on the voltmeter, Vm, is the voltage drop across the resistor.  The 

ammeter measures Im, the total current flowing through the circuit.  However, 

because the voltmeter is in parallel with the resistor R, the measured current Im splits 

(see Fig.  5(b)) into two parts:  IR, the current through the resistor, and IV, the current 

through the voltmeter.  Clearly, Im=IR+IV. Since the voltmeter is connected in parallel 

across the resistor, the voltage drops across these two objects must be the same. This 

gives IVRV=IRR, where RV is the internal resistance of the voltmeter. 

Again, the measured resistance Rm is given by Vm/Im. This implies that when 

using a 4-wire technique, the measured resistance is not simply R but  
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As long as RV is considerably greater than R, the difference between Rm and R is 

small.  Note that the 4-wire technique removes any inaccuracies introduced by the 

resistance of lead wires and ammeters (see Eq.  14). 

From this discussion it should be clear that difficulties can arise when ammeters 

and voltmeters are connected to circuits.  In principle, the internal resistance of the 

voltmeter should be much higher than the resistance of any resistor that it is 

connected across.  In addition, the internal resistance of the ammeter should be much 

less than the resistance of any resistor that is under study.  If these conditions are not 

satisfied, then the presence of the meters might seriously perturb the measurement of 

resistance.  Modern digital voltmeters and ammeters have internal resistances that 

usually satisfy both these conditions. 
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Figure 6:   A photograph of the Pt and semiconductor resistors and sample holders.   

 

Experimental Equipment  
In this experiment, you will measure the temperature dependence of a Pt wire and 

a commercially available resistor made from semiconducting material.  Fig.  6 is a 

photograph of the sample holders used in this experiment.  These holders must 

withstand the high temperatures that will be used in this experiment.  The Pt and 

semiconducting resistors are mounted at the left-hand end of these holders. 

Fig.  7 is a photograph of the experimental apparatus showing the heating furnace 

with sample inserted, the thermocouple, a variac for heating the oven, and the 

CASSY interface that will be used to acquire data. 

Make sure you know how the computer-controlled measuring apparatus works.  

What current is applied to the sample?  Is it constant throughout the course of the 

experiment?  Are you using a 2-wire or 4-wire technique?  

 

 

Figure 7:   A photograph of the apparatus 

 

Experimental Procedure 
1. Measure the resistance of the Pt resistor as a function of temperature between room 

temperature and 350 C. Don’t exceed this temperature as damage to the Pt sample 

might result.  

a) Insert the Pt resistor assembly into the oven. From the other side insert a 

thermocouple. You may want to insert it at some angle so that its end would touch the 

inside of the metal tube which houses the Pt resistor. This way the temperature of the 

thermocouple end will be as close to the temperature of the resistor as possible. 

b) Set the CASSY interface as follows: display x-axis to show temperature and y-axis 

to display resistance; data acquisition time to 500 ms and condition to “n=1 or 

delta(&JA11) > 2” (that will acquire data if it is the first point, or if the temperature 
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becomes at least 2 degrees  higher than at the time of previous measurement). Do not 

define the number of data points, or define a maximum possible (16000). Set the 

CASSY ohmmeter limit to measure resistance of up to 300 . The resistance of the Pt 

resistor should be about 100  at room temperature. 

c) Start the measurement and turn the variac ON and set voltage to ~100 V. The 

program will start taking measurements, one point for about every 2 C change. 

d) Once temperature reaches 350 C turn the variac off, stop the data acquisition and 

save the acquired data. 

  

B. Measure the resistance of the semiconducting resistor as a function of temperature 

between room temperature and 200oC. Again, be careful not to exceed this upper 

temperature limit.  The resistance of the semiconducting sample at room temperature 

should be about 200 . The composition of the semiconducting material used in the 

fabrication of this resistor is unknown.  It is very likely that it is not made from an 

elemental semiconductor like Si or Ge. 

If you decide to measure the resistance as the oven cools down change the 

measurement condition to “n=1 or delta(&JA11) < -2”.  Expect the resistance to 

change between ~8 and 300 Ohm (set the CASSY ohmmeter limits accordingly). 

 

Data Analysis 
 

A. Analyzing data from the Pt resistor 

You may want to analyze the data using your favorite data-fitting program, or 

perform data analysis using built-in CASSY-LAB fitting procedure. 

 

1. It is recommended to convert all temperatures from oC to K. If you choose not 

to do so you must update the fitting equations accordingly. 

2. Assume the resistance of the Pt resistor varies as R=aT (R=a[T+273]

 if T is 

in C). Make a least square fit to your data leaving a and  free. How close is 

 to +1.00?  Calculate the difference between your measured R(T) and your 

best fit.  Plot this difference as a function of T. Do you find any systematic 

differences in this plot?  Is the data randomly scattered about zero?  Explain 

what you observe. 

3. Assuming temperatures near room temperature, the resistance change with 

temperature is usually specified by an equation of the form 

   2731)( 0  TRTR   (16) 

What is the best value for the coefficients R0 and ? When you quote these 

values, make sure you clearly specify the temperature range over which they 

are accurate. How does you value of  compare to the value typically listed in 

introductory physics textbooks (3.9x10
-3

 K
-1

). Do you find any evidence that a 

higher order term proportional to T
2
 is required?  

4. The resistivity of Pt at 273 K  is 9.60x10
-8

 m. Using this value and the 

constant R0 obtained above, determine  the ratio of L/A for your wire. 
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3. B. Analyzing data from the semiconductor resistor 
 

1. It is recommended to convert all temperatures from C to K. 

 

2. Assume the resistance of the semiconductor resistor varies as 

   kT
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Fit your data using this equation with R1  and EG as free parameters. 

Alternatively, you may make a plot of 
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graph to determine the best values of R1 and EG. 

3. What is the band gap energy of the semiconductor? Express this energy in eV 

units which are conventionally used to measure band gap energy. 

4. Make a more thorough analysis of your data. Calculate the difference between 

your data and best fit according to Eq. 17 as a function of T. Do you find any 

systematic differences between theory and data in this plot? Is the data 

randomly scattered about zero?  Explain what you observe. 
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Appendix: Fermi Dirac Statistics 

 

In the first studies (early 1900's) of the condensed state of matter, theories relying on 

a single average energy, a single average velocity, etc.  were used to describe the 

physics of electrons in a solid. Later theories corrected this simplified approximation 

by using a Maxwell-Boltzmann distribution law to describe a gas of electrons. 

However, once it was realized that electrons obey quantum mechanics and the Pauli 

exclusion principle, a new quantum statistics was required. We now know that a gas 

of electrons  (fermions) obeys Fermi-Dirac statistics. 

 

For an ideal electron gas in thermal equilibrium with a heat bath of temperature T, the 

probability that an allowed state of energy E is occupied is given by 
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where the parameter EF is defined by the energy at which f(E)=
2

1
. A plot of f(E) for 

three different temperatures is given in Fig. 8(a). 

 

 
Figure 8. The Fermi-Dirac distribution function and b) the Maxwell-Boltzmann 

distribution function for temperatures of 5 K, 1000 K and 5000 K. 

 

 

Note that when E>>EF , the exponential term in the denominator of Eq. 18 dominates 

the additional factor of +1, and the Fermi-Dirac probability can be written as 
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Now f(E) closely approximates the form of the Maxwell-Boltzmann distribution 

function (see Fig. 8(b)), suggesting that the charge carriers can be viewed as a dilute 

gas of electrons. It turns out this approximation is valid when discussing electrons in 

the conduction band of an intrinsic semiconductor and provides a justification for the 

thermal activation model discussed in the Theory section above. 
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Physics 340 Laboratory 

The Wave Nature of Light:  Interference and Diffraction 
 

 

Objectives:  To demonstrate the wave nature of light, in particular diffraction and 

interference, using a He-Ne laser as a coherent, monochromatic light source.   

 

Apparatus:  He-Ne laser with spatial filter; photodiode with automatic drive, high 

voltage power supply for the laser, amplifier, computer with CASSY interface (no 

pre-amp boxes required), slits on a photographic plate, spherical and cylindrical 

lenses, diaphragm, and a razor blade.   
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Introduction  
In 1678, Christian Huygens wrote a remarkable paper in which he proposed a 

theory for light based on wave propagation phenomena, providing a very early 

theoretical basis for the wave theory of light.  Because Huygens’ theory could not 

explain the origin of colors or any polarization phenomena, it was largely discarded 

for over 100 years. 

 

During the early 1800’s, Thomas Young revived interest in Huygens theory by 

performing a series of now famous experiments in which he provided solid 

experimental evidence that light behaves as a wave.  In 1801, Young introduced the 

interference principle for light which proved to be an important landmark and was 

hailed as one of the greatest contributions to physical optics since the work of Isaac 

Newton. 

 

The interference principle was independently discovered by Augustin Fresnel in 

1814. Unlike Young, Fresnel performed extensive numerical calculations to explain 

his experimental observations and thereby set the wave theory of light on a firm 

theoretical basis. 

 

The interference and diffraction experiments performed by Young and Fresnel 

require the use of a coherent light source.  While coherent light is difficult to produce 
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using conventional sources, the invention of the laser now makes intense coherent 

light readily available.  In this experiment, you will reproduce some of Young and 

Fresnel’s important discoveries using light from a He-Ne laser.  In this way, you will 

become familiar with a few of the basic principles surrounding the wave theory of 

light.  The remarkable successes of this theory explains why it was so prominent 

throughout the 1800’s and why it was so difficult to challenge, even when convincing 

evidence for a quantized radiation field began to emerge in the 1890’s. 

 

Theoretical Considerations  
 

Fraunhoffer diffraction, Fresnel diffraction  

 

Diffraction phenomena are conveniently divided into two general classes: 

 

1. Those in which the light falling on an aperture and the diffracted wave 

falling on the screen consists of parallel rays.  For historical reasons, optical 

phenomena falling under this category are referred to as Fraunhoffer diffraction. 

2. Those in which the light falling on an aperture and the diffracted wave 

falling on the screen consists of diverging and converging rays.  For historical 

reasons, optical phenomena falling under this category are referred to as Fresnel 

diffraction. 

 

A simple schematic illustrating the important differences between these two cases is 

shown in Fig.  1. 

 

 
 

Figure 1:   Qualitatively, Fraunhoffer diffraction (a) occurs when both the incident 

and diffracted waves can be described using plane waves.  This will be the case 

when the distances from the source to the diffracting object and from the object to 

the receiving point are both large enough so that the curvature of the incident and 

diffracted waves can be neglected.  For the case of Fresnel diffraction (b), this 

assumption is not true and the curvature of the wave front is significant and can not 

be neglected.    

 

Fraunhoffer diffraction is much simpler to treat theoretically.  It is easily observed 

in practice by rendering the light from a source parallel with a lens, and focusing it on 

a screen with another lens placed behind the aperture, an arrangement which 
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effectively removes the source and screen to infinity.  In the observation of Fresnel 

diffraction, on the other hand, no lens is necessary, but here the wave fronts are 

divergent instead of plane, and the theoretical treatment is consequently more 

complex.   

 

The important guiding principal of all interference and diffraction phenomena is 

the phase  of a light wave.  For light having a wavelength , the phase of the light 

wave at a given instant in time is represented by  
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where d is distance traveled by light. If a light beam is equally split and the two split 

beams travel along two different paths 1 and 2, then the phase difference  between 

the two beams when they are recombined (after traveling distances x1 and x2) can be 

defined as 
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In the wave theory of light, the spatial variation of the electric (or magnetic) field 

is described by a sinusoidal oscillation. When discussing interference and diffraction 

effects,  appears in the argument of this sinusoidal function.  Since the intensity I 

of a light wave is proportional to the square of its electric field vector, the intensity of 

two beams interfering with each other will be determined by factors proportional to 

sin2() or cos2(). The exact expression for  depends on the detailed geometry 

involved, but in general, (geometrical factor).  

A few important cases have been worked out in detail and the relative intensity 

variation I(x)/I(0) produced by a coherent, monochromatic light beam as a function of 

position x along a viewing screen are given below.  Because of the periodic nature of 

sinusoidal functions, they exhibit local maximums and zeros as the phase varies.  The 

precise location of the maximums and zeroes can often be established by a calculation 

of the phase difference . 

  

Single Slit (Fraunhoffer limit) 

If coherent light having a wavelength  is made to pass through a long narrow slit 

of width a, then the relative light intensity as a function of lateral displacement x on a 

viewing screen located a distance R0 from the slit is given by the expression:  
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where:   

a = width of the slit  

 = wavelength of radiation  

R0 = distance between cylindrical lens and viewing plane 

x
R

a
u
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
  

 

Double Slit (Fraunhoffer limit) 

If coherent light having a wavelength  is made to pass through two long narrow 

slits of width a with a center-to-center separation b, then the relative light intensity as 

a function of lateral displacement x on a viewing screen located a distance Ro from 

the slits is given by the expression:  
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where:   

a = width of the slits  

b = center-to-center separation between the two slits  

 = wavelength of radiation  

R0 = distance between cylindrical lens and viewing plane.   
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The first term in Eq.  4 is realted to diffraction through a single-slit as given by Eq.  3 

above.  The second term is due to interference from light passing through a double-

slit. 

 

Knife Edge (Fresnel limit) 

If coherent light with intensity Io and wavelength  is made to pass across a sharp 

knife edge, then the relative light intensity as a function of lateral displacement x on a 

viewing screen located a distance Ro from the knife edge is given by the expression:  
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where:   

Io is the intensity of the unobstructed beam  

 = wavelength of radiation  
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Ro = distance between the knife edge and viewing plane 

Rs = distance between pinhole of spatial filter and knife edge 
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C() and S() are the Fresnel integrals tabulated in Appendix B. 

 

It should be evident from the above discussion that the detailed variation of intensity 

depends on the geometry of the experimental set-up.  It should also be clear that the 

phase difference plays an important role.  Representative plots for the intensity as a 

function of displacement are given in Fig.  2. 
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Figure 2:   Representative intensity variations produced from (a) 

diffraction by a single slit (= 632.8 nm; a= 27 m), (b) interference 

from a double slit (= 632.8 nm; a= 27 m; b= 270 m), and (c) 

diffraction from a knife edge.  The dashed lines in (a) and (b) are the 

resulting intensity variation after multiplication by a factor of 8.0  
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Experimental Considerations  
A photograph of the optical set-up of the equipment is given in Fig. 3. This photo 

shows the relative placement of the He-Ne laser with spatial filter, a focusing lens, an 

adjustable diaphragm, the slits, a cylindrical lens, and a viewing plane which consists 

of a scanning photodiode driven by a slow motor.  The photodiode is apertured by an 

adjustable slit which controls the resolution of the detected intensity variations.  A 

schematic diagram of this set-up is given in Fig.  4. A few of the more important 

details of the equipment are provided below. 

 

 
 

Figure 3:   A photograph of the experimental set-up showing the He-Ne laser, the 

focusing lens, the adjustable diaphragm, the slit plate, the cylindrical lens, the 

scanning photodiode and the CASSY interface box.  The spatial filter is not visible 

in this photo. 

 

 

A. The He-Ne Laser   
See Appendix A for a more detailed discussion. 

 

B. Spatial filters  
An ideal continuous laser produces laser beam that has gaussian intensity 

distribution in cross-section (see Fig. 11 in Appendix). In our experiment we need to 

produce plane or concentric waves with minimal intensity variation in the slit area.  

Real laser systems often have internal apertures that produce diffraction pattern in 

output beam. This diffraction pattern resembles Newton’s rings (i.e., a “bull’s eye” 

variation in intensity) and may not be concentric with the main beam.  It is a great 

nuisance for accurate diffraction measurements. 
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Figure 4:   A schematic diagram of the experimental set-up. 

 

This “bull’s eye” pattern can be eliminated with a spatial filter. (See Fig.  5). The 

spatial filter is an adjustable arrangement consisting of a strongly converging lens and 

a small aperture pinhole located in the center of an opaque plate.  The laser beam is 

focused by the lens through the pinhole aperture and the distorted segment of the laser 

beam is spatially blocked out by the small pinhole. 

 

 

Figure 5:   A schematic diagram of a spatial filter showing the incident 

laser beam, the microscope objective and the pinhole.  The pinhole 

blocks the aberrated part of the beam if it is located precisely at the 

focal point of the objective lens.    

 

Before you enter the lab, every attempt is made to adjust the spatial filter 

properly.  There are two adjustments.  One adjustment centers the converging laser 

beam onto the center of the pinhole.  This adjustment is rather difficult to make.  The 

second adjustment places the pinhole at the focal spot of the laser.  Do not touch the 

screws on the spatial filter because readjustment can be time consuming.  If problems 

arise, call the lab instructor. 

Since the spatial filter is itself an aperture, it also creates a concentric “bull’s eye” 

diffraction pattern at the edges of the beam spot. An adjustable aperture (1cm 

diameter) is used to block all but the central maximum.  
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Figure 6:   A schematic 

diagram showing the layout 

of the slit plate.  For this 

experiment, use only the slits 

which are circled.  

 

 

 

C. Description of the slit pattern.  

 

In this experiment we use transparent slits etched 

on an opaque film and enclosed between two  glass 

plates (Fig. 6).  The single slit has a width on  order 

of 100 m and is located in the top-right corner of the 

plate. The double slit is located in the middle-right 

section of the plate, each slit is ~100 m wide and the 

distance between two slits is about 300 m.  

 

 

 

 

 

 

D. Description of the photodiode and data acquisition system.  
 

The intensity variation of the diffracted wave is measured with a photodiode that 

is mounted on an automatic drive moving with a speed of 8510-6 m/s. The amount 

of light reaching the diode is determined by the gap between a pair of jaws (slit) in 

front of it.  One jaw is fixed, the other jaw is spring-loaded and thus adjustable. This 

input slit also determines spatial resolution of the experiment – the slit size should be 

significantly narrower than the sharpest features of the measured 

interference/diffraction pattern.   

The signal is amplified and then recorded on the computer using the CASSY 

computer interface.  The time interval between the acquisition of two data points 

digitized in the time mode can be adjusted through the software.  Data points acquired 

roughly every 0.1 seconds will provide sufficient resolution in this experiment and 

will result in data files containing ~1000 data point pairs [t, I(t)]. Knowing the speed 

of the photodiode, these data can be converted to [x, I(x)] and compared with 

theoretical expectations given above. 

 

 

E. Alignment of the optical elements.  

 

Note: the alignment described in this section is usually done by the time you enter 

the lab. 

 

1. Position the photodiode at right end of the optical rail. Make sure the adjustable 

slit to the photodiode is closed (gently!) and that the photodiode power is off.   

2. Put the laser on its own stand at the other end of the optical bench and the 

photodiode at the other.  Adjust the height and tilt of the laser support in such a 
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way that the laser is at the same height as the photodiode and that the laser beam 

hits the photodiode. 

3. Set the adjustable diameter diaphagm as close to the photodiode as possible; make 

the hole ~1 mm in diameter and adjust its height so that laser beam which passes 

the hole hits the center of the photodiode. You may need to align the center 

position of the diode left and right as the diaphragm position can be aligned only 

vertically. 

4. Without changing its height, move the diaphragm to the other end of the bench 

close to the laser. Realign the laser height and tilt so that laser beam passes the 

diaphragm and hits center of the photodiode.   

5. Temporarily remove the diaphragm (with its stand) from the bench and position 

the spherical converging lens ~17.5 cm (focal length) from the laser end. Set the 

lens height so that center of the laser beam passes through it and still hits center of 

the diode. Fine-tune the distance from the lens to respect to the laser end so that 

laser beam which emerges from the lens does not change its size on its way to the 

photodiode. That would ensure that the beam front is parallel. 

6. Place the stand with the diaphragm behind the converging lens (few centimeters 

apart). We use the diaphragm to remove all but the center maximum of the 

interference pattern created by the aperture of the spatial filter. Set the diameter of 

the diaphragm at about 1 cm. 

7.  Insert the plano-concave cylindrical lens between the photodiode box and 

the spherical lens with its plane surface towards the laser. Its exact location can be 

found by the requirement that the image of the laser beam should form a bright 

narrow vertical line on the slit mounted on the photodiode box.  Thus the slit or 

more accurately the photodiode is located at the focal point of the lens:  R0=fc  

32 cm. 

8. Put the single slit denoted as (1; 2; -) in the beam between the diaphragm and 

cylindrical lens but as close as possible to the cylindrical lens.  Make sure the 

single slit is in the center of the laser beam and the plate is normal to the laser 

beam.  Adjust the plane of the glass plate until the reflected and incident light 

beams become parallel. 

 

 

F. Final Adjustments. 

 

1.  Always open and close the jaws of the photodiode gently; otherwise they 

may get stuck shut. 

2.  Start up the data acquisition software and adjust the settings so one data 

point is collected about every 0.1 second.  Position the scanning photodiode box 

so it is located at the midpoint of the diffraction pattern (brightest area). The scan 

has two end switches that automatically switch off the motor when the carriage 

reaches either end of the range of travel. 

3. Switch on the amplifier. Slowly open the photodiode slit until CASSY voltmeter 

shows ~ 0.5-1V. Selecting too wide of a slit in front of the photodiode would 

compromise spatial resolution of your detector, selecting too narrow slit would 

compromise signal/noise ratio as too little light gets into photodiode. 
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4.  The diffraction pattern is parallel with the vertical slit defined by the jaws 

on the photodiode box.  This ensures that the diffraction pattern falls within the 

range of the automatic scan, and that the photodiode box is at the right height. 

 

 

I. Measuring slit width. 

Use a traveling microscope to measure both slit width (and separation). Don’t forget 

to estimate an error of this measurement. 

 

II. Diffraction produced by a single slit  
1. With the set up described above, make the photodiode move to one of the 

ends of the scanning range.  Then reverse the scan direction and start data 

acquisition to scan the diffraction pattern into computer. Your data is usable 

only if you record the first minimum, the secondary maximum, and in case of 

optimal line up, the second minimum. 

2. Record all pertinent data in your lab notebook for future reference. 

3. Your digitized data should resemble something like Fig.  2(a). Don’t forget to 

save your data into a file. 

 

Analysis of the single slit data 
1. Knowing the speed of the automatic drive and the speed of data acquisition 

(8510-6 m/s), you can convert digitization times measured on the computer 

into distances traveled by the photodiode. 

2. Read your experimental data into a spreadsheet program and generate a plot of 

relative intensity vs.  position.  You must shift your data so that the central 

maximum coincides with x=0. You may want to normalize your data so that 

the relative intensity at x=0 is unity.  You may need to discard some of your 

digitized data taken far away from x=0 since it may not contain useful 

information. 

3. Write a computer program using Eq.  3 and calculate a theoretical fit to your 

data.  Adjust the slit width, but hold the wavelength of the laser fixed. Make a 

plot of theory and experiment. Make sure your final plot comparing theory to 

experiment is clearly labeled. What is the best value of the slit width required 

to fit your data? How close is this measurement to the one done by 

microscope  

 

III. Interference and diffraction from a double slit  
1. Change the position of the glass slide in such a way that the center of the laser 

beam hits the (2; 2; 6) double slit.   

2. Record the diffraction pattern following similar procedures which are given 

above. Make sure that the voltmeter is not overloaded in maximum of the 

interference pattern – since there are now two slits the light intensity in the 

middle of the pattern might be higher. You must record four secondary peaks 

on each side of the main central peak in order to observe the first zero of the 

first factor in Eq.  4. 

3. Your digitized data should resemble something like Fig.  2(b). 
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Analysis of the double slit data 
1. Read your experimental data into a spreadsheet program and generate a plot of 

relative intensity vs. position.  Again, you must shift your data by identifying 

x=0 and you may want to normalize your intensity so that it is unity at x=0. 

You may need to discard some of your digitized data taken far away from x=0 

since it may not contain useful information. 

2. Write a computer program using Eq.  4 and calculate a theoretical fit to your 

data.  To optimize the fit, adjust the slit width and slit separation, but hold the 

wavelength of the laser fixed.  Make a plot of theory and experiment. What 

are the best values required to fit your data?  What range of variation in the 

adjustable parameters can you make before you observe a significant 

discrepancy between theory and experiment? For that analysis, set the 

distance between slits to values 5%, 20%, 30% and 50% from its optimal 

values and repeat the fit changing only slit width. That will give you a 

measure of precision at which you were able to determine the distance 

between the slits based on your data. Repeat simila analysis for the width of 

the slit. Based on the above fits estimate the error range for double slit 

parameters. 

 

 

Figure 7:   Set-up for Fresnel diffraction around a knife edge.    

 

III. Diffraction from a knife edge  
1. Remove both the converging lens and the cylindrical lens from the set-up for 

Fraunhoffer diffraction.  This destroys the parallel ray approximation and 

places you in the Fresnel regime. 

2. Remove the slit slide and insert a sharp edge of a new razor blade.  Make sure 

the knife edge is parallel to the aperture of the photodiode.  The edge should 

be in the center of the laser beam.  Fig.  7 gives a schematic diagram of your 

set-up. 

3. Record all relevant data in your notebook for future reference. 



 131 

4. Record the diffraction pattern using the computer following procedures given 

earlier.  You may need to reduce the slit width in front of the photodiode to 

avoid signal overload. 

5. Your digitized data should resemble something like Fig.  2(c).  

 

 

Analysis of the knife edge data.  

1. Read your experimental data into a spreadsheet program and generate a plot of 

relative intensity vs. position.  Again, the position of your data must be shifted 

and the intensity may be normalized to unity.  You may need to discard some 

of your digitized data taken far away from x=0 since it may not contain useful 

information. 

2. With the help of Table 1 in Appendix B and Eq.  5, calculate I(x)/I0  as a 

function of x and plot it on top of your data. Make sure your final plot 

comparing theory to experiment is clearly labeled. 

3. In your error analysis, only consider the errors in measuring the distances Rs 

and Ro. Compare your fit to theoretical expectations.  Can you explain the 

reason for any differences between theory and experiment?  
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Appendix A:  Theory of the He-Ne Laser  
 

The laser is a modern light source with several interesting properties.  The name is an 

acronym for Light Amplification by Stimulated Emission of Radiation.  The light 

coming from a laser is unidirectional, monochromatic, intense and coherent. Let us 

try to understand these properties and the laser operation.  

 

In 1916, Einstein worked on the blackbody problem, and in the process of solving this 

problem he also identified spontaneous and stimulated emission rates. Let us consider 

the simple system consisting of atoms which have two nondegenerate electronic 

states: so called ground state |0>, where the electron resides normally, and the excited 

state |1>, which is normally unoccupied. 

 

|0> 

|1> 

h 

B12 B21 A21 

 
Figure 8. Electronic state diagram. |0> and |1> are ground and excited states, 

correspondingly. The A21, B12 and B21 are Einstein’s coefficients for possible 

electronic transitions. 

 

When a light photon with energy h equal to energy separation between these two 

states strikes an atom, the probability W01 of the atom in the ground state to absorb 

light is proportional to B12 (see Fig. 8). Once in the excited state, an electron 

undergoes a spontaneous transition into ground state with a probability proportional 

to A21. The latter process is often accompanied by radiation of a photon. The two 

processes described so far are responsible for absorption and fluorescence of the 

atom. However, if the atom is irradiated when it was already in the excited state, then 

the light photon can promote an electronic transition downward with probability W10 

proportional to B21. For this process, a second photon is emitted with the exact 

energy, phase, polarization and direction of the falling photon. Einstein called this 

phenomenon “negative absorption” (the modern term is stimulated emission), as it is 

the process opposite to absorption. For several decades it was considered more like a 

nuisance than a fundamental discovery that ultimately lead to the invention of lasers.  

 

According to Einstein B12=B21. Therefore, in order to achieve amplification of 

incident light in a media, one needs to manipulate the ensemble of atoms or 

molecules in such a way that the number of atoms in excited state is larger than that 

in the ground state. In symbols, this means NeB21>NgB12, where Ne and Ng are 

populations of excited and ground states accordingly. This, however, turned out to be 

not an easy task. One can illuminate the ensemble of atoms with a strong light pulse 
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that is in resonance with electronic transition (optical pumping). However, one cannot 

excite more than half of atoms in such a way. The reason is simple – as the number of 

atoms in excited state reaches the number of atoms in ground state the same amount 

of transitions downward and upward will be produced by incident light, and the net 

change in population will be zero. In order to solve this problem atoms or molecules 

with 3 or 4 electronic states can be used. 

 

 

|0> 

|1*> 

h h’ 

|1> 

|0*> 

 
Figure 9. Electronic state diagram of 4-level system. |0> and |1> are ground and 

excited states, correspondingly.  

 

 

In a 4-level system (see Fig. 9), absorption of a photon creates the nonequilibrium 

excited state |1
*
> which rapidly decays into intermediate state |1>.  This state, in turn, 

decays into a nonequilibrium ground state |0
*
> with the emission of a photon h’, 

and, consequently, the system returns rapidly into ground state |0>. The pump photon 

energy h is not in resonance with the laser transition h’, and thus pumping light 

does not cause depopulation of the laser-active state |1>. Besides, the nonequilibrium 

ground state |0
*
> is initially not populated, and achieving population inversion (i.e. 

Ne>Ng) becomes easy. 

 

Optical pumping is not the only way to prepare laser active media. One may use 

electrical current to excite optical states, or create molecules in excited state using 

chemical reactions. 

 

The presence of light-amplifying media is not sufficient for laser operation. One also 

needs to create a positive feedback in a similar way as done in electronic oscillators. 

In positive feedback, part of the output signal from the electronic amplifier is send 

back into its input, and as a result the oscillation never stops. This effect is similar to 

the commonly observed phenomenon when a microphone is placed close to the 

speaker. 

 

The most commonly used optical scheme that provides positive feedback for a light 

oscillator is shown in Fig. 10. 
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OC HR 
Laser media 

  
Figure 10. Basic laser design. HR – high reflector mirror, OC – output coupler 

mirror. The two-mirror design resembles a Fabry-Perot etalon, which is known for 

its unique optical properties since 1899. 

 

Two parallel mirrors (HR and OC) reflect light back and forth through the laser media 

where the light is to be amplified. The output coupler (OC) lets some of the light 

through providing usable laser output beam. Initially, there is no laser light. As time 

passes, the laser media due to spontaneous transitions (fluorescence) emits some of 

the photons. Those photons that are not parallel to the laser axis escape from the 

media and are not further amplified. However, there is always a probability that a 

photon is spontaneously emitted along the laser axis. Due to the mirrors, this photon 

will bounce back and fourth between the mirrors. In each pass additional photons are 

created due to stimulated emission, these photons in turn are amplified. After a short 

period of time the intensity of the beam rises and we have laser operation. Ideally, all 

the photons in the laser would be created from a single initial photon, and therefore 

have the same energy, direction, phase and polarization. 
 

Since it is impossible in principle to create absolutely parallel laser beam (due to 

diffraction), the laser mirrors are often curved to compensate for diffraction.  

 

Let us now list the main properties of laser light. 
 

1. The laser light is highly directional. In best lasers the 

output beam has gaussian profile, i.e. the laser spot 

intensity varies as a gaussian function with maximum 

intensity in the middle as shown in Fig. 11. The 

advantage of this profile is in its diffration properties; 

while the overall size of the gaussian beam will change 

as it passes through space or optical elements, the 

functional shape will remain gaussian. 

 

2. The laser light is highly monochromatic, i.e. most of 

the light intensity is concentrated in a very narrow spectral range. One can also 

produce monochromatic light by passing “white” light through a narrow spectral filter 

(like a monochromator). The latter, however, will have extremely low intensity and 

its spectrum will be still several orders of magnitude broader than that of a narrow-

band lasers. 

 

3. The laser light is coherent. That means that there is a fixed phase relationship 

between different parts of the laser radiation, both across and along the beam. 
 

 

 
Figure 11. Gaussian beam 

profile 
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The lasing medium in a modern He-Ne laser used in our experiment is a mixture of 

about 85% He and 15% Ne, with Ne providing the lasing action.  This mixture is 

excited in a glow discharge by passing a dc current through the gas.  Transition of the 

Ne atoms to the excited state is not caused directly by the current but by indirect 

pumping accomplished by electron excitation of He atoms in the glow discharge.  The 

excitation energy of the He is then transferred to the Ne atoms by way of atomic 

collision.  The principle depends on the existence of excited levels in the Ne atom, 

which are close to the first excited states in He, and can therefore be populated by 

resonant neon-helium collisions.  In addition, the He levels are metastable thus 

ensuring the most efficient energy transfer to the Ne atoms because the return of the 

excited electrons to the He ground state by radiative decay is very slow.   
 

The level scheme for the He-Ne laser is shown in Fig. 12. To explain the operation of 

the He-Ne laser, the notation of levels in Fig.  12 must be understood.  In case of light 

atoms the spins of the electrons are added vectorially to obtain the resultant spin S


. 

Next the orbital angular momenta of the electrons are added vectorially to obtain L


. 

The vector sum of the two is the total angular momentum J


. Levels are labeled then 

as 2s+1Lj. Thus the ground state and the two relevant excited states of He are denoted 

as 1 1S0, 2 3S1 and 2 1S0. The symbols S, P, D are denoted by L=0,1,2 respectively.  

This is called the Russell-Saunders coupling scheme notation.  The numbers in front 

of 1S0 and 3S1 denote the principal quantum number of the excited electron.   

 

 

Figure 2:   A schematic diagram of the energy level scheme for the He-Ne laser.  

The three darker solid lines indicate a laser transition.  
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To describe the excited states of Ne, note the electron configuration of the ground 

state is 1s22s22p6, where the superscripts denote the number of electrons in each 

state.  The ground state is denoted by the usual spectroscopic notation 1S0 

(L=0,S=0,J=0). The configuration in which one of the 2p6 electrons is moved into the 

3s,4s or 5s state are denoted by 3s,4s and 5s. Similarly when one of the 2p6 electrons 

is moved into either the 3p or 4p levels, the states are denoted by 3p and 4p. 

 

Both the excited 2 3S1 and the 2 1S0 levels of He are metastable.  The 2 1S0 state 

cannot decay by single photon emission since to do so would violate the conservation 

of angular momentum.  This state decays by emitting two photons with a 19.5 ms 

lifetime.  By coincidence, the 2 1S0 level in He lies within 0.05 eV of the 5s Ne level.  

Thus excitation of Ne via the atomic collision:  

 

 He(2 1S0)+Ne(1S0)He(1 1S0)+Ne(5s)-0.05eV 

 

can take place.  Stating in words:  when a Ne atom in the ground state collides with 

an excited He atom in the 2 1S0 metastable state there can be a reaction whose 

outcome is an excited Ne atom in the 5s state and a He atom in the ground state.  The 

missing 0.05 eV energy is obtained from the thermal kinetic energy of the colliding 

atoms.  As shown in Fig.  9, the 5s state can emit induced radiation in two ways.  The 

energy level differences are:  

 

 E(5s)-E(3p)=1.96eV  and  E(5s)-E(4p)0.3eV 

 

The laser you will be using emits the E=1.96 eV visible red radiation (=632.8 nm). 

The five-level system (5s,4s,3s,4p,3p) of a He-Ne gas laser differs from the three-

level system of chromium in that the emission of a photon does not return the Ne 

atom to the ground state.  Transitions from the 3s state to the ground state are 

accomplished through a phonon (a quantized particle of sound) transition in which 

energy is transferred mainly through heat.   

 

The He-Ne gas mixture is contained in a sealed tube.  Excitation of the He is 

accomplished by a discharge of electricity through the tube, similar to a neon sign.  

Selection out of the possible five transitions of a single 1.96 eV transition is 

accomplished by having the mirrors in the laser tube made of excellent reflectors for 

the 1.96 eV photons and poor reflectors for the other stimulated (lasing) transitions in 

the green and infra red. 

 

The laser tube and its mirrors forms an optical cavity which produces an interesting 

optical spectrum.  The 632.8 nm laser transition (frequency = 4.741014 Hz) is not 

infinitely sharp but is broadened (roughly by 750 MHz) by thermal motion (Doppler 

broadening) of the atoms inside the laser tube.  This broadened transition in turn 

supports a number of discrete axial cavity modes which are separated in frequency by  
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(roughly 600 MHz), where c is the speed of light and L (0.25 m) is the length of the 

laser cavity.  It is possible to observe this mode structure in the laser beam output, but 

highly stable conditions are required to do so. Special optical components mounted 

on the laser tube can further tailor the laser beam output by tuning for a particular 

axial mode or by selecting a particular plane of polarization for the output laser beam. 
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Appendix B:  Evaluation of the Fresnel integrals  
Diffraction of coherent light around a knife edge requires the evaluation of two 

special integrals 
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and  
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These integrals have the property that S(-w) = -S(w) and C(-w) = -C(w). A tabulation 

of these integrals is given below. 

 

 

Table 1. Coordinates of the Cornu Spiral 

                      

w    C(w)    S(w)    w    C(w)    S(w)    w    C(w)    S(w)    w    C(w)    S(w)  

0    .0000    .0000    1.3    .6386    .6863    2.6    .3890    .5500    3.9    .4223    .4752  

.1    .1000    .0005    1.4    .5431    .7135    2.7    .3925    .4529    4.0    .4984    .4204  

.2    .1999    .0042    1.5    .4453    .6975    2.8    .4675    .3915    4.1    .5738    .4758  

.3    .2994    .0141    1.6    .3655    .6389    2.9    .5624    .4101    4.2    .5418    .5633  

.4    .3975    .0334    1.7    .3238    .5492    3.0    .6058    .4963    4.3    .4494    .5540  

.5    .4923    .0647    1.8    .3336    .4508    3.1    .5616    .5818    4.4    .4383    .4622  

.6    .5811    .1105    1.9    .3944    .3734    3.2    .4664    .5933    4.5    .5261    .4342  

.7    .6597    .1721    2.0    .4882    .3434    3.3    .4058    .5192    4.6    .5673    .5162  

.8    .7230    .2493    2.1    .5815    .3743    3.4    .4385    .4296    4.7    .4914    .5672  

.9    .7648    .3398    2.2    .6363    .4557    3.5    .5326    .4152    4.8    .4338    .4968  

1.0    .7799    .4383    2.3    .6266    .5531    3.6    .5880    .4923    4.9    .5002    .4350 

1.1    .7638    .5365    2.4    .5550    .6197    3.7    .5420    .5750    5.0    .5637    .4992  

1.2    .7154    .6234    2.5    .4574    .6192    3.8    .4481    .5656       .5000    .5000  

            

 

  



 139 

 

RR Oct 02  

Physics 340 Laboratory 

Wave Properties of Matter: Electron Diffraction 
 

Objective:  To demonstrate the phenomenon of electron diffraction and to use it as a 

proof for the validity of the wave description of moving electrons.   

 

Apparatus:  Sargent-Welch Model 2629-A electron diffraction tube, micro-ammeter, 

clear plastic ruler, caliper, magnetized rod.   
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4. Weidner and Sells, Elementary Modern Physics, Sec.  5-1 through 5-5, especially 

note Fig.  5-7 for comparison with your data.   

5. K. Krane, Modern Physics, 2nd Ed., Wiley and Sons, New York, 1996, pgs. 100-

110. 

 

 Introduction 

 

By the 1920’s,  the importance of  Einstein’s pioneering work in explaining the 

photoelectric effect as well as his seminal theory of relativity were widely recognized. 

The photoelectric effect pointed strongly to the particle properties of light. Only a few 

years before, it was widely believed that light was governed by wave physics. The 

dilemma between a wave or particle description for light was clearly a topic of 

considerable interest. 

 

Amid this lively debate on the properties of photons, Louis DeBroglie wondered 

if it might be possible for the newly discovered sub-atomic particle, the electron, to  

exhibit wave properties. This was a completely foreign idea. After all, the charge to 

mass ratio of the electron was measured by J. J. Thomson in 1897.  Millikan, using oil 

drops in 1911, measured the charge of the electron “e”. The electron has mass, charge 

and therefore can move with any velocity v within the limits 0 v < c. Thus in a 

classical 19th century framework, the electron was clearly a particle. 

 

Nonetheless, DeBroglie proposed the revolutionary idea that particles might 

behave like a wave. As Einstein had shown, a photon of frequency f acts as if it 

carries a qunatized energy Ephoton given by 

 

 Ephoton = hf = hc/ (1) 

 

Eq. 1 implies that  
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

h


c

Ephoton
   . (2) 

 

A similar formula can be obtained starting from Einstein’s formula for relativistic 

energy of a particle with rest mass of mo and momentum  p. According to Einstein, the 

total energy Etotal of a particle is given by 

 

 E
2

total 
 
 = p

2
c

2
 + mo

2
c

4
  . (3) 

 

When the rest mass mo is set equal to zero, Etotal then must equal  Ephoton , and one 

quickly learns that the momentum of a photon is given by 

  

 p= 
c

Ephoton
  . (4) 

 

Combing Eq. 2 and Eq. 4, the well-known expression connecting the wavelength of a 

photon to the photon’s momentum is found 

 

 =
p

h
 . (5) 

 

DeBroglie’s hypothesis was that a similar formula might apply to an electron, leading 

to the prediction that an electron with velocity v and mass me would have a 

wavelength given by 

 

 = 
vm

h

e

  . (6) 

 

It would be extremely interesting if massive particles like electrons exhibit dual 

wave-particle behavior.  This impelled de Broglie to suggest that massive particles 

may also behave like waves and thus exhibit interference and diffraction effects. 

 

Electron Wavelength in the Nonrelativistic Energy Regime 
 

In most everyday situations, electrons have low energy and, in this case, the kinetic 

energy of the electron is specified rather than the total energy.  The kinetic energy 

(Ek) of an electron is easy to determine and is equal to Ek=eV where e and V denote 

the charge of the electron and V the accelerating potential respectively. Thus 

 

 

 Etotal=Ek+ mec
2 (7) 

 

Substituting Eq.  7 into Eq.  3, we obtain an expression for an electron’s wavelength 

given by 
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 =   
22

2 cmEE

hc

ekk 
  . (8) 

 

The low energy, nonrelativistic energy regime is specified by the condition  

 

 Ek<< mec
2 

 

In this case Ek
2 is negligible compared to 2Ekmec

2 and we obtain 

 

 

   
22 cmE

hc

ek

 (non-relativistic) (9) 

 

Using the constants  hc=1239.852 nm eV, 2mec2=1.022 x 106 eV, we get  

 

 
kE022.1

239852.1
  

 

This can be rewritten in a simpler form 

 

 

      
kE

226.1
     (in nm; Ek in eV) (10) 

 

From this analysis, electrons accelerated through an electrostatic potential of 100 V 

should have a wavelength of approximately 0.1 nm. To observe interference and 

diffraction effects, this wave must encounter a slit or aperture having dimensions 

comparable to its wavelength, i.e ~0.1 nm. In 1923, it was difficult to fathom how 

anyone could fabricate such a small slit. DeBroglie’s ideas were viewed with interest, 

but were thought to be impossible to confirm by experiment. 

 

The situation quickly changed in 1926 when Clinton Davisson and Lester Germer 

working at the Bell Telephone Laboratories began studying the interaction of an 

electron beam with different metallic foils. Similar experiments were underway in 

England by G.P. Thomson.  Quite by accident, Davisson and Germer noticed that 

when a nickel foil was heated and annealed, electrons having an energy ~ 55 eV were 

scattered in preferential directions. Upon closer examination, the preferred directions 

of scattered electrons resembled scattering from a diffraction grating. They realized 

that the lattice of Ni atoms, formed during the annealing process, must act as a 
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diffraction grating that effectively scatters electrons. This led Davisson and Germer to 

conclude that electrons do indeed have wave properties.  

 

In 1929, DeBroglie received the Noble Prize in Physics for his revolutionary idea. In 

1937, Davisson, Germer, and Thomson were 

also awarded the Noble Prize for their 

pioneering experimental work.  The idea 

that electrons can behave as a wave is 

pervasive throughout contemporary 

scientific work and forms the underlying 

basis of our modern understanding of 

electrons in solids. 

 

Diffraction Physics  

 

A crystalline solid is made up of regularly 

spaced atoms in three dimensions.  Each 

atom acts a scattering center for an 

incide

nt 

electro

n wave 

having 

a 

wavele

ngth comparable to the inter-atomic spacing (see 

Fig.  1). At low energies (the case used by 

Davisson and Germer), the electron beam 

interacts only with atoms on the surface plane. 

The spacing between atoms on the surface is then 

analogous to the spacing between slits in an 

optical diffraction grating. Using the standard 

arguments for optical interference phenomena, the 

electron beam scattered from each surface atom 

must constructively interfere to produce a maximum in the scattered intensity in 

certain directions. The condition for constructive interference is that the path 

difference from adjacent atoms is an integer number of wavelengths:  n. The path 

difference between adjacent atoms as a function of the scattering angle  can be 

calculated from Fig.  2  (the length of the heavy line segment).  

 

The equation for intensity maxima  is then 

 

                      n=a sin                                    (11) 

 

Davisson and Germer used 54 eV electrons and found a scattering maximum at an 

angle of about 50
o
. This was the first peak in the scattered intensity, so it 

Figure 2:  The geometry required to 

predict the diffraction angles  for low 

energy electron diffraction. 

Incident 

ray 

Diffracted 

rays 

Diffracted 

rays 

Incident 

wave 

a 

Diffracted 

wave 



Figure 1: A schematic diagram showing 

the configuration of an electron 

diffraction experiment. At low incident 

energies, electrons interact with the 

uppermost plane of atoms and are 

diffracted in the backward direction as 

shown. As the energy is increased,  

transmission through the solid increases 

and diffraction in the forward direction 

becomes important (not shown). 
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corresponded to the n=1 

condition in Eq. 11.  Using 

these values, it is easy to 

calculate that a=0.215 nm. 

From the known crystal 

structure of Ni, it was also 

known that in certain 

directions, the distance 

between Ni atoms is also 

0.215 nm. The regime 

when electron scattering 

from the first plane on the 

surface of a crystal is the 

dominant contribution to 

diffraction is now known as 

Low Energy Electron 

Diffraction (LEED) and has 

become an important technique for determining the position of atoms on surfaces. 

 

At higher electron energies, the situation is somewhat different. Now the electron 

beam can penetrate an appreciable distance into the substrate and interacts with atoms 

forming families of planes (see Fig. 3). If an electron is specularly scattered from a 

sequence of parallel planes,  a constructive interference effect can arise along a 

certain direction. As a consequence, a physical electron will be scattered in that 

direction.   

 

To produce a constructive interference, the 

scattering from separate planes separated by 

a distance d must reinforce each other.  The 

condition for constructive interference is 

that the path difference from adjacent planes 

is an integer number of wavelengths n. The 

geometry required to calculate the path 

difference between adjacent planes is 

sketched in Fig.  4.  From this figure, the 

length of the heavy line segments located 

between the 1
st
 and 2

nd
 planes represents the 

extra path length traveled and is given by 

2dsin .  

 

This argument, proposed by W.L. Bragg in 1913 to explain X-ray diffraction, is far 

from rigorous but it surprisingly is reproduced by more complete arguments based on 

electron scattering. The Bragg equation for intensity maxima  (i.e. efficient specular 

reflection) is then 

 

                                                             n= 2 d sin                                      (12)  

Diffracted 

wave 

d 

Incident 

wave 

 

 

Figure 3: At higher energies, electrons penetrate further into 

the crystal lattice and diffraction from an arbitrary set of planes 

P1, P2, P3, . . becomes possible. Note that the diffracted wave 

emerges at an angle of 2 with respect to the undiffracted 

beam. 

Figure 4:  The geometry required to 

calculate the extra path length travelled by a 

wave scattered from the 2
nd

 plane. 

Diffracted 

wave 

d 
Incident 

wave 





P1 P2 

P3 
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This result is a simple consequence of the interference condition applied to this 

geometry. Note that since sin  1,    2d. This condition sets a range for the 

acceptable wavelengths to observe Bragg diffraction.              

 

The Geometry of Periodic Crystals: Miller Indices 

 

As can be inferred from Fig.  3, the value of d for a three dimensional lattice depends 

on the orientation of the lattice with respect to the incident beam. A systematic way to 

address this very general problem is required. For a three-dimensional lattice, the 

inter-planar spacing d for a particular set of planes may be calculated from the unit 

cell of the crystal and the Miller indices of the plane.    

 

To understand Miller indices, consider the simple case of a cubic lattice of atoms 

sketched in Fig.  5. All space can be filled by translating this unit cell of atoms 

throughout all space. The lattice constant “a” is the length 

of the edge of the cube.  The unit cell may be described by 

three lattice vectors: a

  = a i,   b


 = a j,   c


  = a k. The 

symbols i, j and k are orthogonal unit vectors which are 

used to define a right handed orthogonal coordinate system.   

 

Now consider a plane that cuts through the cube as 

illustrated in Fig.  6. Suppose the plane drawn cuts the 

lattice vectors at ½ a

, 2/3 b


 and 1 c


. The reciprocal of 

these intercepts are 2, 3/2, and 1. The smallest set of 

integers having the same ratios is 4, 3, and 2. This set of 

three integer numbers is known as the Miller indices and 

are written in the form (432). 

 

For the general case, the Miller indices for an arbitrary 

plane is a set of integer numbers designated by (hk). In 

summary, the general rule for finding the Miller index of 

a plane is:   
1. Find the intersection of the plane with the lattice 

vectors.  

2. Take the reciprocals of the intercepts.   

3. Find the smallest set of integers with the same 

ratios. 

 

 

 

 

 

 

 

 

Figure 5:  A simple cubic 

lattice illustrating the 

position of atoms on each 

corner of the cube. 

y 

x 

z 

 a i 
a j 

a k 

x 

z 

 a/2 
 2a/3 

 a 

y 

Figure 6:  An arbitray plane passing through a simple 

cubic lattice.The Miller indices for the plane shown 

are (432). 
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Some common examples of low index planes are sketched in Figure 7. 

 

 

 

 

 

 

 

 

 

 

The General Condition for Diffraction in Cubic Crystals 
For a cubic lattice, you can show that the distance between adjacent parallel planes 

having Miller index  (hk) is given by  

 

 dhk =
222 lkh

a



 (13) 

 

Substitution of this result into the Bragg condition (Eq.  12) gives 

 

 n=2dhk sin=
222

sin2

lkh

a




        or, 

 

 

 2a sin=n 222 lkh      . (14) 

 

This equation forms the basis for analyzing diffraction data acquired below. 

 

Crystal Structures 

Fourteen distinct crystal lattices are allowed by symmetry to 

fill all space in a periodic way.  The simplest lattices are the 

three cubic lattices. In all three classes the cell is cubic and 

all edges have equal lengths. 

 

The simple cubic (sc) cell has one atom at each of the cube’s 

eight corners (see Fig.  5).  The body-centered cubic (bcc) 

cell has one atom at each corner, plus one atom in the center 

of the cubical volume.  The face-centered cubic (fcc) cell 

has one atom at each corner plus one atom in the center of 

each of the six faces of the cube (See Fig. 8).  There are 

x 

z 

 (010) 

y 

x 

z 

y 

x 

z 

y 
 (100) 

 (111) 

Figure 7:  A few low index planes indicated by the solid lines and their respective Miller 

index designation. 

y 

x 

z 

Figure 8: Placement of atoms 

in an fcc lattice 
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many elements with fcc unit cell structure.  Examples are:  Al, Ca, Cu, Ag and Au.  

These elements show similar diffraction patterns. 

 

 

 

Another common lattice 

type has hexagonal 

symmetry.  The simple 

hexagonal cell has atoms 

at each of 12 corners and 

at the center of each 

hexagon.  The length of 

the sides of the two 

hexagons are equal, but 

not equal to the height, 

denoted by “c”, which is 

the distance between the hexagons (see Fig 9(a)). The smallest unit cell that can be 

translated to fill all space is a part of the hexagonal cell as shown in Fig.  9(b). There 

are a variety of different classes of unit cells having hexagonal symmetry. A form of 

carbon (graphite), Mg, Zn and Cd are examples of materials possessing hexagonal 

symmetry. 

 

The fcc Selection Rule for  Diffraction 

The intensity of reflection from a particular set of crystal planes depends on a detailed 

theory of the diffraction process. In general, planes with low density of atoms (large 

(hk)) will have a small scattering amplitude. Thus planes with low (hk) will diffract 

more strongly. One advantage of defining Miller indices is that a rigorous diffraction 

theory can be cast in such a form that the intensity scattered by a particular set of 

lattice planes is related to the Miller indices of the plane.  For an fcc crystal like 

aluminum, you can show that the reflected intensity is proportional to a geometrical 

structure factor S, which is defined as:   

 

 S=1+ei(h+k)+ei(h+)+ei(k+) (15) 

 

This factor is non zero only if all three indexes are either even or all three indexes are 

odd. Zero is considered to be an even number.  

 

EXPERIMENTAL APPARATUS AND PROCEDURE  

 

Apparatus  
For high energy electron diffraction, a beam of electrons strikes a target located inside 

a vacuum tube or vacuum chamber.  The electrons diffracted by the target are 

observed when they strike a phosphor screen located on the opposite side of the target 

(see Fig.  10). 

 

 

Figure 9: In a), a sketch of the hexagonal system with the lattice 

vectors defined. In b),  the primitive hexagonal unit cell is 

indicated by the heavy lines. 

a b 

c 

a) b) 
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For the apparatus you will use, the target contains both polycrystalline aluminum and 

graphite samples.  The desired material can be selected by moving the electron beam 

with the controls provided for this purpose.  A microammeter should be attached to 

the terminals at the back of the Sargent-Welch apparatus. This meter measures the 

electron beam current.  Look on the left hand side of the tube’s housing to find the 

value of L.  

 

It is convenient to analyze the diffraction pattern by measuring the radius formed 

when the diffracted beam strikes the fluorescent screen. The radius r of the diffraction 

pattern can be measured with a caliper. Since  will be a small angle, we can replace 

sin with in Eq.. Also note that the angle between the incident and diffracted 

beam is 2as shown in  Fig. 3. This fact is also indicated in Fig. 10. For small  

tan22= r/L. This means that Eq. 14 can be rewritten as 

 

 

a rhk

L
= h2+k2+2    (16) 

 

where rhk  is the radius produced by scattering from the (hk) plane. In our case we 

observe only the first order of diffraction, so n=1. 

 

 

General Experimental Procedure  
Set the accelerating voltage of tube at 6 kV, keep the beam current as low as possible. 

Never let the beam current exceed 10 A. Focus the beam and move it using the 

horizontal and vertical controls until you obtain a pattern of rings without bright 

spots.  Defocus the beam to see the shadow of the target.  Look through the window 

at the side of the box to see the target inside the tube.  Warning:  Do not let the 

undiffracted beam spot sit still on the screen or you will burn the screen!  

Figure 10: The geometry relevant to a transmission electron diffraction 

experiment. 
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Refocus the beam.  Measure the diameters of the rings with a clear plastic ruler or a 

caliper and record the results.  The rings may be slightly distorted by the tube, so you 

should measure and record at three different orientations the diameter of each ring 

and use the average in your calculations. 

 

Repeat your measurements for four other voltages at 7, 8, 9 and 10 kV. The electron 

beam will shift when you change the voltage, so you will have to bring it back to its 

original location or at least to another place where aluminum rings may be found.   

 

Characterizing Crystalline Materials 
It is important to have a general understanding of the crystalline make-up of materials 

before taking diffraction data. In general terms, a particular piece of material can be 

either amorphous or crystalline. Amorphous materials are characterized by the  

absence of long-range periodicity in atom position and are not of interest in this lab.  

 

Crystalline materials can be categorized in terms of their long-range periodicity as 

indicated in Fig. 11. The most crystalline material is characterized by a perfectly 

periodic arrangement of atoms throughout. Such a material is said to be a single 

crystal. Single crystals require great care in growth and can be tens of centimeters in 

size. Single crystals are easy to damage and their crystalline state can be substantially 

degraded. Materials lacking long-range periodicity are classified as crystalline with a 

textured or multiple-domain structure. Such materials may have a high degree of 

periodicity extending over a characteristic distance – say a few millimeters. Beyond 

this, another domain is encountered which itself is highly crystalline, but with an 

arbitrary orientation with respect to adjacent domains. These domains (or grains) tend 

Figure 11:  Examples of varying degreses of crystallinity and the resulting diffraction patterns. In a), a perfect 

single crystal. The diffraction pattern is characterized by well defined spots. In b), a large grain textured sngle 

crystalline material. The diffraction spotsa begin to broaden and streak due to different orientations of 

individual grains. In c), a fine grained polycrystalline material. The individual diffraction spots produced by 

one grain now merge into complete circles, reflecting the randomn orientation of one grain with respect to any 

other. 

Single 

Crystal 

Textured 

Single Crystal 

– large grain 
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Electron 

Beam 
a) b) c) 



 149 

to have a characteristic size that is replicated throughout the material. If the size of the 

single crystal domains is small enough, then the material is said to be polycrystalline. 

In a polycrystalline material, the single crystal domain or grain size may only be 1 to 

10 microns in size. 

 

In the experiments below, you will examine a textured single crystal of graphite and a 

polycrystalline sample of aluminum. 

 

 

 

 

 

 

 

PYROLITIC GRAPHITE TARGET  
 

Diffraction from a Textured Single Crystal  
 

The crystal 

structure of 

graphite belongs 

to the hexagonal 

class of 

symmetries (see 

Fig. 9). In 

graphite, carbon 

atoms form a 

hexagonal pattern 

in a basal plane 

that is known as a 

graphene sheet. 

The individual 

graphene sheets 

are then stacked 

one on top the 

other as shown in 

Fig. 12 to form a 

single crystal of 

graphite. Pyrolitic 

graphite is a textured form of single crystal graphite with a strongly preferred 

orientation.  Its structure is comprised of domains or grains of single crystal graphite. 

Each domain is randomly rotated about the c

 axis and each grain is oriented with a 

strong preference for parallel c

 axes.   

 

Since the penetration of 6 keV electrons is on the order of a few hundred nanometers, 

an extremely thin graphite target is required.  If the single crystal graphite domains 

Figure 12: The crystal structure of pyrolitic graphite. The small dots  represent 

the position of C atoms that are spaced by 0.142 nm from each other on an 

hexagonal grid. The inter-sheet spacing betweeen graphene planes is 0.335 nm. 

The heavy lines delineate the unit cell which has dimensions of  a=b= 0.246 nm 

and c = 0.670 nm. The first and thrid graphene layers are aligned, but the second 

layer is laterally translated (dotted lines)  to form what is known as an ABAB . .  

stacking sequence. 
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are sufficiently large, it may be possible for the electron beam to strike a part of the 

target that is one single crystal. When this situation is met, you will obtain the best 

diffraction pattern.  On the screen you will then see a pattern something like Fig.  13. 

 

The diffraction pattern of pyrolitic graphite is hexagonal, but rotated 30 with respect 

to the original lattice.  The inner most hexagon corresponds to n=1, the next hexagon 

to n=2, etc.  Again, diffraction will occur when n=2d sin 

 

For diffraction through small angles,  2 sin    2   r/L  . 

 

Thus the separation between the planes responsible for diffraction will be given by 

 

                           d = 
r

Ln
                                            (16) 

 

where r=D/2  is the distance from the center of the pattern to a point on the hexagon.  

If you see several spotty rings instead of a pattern like Fig.  13, the electron beam is 

not striking a single crystal but rather several 

crystals.  With a little patience, a single 

crystal can be found.   

 

To begin, set the tube voltage at 6 keV. 

Keeping the beam current below 10 A, 

search for the graphite pattern.  Record the 

diameter D  (three times with about a 120o 

degree between the measured lines) and the 

order n of each concentric hexagonal pattern. 

Repeat your measurements for four more 

voltages of 7, 8, 9 and 10 kV. 

 

Using Eq.  16, calculate the value of the plane 

separation d for each order of diffraction 

which appear at all five voltages you used.  

Without a more thorough analysis, it is not 

obvious how the values of d are related to the 

lattice constants of graphite which are 

specified by a=0.24612 nm, c= 0.6707 nm. From the placement of atoms in the unit 

cell, it is easy to estimate a few inter-atomic distances. These can be compared to 

your data to learn which planes are responsible for the diffracted spots.  Estimate your 

errors in d, collect your data and results in a table. Be prepared to discuss your 

findings.   

Figure 13: A schematic digram of the 

expected diffraction pattern from a single 

crystalline region of the pyrolitic graphite 

target. The spots on the corner of the hexagon 

form the dominant contribution to the 

diffracted beam. 

D 

n=1 

n=2 
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ALUMINUM TARGET  

 

Diffraction from a Polycrystalline Material 

The crystal structure of single crystal aluminum is face-centered cubic. The unit cell 

is a cube with an atom at each corner and also at the center of each face, as in Fig.  8. 

In the case of polycrystalline aluminum, many individual single crystals (ranging in 

size from a few microns to a few 100 microns) are randomly oriented with respect to 

the electron beam.  Because of the large number of crystals illuminated, many of the 

crystallites will be oriented so as to satisfy the Bragg diffraction equation.  The 

diffraction pattern from any given crystallite will be a pattern of spots, but because all 

orientations are possible, the individual diffraction spots will merge into a cone of 

diffracted electrons.  The result is that a pattern of concentric rings will be seen on the 

screen.  

 

Set the voltage to 6 kV and examine the diffraction pattern from the aluminum target. 

The innermost ring (smallest rhk ) will correspond to the orientation with the smallest 

value of h2+k2+2, which turns out to be (111). The sequence of rings continues with 

(200), (220), (311), (222), (400), (331), (420), (422), and so forth.  Some rings may 

appear to be “double”, but these are really separate rings due to two slightly different 

orientations.   

 

For the fcc unit cell in Fig. 8, note the presence of planes parallel to the faces of the 

cube and halfway between them.  The electron waves reflected from the opposite 

cube faces will be out of phase with the waves reflected from the intermediate plane 

between these faces, and therefore no diffraction will be seen from the (100), (010), 

or (001) directions.  As discussed above, no diffraction will occur unless h,k, and  

are either all odd or all even.   

 

Repeat your measurements for four more voltages of 7, 8, 9 and 10 kV. Calculate the 

lattice constant “a” for polycrystalline aluminum using Eq.  16 and the value of  

calculated from the accelerating voltage of the tube (Eq. 10).   

 

State which crystal plane is associated with each ring.  Calculate the value of “a” for 

each voltage and each ring and compare with the accepted value of a=0.405 nm 

obtained from X-ray diffraction measurements.  Estimate the size of your errors.  

Collect your data and results in Table 1 and discuss your findings.   

 

Rings with different sets of Miller Indices will show up with different intensities or 

brightness. There is no simple theory that predicts which ring associated with an 

allowed set of Miller Indices will be visible, or how many rings will be visible.  Since 

the electron diffraction pattern obtained in this experiment is very similar to the 

pattern produced by X-ray power diffraction and by Laue single crystal diffraction, 

you should look up information on X-ray diffraction patterns on polycrystalline 

aluminum.  A helpful example is given in the discussion below and in Table 1.  
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The information in Table 1 shows you that the first four lowest (hk) combinations 

should give you four clearly visible rings. It is not clear whether you will be able to 

observe the reflections which correspond to the combinations (222) or (400). Since 

you will see at least two more faint rings and you do not know what hk combinations 

they correspond to, try several allowed combinations of (hk) until you obtain values 

for “a” which are consistent with what you obtained from the four innermost rings. 

 

 

The relative scattered X-ray intensity pattern given in Table 1 is from the X-ray 

Diffraction Information Handbook (compilations). The source was a =0.154056 nm 

wavelength CuK1 X-ray with a Ni filter to absorb background radiation.  The 

measured lattice constant “a” was a=0.404958 nm. A chemical analysis of the target 

revealed a 99.9% aluminum purity.  Background metals were Si, Cu, Fe, Ti, Zr, Ga, S 

with relative concentrations less then 0.007% each.  Iron contamination was the 

largest at 0.007%. 

 

Table 1:  Using =0.154056 nm wavelength X-ray radiation the following relative 

intensities were obtained 

 

 

 

 

SWITCHING OFF THE EQUIPMENT  
 

When you are finished, it is important that you turn the High Voltage down before 

turning it off.  This allows the H.V. capacitors in the power supply to discharge, thus 

avoiding damage to the tube and power supply.   

 

    

Miller Indices    Intensity of Ring    Lattice Constant  

       

hk    Int.     a(nm)  

111    100     

200    47     

220    22     

311    24     

222    7     

400    2     

331    8     

420    8     

422    8     
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ADDITIONAL  QUESTIONS  
 

The relativistic kinetic energy is defined as the difference between the total 

energy and the energy of the rest mass (m0). 

 

 EK = Etotal  - moc2   =  
2

2

1 

cmo   - moc2     










c

v
with    . 

 

A particle is moving with relativistic velocity if EK moc2. Using this condition 

and the above definition of EK, determine the value of v/c at the onset of the 

relativistic domain i.e when Ek=m0c2. Is the velocity of a 10 keV electron, in 

your experiment, relativistic?     

Hint: set E
K
= E

total
-m

o
c2 = 10 keV. 

 

Why are the target, screen, and conducting coating on the tube connected to 

ground?  

 

Can particles other than electrons be diffracted?  If so, give examples. 

 

State clearly how these experiments demonstrate that the wave picture of an 

electron is valid. 

 

If a conduction electron, already inside a metal, travels through a periodic array 

of atoms would it also be forced to undergo diffraction? What consequences 

might this have? 

 

In deriving Eq.  16, tan 2was set equal to r/L. Is this approximation valid for 

the geometry of the tube you are using?  How do you justify the setting of the 

scattering angle in Fig.  10 equal to 2 instead of ?   
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NOTES 
 


