Archiv-Exemplar

 VorläuliHF-SENDE-EMPFANGSANLAGE XK 403

BESOMDERE DERYMALE

- Robuste Bawweise, für stationäcen und mobilen Einsatz geeignet
- Frequenzbereich 1,5 ... 30 MHz Senden, 10 kHz ... 30 MFz Empfans
- Dauersendeleistung 100 W , unschaltbar auf 10 H
- Modulationsarten: A1, A3H, A3J (OSB, USB)

F1, ○ ... $100 \mathrm{Bd}, 42,5$ und $\pm 425 \mathrm{Ez} \mathrm{E}$: m^{2}

- Antennenanpassung an Stab-, Peitschen- und Drahtantennen Ohne Antennenanpaßgerät für Breitbandantennen oder fuin Notbetrieb an beliebigen Antennen geeignet.
- Einfache und eindeutige Bedienuns durch automatische frbeitsreise mit Anzeige des Betriebszustandea
- Erwiesenermaßen zuverlässiǵ, wartungsfrci
- EinEebaute Testeinrichtung und lodulbauveise bringen kurzeste Reparaturzoiten in allen itaterislerhaltungsstufen, RE?US-prufbar
- Universelle Stromversorguns: Netz (117/220 V) oder Batterie (19... 31 V)

Allsemeines

Die $\overline{H F}-$ Sende-Bmpiangsanlage XK 403 entstand als Gemeinschaftsentwicklung der Firmen ROHDE \& SCHWARZ und SIENBIS AG parallel zu einem HF-Funksprechgerät fuir das Kampfflugzeug MRCA.

Sie ist eine konsequente Weiterentwicklung des in Rahmen des Studienvertrages T I 3 Nr. 71-627-K-603 des Bundesministeriums für Verteidigung ent-wickelten HF-Sende-Empfängers XK 400. Dementsprechend modern sind ihre Konzeption und Technologie. Fuir den Anwender entstehen daraus folgende Vorteile:

Die Geräte behalten unter den angegebenen Jmweltbedingungen, wie Jngebungstemperatur, Erschüttemung, Luftfeuchte, ihre technischen Eigenschaften; sie bleiben stets voll einsatzbereit und arbeiten höchst zuverlässig.

Die Bedienung der Anlage ist durch den vollautomatischen Ablauf aller Abstimmvorgänge außerordentlich vereinfacht. Einsespeicherte Kanalfrequenzen erlauben den Frequenzvechsel in kurzester Zeit.

Die Ausführung in Bausteinen erlaubt eine flexible Anlagenanordnung, so daß praktisch alle vorkommenden stationären und mobilen Anwendungsfälle abgedeckt werden können.

Ein klares Materialerhaltungskonzept ist durch die vorgesehenen Pesteinrichtungen einerseits und die konsequente Modulbauweise andererseits gewährleistet (REMOS-Konzept).

Aufbau der Anlage
 (Bild 1)

Die Anlage besteht aus den Bausteinen
EPPRAMGER/STEUERSENDER XK 043
HF-LTISTUNGSVERSTÄRKER VK 213
ANTENTEN-ANPASSGEREAT FK 213
die nahezu beliebig zueinander angeordnet werden können. Damit ist eine Anpassung des Anlasenauf'oaues an die räumlichen Gegebenheiten leicht möglich. Alle Schnittstellen sind gegen unterschiedliche Kabellängen uneapfindlich. Die Anlage wird am Empfänger/Steuersender bedient; hier liegen auch alle Ein- und Ausgänge für Peripheriegeräte, wie Morsetaste, Förer, Fernschreiber usw..

Die Frontplatte des Jmpfänger/Steuersenders ist steckbar ausgeführt.
In Sonderfëllen kann sie daher auch abgesetzt angeordnet werden; die Befehlubertragung zun Empfänger/Steuersender erfolgt dann iber eine Vieldrahtverbindung. Die für Handiedienung vorgesehene Frontplatte ist auch durch eine fur Rechner- und/oder Fernsteuemung eingerichtete Baugruppe ersetzbar.

Der Leistungsverstärker ist ohne Bedienelemente und wartungsfrei. Er sollte weôen dex höheren Stromaufnahme nahe der Stromversorgung untergebracht werden. An den Leistunssverstërker lassen sich direkt Breitbandantennen anschließen. Alle internationalen Forderungen nach AuBerbandstrahlungen sind erfiillt. Für einen Notbetrieb sind Drahtantennen beliebiger Länge ausreichend; entsprechend der dann vorliegenden Fehlanoassung reduziert der Verstërker seine Ausgangsleistung.

Mit dem Anpaßgerët sind alle ublichen Antennen optimal anoaBbar. Es soll zur Erhaltung des hohen Wirhungsgrades die Antenne iiber eine kurze Drahtverbindung speisen. Seine wetterfeste und kurzzeitig iiberflutbare Bauweise erlaubt die ungeschiitzte Anordnung.

> Archiv-Exemplar 755.7
Anderungen vorbeholten
$\Lambda N T E N E N W$
187
宛
\xrightarrow{C}
ρ
0
0
0
$<\frac{1}{4}$
$=-1$
$\mathrm{~F}_{4}$
2
24

Anderungenvarbeholt
-

[^0]


```
                            Downloaded From.www.qsl.net/ik2biy
Technischelnformationn
```


Betriebliche Eicenschaften

Die Bedienung der HF-Sende-Rapfangsanlage XK 403 erfolgt zentral von der Frontplatte des Empfänger/Steuersenders XK 043 aus. Der Betriebszustand wird eindeutig durch die Schalterstellungen, mit LED-Anzeigen und Leuchtdioden angezeigt. Die Betriebsfrequenz kann entweder mit 6 Frequenztastern wertweise eingetastet oder mit einem Kanalwahltaster eingestellt werden. Über den Kanalwahltaster stehen 8 Frequenzen zur Verfiugung, die in einen elektronischen, netzausfallsicheren Speicher vorab eingegeben wurden.

In der Betriebsart BEREIT wird lediglich das Frequenznormal vorgeheizt, so daß der Funkotrieb in allen Modulationsarten sofort mit der vollen Frequenzgenauigkeit aufgenommen werden kann. Der Vorteil liegt imaußerordentlich niedrigen Stromverorauch. Zum ständigen Abhorchen von Veroindungšanälen dient die Betriebsart EKPrANGiN. Auch hier liegt die Leistungsaufnahme niedris, da Leistungsverstärker und Antennenanpassung abgeschaltet bleiben. Der Gegensprechverkehr ist in der Betrieosart SEMDEN/EMPFAMG mözlich. Die rasche Unschaltung der Anlage von Empfangsbetrieb auf Senden und usgekehrt erlaubt zügige Verkehrsabwicklung. Fir den Fernschreibbetrieb ist diese Umschaltung von der Frontolatte sowie von extern aus möglich.

Die Anschlußwerte für die Peripheriegeräte sind in Tabelle 2 zusamengestellt. Sie wurden so buscrewählt, daß alle gängigen Fabrikate dieser Geräte ohne Zwischenschaltung von Hilfsstromquellen o.ä. rit einer Entrernuag von bis zu 50 m angeschaltet werden können. Dies gilt insbesondere auch für den Funk-Fernschreibbetrieb, und auch dann, wenn Fehlerkorrekturgeräte oder Schlüsselgeräte eingesetzt werden.

Die eingebaute Prüfeinrichtung überwacht ständig die für den reibungslosen Funkoetrieb wichtigsten Parameter der Anlage, wie Hs-Leistung, Antennenanpassung, Frequenz, Betriebsspannungen. Sie meldet automatisch die Abweichung von vorgegebenen Grenzwerten. Zur genauen tiberpwïfung ist ein automatisch ablaufender Test auslösbar, der bei positivem Ergebnis eine Co-Aussage liefert. Im Störungsfall wird das Ergebnis der Prüfunf in di天fitaler Form angezeigt. Die Auswertung erlaubt die Fehlerlokalisierung über den Einschuo hinaus bis zu einzelnen Modulen (siehe Tabelle 3).

Wirkunssveise und Eigenschaften

Der Empränser/Steuersendex XK o43 enthält neben allen Bedienelementen den gesamten Empfangszug der HP-Sende-Tmpfangsanlage XK 403 sowie den Sendezug bis zur 20-mV-Ebene. Wichtige Gesichtspunkte bei der Planung des Gerätes waren auf der einen Seite, einen Empfänger zu schaffen, dessen Eigenschaften dem internationalen Stand der Hir-Empfangstechnik entsprechen und auf der anderen Seite, in der Funktion als Steuersender, die volle Einhaltung aller betrieblichen Forderungen zu erlauben. Daraus resultieren die charakteristischen Mermale der einzelnen Baugruppen:

Der Synthesizer liefert alle Frequenzen für die vexschiedenen Unsetzer. Besondere Aufmerksamkeit wude auf hohe Rauscharmut gelegt. So garantieren die bei 140 dB , bezogen auf 1 Hz MeBbandbreite, liegenden Rauschseitenbänder gerincsste Störung von anderen Funkkanälen im Sendefall.

Bei Empfang kleiner Sisnale wird der Störabstand im Nutzkanal selbst durch starke Störer kaum verringert, da die ungemischten Rauschseitenbänder klein sind.

Vernachlässigbar gering sind auch die Eigenstörstellen (Frequenzen, bei denen Nebenwellen des Frequenz-Synthesizers auf den Empíaņ̊skanal fallen). die in der Größenordnung des Eigenrauschens des Empiangers liegen, was besonders bei Empîangsantennen mit geringer effektiver Höho. wichtig ist.

Der Empfanger arbeitet mit einer ersten Zwischenfrequenz von 72,03 IWz und einer zweiten bei 30 kHz . Auf diese Weise erzialt man einerseits durch die hohe erste Zwischenfrequenz eine hohe Spiegelfrequenzunterdruickung, andererseits liegt die zweite Fraquenz so niedrig, daß das eigentliche Selektionsfilter mit steilen Flanken ausführoar ist. Störende Temperatureinflüsse sind durch die angewandte Technologie vermieden: Die Filter sind als hochselektive Quarzfilter (72 MHz) und mechanisches Filter (30 kHz) zusgefuhrt.

Im Sendefall werken die gleichen Zwischenfrequenzen angewandt. Im Prinzio gelten die gleichen Uberlegungen wie im Empfangsfall: Niedrige Aubexbandstrahlung und vernachlässigbare Nabenvellen sind das Ergebnis.

Bei Sendebetrieb in den Sendearten A3J und A3E, wird das Sprachbend zunächst in die $30-k H z-E b e n e$ umgesetzt. Das hochseletive, mechanische Filter unterdrückt bei Sendeart A3J den Träger um $\geq 40 \mathrm{~dB}$, bei Sendeart A3甘 wird er un

6 dB vermindert. Bei Telegrafiebetrieb, Sendeart A1, wird die 30-kHzZwischenfrequenz im Rhythmus der Norsezeichen weichgetastet. Bei Sendeart F1 dagegen tasten die Gleichstromzeichen der Fernschreibmaschine eine Frequenzumtaststufe, deren Mittenfrequenz 30 kHz beträst. Die beiden erwännten Hübe sind innernalb des Gerätes um etwa $\pm 10 \%$ veränderbar. Veichtastfilter besrenzen sowohl bei A1 vie auch bei F 1 das bei der Tastung entstenende Frequenzspektrum. In den Tastpausen sinkt die absestrahlte Leistung unter die Außenstömungen.

Die Fmpfangsseite setzt entsprechend der Sendeseite das empfangene HF-Signal in zwei Zwischenfrequenzlagen un, wobei die eigentliche Selektion in der 30-kitz-Fioene mit steckbaren Filterbaugmuppen (mechanische Filter) vorgenommen wird. Je nach Sendeart wird einea der fünf Filter in den Úbertra.. gungsweg geschaltet. Auf die ZF-Filter folgt ein mehrstufiger 3o-ickz-Regelverstärker, dessen Ausgänge zum Demodulatorteil für die Sendearten A1, ABJ und A $厶$ SH sowie zu dem der Sendeart F 1 gehen. Der Demodulatorteil fur die erstgenannten Sendearten bringt bei A3J- und A3H-Betried das ZF-Signal mit Filfe einer quarzgenauen 30-rgz-Schwingung (Synthesizerfrequenz) in die NF-Eoミne. Bei Sendeart $A 1$ wird das ZTi-Signal mit eirem 31-kFz-Sisnal uberlagert und somit ein $1-k H z-T o n$ erzeugt. Im Demodulatorteil für die Sendeart $F 1$ wird das verstärkte $30-k E z-S i g n a l$, durch ein schon bei den XK 010Anlagen exfolgreich eirsesetztes, digitales Verfahren frequenzdemoduliert, begrenzt und einem an die Schrittgeschwindigkeit angepaßten Tiefpaß zugeIưht. Eine nachfolgende Taststufe erzeugt die Einfachstromsignale fuir den direkten Anschluß einer Fernschreibmaschine.

Die Stromversorgung des Empfënger/Steueraenders XK 043 wird von einem Wandlermodul für 21 ... 31 V Eingangsspannung vorgenomen. Es erzeugt die notwendigen Betriebsspannungen fuir die Baugruppen und ist am Eingang mit einem Transientschutz sowie Filter geg̃en die entstehenden Störströme ausgestattet. Für den Betrieb der Gesemtanlage an einem 117/220-V-Wechselspannungsnetz wird der Empfänger/Steuersender XK 043 an den 21 ... 31 V Gleichspannungsausgang des Hi-Leistungsverstärkers angeschlossen, bei Batteriebetrieb kann der Empfänger/Steuèrsender auf kürzestem Weg an einer 24-V-Ver~ sorgungsquelle getrennt vom Leistungsverstärker betrieben werden (siehe Bild 1).

Alle Ein- und Ausgänge des Empfänger/Steuersenders sind gegen Störspannungen geschuitzt.

Der HF－Leistungsverstärker VK 213 verstärki das 20－mV－Signal des Steuersenders zu einer Ausgangsleistung von 100 W ．Er ist volltransistorisiert und weist folfende Vorteile auf：
－Keine Fochspannungsnetzteile，deshalb keine gefährlichen Spannungen
－Binfache Kuhlung ohne druckdichte Bauweise
－Keine Servotechnik aufgrund der Breitbandverst苂loung
－Automatische Reduktion der Ausgangsleistung im Falle hoher Fehlanpassung （Notbetrieb ohne Antennenabstimmung möglich）und extrem hohen Umwelt－ temperaturen（Notbetrieb ohne Zwangsbeluiftung möglich）．
－117／220 V Wechselspannungsnetzteil für die gesamte HF－Sende－Empfangs－ anlage XK 403

Der RT－Verstärker besteht im wesentlichen aus einem RF－meil，einen Steuer－ und Übervachungsteil sowie dem Na亡zteil．

Der Vorverstäner verstärkt breitbandig im Frequenzbereich 1，5 ．．． 30 NTiz die Eingangsleistung $f V_{\text {eff }}$ an 50Ω auf ca． 500 mW．Im Vorverstönker be－ findet sich ein PIM－Dioden－Regler mit einer Dymanik von ca． 15 dB．Dieser dient als Stellglied fü die Leistunssrešelung und für die Schutzschaltungen，

Den Verstärker ist einstufi管 aufgebaut und aroeitet mit zwei rransistoren in Gefentaktschaltunco ．Die Ausgangsleistung wixd breitbandig an 50Ω ab－ ตеรеbこท．

Den Verstäraermodul folgt ein kombinierter TiefpaB／工ochpas für Fraquenzen oberhalb 30 lHz．Die Oberwellen werden uber den Fochpaß im Abschlußnider－ stanà absorbiert．Daduroh exc̛obib sich auch für den Sperrbereich ein Ein－ ganssiviaerstard von 50Ω ．

Das folgende Obemelleafilter ist als schaltbarer piefpas aufgebaut und in 8 Prequenzbexeiche unterteilt，die entsprechend der Frequenzinformation einseschaltet werden．Die Obexwellendänpfung des Verstärkers liest bei mehr als 40 dB．

Die Steuer－und Überwachungsteile sorgen fün den sinnvollen Ablauf aller Steuerfunstionen，die für den Betrieb notwendig sind wie Sende－Erpfangsum－ schaltung ，Bereichsschaltung des Oberwellenfilters，Leistungsumschaltung $10 / 100 \mathrm{~W} . \mathrm{usw}$ ．

Die Überwachung wertet die einzelnen Meßatellen (z.B. Rückflußmesser vor dem Oberwellenfilter) aus und sperrt bei Überschreitung der Grenzwerte den Träger. Außerdea werden fiir den BITE (Built-in test equipment) Informationen zur Verîügung geatellt.

Das Netzteil besteht aus einem Gleichrichtermodul, das bei Wechselspannungsbetrieb die für die Gesamtanlage notwendige 21 ... 31 V Batteriespannung erzeugt. Dieses Modul versorgt den Empfänger/Exciter, das Verstärkermodul, das Antennenanpaßgerät sowie das Regelnetzteil für die Stromversorgung der vorhandenen Logikbaugruppen in Verstärker. Bei Ausfall der Wechselspannung schaltet eine Ablöseeinrichtung auf Batterie um. Alle ein- und ausgehenden Leitungen mit Ausnahme der EF-Verbindungen werden rit Schutz- und Siebschaltungen versehen. Win Transientschutz sowie Filter am 117/220 V Wechselspannungseingang verhindert das Übergreifen von Spannungsspitzen der Versorgungsspannungen auf die Sende-Empfangsanlage.

Das AntennenanpaBgerät FIN 213 bedient sich der Servotechnik, d.h. die zur Transformation des komplexen Antennenfußpurktyiderstarides notwendigen Reaktanzen (Varioneter unz Vakuum-Kondensator) werden uber gesteuerte Motoren abseglichen. Ein Phasendetektor und ein AmplitudenmeBglied lieferm die Steuerkriterien.

Hat das Anpaßserät bei einer Frequenz in Sendefall die Antenne angepast, so kann es auf dieser Frequenz als Vorselektion und Antennenanpassung für den Empiänger arbeiten.

Das Antennenanoaßgerät ist wetterfest und kurzzeitig iiberflutbar gebaut und läßt sich dəher ungeschützt anwenden. Dadurch ist die Anordnung in der Iähe des Antennenfußpunktes in allen Fällen gewährleistet und ein hoher Virkungsgrad wird gewahrt.

Ebenso wie die beschriebenen Geräte ist auch hier die Kodulbauweise konsequent eingehalten (6 Funtionsgruppen) und alle Ein- und Ausgäng̃e sind gegen Störspannungen geschiitzt.

TECHIISCEE DATEN: FF-Sende-Tmpfangsanlage XK 403

1. Allgemein elektrische und mechanische Risenschaften
1.1 Frequenzbereich Senden 1,5 NHz ... 29,9999 MHz
1.2 Frequenzeinstellung
dekadisch in 100-Hz-Schritten 1)
Vorwahl von 8 beliebigen Frequenzen mit Kanalspeicher
1.3 Frequenzgenauigkeit besser $\pm 3 \times 10^{-7},-25 \ldots+50^{\circ} \mathrm{C}$
besser $\pm 5 \times 10^{-8},+15 \ldots+35^{\circ} \mathrm{C}$
besser $\pm 5 \times 10^{-8}$ innerhalb eines IINonats

1) 10-Hz-Schritte auf Anfrag̈e

1.7	```S/E-Unschaltung in Sendeart A3J, A3H: in Sendeart F1:```	＜50 ms，bei durch Hochs Sprechgeach F1－Betriès oder extern EMPFATGEN／R Emofang des druckt Empi BEREIT／STAT Emping de erhält led SEMDEN／TRAR Senden dar SENDEN／EMPI Sendetext	A1 Abfallverz halttaste an rr rtenschalter CBIVE： FS－Zeichen，F nsstext． BY： FS－Zeichen，F lich Ruhestro MIT： S－Zeichen in NG，Fernschre t．	erung 100 ms krofon oder n Frontplatte mschreiber nschreiber triebsヨrtstel ber schreiot
1.8	AnpaBbare Antennen ．．．．．．．．	Typ	Frequ $1,5 \ldots 30 \mathrm{MHz}$	$\begin{aligned} & \text { azen } \\ & 2 \ldots 30 \mathrm{MHz} \end{aligned}$
		Stabe Peitschen Langaraht Breitbanで－ anternen	$\begin{array}{lll} 7 & \ldots & 12 \mathrm{~m} \\ 7,7 & \ldots & 12 \mathrm{~m} \\ \text { bis } & 50 \mathrm{~m} \\ \text { beliebig } \end{array}$	4 ．．．12 12 4，7 ．．． 12 п bis 50 п beliebis

1.10	```Elektromagnetische Verträglichkeit nach MIL-STD 461 bis 463 Klasse IA, IB goweit nicht durch Datenangabe spezifizie```
1.11	Geräuschpegel ．．．．．．．．．．．． 49 dB（A）nach BV 045
1.12	Zuverlässigkeit（KTBI）．．．．． 2000 Si （ ${ }^{\text {a }}$ ，nach MLL－STD 781 B
1.13	Naterialerialtung ．．．．．．．．．siehe Tabelle 3
	Betriebsstundenzähler ．．．．．．im Leistungsverstärker，Zënler fix Abstimmvorgänge im AntennenanoaBserät
	Testeinrichtung ．．．．．．．．．．．．eingebaut，S＇teuerung durch Microcomputer， digitale Anzeige des Mestergebnisses
	```Prüfbarkeit ................. ausgerichtet auf RNimGS jeder Modul und jeder Einschub besitzt Pruifstecker```

1.14 Verfügbarkeit $\left(\frac{\mathrm{MTB}}{\mathrm{NTBF}+\mathrm{FTTR}}\right.$ ).... $>0,999$ am Einsatzort

1.16 Stromversorฐunc
Gleichspannung .................... 21 ... 31 V
Minuspol an Masse (Verpolungsschutz)
Spannungen >19 V und < 32 V zulässig
Spannungen <19 V und > 32 V : Anlage
schaltet ab
Stromaufnahme: ca. $14 \mathrm{~A}, 100 \mathrm{~W}$ Sendung
ca. 2 A, Rapfang
zul⿺̈ssige Störspannungen
der Gleichspanuungversorgunç .. -100 V, ablingend in 50 ms
+80 V, abklingend in 1 s
bezogen auf +24 V, Ri $\geq 0,5 \Omega$
toemlagerta Hechselspanmung
45 Fz ... 20 kinz; 2, $1 \mathrm{~V}_{\mathrm{ss}}$
Vechselspanmung .................. 117/220 V +10 \%
$60 / 50 \mathrm{Zz}$
dyramische Vechselspannungs-
schwanhungen ..................... $\pm 18$ \% (einschließlich statischer
Abmeichung
< 2 sec Ausregelzeit
(IUIL-STD-761 B, Ships, Iyp I)
1.17 Abmessunsen und Gevichte ....... siehe Tabelle 4
1.18 Zulässige Umgebungsbe-
dingungen ........................ siehe fiabelle 5
1.19 Schnittstellen zu Peripherie-
氏exるもen
siehe Tabelle 2

2.	Senderdaten
2.1	Ausgangsleistung ................   $100 W+2,-1 d B, C W$ oder $P E P$ bei Versorgungsspannung <24 $\nabla$ Ausgangsleistung max. quadrati Versorgungsspannung ab . Umschaltbar auf ca. $1 / 10$ der A čangsleistung (10 ... 20 W )
2.2	Zulässige Fehlanpassung ....... beliebig, der Sender reduziert elektrischer und thermischer $\forall$ lastung kontinuierlich seine L
2.3	Nebenwellendënpfung an   50- $\Omega$-Ausgang des Verstärkers .. > 60 dB
2.4	Obemellendämpfung am   50-ת-Ausgang des Verstärkers .. $>40 \mathrm{~dB}$
2.5	```Intermodulationsprodukte bei Aussteuemung mit 2 Tönen gegen PEP ..................... mind. 32 dB, typ. >35 dB```
2.6	```Signal-Rauschabstand bezogen auf 1 Hz-MeBbandbreite im Ab- stand von 50kHz ............... > 135 dB```
2.7	```Geräuschspannungsabstand, be- wertet iuber Psophometer- Filter nach CCIR bei A3H ......< -45 dB gegen PNP```
2.8	$\begin{array}{r} \text { Irägemunterdruickung A3J ....... }>40 \text { dB gegen PEP } \\ \text { A3H } \ldots . . . \begin{array}{r} 6 \text { dB gegen PEP } \end{array} ~ \end{array}$
2.9	Unterảruickung des nicht gewïnschten Seitenbandes ...... $>46$ dBgegen PEP
2.10	Hochfrequente Bandbelegung .... nach CCIR Rec. 328-2


2.11	NFA-Frequenzgang bei AJJ ...... $\leq 3 \mathrm{~dB}$ bei $300 \ldots 3000 \mathrm{Ez}$ 1)
2.12	Mithören ....................... Mithören der Modulation Lautstär'ke einstellbar
2.13	Ferntasten einschl. Kithören   Hiber eine Entfernung von max. . 50 m (sämtiche Sendearten)
2.14	```Anschließbare Antennen Breitbanciantennen (ohne Antennen-AnpaBgerät) .... beliebige Drahtantennen (siehe 1.7, 4.1 und Bild 1)```
2.15	Austastung in den Sendepausen - unter Außengeräuschpegel
3.	Bmofängerdaten
3.1	Eingangsimpedanz . . . . . . . . . . . . ca. 50 ת
3.2	Störabstand ab $100 \mathrm{kHz}(\mathrm{S}+\mathrm{N} / \mathrm{N})$
	A1 ........................ ${ }^{\text {a }}$, 20 dB bei 0,7 MV ENK
	A3J ........................... $>20$ CB bei 2 HV EITN
$3 \cdot 3$	Empfanzsbandbreiten
	A1 - Durchlabbereich ........ 3 dB bis $\pm 150 \mathrm{Ez}$
	A1 - Sperrbereich .......... $>60 \mathrm{~dB} \mathrm{ab} \pm 350 \mathrm{Ez}$
	$\begin{aligned} \text { A3J- Sperrbereich ............. }>60 \mathrm{~dB} \mathrm{ab} & -300 \mathrm{~Hz} \text { und }+4000 \mathrm{~Hz} \text { (Ob.SF } \\ & +300 \mathrm{~Hz} \text { und }-3600 \mathrm{~Hz} \text { (unt. } \end{aligned}$
	F1 schmal DurchlaBbereich ... $<3 \mathrm{~dB}$ bis $\pm 75 \mathrm{~Hz}$.
	F1 schmal Sperrbereich ..... $>60 \mathrm{~dB}$ ab $\pm 300 \mathrm{~Hz}$
	F1 breit Durchlabbereich ... < 3 dB bis $\pm 500 \mathrm{~Hz}$
	F1 breit Sperrbereich ..... $>60 \mathrm{~dB} \mathrm{ab} \pm 1 \mathrm{kJz}$
3.4	Automatische Amplitudenreselung   ( $1 \mu \mathrm{~V}$... 1 V ETK) ............. $<4$ d
	Regelgeschwindigkeit ......... an Sendearten angepabt

1) 3000 Hz auf Bestellung
3.5 A1-Überlagerer Festfrequenz, 1,25 kHz
3.6 Zeichenverzermungen A 1 $<5 \%$ bei 15 Bd
F1 ....................................... $\langle 5$ bei 100 Bd
3.7 NF-Klirriaktor ..... $<5 \%$
3.8 Blocking bis 4 V ErK vemachlässigbar
3.9 Zश-Durchschlagdämpfunc und Spiegelselektion ..... $>80 \mathrm{~dB}$
3.10 Sonstige Mehrdeutigkeiten
Nebenwellen d. Frequenzsynthese $<90 \mathrm{~dB}$ bei $\kappa f \geq 40 \mathrm{kHz}$
Eigenstörsignale < 0,4 $\mu \mathrm{H}$ äquivalente EMK
3.11 Kreuzmodulation < 10 \% U̇bernahme beiNutzsender: $100 \mu \mathrm{~V}$ EMKStörsender: 200 mV EMK, $\mathrm{a}=30 \%$$\Delta f \geq 40 \mathrm{kHz}$
3.12 Oszillatorstörspannungam Empfänger-Eingang$<10 \mu \mathrm{~V}$, typ. $5 \mu \mathrm{~V}$ bei Abschluß mit $50 \Omega$
3.13 Schutz des Empfängereingangs bis 50 V EMK

4．Antennenanpabgerät

4．1 AnpaBbare Antennen．

Tyo	Frequenzen	
	1，5．．30 MHz	2 ．．． 30 小㞂
Stäbe	7 ．．． 12 m	$4 . . .12 \mathrm{~m}$
Peitschen	7，7．．． 12 m	4，7．．． 12 m
Langdraht	bis 50 m	bis 50 m
Breitband－ antennen	beliebig	beliebis

4．2 Abstimmzeit（autom．Ablauf）．．im Iittel 10 sec

4．3 Stromversorgung una
Steuerung ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Leistungsverstärker VK 213

4．4 Antennenanpassung und
Vorselektion bei Empiang ．．．．．nach jeder Aussendung möglich

5．Zusa玄zgerä．te Îur weiteren Ausbar：

Selektionseinheit FK 100 ．．．．．für hochselektiven Empfängereingang Antennenanpaßserät FK 001 mit Steuerung
für stumme Antennenabstimmung
（keine Energieabstrahluñ bei Abstimmung）


$\begin{aligned} & \text { label } \\ & \mathrm{Nr} . \end{aligned}$	von --> 20	Kabel typ Hersteller	Anwendung	$\int \begin{gathered} \text { Gewicht } \\ \mathrm{o} / \mathrm{m} \end{gathered}$	Loitgs.zahl	Stecker Hersteller	Buchse Horstaller	Anmerkung
K1	$N G \rightarrow$ Antenno	Silbordraht	HF-Vorbindung	max. 50 cm	1	Schraubvorbindung	Schraubverbindung	bei Innonoinbau wird Wollrohrabschirmung empfohlon
K2	Lodstungs-Vorst. $\rightarrow$ A'G od. Antenno	$\begin{aligned} & \text { RG } 8 \text { U odor } \\ & \text { RG } 218 \mathrm{U} \text {. } \end{aligned}$	$\begin{aligned} & \text { HF-Kabol } \\ & \text { HF-Kabel } \end{aligned}$	$\begin{aligned} & 1781 \\ & 730 \end{aligned}$	$1$	$\begin{aligned} & 2 x U_{G}-21 \mathrm{~B} / \mathrm{U} \\ & 2 \times \mathrm{UG}_{\mathrm{G}} 167 \mathrm{G} / \mathrm{U} \\ & \text { (RadIall) } \end{aligned}$	. ${ }^{-}$	bei 30 MHz , mex. $1,5 \mathrm{~dB}$ Dempfg. bei 30 MHz , max. $0,75 \mathrm{~dB}$ " 1)
K 3	Leistungs-Verst. - APG	Alvg 20 geschirmt	Steuerkabel	153	15	851.06T11-12P-50-42 od. 850A-06EC14-12P-2 (Souriau)	90CI 20-19S   (Deutsch)	$\cdots$ 1)
K 4	24-V-Betriebsspg. - Leistungsverstarker	AVG 10 ungeschirmt	Stromvers.-Kabel	130	2		$\begin{aligned} & \text { 840-24-870 } \\ & \text { (Souriau) } \end{aligned}$	max. 1 V Spannungsabfall bol 15 m Anschlußkabellange 2) dazugeh. Endgehtuse 810-20~oos
K5	Empf./Stoueroender $\rightarrow$ Loistungsverstärker	$\begin{aligned} & \text { RG } 8 \mathrm{U} \text { oder } \\ & \text { RG } 58 \mathrm{U} \end{aligned}$	$\begin{aligned} & H F-K_{a b}=1 \\ & H F-K_{a b} b l \end{aligned}$	$\begin{aligned} & 178 \\ & 39 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 x U G-21 \mathrm{~B} / \mathrm{U} \\ & 2 \times U 0-536 \mathrm{~A} / \mathrm{U} \end{aligned}$	-	fur Entfernungen < 10 m
K6	Empf./Stauersondor $\rightarrow$ Leim stungsverstarker	ANG 20 geschirmt	Steuerkabel	30	41	851.06RT-20-41P-50-42   od. $850 \mathrm{~B}-06 \mathrm{LLC}-20 \mathrm{m4} 4 \mathrm{PN} 2$   (Souriau)	851.06RT-20_415-50-42   oder 850B~oGLC-20-41   SN-2 (Souriau)	---
$K 7$	$\begin{gathered} \text { 24-V-Sotriebsspg. } \\ \text { Stouereonder } \end{gathered}$	ANG 10 ungeschirmt	Stromvers. -Kabel	130	2		$\begin{aligned} & 840-24-87 \% \\ & \text { (Souriau) } \end{aligned}$	dazugeh. Endgehäuse 840-2,0-008
K 8	Lautsprechor —— Empf./ Steuersender	NF 1002 Kabelmetal	NF-Kabol Lautspr,	75	2	$\left\{\begin{array}{l} 077 / 0 \\ \text { (Souriau) } \end{array}\right.$	--	$\cdots$
K9	Kopfhörer --) Empf./ Steuersender	gehört zu Kopfhör.	NF-Kabel Kopfhörer	-	2	PJ o55 R geh8rt zu Kopfhörer	-	---
K10	Morsetaste $\rightarrow$ Empf./ Stauersender	gehört 2. Morsetaste	NF-Kabel Morsetaste	-	2	PJ 068 gehört zu Norsetaste	-	$\cdots$
K11	Mikrofon --) Empf./ Steversender	gohört zu Mikrofon	NF-Kabel Mikrofon	-	2	PJ o6s gehört zu Mikrofon	--	-
K12	$\underset{\text { FS-Dox }}{\rightarrow} \underset{\substack{\text { Empfer }}}{\text { sonderer }}$	3236/2 Rosohi	NF-Kabel FS-Box	105	8	$\left\{\begin{array}{l} \text { Y 985/1059 T II } \\ \text { (Kuke) } \end{array}\right.$	$\begin{aligned} & 850 \text { B-o6LC } \quad 12-10 \text { SN - } 2 \\ & \text { (Sour iau) } \end{aligned}$	FS-Vertoller kann bei entsprechend eingerichtetem Arbeitsplatz entfallen
K13	FS-Box $\rightarrow$ FS-Maschine	gehört 2, FS-Masch.	NF-Kabel Fernschr.	-	4	$\begin{aligned} & \text { T 985/1059 T II } \\ & \text { (Kuke) } \end{aligned}$	-	---
K14	Leistungsverstärker —— Empfünger/Steuar- . sondor	AWG 1o geschirmt	Stromvers.-Kabel	130	2	$\begin{aligned} & 840-24.830 \\ & \text { (Sourlau) } \end{aligned}$	$840-24-870$   (Souriau)	dezugeh. Endgehäuse 840-20-008
K27	117/220V-Netz $\rightarrow$ Leistungsverstärker	AlG 14 ungeschirmt	Netzkabel	-	3	845-25-88 $21 \mathrm{~N}=002$ (Souriau)	-	$\longrightarrow$

## Tabelle 1


$\qquad$ Anderungen vorbeholten

Schnittstelle	Kontaktbelegung	Gerätebuchse/-stecker	Beschreibuns
S 1	$\begin{array}{ll}A \\ B & \\ C \\ D & \\ E \\ F \\ H \\ H \\ I & \\ K & \\ L & \end{array}$	Buchso U 79/U	
S 2	Federkontakt innen Federkontakt außen	Klinkenstecker PL 055	
S 3	Foderkontakt innen   Federkontakt mitten   Fodorkontakt außen	Klinkenstecker PL 068	$\begin{aligned} & \begin{array}{l} \text { A1-Taste } \\ \text { A1-Traste (Masse) } \\ \text { Gehäusemasse } \end{array} \end{aligned}\left\{\begin{array}{l} \text { EmK }-14 \mathrm{~V}, I_{\text {max }}=5 \mathrm{~mA} \\ \text { Sohwall } \cdot 7 \mathrm{~V} \end{array}\right.$
S 4	Foderkontakt innen Federkontakt mitton Federkontakt außen	Klinkenstecker PL 068	
S 5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	Fernirel de-Ansohilußdose 8-pol. A00 T 995	
S 6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	Fernmeldo-Anschlußdose 8-pol. AD0 T 385	Sendekontakt Fernschreibor   Sendekontakt Fernschreibor   Empfangamagnet Fernschreiber   Empfangsmagnot Fernschreiber   (a) Linienstromquelle intern   (b) ENK $=60 \mathrm{~V}$   ( $\mathrm{W}_{2}$ ) 40 ... 60 mA intern einstellbar   (c) Brücke intern $\mathrm{K} 2-3$   Anschiuß Sendekontakt-   $\mathrm{L}_{0}$ chstreifonleser K 1-4


Materialerhaltungestufe	Fchlexerkennung	Entdeckuncswahrscheinlichk.	Lokalisierungswahrscheinlichk.	$\begin{array}{ll} \operatorname{INTR} & 1) \\ (\min ) \end{array}$	Auswechseln von
1,2	Go/NOGO Test mit eingobzuter Tosteinrichtg. (BITE) und Betriebsverhalten	> 958	> $90 \%$	15	Einschub
2,3	a) Eingebaute Testeinrichtung (BITE) und Betriebsverhalt.   b) Prufstation REMUS mit AtlaswPrlifprogr. oder handbedientern MeBplatz	$>80 \%$ $100 \%$	$\begin{gathered} >75 \% \\ >90 \% \text { auf } 4 \text { Modul } \\ >95 \% \text { auf } 2 \text { Moduln } \end{gathered}$	$5$ $5^{2)}$	Modul
3,4	Prlifstation REMUS mít ATLAS-Prlufprogramm oder handbedientern Meßplatz	$100 \%$	3)	3)	Bauteil oder Unterm baugruppe, wann Reparatur des Moduls vorgeseher.

[^1]Anderungen vorbehalien

GERÄT	BAUART	$\begin{gathered} \text { Brejte }(B) \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { HÖHE (H) } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { TIEFE }(T) \\ & (\mathrm{mm}) \end{aligned}$	VOLUMEN (1)	$\begin{gathered} \text { GEWICHT } \\ (\mathrm{kp}) \end{gathered}$
EMPFÄNGER/STEUERSENDER XK 043	Einschub $19^{\prime \prime}$ im Gehäuse.	482,6	131,8	370	21,5	19,5
LEISTUNGSVERSTÄRKER VK 213	Einschub 19" im Gehäuse	$482,6$	177	370	28,8	31.1)
ANTENNEN-ANPASSGERÄT FK 213	dichtes, wetterfestes Gehäuse	268	230	333,5	21,6	12,0
FS-VERTRILER 2)   GV 001	Metallgehäuse	130	60	115	0,9	0,8

[^2] BF-SENDE-EMPFANGSANLAGE XK 403
MASSE UND GEWICHTE



1. Allgemeines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Empfanger/steuersender XK 043 und HF-Leistungs- $\quad$ verstärker VK $213 \ldots \ldots$
2.1 Einbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Verkabelung . . . . . . . . . . . . . . . . . ................................ 5
2.3 Kūhlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Umrüsten des Schwingrahmens ks $113 \ldots . .$.
2.5 Besondere Einstellung zum Betrieb ........................ 7
$\begin{array}{ll}\text { 2.5.1 } & \text { Einstellung der Leistungsnachbildung } \\ \text { im HF-Verstärker VK } 213 \text {............................................... }\end{array}$
2.5.2 Umstellung für Netzspannung $115 / 220$ V AC ............. 7
2.5.3 Einstellen des Linienstromes ................................ 8
3. Antennen-AnpaBgerat $F K 213$........................................ 9
3.1 Einbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 verkabelung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4. Herstellung der Kabel . . .i. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Verzeichnis der Bilder zux Montageanleitung

Bild 1 EinbaumaBe Empfanger/Steuersender XK 043
Bild 2 Einbaumaße Leistungsverstärker VK 213
Bild 3 Einbaumaße Schwingrahmen KS 113
Bild 4 Einbaumaße Schwinguntersatz KS 013
Bild 5 Montageanleitung Antennen-AnpaBgerät FK 213
Bild 6 Frontansicht und Antennenanschluß Antennen-Anpaßgerät FK 213
Bild 7. Verkabelungsplan
Bild 7 A Verkebelungspian mit Selektionseinheit FK 100
Bild 8 Kabelzuschnitt für st 23
Bild 9 Aufbau des steckers Souriau 8-51-06T-14-12p-50-42
Bild 10 Anschlubschema für K3.
Bild 11 Kabelzuschnitt fūr Bu 13
Bild 12 Aufbau des Steckverbinders Cie Deutsch 9DCI20-19S
Bild. 13. Montage des Schrumpfteils
Bild 14 Kabelzuschnitt fur St 56 und Bu 26
Bild 15 Aufbau des Steckers Sourj.au 8-51-06Ri-20-41p-50-42 und angekrimpter Kontakt an Kabel AWG 20

Bild 16 Aufschrumpfen des Formteils
Bild 17 : Anschlußschema für K 6
Bild 18 Kabelzuschnitt für St 28, Bu 57 und Bu 24
Bild 19 Aufbau des Steckers Souriau 8-40-24-830
Bild 20. Anschlußschema für K 14 und Anschlußschema für K 4
Bild 21 Kabelzuschnitt für Bu 27
Bild 22 Aufbau des Steckers Souriau 845-25-8821N-002
Bild 23 Anschlußschema für Bu 27
Bild 24 Haube für Gestelleinbau
Bild 25 Haltewinkel links
Bild 26 Haltewinkel rechts


1. Allgemeines

Die Anlage besteht aus zwei Einschüben und einem wettexfesten Antennen-AnpaBgerät FK 213. Die Einschübe können an beliebiger Stelle untergebracht werden, das Anpaßgerät EK 213 ist in unmittelbarer Nähe der Antenne zu montieren.

Gewichte:

Empfänger/Steuersender XK	043	$19,5 \mathrm{~kg}$
HF-Leistungsverstärker VK 213	$34,0 \mathrm{~kg}$	
Antennen-MnpaBgerät	FK 213	$12,5 \mathrm{~kg}$

2. Empfänger/Steuersender XK 043 und HF-Leistungsverstărker VK 213

### 2.1 Einbau

Beide Geräte werden serienmäBig als 19"-Einschübe geliefert.
Der Empfänger/Steuersender XK 043 hat eine Höhe von drei Ein heiten, der Leistungsverstarrker VK 213 vier Einheiten.

Diese beiden Einschübe lassen sich entweder in einem 19"-Gestell oder in den zugehörigen Schwingrahmen KS 113 montieren. Eür den Gestelleinbau des Empianger/Steuersender XK 043 ist die Haube mit besonderen HaltewinkeIn versehen (siehe auch Bild 24, 25 und 26).

EinbaumaBe Leistungsverstärker VK 213
siehe Bild 2
Einbaumaße Empfänger/Steuersender XX 043
Einbaumaße Schwingrahmen KS 113
siehe Bild 1
siehe Bild 3
Die Einbaulage kann beliebig je nach Montageart gewăhlt werden.

```
Achtung
Sicherstellen, daB der Luftein- und
-austritt frei zugängig ist !
```

Blatt 4

## Verkabelung

Die für den AnschluB der Geräte erforderlichen Kabel gehören nicht zum serienmāßigen Lieferumfang und mūssen zusätzlich angefertigt werden. Unterlage dafür bilden die dieser Montageanleitung beigegebenen Kabelzeichnungen.

Die Verkabelung erfolgt gemāB Bild 7.bzw. Bild 7 A. Die Kabelanschlusse des Empfänger/Steuersenders XK 043 und Jes HF-Leistungsverstarkers VK 213 befinden sich auf der Rückseite der Geräte. Die Steuexkabel haben handsteckverbindungen mit Bajonettverschluß, die $H F-K a b e l$ sind mit Schraubverbindungen System $N$ versehen. Ferner haben alle drei Geräte der Anlage eine Erdungsklemme, an die gemảß VDE-Vorschrift je ein Erdungskabel anzuschließen ist.

## Kühlung

Der HF-Verstärker wird mit Hilfe von zwei eingebauten Lüfern gekühlt. Der Lufteintritt erfolgt durch die Frontplatte, dex Austritt durch die Rückwand. Besondere Kühlluftkanale sind bei dieser Anlage nicht erforderlich.

Umrüsten des Schwingrahmens KS 113
Der Schwingrahmen $K S 113$ kann sowoh1 für den Empfänger/Steuersender XK 043 als auch für den $H F-$ Leistungsverstärker VK 213 eingesetzt werden. Der Auslieferungszustand vom Herstellecwerk entspricht immer der Anwendung für $H F-L e i s t u n g s v e r s t a ̄ k e r$ VK 213. Anpassung an den jeweiligen Anwendungsfall:

- Die beiden Befestigungslaschen zu bejden Seiten der Eront: lösen und im Lochabstand entsprechend folgender Darstellung befestigen.


Stellung für Empfanger/ Steuersender XK 043

- Die beiden hinteren Führungsstifte für den Einschub in der Hōhe verstellen. Dazu die beiden Kreuzschlitzschrauben lösen, Klotz in'entsprechende Läge bringen und wieder festschrauben.


Stellung für HF-Leistungsverstärker VK 213


Stellung für Enpfänger/ Steuersender XK 043

Blatt 6

Installationsanveisung fur die HF-Sende-Empfangsanlage XK 403

- \%				
$\begin{aligned} & \frac{E}{5} \\ & 0 \\ & 0 \end{aligned}$				
-				
है   $\stackrel{\text { L }}{ }$				
宕				
倉				

2.5 Besondere Einstellungen zum Betrieb
2.5.1 Einstellung der Leitungsnachbildung im HF-Verstārker VK 213: Durch die Leitungsnachbildung im HF-Verstärker VK 213 können zur Optimierung der Ausgangsleistung unterschiedliche Kabeldampfungen zwischen Empfänger/Steuexsender XK 043 und Verstärker VK 213 (K5) ausgeglichen werden. Die Einstellung wird im Herstellerwerk derart vorgenommen, daß fur die in der praxis vorkommenden Anwendungsfalle eine einheitliche Einstellung gegeben ist. Es wird ab Werk die volle Leitungsnachbildung eingeschaltet, die 50 Meter Kabel (RG 58) nachbildet. Wird also ein EF-Kabel. X 5 größer 10 m Länge verwendet, so sollte der entsprechende Wert durch Unlöten an der Leitungsnachbildung kompensiert werden. Anderenfalls würde die HF-Ausgangsleistung entsprechend der Kabeldampfung absinken.

Ansicht der Leitungsnachbildung von oben:


Brücken B1... 4 so umlöten, daß entsprechende Nachbildungen ungangen werden.
2.5.2 Umstellung für Netzspannung 115/220 V AC


2 umklembare Drāhturücken
Blatt 7

Jnstallationsanmeisung fur die
wF-Sende-Empfangsanlage XK 403
Zerchn. Nr
514.2005 .99 JA

noch
2.5.2 Nach Unstellung der Netzspannung muß das Wendeschild $115 / 220 \mathrm{~V}$ an der Frontplatte (siehe Bild 2) umgeschraubt werden, um die eingestellte Netzspannung anzuzeigen.

### 2.5.3 Einstellen des Linienstromes (Bild 1)

- Fernschreibmaschine an $B u 68$ des Empfänger/Steuexsender xK 043 anschließen
- Schalter Fi .- BETRIEBSART - in Stellung "BEREIT" bringen (Stellung des Schalters -SENDEART- beliebig, des Schaiters -BETRIEBSART* auf "EMPFANGEN" oder "SENDEN/EMPE. ${ }^{\text {P }}$ )
- Gleichspannungs-Voltmeter an die MeBbuchse 63 anschließen ( $\mathrm{Ri}>1000 \mathrm{Ohm} / \mathrm{V}$ )
gemessen wird der Spannungsabfall an einem 15mohm-Widerstand

Linienstrom	40 mA	60 mA
MeBspannung	$0,60 \mathrm{~V}$	$0,90 \mathrm{~V}$

- Je nach Fernschreibertyp entsprechenden Linienstron durch Drehen an Potentiometerschlitz (Ruckseite neben Eernschreibstecker) einstellen.

Blatt 8

Antennen-AnpaBgerat FK. 213

Einbau
Das wetterfeste Antennen-AnpaBgerat FK 213 muB In uninittelbarer Nähe der Antenne angebracht werden. Die Verbindung zur Antenne (Ki) soll so kurz wie möglich sein. Ihre Länge darf 500 mm nicht überschreiten. Das $12,5 \mathrm{~kg}$ schwere Gerat wird mit 16 Sechskantschrauben M4 (Bild 5) oder über die Montageplatte des Schwingurtersatzes mit 4 Sechskantschrauben M 10 (Bild 4) befestigt.

Ein Sonnenschutz muß dann über dem Gerät angeoranet sein, wenn es durch direkte Sonneneinstrahlung aufgeheizt wird und damit die laut Datenblatt zulässige ungebungstemperatur kein Kriterium für die Innentemperatur des Gerätes mehr darstellt.

Verkabelung

## Siehe Bild 7

Die Kabelanschlūsse des AnpaBgerätes FK 213 befinden sich auf der Frontseite. Das Steuerkabel hat eine Handsteckverbindung mit Schroub verschluß, das HF -Kabel ist mit einer Schraubverbindung System N versehen.

Die Leitung zur. Antenne ist aus Kupfexaraht von mindestens 1,5 ma Durchmesser, besser aus Kupferband auszufünren. Zum Anschluß hat das AnpaBgerat FK 213 einen Gewindezapfen M8 mit unverlierbarer Sechskantmutter. (siehe Bild 6).
Befindet sich die Antennenleitung innerhalb eines Raumes, in dem sich außer dem Anpaßgerät. FK 213 noch anderé Gexäte befinden, so ist die Leitung mit einer metallenen Manschette abzuschimen, damit Keine unervünschte, die Geräte störende Pbstrahlung stattfinden karn. Es ist noch zu beachten, daß im Extremfall (5 m Peitsche, $1,5 \mathrm{Mgz}, 100 \mathrm{~W}$ ) am hntennenfußpunkt eine hochfrequente Spannung von 5000 V auftritt. Aus diesem Grind ist an geeigneter Stelle ein handelsübliches Warnschild "Vorsicht Bochspannung" anzubringen. An die Erdungsklemme ist nach VDE-Vorschrift ein Erdungskabel anzuschließen.
Der Masseanschluß Bild 5 und 6 muß auf kūrzestem Wege mit einem Kupferband (min.Querschnitt $10 \mathrm{~mm}^{2}$ ) mit der Metallkonstruktion des Schiffsköpers verbunden werden. VORSICFT: Berührungen zwischen Kupferband und Alu-Gehäuse bzw Schwinguntersatz des Anpaßgerãtes FK 213 vermeiden , Gefahr von Kontaktkorrosion !

Blatt 9

## Herstellung der Kabel

Siehe hierzu Bild 7
Hinweis: Ausfürliche und bindende Montageanleitungen für die Stecker sind die der jeweiligen Herstellerfirmen.

Kabel K2 (Stecker St12 und St22)
In der Regel genügt ein $10,3 \cdots m-K o a x i a l k a b e l$, das bei 50 m Länge und 30 MHz eine Dämpfung von $1,5 \mathrm{~dB}$ aufweist. Es kann wahlweise auch ein schwereres 22 -nm-Kabel verwendet werden mit $0,75 \mathrm{~dB}$ bei 50 m und 30 MHz . Als Stecker wird ein $N$-Stecker mit SchraubverschluB verwendet. Die folgende Tabelle gibt eine Typenübersicht für beide Kabelarten.

Hersteller	Steckertyp	Kabeltyp	Außen $\emptyset$	Gevjcht
Radiall	UG-21B/U	RG8/U, RG213/U	$10,3 \mathrm{~mm}$	$178 \mathrm{~g} / \mathrm{m}$
Radiall	UG-167G/U	RG218/U	$22 \quad \mathrm{~mm}$	$730 \mathrm{~g} / \mathrm{m}$

Die Montage dieser weltweit eingeführten Stecker exfolgt in der allseits bekannten Weise.

## Kabel K5 (Stecker St 25 und St55)

Es wird hier das gleiche Kabel verwendet wie für K 2 . Ist die Verbindung zwischen Steuersender und Leistungsverstārkex Vr. 213 kurz (siehe auch 2.5.1 dieser Montageanleitung), das heibt kleiner als 10 m , so genügt auch ein leichteres 5 -mm-Kabel. Als stecker wird ein N -Stecker mit SchraubverschiuB verwendet. Die folgende Tabelle gibt eine Typenübersicht für beide Kabelarten.

Hersteller	Steckertyp	Yabeityp	AuBen	Gewicht
Radiall	UG-21B/U	RGB/U, RG213/U	$10,3 \mathrm{~mm}$	$178 \mathrm{~g} / \mathrm{m}$
Radiall	$U G-536 A / U$	RG58C/U	5	mm

Die Montage dieser weltweit eingeführten Steckex erfolgt in der allseits bekannten Weise.

## Kabe1 K3 (Stecker St23)

Das Kabel wird montiert aus 15-adriger geschirmter Steverleitung AWG 20, 0,52 $\mathrm{mm}^{2}$. Der Steckverbinder $5 t 23$ ist ein Handsteckverbinder mit Bajonettverschluß. Seine Montage wird im folgenden beschrieben.

Blatt 10

Installationsanweisunt für die
HF-Sende-Empfangsanlage XK 403
Zachon Nr
.514 .2005 .99 J


Der Steckverbinder wird mit einem Formschrumpfteil und dem zugehōrigen Klebeband abgedichtet. Dieses Teil genört nicht zum serienmäBigen Lieferumfang des Steckers und muß gesondert beschafft werden. Folgendes Schrumpfteil kommt bei gerader Ausführung des Kabels zur Anwendung:

Stecker	Formschrumpfteil, Typ	Hersteller
St23	$202 \times 153-3$	Raychem

Bei Winkelausführung muß ein entsprechendes Formschrumpfteil der Firma Raychera gewahlt werden. Exforderliche Spezialwerkzeuge: Heißluftgebläse $500^{\circ} \mathrm{C}$, z.B. Raychem Typ CVi511.

## Arbeitsgănge:

Uberwurfmutter und äuBeren Konus uber das Kabelende schieben, Mantel entfernen, Bild 8.
Geflecht aufweiten und inneren Konus so weit wie möglich unter das Geflecht schieben, Bild 9. Geflecht so weit abschneiden, daB es gerade bis zur Kante $k$ (Bild 9) reicht. Das Geflecht darf keinesfalls über die Kante des inneren Konus hinaus überstehen.
Adern abisolieren, Bild 8.
Adern aniōten nach Bild 10. An die Kontakte $K$ und $M$ werden je zwei Adern angelötet.
Eine Ader bleibt frei. Diese so kurz wie möglich abschneiden. Stecker zusammenbauen, Bild 9. Dazu Mittelteil anschrauben, Kabel zentrisch ausrichten. Inneren Konus mit übergeschobenem Geflecht vorsichtig in den Steckermittelteil eindrücken bis zum Anschlag. Außeren Konus fest aufdrücken, so daß das Geflecht einwandfrei zwischen innerem und äuBerem Konus fixiert ist. Das Geflecht darf

Blatt 11

Installationsanweisung für die HF-Sende-Fmp fangsanlage XK 403

Zerchn. Nr
514.2005 .99 JA

nicht uber die Kante K (Bild 9) hinausragen. Uberwurfnutter aufSchrauben, FormschrumpEteil mit heißluft von $500^{\circ} \mathrm{C}$ uberschrumpfen, so wie dies in Bild 16 dargestellt ist.
Vorsicht bei nicht hitzebeständigen kabeln mit thermoplastischer Isolation !

Kabel $k 3$ (Steckverbinder Bu13)
Das Kabel wird montiert aus 15-adriger geschirmter Steverleitung AWG 20, 0,52 $\mathrm{mm}^{2}$. Der Steckverbinder Bul3 ist ein Handsteckverbinder mit Schraubverschluß, der durch eine Metallbuchse und eine Befestigungsscheibe ergānzt wird. Die Buchse und die Scheibe gehören nicht zum serienmäbigen Lieferumfang des Steckverbinders und müssen gesondert beschafft werden. Die Montage dieser Teile wird in folgenden beschrieben. Die Montage des Steckers am anderen Kabelende, St23, wurde bereits im vorhergehenden Kapitel behandelt. Für Bul3 kommen zur Anwendung:

Steckverbindex	Hersteller	Typ
Bu13	CiE.Deutsch	9 DCI 20-193


Steckverbinder	Hersteller	Buchse	Scheibe
Bu13	Rohde\&Schwarz	516.0897	516.0900

Der Steckverbinder wird mit einem formschrumpfschlauchteil abgedichtet. Djeses Teil gehört nicht zum serienmäßjgen Lieferumfang des Steckverbinders und muß gesondert beschafft werden. Ferner ist zur Abdeckung der Metallteile ein spezielles thermoplastisches Klebeband erforderlich. Es kommen zur Anwendung:

Steckverbinder	Eormschrumpfteil		Thermoplastisches Klebeband	
	Typ	Hersteller	TYp	Herstel
Bu13	202K153-3*	Raychem	Thermofit Klebeband Nr. 110   $0,3 \times 20 \mathrm{~mm}$	Raychem

*: Formschrumpfteil für gerade Ausfühiung
Bei winkelausführung muß ein entsprechenes Formschrumpfteil der Fa. Raychem gewählt werden.


Crimpzange Cie. Deutsch, Typ 15 500-20 oder Buchanan-Zange, Typ M 22520-1/01 mit Kopf, Typ THi 18.
Montagewerkzeug Cie. Deutsch, Typ M 15513-20
Demontagewerkzeug Cie. Deutsch, TYp M 15515-20
Heibluftgeblāse $500^{\circ} \mathrm{C}, \mathrm{z}$.B. Raychem, Typ CV 1511
Grōßerer Iötkolben, mindestens 150 W.

## Arbeitsgãnge:

Mantel entfernen, Bild 11.
Adern abisolieren.
Wird kein Teflonkabel verwendet, dann muB über die Adern, aber unter den Schimm, ein stūckhitzebestāndiger schlauch odex Schrumpe schlauch von 40 mm Länge eingezogen werden. Kontakte ancrimpen nach Bild 10.
Eine Ader bleibt frei. Diese so kurz wie möglich abschneiden. Die. Crimpzange muB mit einem (rot gekemnzeichneten) Einsatz fur Drähte AWG 20 versehen sein, siehe Gebrauchsanleitung fur die zange. Zun Ancrimpen Kontakt ganz auf das Kabelende schieben. Kontakt bis zum AnschluB in die Zangenōffnung einführen, Zange zusammendrūcken, bis sie einrastet und sich beim loslassen von selbst wieder offnet. Hinteres Gehausestück unter das Geflecht schieben, Bild 12.

Hūlse einschieben.
Kontakte einsetzen nach Bild 10.
Den Kontakt von Hand in das Loch dex Kontakthalterung einschieben und mit dem Montagewerkzeug soweit weiter einschieben, bis er ganz eingerastet ist. Zur Kontrolle auf richtigen festen Sitz kuxz an der Ader ziehen. Ein einmal eingeschobener Kontakt kann ohne Spezialwerkzeug nicht wieder ausgezogen werden.
Die fünf nicht belegten kontakte müssen auch eingesetzt werden. Der verbleibende Hohlraun hinter dem Kontakt ist mit einem Blindstopfen (sealing plug) zu verschlieBen, da anderenfalls die Wasserdichtigkeit des steckers leidet. Zum schluß kontrollieren, ob alle Kontakte in einer Ebene sitzen.
Soll ein kontakt wieder ausgezogen werden, so ist dazu das Demontagewerkzeug von vorne übex den Kontakt zu schieben, bis zum Anschlag. Jetzt ist die Verriegelung ausgerastet. Durch Druck auf den hinteren Griff des Werkzeugs wird dann der kontakt ausgestoßen.

Blatt 13

Insial.lationsanweisung fūr die
EF-Sendememp Fangsanlage XK 403
Zerchn. Nr 514.2005 .99 JA

Steckez zusammenbauen, Bild 12
Hinteres Gehäuse zusammen mit Druckscheibe, Buchse und befestigungsscheibe festschrauben. Geflecht uber die Hilse kammen und abschneiden. Das Geflecht darf nur über die Hülse greifen. Ende des Geflechtes durch Unwickeln mit drei Windungen Blankdraht auf der Hulse befestigen. Geflecht mit grobem Lötkolben anlōten. Bei kabeln mit thermoplastischer Isolation, wie zum Beispiel PVC-Kabeln, ist entsprechend vorsichtig zu verfahren, damit nicht durch ubergroße Hitzeeinvirkung das Kabel beschädigt wird.

Forinschrumpfteil montieren nach BiId 13
finteren Teil der fertigen Steckverbindung reinigen mit einem Lōsungsmittel. Uber die. Stellen, die später vom Schrumpfteil bedeckt werden, zwei Lagen des thermoplastischen Klebebandes aufwickeln. Es ist zu beachten, daB Eormschrumpfteile während der Verarbeitung un ca. 20 \% läger werden. Der kier verwendete Typ hat eine Eertiglange vom 75 min.
Damit sich das Klebeband nicht wieder abwickelt, wird mit Hilfo eines rotkolbens an seinen Enden festgeheftet. Schrumprteil mit HeiBluft von $500^{\circ} C$ aufschrumpfen. Vorsicht bei nicht hitzebestandigen Kabeln mit thermoplastischer Isolation !

## Kabe1 K6 (Steckverbinder Bu26 und St56)

Das Kabel wird montiert aus 41 -adriger abgeschirmter Steuerleitung AmG $20,0,52 \mathrm{~mm}^{2}$. Die Steckverbinder sind Handsteckverbinder mit Bajonettverschlub. Ihre Montage wird im folgenden beschrieben. Folgende Stecker kommen zur Anwendung:

Stecker	Hersteller	Steckertyp
Bû26	Souriau	$8-51-06 R T-20-415-50-42$
St 56	Souriau	$8-51-06 R T-20-41 \mathrm{P}-50-42$

Die Steckverbinder werden mit einem Formschrumpfteil abgedichtet. Dieses Teil gehört nicht zum seriemmáigen Lieferunfang des steckers und muß gesondert beschafft werden. Folgendes Schrumpfteil kommt bei gerader Ausführung des Kabels zur Anwendung:

Blatt 14

Installationsan*eisung für die
HF-Sende~Empfangsanlage XK 403


Bei Winkelausfūhrung muß ein entspechendes Formschrumpfteil
der Firma Raychem gewahlt werden.
Stecker und Buchse sind bis auf den Kontakteinsatz völlig gleich aufgebaut und werden in der gleichen Weise montiert.

Erforderliche Spezialwerkzeuge:
Crimpzange nach Spezifikation MS 3191-1 der Norm MIL-T-22520 B, z.B. Souriau, Typ 8465 oder Buchanan, Typ 10692.

Montage-Werkzeug für Kontakte $1 \mathrm{~mm} \varnothing$, entweder Eindrück-Stift, Souriau, Typ 8500-1
oder Eindrūck-Zange, Souriav, Typ 8500-29A, Demontage-Werkzeug für Kontakte $1 \mathrm{~mm} \phi$, Souriau Typ 8500-31, HeiBluftgeblāse $500^{\circ} \mathrm{C}, \mathrm{z} \cdot \mathrm{B}$. Raychem Typ CV 1511.

## Arbeitsgânge:

Uberwurfmutter und äuBeren Konus uber das Kabelende schieben, Mantel entfernen, Bild 14.

Geflecht aufweiten und imneren Konus so weit wie möglich unter das Geflecht schieben, Bild 15.

Geflecht so weit abschneiden, daß es gerade bis zur Kante $K$ reicht. Das Geflecht darf keinesfall uber die Kante $K$ des inneren Konus hinaus überstehen.

Adern abisolieren, Bild 14.
Kontakte ancrimpen. Die Crimpzange muß mit einem (rot gekenmzeichneter Einsatz für Drähte AWG 20 versehen sein, siehe Gebrauchsanweisung fur die Zange. Zun Ancrimpen Kontakt ganz auf das Kabelende schieben.
Der hintere Kragen des Kontaktes grejft dabei über die Isolation, Bild 15.

Kontakt bis zum Anschlag in die Zangenöffnung einführen, Zange zusammendrücken, bis sie einrastet und sich beim Loslassen von selbst wieder ōffnet.

Kontakte einsetzen nach Bild 17. Wenn alle Kontakte angecrimpt sind, die einzelnen Teile des Rundgehāuses ūber den Kabelstrang schieben, Bild 15 . Jede einzelne Ader so mit der Montagezange fassen, dab die Schnabelspitzen der zange am rūckwätigen Teil

Blatt 15

Installationsanweisung für die uF-Sende-Empfangsanlage XK 403

des Kontaktes anliegen. Kontakt in das Loch des Isolierkörpers schieben, bis er spūrbar einrastet. Zur Kontrolle auf richtigen festen Sitz kurz an der Ader ziehen. Ein einmal eingeschobener Kontakt kann ohne Spezialwerkzeug nicht wieder ausgezogen werden. Zum Schlub kontrollieren, ob alle Kontakte in einer Ebene sitzen.

Soll ein Kontakt wieder ausgezogen werden, so ist dazu das Demontagewerkzeug von vorne uber den Kontakt zu schieben; jetzt ist die Verriegelung ausgerastet, und der Kontakt läßt sich durch Ziehen an der Ader wiedex herausziehen.

Stecker zusammenbauen, Bild 15. Dazu Mittelteil anschrauben, Kabel zentrisch ausrichten. Inneren Konus mit übergeschobenem Geflecht vorsichtig in den Steckermittelteil eindrücken bis zum Anschlag. ĂuBexen Konus fest aufdrūcken, so dab das Geflecht einwandéfei zwischen innerem und äuberem Konus fixiert ist. Das Geflecht darf nicht über die Kante $K$ (Bild 15) hjnausragen. Uberwarimutter autschrauben, Formschrumpfteil mit Heibluft von $300^{\circ} \mathrm{C}$ überschrunpfen entsprechend Bild 16 , Vorsicht bei nicht hitzbeständigen Kabeln mit thermoplastischer Jsolation.

## Kabel K4 (Steckverbinder Bu24)

und K14 (Steckverbinder St28 und Bu57)

Für das Kabel $k 14$ ist eine geschirmte 2 wadrige Leitung ANG $10,5,3$ m zu verwenden. Für K4 genügt ungeschirmte Leitung ANG 10.
Die steckverbinder sind Handsteckverbinder mit Bajonettverschiuß. Ihre Montage wird im folgenden beschrieben. Folgende stecker. kommen zur Anwendung:

Stecker	Hersteller	Steckertyp	
St28	Souriau	$8.40 .24 .830\}$	
Bu24	Souriau	$8.40 .24 .870$	dazu: 8.45.20.00.37.N. 009   -(Endgehãuse)
	Raychem	.	dazu: 202D-132-3   (Formschrumpfteil ger $222 \mathrm{D}-142-3$   (Formschrumpteil, $90^{\circ} \text {-Winkel) }$

Blatt 16

Installationsanweisung fur die
HE-Sende-Enpfangs-Anlage XK 403
Zeichn. Nr.

Stecker und Buchse werden bis auf den Kontakteinsatz völiig gleich aufgebaut und werden in der gleichen Weise montiert.

Die Fonmschrumpfteile gehören nicht zum serienmäßigen Lieferumfang der stecker und müssen getrennt beschafft werden.

## Arbeitsgānge:

Mantel entfernen, Bild 18.
Adern abisolieren,
hintere Steckerteile über das Kabel schioben, Reihenfolge siehe Bild 19, Kabel anlöten nach Bild 20.

Stecker montieren nach Bild 19. (Überwurfmutter bleibt abgeschraubt) Ausgekammes Geflecht mit Blankdraht $(0,5 \emptyset)$ in Nut festbinden und an Kabel. entlang zurücklegen. Úberwurfmutter festschrauben. Himaus… ragende Schirmdrāhte kürzen. Formschrumpfteil mit Heißluft von $300^{\circ}$ überschrumpfen nach Bild 13 und 16.

## Kabel 227 (Steckverbinder Bu27)

Fur das Kabel K27 ist eine ungeschirmte 3-adrige Leitung AWG 14, $2,1 \mathrm{~mm}^{2}$, zu verwenden.
Der Steckverbinder ist ein Handsteckverbinder mit Bajonettverschiub. Seine Montage wird im folgenden beschrieben. Folgender Steckverbindex kommt zur Anwendung:

Steckvarbinder	Hersteller	TYP	
Bu27 .	Souriau	$\begin{aligned} & 8.45 .25 .88 .37 \mathrm{~N} 009 \\ & \text { (mit konzentriertem } \\ & \text { Schirmanschlub) } \end{aligned}$	```dazu: 202D*132-3 (Formschrumpfteil gerade) 222D-142-3 (Formschrump&tei), 900-Winkel)```

Die Formschrumpfteile gehorren nicht zum Lieferumang der stecker und müssen getrennt beschafft werden.

Arbeitsgănge:
Mantel entfernen, Bild 21.
Adern abisolieren,
hintere Steckerteile über das Kabel schieben.
Kabel anlōten nach Bild 23.
Stecker montieren nach Bild 22.
Formschrumpfteil mit Heißluft von, $300^{\circ} \mathrm{C}$ uberschrumpfen nach Bild 13 und 16 .

Installationsanweisung für die
HE-Sende- Whpfançsandage xK 403



81att 19

Bi Einbaumane	
Leistungsverstärker VK 213	Biid 2

514.2005 .99 JA

Blatt 20

| Einbaumaße |
| :--- | :--- | :--- |
| Schwingranmen KS 113 |$|$| Bild 3 |
| :--- | :--- |

Schwingranmen KS 113
514.2005 .99 JA

## SEITENANSICHT



Masseverbindung vom Hersteller montiert


Nach dez Nontage Verschraubung
mit HE 088.3152 komplett abdichtem.
*) Vox dem Nontate Auflageflërnen
mit Wrion8.3152 bestaichen.
Blatt゙ 21

## Einbaumaße

Schwinguntersatz KS 013

514.2005 .99 Jild 4



Anmerkung: Die Dichtungsmasse Ru.S Sach Nr. WH 088.3152 wird von Fa . DOW CORNING unter der Bezeichnung 3145 RTV geliefert



Froniansicht u. Ant.-Anschlun


| Vh |  |
| :---: | :---: | :---: |
| Verkabelungsplan |  |
| Vohne Peripheriegeräte $)$ | Bild 7 |

Blatt 25

0 Verkabelungsplan mit Selektionseinheit FK 100	B11d 7 A
	514.2005.93 JA



天) Dieses Mab gilt für gerade dusfuhrung des Kabels. Bei Verwendung ejnes gewinkelten Foximschrumpfeiles ist das Maß entsprechend zu verlängern.

Sabelzuschnitt für	
St 23	Bild 8
514.2005 .99 Ji	




Dio Montage erfolgt 80 in der Anordnung , wie dio Einzoltollo in der Explosionazojchnuns dsrgeatellt aind.

| AufbaU des Steckers SOURIAU | Bild 9 |
| :--- | :--- | :--- |
|  | 514.2005 .99 |



Blatt 28

| Anschlußschema für |
| :---: | :---: | :---: |
| K3 | | Bild 10 |
| :---: | :---: |


*) Dieses Mag gilt für gerade ausführung des Kabels. Bei Verwendung eines gewnkelten Formschrumpfteiles ist das Maß entsprechend zu verlängern.


Die Montage erfolgt so 1 n der
Anordnung, wie die Einzalceilo in
der Explosionszelchnung dargescelle sind.

Formschrumpfteil aufgeschrumptt Fertigungslänge 75 mm


Kontakłgehäuse

Scheibe

Vor dem Schrumpten umwickelt mit . 2 Lagen Klebeband Thermofit $0,3 \times 20$ (Nr. 110 Fa.Raychem)

*) Dieses MaB gilt für gerade Ausführung des Kabels. Bei. Vermendung eines gewinkelten Formschrumpfteiles ist das $M a B$ entsprechend zu verlängern.

B	Kabelzuschnitt für	Bild 14
	St. 56 und Bu 26	514.2005.99



Blatt 3



8 Anschlußschema für	K6	$514.2005 .99 \quad 31$


Kabelzuschnitt für
St 28, Bu 57 und Bu 24


D10 Buchso $340-24.830$ 10t bis auf das Kontaktgohaiaoo dem Stacker Folifg gloich. Die Montago orfolgt bo in der Anordnuns, vie die ESnzelteilo in der Exploeionszoichnung dargostelit aind.

Blatt 37

$\widehat{\beta}$	Aufbau des Steckers SOURIAU $\begin{aligned} & 8.40 .24 .830 \text { mit Endgehäuse } \\ & 8.45 .20 .00 .33 \mathrm{~N} .009\end{aligned}$		Bild 19   514.2005 .99 J		

St 28.1

St 28.4


Bu 57.1 Bu 57. 4

## Anschlußschema für K 14

Sind die Adern rot und blau (oder schwarz) gekennzeichnet, so ist die rote Ader an Kontakt 4 zu legen, die blaue (oder achwarze) an Kontakt 1.

Bu 24.1


24 V- Versorgung fui den BF- Verstärker
Bu 24.4 $+24 \mathrm{~V}$

Anschlußschena für K 4 .
Sind die Aderm rot und blau (oder schwarz) gekennzeiohnet, so ist die rote Ader an Kontakt 4 zu legen, die blaue (oder schivarze) an Kontakt 1.

Wird ein geschirmtes Kabel verwendet, so ist der Schirm mit Kontakt 1 zu verbinden。

Blatt 38

| Anschlußschema für |
| :--- | :--- | :--- |
| $K 14$ und $K 4$ |$\quad$| 111 | 20 |
| :--- | :--- |




Uberwurfmutter

Dia Montage ercolge so in der
Anordnung, wie die Elnzelcelie in
dex Explosionszeichoung dargestelle sind.

| Aufbau des Steckers SOURIAU |
| :--- | :--- |
| $8.45 .25 .88 .33 . N .009$ |\(\quad \frac{Bild 22}{\substack{814.2005 .99 \mathrm{JA} <br>

\hline}}\)


Blatt 41

| 8 Anschlußschema für |
| :---: | :---: | :---: |
| Bu 27 |$|$| Bild 23 |
| :---: |
| $514.2005 .99 . \mathrm{JA}$ |



Blatt 42

| Bi Haube für Gestelleinbau 24 |
| :---: | :---: |



| Bild 2.5 |
| :---: | :---: |
| 514.2005 .99 JA |



## TDv 5820/170-13

## Teil1: Beschreibung

Teil 2: Bedienungs-und Betriebsanweisung, technische Sicherheirs-und Betriebsschutzbestimmungen
Teil 3: Materialerhaltung im Truppenbereich (Truppeninstandhaltung)

## HF-Funkgerätesatz 100 W

## XK403

Mai 1978

Diese TOv git für:

Gerät	Versorgungsnummer
HF-Funkgerätesatz XK403   (mit Schwingrahmen)	
HF-Funkgerätesatz $\times$ K 4.03	$5820-12-171-6428$

Die Herausgabe der Teife

> 1- Beschreibung
> 2- Bedienungs-und Betriebsanweisung, :echnische
> Sicherheitsbestimmungen und Betriebsschutzbestimmungen

3- Materialerhaltung im Trupgenbereich (Truppeninstandhaltung)

# HF-Funkgerätesatz 100 W XK 403 

## als

TDv 5820/ 170-13

## wird genehmigt *)

[^3]
## . II

Abschnitt-Nr.	Inhaltsverzeichnis
	Bezeichnung

Teil 1
Beschreibung
1.1 Allgemeine Angaben $1-02$
1.1 .1
1.1 .2
1.1 .3
1.2
1.2 .1.

Bezeichnung des Geräts
1-02
1.1.2

Verwendungszweck des Geräts

- -02

Allgemeine Beschreibung des Geräts 1-02
1.2 .1 .

Gliederung des HF-Funkgerätesatzes XT 403
1-07
Bestandteile des Gerätesatzes
1-07
1.3
1.3.1

Technische Daten
1-09
Allgemeine elektrische und mechanische 1-09 Eiçenschaften
1.3.2 Sendearten 1-12
1.3.3
1.3.4

Empfängerdaten
1-13
1.3 .5

Antennen-AnpaBgerät FK 213
1-14
Zusatzgeräte für weiteren Ausbau
1-14
1.4 T'e:chnische Beschreibung i-17
1.4 .1
1.4.1.1
1.4.1.2
1.4.1.3
1.4.1.4
1.4.1.5

Empfänger/Steuersender XK 043
1-17

1.4.1.6
1.4.1.7

HF-ZF-Teil
1-17
Synthesizer
1-19
Modulatorer/Demodulatoren • 1-19
Betriebs- und Testzentrale 1-21
Bedienteil $1-23$
1.4 .2

Netzteil
1-24
Teststecker
1-25
1.4.2.1

HF-Leistungsverstärker 100 W VK 213 1-25
Stromversorgung 1-26
1.4.2.2 Leistungsverstärker 1-26
1.4.2.2.1 Serde-Empfangsumschaltung 1-27
1.4.2.2.2 Leitungsnachbildung 1-27
1.4.2.2.3 Vorverstärker 1-27
1.4.2.2.4 Leistungsmodul $100 \mathrm{~W} \quad 1-27$

Inhaltsverzeichnis

Abschnitt-Nr.	Bezeichnung	Seite
1.4.2.2.5	Weichentiefpaß	1-28
1.4.2.2.6	Obervellenfilter	1-28
1.4.2.2.7	Filterlogik	1-28
1.4.2.2.8	Steuerlogik	1-28
1.4.2.2.9	Drosselbaugruppe	1-29
1.4.2.2.10	Teststecker (Remus)	1-29
1.4 .3	Antemnen-Anpaßgerät FK 213	1-29
1.4.3.1	HF-Tei]. des FK 213	1-30
1.4.3.2	Steuerung des FK 213	1-30
1.4.3.3	Teststecker	1-31

## Inhaltsverzeichnis



## Inhaltsverzeichnis

Inhaltsverzeichnis		
Abschnitt-Nr.	Bezeichnung	Seite
$2.2 .2 .3$	Inbetriebnahme und Bedienung des HFLeistungsverstärkers VK 213	2-16
2.2.2.3.1	Notbetrieb und Betrieb an Breitbandantennen	2-16
2.3	Antennen-AnpaBgerät FK 213	2-17
2.3.1	Aufbau und Abbau des Gerätes	2-17
2.3.1.1	Aufbau	2-17
2.3.1.2	AnschluB des Antennen-AnpaBgerätes FK 213	2-17
2.3.1.3	Abbau	2-17
2.3.2	Bedienung und Betrieb des AntennenAnpaBgerätes FK 213	2-17
2.4	Pflege	2-19

## Inhaltsverzeichnis

Abschnitt-Nr.
Bezeichnung
Seite

Teil 3 . Materialerhaltung im Truppenbereich (Truppeninstandhaltung)
3.1 Wartung 3-01
3.1 .1
3.1.1.1

Wartungshinweise
3-01
3.1.1.2
3.1.1.3
3.1.1.3.1
3.1.1.3.2
3.1.1.4
3.1.2

Kontrolle des Quarzoszillators
3-01
Kontrolle der Speicherbatterie
3-01
Wartung des Antennen-Anpaßgerätes FK 213
3-02
Variometer
3-03
Vakuum-Kondensator
3-03
3-03
Kontrolle des HF-Funkgerätesatzes XK 403
3-05
satzes XK 403
3.2 Truppeninstansetzung 3-05
3.2.1
3.2 . 2

Instandsetzungshinweise
3-05
Prüfen der Betriebsfähigkeit . 3-05
3.2.2.1
3.2 .2 . 2
3.2 .3
3.2.4
3.2.4.1

3-05
Kontrolle der HF-Leistung und der 3-05
Abstimmung
Test und uberwachung des HF-Funkgeräte- 3-06
satzes XK 403
Störungs- und Fehlersuche 3-06
Ein- und Ausbau 3-07
3.2.4.2 HF-Leistungsverstärker VK 213 3-10
3.2.4.3
3.2.4.4
3.2.4.5
3.3

Sicherungen
3-15
Auswechseln der Lüfter 3-15
Auswechseln der Trockenpatrone 3-16
Fehlersuche mit Testeinrichtung und 3-53


## Verzeichnis der Bilder und Tabellen



TDV 5820/170-13

## Teil 1

BESCHREIBUNG

1.1 Allgemeine Angaben
1.1.1 Bezeichnung des Geräts

HF-Funkgerätesatz 100 W XK 403-514.2005

### 1.1.2 Verwendungszweck des Geräts

Der HF-Funkgerätesatz XK 403 ist eine Funkanlage mittlerer Leistung, die im Kurzwellenbereich arbeitet und aufgrund ihrer robusten Bauweise für den Einsatz auf Schiffen (bzw. Booten), Lanafahrzeugen und stationären Anlagen verwendet wird.

### 1.1.3 Allgemeine Beschreibung des Geräts

Der HF-Funkgerätesatz XK 403 besitzt folgende besondere Merkmale:

- Frequenzbereich $1,5 \ldots 30 \mathrm{MHz}$ Senden, 10 kHz . . . 30 MHz Empana
- Dauersendeleistung 100 W , umschaltbar auf 10 W
- Modulationsarten: A1, A3H, A3J (OSB, USB)
$F 1,0 \ldots 100 \mathrm{Bd}, \pm 42,5 \mathrm{bzw} \pm \delta 5$ und $\pm 425 \mathrm{~Hz} \mathrm{He}$
- Antennenanpassung an Stab-, Peitschen- und Drahtantennen.

Ohne Antennen-AnpaBgerät Für Breitbandantennen oder. für Notbetrieb an beliebigen Antennen geeignet.

- Einfache und eindeutige Bedienung durch automatische Arbeitsweise mit Anzeige des Betriebszustandes
- Erwiesenermaßen zuverlässig, wartungsfrei
- Eingebaute Testeinrichtung und Modulbauweise bringen kürzeste Reparaturzeiten in allen Materialerhaltungsstufen, REMUS-prüfbar
- Universelle Stromversorgung: $\operatorname{Netz}(115 / 220 \mathrm{~V})$ oder Batrerie (21 ... 31 V)
Die Bedienung der Anlage ist durch einen vollautomatischen Ablauf aller Abstimmvorgänge außerordentlich vereinfacht. Eingespeicherte Kanalfrequenzen erlauben den Frequenzwechsel in kürzester zeit.

Der Aufbau der Anlage ist in Bild. 2 dargestellt.

Sie besteht aus den Bausteinen

EMPFÄNGER/STEUERSENDER XK 043
HF-LEISTUNGSVERSTA゙RKER VK 213
ANTENNEN-ANPASSGERX゙T FK 213,
die nahezu beliebig zueinander angeordnet werden können. Damit ist eine Anpassung des Anlagenaufbaues an die räumichen Gegebenheiten Leicht möglich. Alle Schnittstellen sind gegen unterschiedijche Kabellängen unempflindlich. Die Anlage wird am Empfänger/Steversender XK 043 bedient; hier liegen auch alle Ejn- und Ausgänge für Peripheriegeräte, wie Morsetaste, Hörer, Fernschrejber usw..

Die Frontplatte des Empfänger/Steuersenders XK 043 ist steckbar ausgefünrt. In Sonderfällen kann sie daher auch abgesetzt angeordnet werden; die Befehlübertragung zum Empfänger/Steuersender XK 043 erfolgt dann über eine Vieldrahtverbindung. Die fur Handbedienung vorgesehene Frontplatte ist auch durch eine für Rechner- und Fernsteuerung eingerichtete Baugruppe ersetzbar.

Der Leistungsverstärker VK 213 hat keine Bedienelemente und ist wartungsfrei. Er sollte wegen der höheren Stromaufnahme nehe der Stromversorgung untergebracht werden. An den Leistungsverstärker VK 213 lassen sich dírekt Breitbandantennen anschließen. Alie internationalen Forderungen nach AuBerbandstrahlungen sind erfillt. Für einen Notbetrieb sind Erahtantennen beliebiger Länge ausreichend; entsprechend der dann vorliegenden Fehlanpassung reduzieit der HF-Leistungsverstärker VK 213 seine Ausgangsleistung.

Mit dem Anpabgerät FK 213 sind alle ublichen Antennen optimal anpaBbar. Die Antenne soll zur Erhaltung des hohen wirkungsgrades über eine kurze Drahtverbindung gespeist werden. Die wetterfeste und kurzzeitig überflutbare Bauweise erlaubt ungeschutzte Anordnung. Das Antennen-Anpaßgerät FK 213 paßt bei Nichtbenützung der Stummabstimmung die erwihrten Antennen durch Abstimmen unter Abstrahlung von hochfrequenter Leistung nach jedem Frequenzwechsel an. Weiterhin werden durch das Antennen-Anpaßgerät FK 213 die Stellungen der Anpaßelemen'te zusammen mit der Arbeitsfrequenz in max. acht

Kanälen abgestimmt, nachdem einmal in dem entsprechenden Kanal unter Hochfrequenzaussendung abgestimmt wurde. Bei Einstellung des Kanals erfolgt dann augenblicklich Stummabstimmung ohne Aussendung von hochfrequenter Leistung.

Die Bedienung des HF-Funkgerätesatzes XK 403 erfolgt zentral von der Frontplatte des Empfänger/Steuersenders XK 043 aus. Der Betriebszu-. stand wird eindeutig durch die Schalterstellungen, LED-Anzeigen und Leuchtdioden angezeigt. Die Betriebsfrequenz kann entweder mit 6 Frequenztastern wertweise eingetastet oder mit einem Kanalwahltaster eingestellt werden. Uber den Kanalwahltaster stehen 8 Frequenzen zur Verfügung, die in einen elektronischen, netzausfallsicheren Speicher vorab eingegeben wurden.

In der Betriebsart BEREIT wird lediglich das Frequenznornal vorgeheizt, so daB der Funkbetrieb in allen Modulationsarten sofort mit der vollen Erequenzgenauigkeit aufgenommen werden kann. Der Vorteil liegt im außerordentlich niedrigen Stromverbrauch, Zum ständigen Abhören von Verbindungskanälen dient die Betriebsart EMPFANGEN. Auch hier liegt die Leistungsaufnahme niedrig, da Leistungsverstärker und Antennenanpassung abgeschaltet bleiben. Der regensprechverkehr ist in der Betriebsart SENDEN/EMPFANG möglich. Die rasche Umschaltung der Anlage von Empfangsbetrieb auf Senden und umgekehrt erlaubt eine zügj.ge Verkehrsabwicklung. Für den Fernschreibbetrieb ist diese Umschaltung von der Frontplatte sowie von extern aus möglich.
(Genauere Angaben unter 2.1.3)
Die Anschlußwerte für die Peripheriegeräte sind in Tabelle 2 zusammengestellt. Sie wurden so ausgewählt, daB alle gängigen Fabrikate dieser Geräte ohne Zwischenschaltung von Hilfsstromquellen o. ä. mit einer Entfernung von bis 50 m angeschaltet werden können. Dies gilt insbesondere auch für den Funk-Fernschreibbetiieb, und auch dann, wenn Fehlerkorrekturgeräte oder Schlüsselgeräte eingesetzt werden.

Die eingebaute Prüfeinrichtung überwacht ständig die für den reibungslosen Funkbetrieb wichtigsten Parameter der Anlage, wie HFLeistung, Antennenanoassung, Frequenz, Betriebsspannungen. Sie meldet automatisch die Abweichung von vorgegebenen Grenzwerten. Zur genauen Uberprüfung ist ein automatisch ablaufender Test auslösbar, der bei positivem Ergebnis eine GO-Aussage liefert. Im Störungsfall wird das Ergebnis der Prüfung in digitaler Form angezeigt. Die Auswertung erlaubt die Fehlerlokalisierung uber den Einschub hinaus bis zu einzelnen Modulen (siche Tabelle 6).

### 1.2.1 Bestandteile des Gerätesatzes

(1) Planungs-Nr. 5820-35760

Empfänger/Steuersender . XK 043 - 514.2011.03

- HF--Leistungsverstärker
100 W VK 213 - 518.9062.03

Antennen-AnpaBgerät EK 213 - 515.6010.02
Schwingrahmen
Schwingrahmen
KS 113 - 547. 6051.02 (2 Stück)

Batierie
KS 013 -. 520.8118 .02
TR 114N -
(2) Planungs-Nr. 5820-33 230

Empfänger/Steuersender
XK $043-514.2011 .03$
HF-Leistungsverstärker 100 W

VK 213 - 518.9062 .03
Antennen-AnpaBgerät
Schwingrahmen
Schwjngrahmen
FK 213 - 515.6010 .02
KS 113 - 547.6051 .02
KS 013 - 520.8118 .02
Batterie
TR 114 N -
1.3 Technische Daten:
1.3 .1 Allgemein elektrische und mechanische Eigenschaften


Betriebsarten.................. AUS/OFF:
HF-Funkgerätesatz XK 403
ausgeschaltet
BEREIT/STANDBY:
Quarznormal vorgeheizt

- HF-Funkgerätesatz ausgeschaltet

EMPFANGEN/RECEIVE:
Empfänger/Steuersender XK 403 zum Empfang eingeschaltet. Leistungsverstärker VK 213 und Antennen-Anpâgerät FK 213 ausgeschaltet.
SENDEN/EMPFANGEN // TRANSMIT RECEIVE:
HF-Funkgerätesatz XK 403 eingeschaltet S/E-Unschaltung von Mikrofon, Sprechgs schirr, Morsetaste oder Hochschaltlei. tung aus (siehe Tabelle 2)
$0 \triangleq 10 \mathrm{~W}$ () $\hat{=} 100 \mathrm{~W}$
*) F1 $\square$ (schmal) auf Hub $\pm 42,5 \mathrm{~Hz}$ intern umschaltbar


Anpaßbare Antennen............

Typ	Frequenzen		
Stäbe	$1,5 \ldots 30 \mathrm{MHz}$	$\ldots \ldots 30 \mathrm{MHz}$	
Peitschen	$7,7 \ldots 12 \mathrm{~m}$	$4 \ldots 12 \mathrm{~m}$	$4,7 \ldots 12 \mathrm{~m}$
Langaraht			
Breitband-   antennen	bis 50 m	bis 50 m	
		beliebig	beliebig



zulässige Störspannungen
der Gleichspannungsversorgung..-100 V , abklingend in $50 . \mathrm{ms}$
+80 V , abklingend in 1 s
bezogen auf $+24 \mathrm{~V}, \mathrm{Ri} \geq 0,5 \Omega$
Uberlagerte Wechselspannung
$45 \mathrm{~Hz} . .20 \mathrm{kHz} ; 2,1 \mathrm{~V}_{\mathrm{ss}}$
Wechselspannung............... 115/220 V $\pm 15$ \%
$60 / 50 \mathrm{~Hz}$
dynamische Wechselspannungs-
schwankungen................... 18 © (einschlieBlich statischer Abweichung)
$\leq 2$ sec Ausregelzeit
(MIE-STD-761 B, Ships, Typ I)
Leistungsaufnahme............. 115/220 V max. 0,85 KVA 24 V max. 500 W

Abmessungen und Gewichte..... siehe Tabelle 4
Zulässige Umgebungsbe-
dingungen..................... siehe Tabelle 5
Schnittstellen zu Peripherie-
geräten.......................... siehe Tabelle 2


```
Austastung in den Sendepausen.. unter Außengeräuschpegel
ZF--Eingang................... 30 kHz, 126 mV an 600\Omega. Eingangs- buchse ist nach Umschaltung der ZF-Ausgang (siehe 1.3.3.14)
```

```
1.3.3
Empfängerdaten
 Eingangsimpedanz................ca. 50\Omega
 Störabstand ab 100 kHz (S+N/N)
 A1........................ >20 dB bej 0,7 \muV EMK
 A3J........................... >20 dB bei. 2 HV EMK
```

,
Empfangsbandbreiten
AT - DurchlaBbereich........... $<3$ dB bis $\pm 75 \mathrm{~Hz}$
A1 - sperrbereich............. $>60 \mathrm{~dB} \mathrm{ab} \pm 300 \mathrm{~Hz}$
A3J- Durchlaßbereich.......... < 3 dB von 300 Hz bis $3400 \mathrm{~Hz}(\mathrm{ob} . \mathrm{SB})$
-300 Hz bis -3000 Hz (unt. SB
A3J- sperrbereich.............. $>60 \mathrm{~dB} \mathrm{ab}-300 \mathrm{~Hz}$ und +4000 Hz (ob. SB)
+300 Hz und -3600 Hz (une. SB
F1 schmal Durchlabbereich.... $<3 \mathrm{~dB}$ bis $\pm 150 \mathrm{~Hz}$
F1 schmal Sperrberejch...... $>60 \mathrm{~dB} \mathrm{ab} \pm 350 \mathrm{~Hz}$
F1 breit Durchlabbereich.. .. $<3 \mathrm{~dB}$ bis $\pm 500 \mathrm{~Hz}$
F1 breit Sperrbereich........ $>60 \mathrm{~dB} \mathrm{ab} \pm 1 \mathrm{kHz}$
Automatische Amplitudenregelung
(1 $\mu \mathrm{V} . .1 \mathrm{~V}$ EMK) ................ $<4$ dB
Regelgeschwindigkeit........... an Sendearten angepaBt
A1-Uberlagerer................... Festfrequenz $1,25 \mathrm{kHz}$
Zeichenverzerrungen
A1................................ 5 5 bei 15 Bd
F1................................. $<5 \%$ bei 100 Bd
NF-Klirrfaktor. . . . . . . . . . . . . . . $<5 \%$
Blocking......................... bis 4 V EMK vernachlässigbar
ZF-Durchschlagdämpfung und
Spiegelselektion............... $>80 \mathrm{~dB}$
Sonstige Mehrdeutigkeiten
Nebenwellen d.Frequenzsynthese $<90 \mathrm{~dB}$ bei $\Delta \mathrm{f} \geq 40 \mathrm{kHz}$
Eigenstörsignale.............. $<0,4 \mu \mathrm{~V}$ äquivalente EMK


## 1．3．4 Antennen－AnpaBgerät FK 213

AnpaBbare Antennen．		Frequenzen	
	Typ	1，5．．．30MHz	2．．．30MHz
	Stabe	$7 \ldots 12 \mathrm{~m}$	$4 . .12 \mathrm{~m}$
	Peitschen	$7,7 \ldots 12 \mathrm{~m}$	$4,7 \ldots 12 \mathrm{~m}$
	Langdraht	bis 50 m	bis 50 m
	Breitband antennen	beliebig	beliebig

## Abstimmzeit

Abstimmung mit $\mathrm{HF}-$ Leistung．．．．．Mittel 10 s ，max． $50 \mathrm{~s}\left(-35^{\circ} \mathrm{C}\right.$ ，$+21 \mathrm{VG}$
Stummabstimmung．．．．．．．．．．．．．．．．．．．．Mittel 6 s ，max． $25 \mathrm{~s}\left(-35^{\circ} \mathrm{C},+21\right.$ VG：
3 Stromversorgung und
Steuerung．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Leier Leistungsverstärker Vk 213
nutennenanpassung und
Vorselektion bei Empfang
ohne vorausgegangene $H F \cdots$ bussendung sofort nach Kanalwechsel

## 1．3．5 Zusatzgeräte für weiteren Ausbau



Antennen－AnpaBgerät FK 001
mit Speicher GS 004
für stumme Antennenabstimmung im っこー samten Frequenzbereich（keine Ener－ gieabstrahlung bei Abstimmung）

```
Schwinguntersatz für
Antennen-AnpaBgerät FK 213..... für erhöhte mech. Anforderungen
 (siehe Tabelle 5)
Schwingrahmen für
HF-Verstärker VK 213 oder
für Empfänger/Steuersender
```



```
 (siehe Tabelle 5)
Einbau Koffer EDAK für
HF-Verstärker VK 213 oder
Empfänger/Steuersender
xK 043........................ für häufigen Transport des Geräte-
 satzes und Einsatz bei erhöhten
 mech. und klimatischen Anforderungen
 z.B. AuBenmontage
Langdrahtadapter............... Für Anpassung an spezielle Langdraht.-
 antennen
KurzschluBstecker.............. Zum Sendebetrieb onne APG oder
 überbrücktem APG
```


### 1.4 Technische Beschreibung

### 1.4.1 Empfänger/Steuersender XK 043 (Bild 4 bis 10)

Der Empfänger/Steuersender XK 043 enthält neben allen Bedienelemente den gesamten Empfangszug des HF-Funkgeratesatzes XK 403 sowie den
: Sendezug bis zur 20-mW-Ebene. Der Empfangszug besitzt die Eigenschaften, die dem internationalen Stand der HF-Empfangstechnik (reine Empfänger) entsprechen. In der Funktion als Steuersender erlaubt der Einschub die volle Einhaltung aller betrieblichen Forderungen. So enthält der Empfänger/Steuersender alle Anschlüsse für periphere Geräte einschließlich der notwendigen Stromquellen, so dab neben Kopfhörer, Mikrofon, Morsetaste; Lautsprecher auch der Fernschreiber direkt an das Gerät angeschlossen werden kann.

Der Empfänger/Steuersender $X K 043$ gliedert sich in folgende Funktions gruppen (siehe hierzu die Bilder 6 und 7) auf:
HF/ZF-reil.,
Synthesizer,
Modulatoren/Demodulatoren, Betriebs- und Test-Zentrale, Becienteil, Netzteil, Teststecker (REMUS)

$$
1.4 .1 .1 \quad \underline{\mathrm{HF}-\mathrm{ZF}-\mathrm{Teil}}
$$

Dieser umfabt die Module
HF-Filter,
HF-Umsetzer,
ZF-Verstärker,
ZF-Filter.
Im Empfangsfall durchläuft das empfangene Antennensignal im HF-Filter einen $30-\mathrm{MHz}$-Tiefpaß, wird im HF-Umsetzer mit der vom Synthesizer erzeugten ersten ن̈berlagererfrequenz auf $72,03 \mathrm{mHz}$ ungesetzt und anschlieBend gefiltert.

Im ZF-Verstärker exfolgt die Umsetzung auf die zweite Zwischenfrequenz in der $30-\mathrm{kHz}$-Ebene, in der die eigentliche selektion (mech. Filter) vorgenommen wird. Fünf steckbare ZF-Filterbaugruppen werden je nach Sendeart in den Ubertragungsweg geschaltet. Es sind dies für den A3J-Sprechfunk zwei Filter für das obere und das untere seitenband (A3H nur oberes Seitenband), für den A1-Tastfunk ein schmales Filter, sowie für die Fl-Empfangssignale die an den 425 Hz bzw. 85 Hz -Frequenzhub jeweils angepaBten Filter.

Auf diese Weise erzielt man einerseits durch die hohe erste Zwischen frequenz eine hohe Spiegelfrequenzunterdrückung, andererseits liegt. die zweite Frequenz so niedrig, daB das eigentliche Selektionsfilter mit steilen Flanken ausführbar ist. Die angewandte Technologie vermeidet störende Temperatureinflüsse: die Filter sind als hochselek-
 Auf die $Z F-F i l t e r$ folgt ein mehrstufiger $30-\mathrm{kHz}$-Regelverstärker, dessen Ausgänge zum Demodulatorteil für die Sendeart A1, A3J und A3H sowie zu dem der Sendeart F1 gehen.

Im Sendefall werden die gleichen Zwischenfrequenzen angewandt. Im prinzip gelten die gleichen tjerlegungen wie im Empfangsfall: Niedrige Außerbandstrahlung und vernachlässigbare Nebenwellen sind das Ergebnis.

Bei Sendebetrieb in den Sendearten A3J und A.BH wird das Sprachband zunächst in die $30-\mathrm{kHz}$-Ebene umgesetzt. Das hochselektive mechanisch Filter unterdrückt bei Sendeart $A 3 J$ den Träger vn $\geq 40 \dot{d} B$, bei Sende art $A 3 H$ wird er um 6 dB vermindert. Bei Telegrafiebetrieb, Sende-
 weichgetastet. Bei Sendeart $F 1$ dagegen tasten die Gleichstromzeichen der Fernschreibmaschine eine Frequenzumtaststufe, deren Mittelfrequenz 30 kkz beträgt. Weichtastfilter begrenzen sowohl bei Al wie auch bei F 1 das bei der Tastung entstehende Frequenzspektrum; es sind keine $Z E-F i l t e r$ eingeschaltet. In den Tastpausen unterschreitet die abgestrahlte Leistung die Außenstörungen.

。

## 1.4 .1 .2 <br> Synthesizer

Dieser umfaßt die Module
Quarzgenerator,
Schleife 1,
Schleife 2a,

- Schleife 2b,

Hilfsumsetzung.
Der. Synthesizer liefert alle Frequenzen für die verschiedenen Umsetzer. Er erzeugt die erste Uberlagererfrequenz entsprechend der Frequenzeinstellung ( $72,03 \ldots 102,0299 \mathrm{MHz}$ ), sowie die weiteren zum Umsetzen erforderlichen hochgenauen Festfrequenzen von 72 MHz und 3 MHz . Durch seine hohe Rauscharmut, die Rauschseitenbänder liegen bei 140 dB bezogen auf 1 Hz MeBbandbreite, wira geringste störung von anderen Funkkanälen im Sendefall ermöglicht.

Bei Empfang kleiner Signale wird der Störabstand selbst durch starke Störer kaum verringert, da die ungemischten Rauschseitenbänder klein sind.

Vernachlässigbar gering sind auch die Eigenstörstellen (Frequenzen, bei denen Nebenwellen des Frequenz--Synthesizers auf den Empfangskanal fallen), die in der GröBenordnung des Eigenrauschens des Empfängers liegen. Hierdurch können Empfangsantennen mit geringer effektiver Höhe verwendet werden. Trotz der hohen Qualitätsdaten besteht der Synthesizer aus nur zwei Phasenregelschleifen mit Frequenzteilerstufen. Die dazugehörenden spannungsgesteuerten Oszillatoren werden mit der Referenzfrequenz des temperaturgeregelten Quarzgenerators mit Hilfe von Phasendiskriminatoren auf den genauen Sollwert synchronisiert.
1.4.1.3 Modulatoren/Demodulatoren

Diese Eunktionsgruppe unfabt die Module
A3J/A3H-Modulato: :
A1/A3J-Demodulator,
A1/F1-Modulator,
F1-Demodulator.

Auf dem A3J/A3H-Modulator befindet sich der NF-Eingang (Mikrofon) des $H E$-Funkgerätesatzes $X K$ 403. Ein Regelverstärker gleicht unterschiedliche Eingangspegel aus. Der A3J-Modulator erzeugt mittels eines FET-Mischers ein trägerloses Zweiseitenbandsignal, symmetrisch zu 30 kHz , aus dem das umschaltbare $2 F-F i l t e r$ das gewünschte obere oder untere seitenband herausfiltert.
In Stellung A3H (oberes Seitenband mit Träger) erzeugt der Modulator ebenfalls ein trägerloses A3J-Signal. Der Träger wird anschlieBend im 2F-Verstärker zugesetzt.

Die am Mikrofon befindilche Sprechtaste betatigt die Hochschaltung auf dem A3J/A3H-Modulator und. Uber die Berriabszentrale die Sende-Empfangs-Umschaltung der Anlage.

Der A1/A3J-Demodulator gewinnt aus dem gewählten seitenband durch Umsetzen in einen Gegentakt-FET-Demodulator mit der quarzgenauen $30-\mathrm{kHz}$-Schwingung das niederfrequente Signal und liefert mit hilfe eines NF-Verstärkers die tonfrequente Leistung für den Lautsprecher ( 1 W ) und den Kopfhörer. Im Empfangsteil besteht kein Unterschjed zwischen der Demodulation eines A3J-Signales jm oberen Seitenband und eines A3H-Signales. Bei Sendeart A1 wird das ZF-Signal mit einem $31,25 \mathrm{kHz}$-Signal überlargert. Die Morsezeichen können also über einen $1,25-\mathrm{kHz}$-Ton aufgenommen wercen. Die gleiche Uberlagerung findet bei dem Fi-Signal mit schmalem Hub statt, während das EiSignal mit breitem Hub mit 30 kHz uberlagert wird. Mithören der FiSignale wird so ermöglicht. Im sendefall fungiert der A1/A3J-Demodulator als Mithörhilfe für alle Sendearten einschlieBlich $E 1-$ Sendungen und wandelt das $2 F-S i g n a l$ der Modulatoren wieder in die NF -Lage um.

Der A1/F1-Modulator arbeitet als kombinierter Modul, der sich zwischen Amplituden- und Erequenzmodulation umschalten läßt. Bei Telegrafiebetrieb, Sendeart A1, wird die $30-k H z \sim$ Zwischenfrequenz im Rhythmus der Morsezeichen weichgetastet. Zusamnen mit dem ersten Tastendruck erfolgt die Sende-Empfangsumschaltung; sind die Tastpausen länger als $\{00 \mathrm{~ms}$, schaltet sich die Anlage zurück auf Empfang.

Bei Sendeart $F 1$ dagegen tasten die Gleichstromzeichen der Fernschreibmaschine eine Frequenzumtaststufa, deren Mittenfrequenz 30 kHz beträgt Die Frequenzumtaststufe besteht im wesentlichen aus einem Phasen-
modulator, der bei 3 MHz . arbeitet und dessen Steigung den Frequenzhub bestimmt. Eine Frequenzteilung erzeugt dann das frequenzmodu-. lierte $30-\mathrm{kHz-ZF-Signal}$.

Der Fi-Demodulator besteht im wesentlichen aus einem phasenaiskriminator, der mit einem digitalen Verfahren nach einem Begrenzer das verstärkte $30-\mathrm{kHz}$-Signal mit der quarzgenauen $30-\mathrm{kHz}$-Referenz-- frequenz vergleicht. Die Steigung dieses Ausgangssignals ist ein MaB für die Frequenzablage des $30-\mathrm{kHz}$-Eingangssignals. Ein der Frequenzabweichung $\Delta f(H u b)$ analoges Signal wird deshalb durch Differentiation mit einem Hochpaß gewonnen und einem Tiefpab zugeführt, der an die max. Schrittgeschwindigkeit angepart ist. Eine nachfolgence Taststufe erzeugt die Einfachstromsignale für den direkten AnschluB einer Fernschreibmaschine. In diese Baugruppe greift auch die E1-Polaritätsumschaltung, d.h. die Zuordnung von Zeichenschritt/Trennschritt zur oberen/unteren Frequenzablage (Hub) ein. Sie wird von der Frontplatte des Empfanger/Steuersenders XK 043 aus eingestellt und wirkt sowohl für den Sende- wie den Empfangsfall Die Hochschaltung bei F1-Betrieb kann entweder von extern oder ebenfalls von der Frontplatte aus erfolgen.
1.4.1.4 Betriebs- und Testzentrale

Diese Funktionsgruppe umfaßt die Module
Parallelumsetzer unc Betriebsplatte,
die für den Betrieb an der Anlage benötigt werden, und die Module,

Testzentrale und Uberwachungszähler,
die die Anlage uberwachen und testen.
Parallelumsetzer und Betriebsplatte:
Die an der Frontplatte mit Tasten eingestellte Frequenz wird im ausfallsicheren Speicher als digitale Information aufbewahrt. Diese Information wird dann zusammen mit den an den Betriebs- und Sendeartenschaltern eingestellten Befehlen in ein Datentelegramm umgewandelt und forclaufend an den parallelumsetzer ubertragen. Dieser liefert die Frequenzinformation für den Synthesizer und parallel dazu für den Steuerausgang des Empfanger/Exciters, an den periphere Geräte wie $z . B$. der HF-Verstärker VK 213 oder die Sclektionseinneit FK 100 angeschlossen werden.

Ferner liefert der parallelumsetzer eine codierte Information über die Betriebs- und Sendearten an die Betriebsplatte, die daraus folgende direkte Steuerbefehle ableitet:
Ein- bzw. Ausschalten der Modulatoren und Demodulatoren;
Umschalten der ZF-Filter;
Umschaltung aller Relais für Sende- bzw. Empfangsrichtung im Empfänger/Steuersender XK 043, HF-Leistungsverstärker VK 213 und Antennen-AnpaBgerät FK, 213 sowie Steuerung des HF-Leistungsverstärkers VK 213 und des Antennen-AnpaBgerätes FK 213.

Die Betriebsplatte führt weiterhin alle Steuerungen durch, die die Testzentrale nach Auslösen eines Testvorgangs vorschreibt.

Die Testzentrale im Empfänger/Steuersender $X K 043$ funqiert als eingebaute Prüfeinrichtung für den gesamten HF-Funkgerätesatz XK 403. Sie nimmt einmal eine interne Prüfung der Gesamtanlage (A-Einheit) während betriebsmäbigen Einsatzes (Funktionsüberwachung) ohne gesonderte Auslösung vor und meldet den Fuinktionszustand der einge... schalteten Betriebsart durch "Gut" bzw. "Nicht Gut". Überwacht werden so wichtige Funktionen wie Frequenzerzeugung, HF-Leistungsaussendung, Abstimmung sowie Betriebsspannung der Anlage (Einzelheiten in Abschnitt 3 und Tabelle 6).

Die "Nicht Gut"-Anzeige ist init der Fehlererkennung und -lokalisierung von Empfänger/Steuersender XK 043, HF-Leistungsverstärker VK ? Antennen-AnpaBgerät EK 213 odex weiteren systemkompatibilen zusatzgeräten wie z.B. HF-Selektionseinheit FK 100 (B-Einheit) gekoppelt. Weiterhin ubernimmt die Testzentrale die interne Prifung der Gesamt anlage auBerhalb des betriebsmäBigen Einsatzes (Funktionsprûfung) senders XK 043. Ein Mikrocomputer beaufschlagt den HF-Eunkgeratesatz XK 403 mit vielerlei steuerbefehlen und steuersignalen auch in anderen als den eingestellten Betriebszuständen. Er schaltet ferner gesonderte stimulanzsignale wie $z$. $B$. HF-Impulsgeber $z u$ und wertet die MeBergebnisse von z.zt. 30 MeBfühlern aus, ermöglicht der: Test. zentrale nicht nur Prüfung auf Funktionstüchtigkeit der Gesamtanlaç (A-Einheit) mit "Gut"- oder "Nicht Gut"-inzeige, sondern die Fehler erkennung und -lokalisierung über die $B$-Einheiten hinaus bis sur Modulebene (C-minheiten). (Einzelheiten in Abschnitt 2 und 3, Tabelle 3 und Tabelle 6).

Der Uberwachungszähler wird nur bei der internen Funktionsprufung der Gesamtanlage eingeschaltet und nimmt hierzu eine echte Frequenz. messung vor.

Die von der Frontplatte angelieferte digitale Frequenzinformation wird in einen zurückzählenden Dezimalzähler eingespeichert. Da die Taktung von dem ausgesendeten 20 mW -HF-Signal des Empfänger/
Steuersenders XK 043 vorgenommen und die Dauer des Zählvorganges von der quarzgenauen $3-M H z-F r e q u e n z$ des Quarzgenerators durch ein 200-ms-Zeitfenster abgeleitet wird, erreicht der zähler bei intakte? Frequenzaufbereitung seine Nullstellung. Eine fehlerhafte oder bei F1-Betrieb beabsichtigte Frequenzablage (Trennschritt oder Zeichenschritt) kann dann von der Testzentrale abgerufen und bewertet werden.

### 1.4.1.5 BedienteiJ.

Der Bedienteil ist eine in sich abgeschlossene steckbare Baugruppe. Er enthält alle Bedienelemente fur den Betrieb des HF~Funkgeratesat XK 403 und zeigt den jeweiligen Betriebszustand mit Leuchtziffern ur Leuchtdioden an. In Sonderfallen kann er daher auch abgesetzt ange... ordnet werden; die Befehlsubertragung zum Empfänger/ teversender XK 043 erfolgt dann über eine Netzdrahtverbindung. Die für Handbedienung vorgesehene Frontplatte ist auch durch eine für Rechner- unc oder Fernsteuerung eingerichtete Baugruppe ersetzbar.
Der Bedienteil enthält die Module
Frontplatte,
Anzèigeplatte,
Speicher und
Filter.
Die Frontplatte trägt den Lautstärkeregler, den Lautsprecher mit Schalter, die Speicherbatterie mit Aufnahmebox und die Buchsen fur Hörer, Mikrofon und Morsetaste. Diese drei Buchsen werden uber eine HF-dichte EMC-Filterbaugruppe mit dem Inneren des Gerätes verbunden Weiterhin ist an der Frontplatte die Anzeigeplatte mit dem Anzeig.:feld für Frequenz, Kanal-Nummer, Testergebnis, HF-Anzeige und Anzeis über Art der Betriebsspannung sowie den Sende- und Betriebsartenschaltern befestigt.

Der Frequenzbereich des HF-Eunkgerätesatzes XK 403 ist in $100-\mathrm{Hz}-$ Schritten einstellbar, so daß 285000 Frequenzen gewählt werden können. Die Betriebsfrequenz kann entweder mit 6 Frequenztastern oder mit einem Kanaltaster eingestellt werden. Mit dem Kanalwahltaster sind 18 voreinstellbare Frequenzen wählbar.

Der Speicher für die Erequenzinformation wird als gesonderter Modu

- mit zwei Steckverbindern an der Anzeigeplatte angeschlossen.

Ist das Gerät ausgeschaltet, ubernimmt die eingebaute Trockenbatte die Stromversorgung der Speicherschaltkreise netzausfallsicher.

### 1.4.1.6. Netżeil

Der Netzteil befindet sich im rifkwärtigen Teil des Gerätes an der Anschlußseite. Diese in sich abgeschlossene, steckbare Baugruppe er hält die Stromversorgung mit den Platinen

Regler,
Siebung und
Nachregler,
sowie das HF-dicht ausgebildete EMCmFilter, das an der Anschlußseit die Verbindung zu den ubrigen Systemgeräten wie HF-Leistungsver... stärker VK 213 und Antennen-AnpaBgerät $F K 213$ herstellt. ivegen der extremen EMC-Forderungen werden diese Steuerleitungen durch eine Drosselkammer mit den entsprechenden Filtern gefünt, die míc
den Anschlußsteckerr eine mechanische Einheit bilden.
Der Netzeeil des Empfänger/Steuersenders XK 043 besteht, im wesent... Iichen aus einem Wandlemodul fur $19 \ldots 31 \mathrm{~V}$ Eingangsspannung. Er erzeugt die notwendigen Betriebsspannungen für die Baugrupper und ist am Eingang mit einem Transientschutz sowie einem Filter gegen die entstehenden Störströme ausgestattet. Für den Betrieb der Gesamtanlage an einem 115/220-V-Wechselspannungsnetz wird der
Empfänger/Steuersender XK 043 an den 21...31V Gleichspannurigsausgar
 kann der Empfänger/Steuersender XK 043 auf kürzestem Weg an einer 24-V-Versorgungsquelle getrennt vom Leistungsverstärker VK 213 betrieben werden (siehe Bild 2 ).

Nach der Transformation im Gleichspannungswandler werden die Betriebs spannungen $5 \mathrm{~V}, 14 \mathrm{~V}$ und 28 V im Nachregler stabilisiert.

Die zur Heizurig des Quarzgenerators notwendige Spannung von 13 V , die auch in der Betriebsart "Bereit", bei sonst ausgeschalteter Anlage, vorhanden sein muß, wird ohne Umweg den Wandler direkt aus der Eingangsspannung abgeleitet.

- Die Leistungsbauelemente des Wandlers befinden sich aus Gründen der Wärmeableitung. auf der Rückwand des Gerätes, während die dazugehörige Steuerelektronik auf der Regler-Platine sitzt. Auf dieser Platine befindet sich weiterhin die eiektronische Abschaltung für Uber- bzw. Unterspannung sowie die Netz-/Batterieumschaltung.
1.4.1.7 Teststecker (REMUS)

An der Unterseite des Gerätes (hinter einer Abdeckung) bufinden sich zwei Teststecker, die alle wichtigen Steuerkriterien und Signalpesei führen, auf der Sendeleitung $K 5$ aber nicht vorhanden sind. Uber diese Teststecker kann der gesamte HF-Funkgerätesatz XK 403 von einem Rechner aus zu Testzwecken angesteuert werden. Automatiscne Fiequenzänderungen und automatisch darauffolgende Registxierungen von Meß.. werten sind problemlos. Darüberhinaus ermöglichen sie am Einschub (B-Einheit) in Zusammenarbeit mit einer externen Pruf- und Testeinrichtung wie Remusstation die Fehlererkennung und -lokalisierung einer defekten Ersatzteil-(Modul-)baugruppe (C-Einheit). Zu dieser
. $\quad$ ) Fehlerermittlung kann die eingebaute Testzentrale (Mikrocomputer) herangezogen werden. Uber "Bus"-Leitungen am Teststecker"kann der interne Prifablauf gestartet und jederzeit gestoppt werden, so daß für eine Remusstation wichtige Zwischenwerte der Fehlerermittlung vorliegen und abgerufen werden können.
1.4.2 HF-Lejstungsverstärker 100 W VK 213 (Bild 11 bis 16)

Der HF-Leistungsverstärker VK 213 verstärkt das 20-mW-Signal des Steuersenders zu einer Ausgangsleistung von 100 W. Er ist volltransistoriert und weist folgende Vorteile auf:

- Keine Hochspannungsnetzteile, deshalb keine gefährlichen Spannungen
- Einfache Kühlung ohne druckdichte Bauweise
- Keine Servotechnik aufgrund der Breitbandverstärkung
- Automatische Reduktion der Ausgangsleistung im Falle hoher Fehleranpassung (Notbetrieb ohne Antennenabstimmung möglich) und extrem hohen Umwelttemperaturen (Notbetrieb ohne Zwangsbelüftung möglich).
- 115 V Wechselspannungsnetzteil für den gesamten HF-Funkgerätesatz XK 403.
- Der HF-Leistungsverstärker VK 213 besteht aus zwei Haupteingängen, der stromversorgung und dem Leistungsverstärker.


### 1.4.2.1 Stromversorgung

Die Stromversorgung enthält einen Netzteil $220 \mathrm{~V} / 115 \mathrm{~V}$ und einen 24-V-Gleichspannungs-Eingang, an dem das Gerät über ein Reiais (gesteuert vom Empf./Steuexs. XK 043) wahlweise betrieben werden kann. Bei Netzausfall wird automatisch auf Batteriebetrieb umgeschaltet. Ein Transientschutz verhindert das übergreifen von Spannungsspitzen der versorgungsspannung auf die HE-Schaltung. Gleichzeitig wirkt dieser rransientschutz in Verbindung mit einem Schutzschalter, der sich an der Rückseite des Gerätes befindet, gegen Verpolung und Uberspannung $>32 \mathrm{~V}$. Bei. Spannunger zwischen 28 V und 32 V reduziert eins Schutzschaltung den Ausgangspegel des Verstärkers auf zulässige Werte. Der Empf./Steuers. XK 043 und das APG werden ebenfalls aus der stromversorgung mit strom beliefert.

### 1.4.2.2 Leistungsverstärker

Der HF-Teil besteht aus den Unver-Baugruppen:
S/E-Umschaltung,
Leitungsnachbizdung,

- Vorverstärker,

Leistungsmodul 100 W mit RückfluBmesser,
WeichentjefpaB, oberwellenfilter, Filterlogik, Steuerlogik, Drosselbaugruppe.

### 1.4.2.2.1 Sende-Empfangs-Umschaltung

Sie verbindet bei Stellung Empfang den Antennenanschluß mit der Koax-Leitung zum Empf./Steversender XK 043. Dabei ist in dieser Verbindung eine Schutzschaltung des Empfängereinganges geger uberspannung bis zu 50 V EMK vorgesehen. Bei Sendebetrieb kann in Stellung $1 / 10$ Leistung eine entsprechende Dämpfung in den Eingang des Verstärkers eingeschaltet werden.

### 1.4.2.2.2 Leitungsnachbilding

Hier kann unterschiedliche Kabeldämpfung zwischen Empf./Steuersender XK 043 und Verstärker VK 213 durch Einschalten einer frequenzabhängig Dämpfung ausgeglichen werden. Die Einschleifung der Dämpfung erfolgt durch Umlöten von 3 Brücken und kann bis zu $50^{\circ} \mathrm{m}$ Kabel (RG 58) nachbilden. Falls zwischen Empfänger/Steuersender XK 043 und HF-Leistungs verstärker VK 213 besonders fur große Entfernungen ein Hr-Kabel RG 8 verwendet wird, muß von der derzeit fest eingeschalteten Leiturgsnachbildung ein entsprechender Anteil herausgenommen werden (siehe Anhang Montageanleitung).

### 1.4.2.2.3 Vorverstärker

Der Vorverstärker verstärkt breitbandig im Frequenzbereich
$1,5 \ldots 30 \mathrm{MHz}$ die Eingangsleistung von 20 mW auf ca. 500 mW . Im

- Vorverstärker befindet sich ein PIN-Dioden-Regler mit einer Dynamik von ca. 15, dB. Dieser dient. als Stellglied für die Leistungsregelung
 einen Entzerrer, der den Frequenzgang des Ausgangspegels auf 100 W einstellt.


### 1.4.2.2.4 Leistungsmodul 100 W

Er enthält einen 2-stufigen Verstärker; die beiden Stufen arbeiten i Gegentakt, die Endstufe im A-B-Betrieb. Dex Verstärker ist auf ein Kühlprofil aufgebaut, welches Bestancteil des Luftkanals ist. Die Temeratur des Kühlers wird durch einen Kiltieiter uberwacht, der bei Uberschreitung einer zulässigen Temperatur von $110^{\circ} \mathrm{C}$ eine Reduzierunc der Ansteuerleistung im Vorverstärker vornimnt. Gleichzeitig wird dic Temperatur mit einem Heißleiter gemessen, der die Drehzahl der beidet
kollektorlosen Lüfter steuert. Der Leistungsmodul enthält weiter einen Rückflußmesser, der mehrere Uberwachungs- und Test-Signale erzeugt, die den Schutz der:Endstufe bewirken, indem am Vorverstärker die Ansteuerleistung so gedämpft wird, daß die Rückflußleistung keine unzulässigen Werte annehmen kann.
1.4.2.2.5 WeichentiefpaB

Der Weichentiefpaß dämpft alle oberwellen außerhalb 30 MHz und ist bei allen Frequenzbereichen eingeschaltet.
Durch seine besondere Auslegung wird erreicht, daB die oberwellen nicht total reflektieren, soncern $z$. Teil absorbiert verden. Die Arbeitsweise des Moduls wird dadurch wesentlich verbessert.

### 1.4.2.2.6 Oberwellenfilter

Das Oberwellenfilter ist als schaltbarer TiefpaB aufgebaut und dämpft die Auskopplung der Harmonischen. Ein Motor-Drehschalter schaltet automatisch, abhängig von der anstehenden Frequenzinformation, in 7 Frequenzbereichen um.

### 1.4.2.2.7 Filterlogik

Die Baugruppe Filterjogik hat die Aufgabe, aus der vom Empf./ Steuersender XK 043 angelieferten Frequenzinformation in BCD-Code den Steuerimpuls für den Motordrehschalter im Oberwellenfilter $z u$ erzeugen.,

### 1.4.2.2.8 Steuerlogik

Hier werden alle Schaltbefehle ausgewertet und sinnvoll koordiniert. Die digitalen Steuer- und Uberwachungs-Signale werden vom Empf./ Steuersender XK 043 mit einem störsicheren Pegel (15 V) angeliefert und müssen in der steuerlogik auf TrL-Pegel ( 5 V) umgesetzt werden. AuBer der kontinuierlichen Uberwachung der versorgungsspannungen und der Vorlaufleistung wird bei Anlegen des Testsignals die SendeEmpfangsumschaltung durch die Steuerlogik so gesteuert, dab das Ausgangsrelais auf Empfang und das Eingangsrelais auf Senden steht. Damit wird erreicht, daB bei Test der Empfänger nicht durch Anliegen starker Antennensignale gestört wird. Gleichzeitig ist der.

Empfängereingang mit dem 50- $\Omega$ - Eingangswiderstand des Vorverstärkers abgeschlossen. Bei Test "Senden" bleibt die Relaisstellung erhalten, die Sendersperrung (Arbeitspunkt Vorverstärker) wird freigegeben und der Sender bei offenem Ausgang betrieben. Aus dem Ergebnis Vorund Rücklaufmessung kann auf die einwandfreie Funktion des Senders und der Schutzeinrichtungen geschlossen werden, das heibt, es wird keine nennenswerte Leistung abgestrahlt.

### 1.4.2.2.9 Drosselbaugruppe

Alle zuleitungen im Gerät sind wegen extremer EMC-Eorderungen durch eine Drosselkamer mit entsprechenden Fiite:n geführt, die mit den Anschlußsteckern eine mechanische Einheit bilden. Aus Sicherheitsgründen erfolgt die 115/220-V-Versorgung über eine eigene Kammer.

### 1.4.2.2.10 Teststecker (REMUS)

An der Rückseite des Gerätes (hinter einer Abdeckung) befindet sich ein Teststecker, der im Betrieb nicht benutzt wird und im Störungsfall eine detaillierte Fehlererkennung und -lokalisierung einer defekten Ersatzteil-(Modul-)baugruppe (C-Einheit) ermöglicht. Er ist besonders für den Einsatz an einer Remusstation konzipiert.

### 1.4.3. Antennen-Anpaßgerät EK 213 (Bild 17 bis 20)

Das Antennen-AnpaBgerät EK 213 transformiert den komplexen Antennenfußpunktwiderstand der verschiedenen, im Datenb..a.t. angegebenen Antennen im jeweiljgen Frequenzbereich auf den Ausgangswiderstand des Senders $2=50 \Omega$.

Im Falle der Anpassung an spezielle Langdrahtantennen kann ein sog. Langdrahtadapter zum Einsatz kommen, der in Serie zum Antennenanschluß geschaltet wird. In den meisten Einsatzfällen bei Langdrahtantenne kann auf ihn jedoch verzichtet werden (siehe Zubehör). AuBerdem dient das Antennen-AnpaBgerät FK 213 bei Empfang als Vorselektion.

Bei Empfang untex $1,5 \mathrm{MHz}$ und bei einer Empfangsírequenz, auf die es nicht abgestimmt ist, läBt sich durch eine sogenannte Sende-Empfangs umschaltung uberbrücken. Das Antennen-Anpaßgerät FK 213 besteht aus HF-Teil und Steuerung.
1.4.3.1 HF-Teil des FK 213

Im HF-Teil befinden sich die zur Transformation notwendigen Blindwiderstände sowie ein Leistungsübertrager und ein MeBkopf, der die Kriterien zur Abstimmung liefert.

Die transformierenden Blindwiderstände bestehen aus einem über Servo-- Antrieb abstimmbaren Vakuumkondensator als Serienkondensator und einem über einen Servo-Åntrieb abstimmbaren Variometer als PaiallelInduktivität zum Antennenwiderstand. Abgestimmt wird auf 12,5 $\Omega$ reell. Ein Leistungsübertrager transformiert diesen Widerstand auf de: Senderausgangswiderstand $Z=50 \Omega$.

Der Meßkopf liefert durch Messen des Realteiles das Kriterium zum Abstimmen des Variometers und durch das Messen der Phase das Kriteriu: zum Abstimmen des Vakum-Kondensators. Gleichzeitig werden die Vorund Rücklaufspannungen ermittelt.

### 1.4.3.2 Steuerung des FK 213

Die Betriebsspannung des APG's von $19 . . .31 \mathrm{~V}$ wird durch einen Längsregler bei +24 V begrenzt. Ein Zerhackernetzteil versorgt die Logik mit +10 V und -10 V .

Alle ein- und ausgehenden Steuerleitungen sind über Siebfilter geführt. Die Hochschaltung des HF-Funkgerätesatzes XK 403 über Mikrofon Morsetaste oder Fi-Betriebsartenschaiter löst nach vorangegangenem Frequenzwechsel bei Betrieb ohne Stumabstimmung einen Abstimmvorgang aus. Durch Rückmeldungen zum Empfänger/Steususender XK 043 (Abstimmen und HF-Freigabe) wird Hochfrequenz zur Abstimmung angefordert. Während der Abstimmung schaltet die steuerung ein 3-dBDämpfungsglied ir die $H F-E i n g a n g s l e i t u n g$. Die Steuerung wertet die vom Meßkopf gelieferten Analogspannungen aus und setzt sie in Steuerbefehle für die Servoantriebe um. Der Abstimmvorgang wird am Anzeigefeld des Empfänger/Steuersenders XK 043 angezeigt (Nr.7) und überwacht. Ein eventueller Fehler wird durch die Funktionsüberwachung (Testzentrale Empfänger/Steuersencier) gemeldet. Tritt nach beendeter Abstimmung eine Fehlanpassung aurch Veränderung des Antennenwiderstandes auf (Antennenbruch, Versalzung des Isolators), wird nach 0,5 Sec. die fehlertafte Abstimung des APG's gemeldet
und angezeigt. Mit einer, Abstimmtaste an der Frontplatte des Empfänger/Steuersenders XK 043 kann eine Nachstimmung ausgelöst werden. Eine Sperrung der HF bei Fehlermeldung wie z.B. Fehlanpassung erfolgt nicht, da das Gerät für Uberlast konzipiert ist und der HF-Leistungsverstärker VK 213 bei zu hohem AnpaBfehler seine Leistung kontinuierlich reduziert. Der Sendebetrieb kann also auch mit verminderter Leistung ohne Unterbrechnung fortgeführt werden. Bei Stumabstimmbetrieb in den max. 8 Vohrwahlkanälen ermittelt ein Referenzpotentiometer die für Stummabstimmung notwendige Stellung der Reaktanzen, deren Daten nach einer Analog/Digitalumwandlung mittels eines Serientelegrammes in den Stummabstimmspeicher des Emptänger/Steuersenders XK 043 einprogrammiert werden können. Bei Stummabstimmung ohne Aussendung von HF-Leistung steuert dann dieser Speicher direkt den Einstellvorgang der Servomotoren. Der Lufter im APG wird nur in der Leistungsstufe 100 w durch die Hochschaltung auf Senden (20sec. Abschaltverzögerung) in Betrieb gesetzt.

### 1.4.3.3 Teststecker (REMUS)

Am Steuereingang des Antennen-AnpaBgerätes $F K 213$ sind neben den fur den Betrieb notwendigen Ansteuerungen und Meldungen weitere Steckerpunkte mit wichtigen MeBkriterien belegt. Hierdurch wird die' Fehlererkennung und -lokalisierung einer defekten Ersatzteil-(Modul-)baugruppe (C-Einheit und D-Einheit) mit einer externen Prüf- und Testeinrichtur'f wie der Remusstation ermöglicht.

## und

Betriebsschutzbestimmungen

### 2.1 EMPFANGER/STEUERSENDER XK 043

2.1.1 Anschließen der Kabel(Bild 2 und 3)

Vor dem Anschließen der Kabel muß der Einschub gemä Montageanleitun montiert worden sein.

Neben den Buchsen und Steckern am Gerait sind Nummern eingraviert, dje ebenfalls neben den Steckern der zugehörigen Anschlubkabel aufgeprág sind. Es ist darauf zu achten, daß nur Kabel und Stecker mit gleicher Nummern verbunden werden.

Die NF- und steuer-Vielpol-Kabel werden aufgesteckt und mit einer Drehung des Bajonettverschlusses verriegelt. Die Koaxialkabel werden lediglioh aufgeschraubt. Hier ist zu Beginn besonders auf guten Sitz zu achten, damit der Innenleiter (Stift) oder des Gewinde nicht zerstört werden. Das Netzkabel darf erst nach Erdung der Gerate auf.gesteckt werden.

### 2.1.2 Anschließen peripherer Geräte

Morsetaste, Kopfiörer und Sprechtaste werden an der Frontplatte bes Empfänger/Steuersenders XK 043 angeschlossen. Weitere periphere Ge.. räte, wie Lautsprecher bzw. Fernschreiber, sowie die eben genanntert Geräte, können uber die Buchsen 67 bzw .68 an der Rückseite des Empfänger/Steuersenders xK 043 angeschlossen werden. Solil die fernschreibmaschine/Schlüsselyerät mit einer Haupt-Sendeanlage $S$ K 210/310 zusammarboiten (z.B. im FMA-S), so ubernimmt ein externer Umschalter "Schreibfunk-Haptanlage/Reserveanlage" in der Stellung "Reserveanlage" die Anschaltung an den HF-Eunkgeratesatz XK 403.

```
2.1.3.
```

Bedienung und Betrjeb des MF-Funkgeratesatzes XK 403 (Bild 4 und 5)

- Die Bedienung des HäFunkgerätesatzes Xk 403 erfolgt zentral vom Empfänger/Steuersender XK 043 aus. Sie ist durch den vollauronatische: Ablauf allcr Abstimavorgänge auBerordentiich vereinfacht. Eingespeicherte Karalfrequenzen erlauben den Frequenzwechsel in kurzester Zeit.


## 2．1．3．1 Hinweis zur Unfallverhuttung

Vor dem Uffnen der Geräte ist stets das Netz am Sicherungsautomaten im Funkraum abzuschalten，um die Berührung mit hohen Spannungen aus－ zuschlieben．Bei geschlossenem und einwandfrei installiertem Sender besteht keine Unfallgefahr．

$$
\begin{align*}
& \text { 2.1.3.2 Ubexprüfen vor dem Einschalten des HF-Funkgerätesatzes } \\
& \text { XK } 403 \\
& \text { ACHTUNG! } \\
& \text { Vor dem ersten Einschalten des HF-Funkgeräte- } \\
& \text { satzes XK } 403 \text { prüfen, ob die rishtige Netzspan- } \\
& \text { nung - } 220 \mathrm{~V} \text { oder } 115 \mathrm{~V} \text { - am HF-Leistungsver- } \\
& \text { stärker VK } 213 \text { eingestellt ist oder bei Gleich- } \\
& \text { spannungsbetrieb die richtige Gleichspannungs- } \\
& \text { versorgung von } \mathrm{J}_{\mathrm{N}}=24 \mathrm{~V} \text { am Leistungsverstärker } \\
& \text { VK } 213 \text { und Empfänger/Stewersender XK } 043 \text { anliegt } \\
& \text { (Toleranz } 21 \text {... } 31 \text { V). } \\
& \text { Die Prüfung entfällt für den Empfänger/Steuer- } \\
& \text { sender XK 043, wenn er seine Betriebsspannung } \\
& \text { aus dem HF-Leistungsverstärker VK } 213 \text { bezieht. } \\
& \text { Anschliebend piufen, ob gute Hasseverbindungen } \\
& \text { bestehen! } \\
& \text { Mitgelief̂erte Speicherbatterie gemäß 3.2.4.1 }  \tag{1}\\
& \text { einsetzen. } \\
& \text { 2.1.3.3 } \\
& \text { Inbetriebnahme und Bedienung des HE-Funkgerätesatzes } \\
& \text { XK } 403
\end{align*}
$$

Die Besienung des HE－Funkgerätesatzes XK 403 erfolgt zentral von der Frontriatte des Empfängex／Steuersenders XK 043 aus．Der Betriebs－ zustans wird eindeutig mit led－Anzeigen bzw．Lellohtdioden angezeigt． Die Befirebsfrequenz kann entweder mit 6 Frequenztastern wertweise eingetsstet oder mit einem Kanalwahlschalter eingestellt werden． Uber ci：Kanalwahlschalter stehen $\&$ Frequenzen zur Verfügung，die vorab E：：einen elektronischen，netzauscallsicheren Speicher einge－ geben kiiden．Zusätzlich befinden sich an der frontplatte des Empfärsor／Steuersenders XK 043 die Buchsen zum Abschlus von Periphミごiegeraten．

Die Anschlußwerte für Peripheriegeräte wurden so ausgewählt, daB alle gängigen Fabrikate ohne Zwischenschaltung von Hilfsstromquelien o.ä. mit einer Entfernung von bis zu 50 m angeschaltet werden können. Dies gilt insbesondere auch fur den Funk-Fernschreibbetrieb, und auch dann, wenn Fehlerkorrekturgeräte oder schlüsselgeräte eingesetzt werden. Vor der exsten Inbeiriebnahme des HF-Funkgerätesaties XK 403 ist zu prifen, ob die ưbersparnungs-Schutzschalter an der Rückseite des Empfänger/Steuersenders XK 043 und des HF-Leistungsverstärkers VK 213 eingeschaltet sind.

### 2.1.3.3.1 Wahl der Betriebsart

Die Anlage wird mit dem Schalter BETRIEBSART (4/14) in jeder der vier Betriebsstellungen eingeschaltet und die gewünschte Betriebsart eingestellt.
Sie ist funktionsbereit, wenn an der Frontplatte des Empfänger/ Steuersenders XK 043 die Anzeigeelemente aufleuchten. (Siehe auch Testanzeige Tab. 6 Betriebsbereitschaft siehe 2.1.3.3.9).
(1) Betriebsart AuS

Die Anlage ist abgeschaltet. Alle Anzeigen sind dunkel. Die SpeicherBatterie übernimat netzausfallsicher die Stromversorging des Speichers für die Kanal-Frequenz und APG-Abstimminformation (Schutz for Informationsverlust).
(2) Betriebsart BEREIT

In dieser Betriebsart wird lediglich das frequenznomal vorgeheizt, so daß der Funkbetrieb in allen Modulationsarten sorfort mit dex vollen Frequenzgenauigkeit aufgenonmen werden kann. Der Vorteil liegt im außerordentlich njedrigen Stromverbrauch. Zur Kontrolle leuchtet in dieser Betriebsart der Dezimalpunkt in - der Freguenzanzeige.
(3) Betriebsaxt EMPPANGEN

Zum reinen Empfangsbetrieb z.B. Ständigen Abhören von Nachrichtenkanälen dient die Betriebsart EMPFANGEN, der Senderzweig ist dabei gesperrt. Der HF-Leistungsverstärker VK 213 und das Antennen-AnpaBgerät FK 213 werden durch jeweils interne Sende-Empfangsrelais überbrückt. Auch hier liegt dje Lejstungsaufnahme niedriy, da

Leistungsverstärkex und Antennenanpassung abgeschaltet bleiben. AuBer dem Dezimalpunkt in der Frequenzanzeige wird mindestens der eingestellte Kanal angezeigt. Wird die Anlage nicht aus dem Netz, sondern aus der Batterie versorgt, so wird dies mit der Anzeige BATT. BETRIEB (4/2) signaiisiert.

## ACHTUNG:

- Nach längerem Netzausfall (2 sec) schaltet Anlage auf Batterie-Betrieb automatisch um und verbleibt in dieser Stellung. Zurückschalten auf Netzbetrieb erfolgt dann durch kurze Wahl der Betriebsart AUS oder BEREIT. Dieses Zurückschalten sollte in einer Sendeoder Betriebspause erfolgen, damit der Funkbetrieb nicht gestört wird.
die' Testanzeige 7 (Aufprufvorgang
ohne HF-Abstrahlung ca. 2s)
Bei Kanal O zeigt die Testanzejge
ebenfalls die 7 (Aufprüfvorgang
mit HF-Abstrahlung bei nächster
Senderhochtastung ca. 2s)
(4) Betriebsarten SENDEN/EMPFANGEN 0 und O

```
```

```
Anmerkung: Bei Kanalbetrieb Kanal 1 bis 7 zeigt
```

```
```

Anmerkung: Bei Kanalbetrieb Kanal 1 bis 7 zeigt

```
 In beiden Schaltstelilungen ist die Anlage bereit fur wechseiweisen
 Sende-Empfangsbetrieb. Alle Gerate sind eingeschaltet.
 Je nach Sendeart wird der Sender durch Drücken der Morsetaste
 (A1-Betrieb) Sprechtaste (A3J-, A3H-Betrieb) sowie durch Stellung
 "Senden" am Schalter F1-BETRIEBSAR" (4/15) in der Sendeart F1,
 hochgeschaltet. Bei abgestrahlter Leistung leuchtet die Lampe
 HF-IEISTUNG (4/1). In den Sendepausen ist automatisch auf Emprang
 geschaltet. Die rasche Umschaltung der Anlage von Senden auf
 Empfangen und ungekehrt, erlaubt zügige Verkehrsabwicklung.
 Die zwei möglichen Schalterstellungen ergeben:
- Senden mit reduzierter Leistung (10... 20 W)
(9) Senden mit voller Leistung (100 \(\left.\mathrm{W}_{-1}^{+2} \mathrm{~dB} \hat{=} 80-160 \mathrm{~W}\right)\)

Neben den schon bej Empfang beschriebenen Anzeigen erscheint nach einem Frequenz-bzw. Kanalwechsel die \(2 a h 17\) im TEST-Anzeigefeld. Dies bedeutet, daB sich das Antennen-Anpaßgerät FK, 213 auf die neue Sendefrequenz bei Kanal-Nr. \(1 \ldots 7\) stumm ohne HF-Aussendung und bei Kanal-Nr. 0 unter HF-Aussendung beim ersten Sendechochschalten abstimmt und deshalb roch keine information gesender werden kann. Erst nach erfolgter Abstimmung verschwindet diese Anceige und die Anlage ist sendebereit. Die Abstimmzeit kann max. 25 s betragen.

Eine. Alvstimmung oder Nachstimmung des Antennenmanpaßgerätes EK 213 kann auch vor Beginn des Sendebetriebes durch Drücken der Taste ABSTIMMUNG ausgelöst werden. Hierbei erfolgt HF-Aussendung! (Siehe auch 2.1.3.3.5)

\subsection*{2.1.3.3.2 Wahy der F1-BETRIEBSART}

Mit dem Schalter 1 -Betriebsart (4/i5) wird die Sende-Empfangsumschaltung bei El-Betrieb betatict.
So muB z.B. zusätzlich im FMA-S der Umschalter "Schrvibfunk" auf
"Reserveanlage" geschatet werden (siehe 2.1.2). Diese Schaiter sind nur funktionsfähig im Zusammenhang mit den Sendearten Fl (schmaler Hub \(= \pm 85 \mathrm{bzw} .42,5 \mathrm{~Hz}\)) oder Fl (breiter Hub \(= \pm 425 \mathrm{~Hz}\) und der Einstellung des Schalters BETRIEBSART (4/14) auf Senden/ Empfang. In der ET-Betriebsart (4/15) EMPF. können FS-Séndungen empfangen werden. Die E1-Betriebsart (4/15) BEREIT entspricht des Betriebsart EMPF., Abhören der F1-Kanäle ist möglich, der Linierstrom zu der Fernschreib-haschine wird jedoch nicht getastet (kein "Klappern" der FS-Maschine).

Mit dem Schalter F1-BErRIEBSART (4/15) in Stellung SENDEN wird der Sender hochgeschaltet. Fernschreibinformationen werden ausgestrahlt.

\subsection*{2.1.3.3.3 Wahl der Sendeart}

Mit dem Schalter SENDENRT (4/16) wird die gewünschte sendeart mit dem dazugehörigen zFmpilter eingestellt.
(1) Sendearten A.3J und A3H

Für Telefoniefunkbetrieb stehen drei Aussendungsarten zur Kahl:
- Sendeart A3J \(\swarrow\) (oberes Seitenband, international üblich)
- entspricht der Sendeart A3J beim Hauptsender SK 210/310.
- Sendeart A3J \(\triangle\) (unteres Seitenband)
- Mit der Sendeart A3H besteht die Möglichkeit, Funkverkehr mit Funkstellen zu betreiben, welche nur für die Sendeart A3 ausgerüstet sind.

Die Sprechtaste am Mikrofon löst die Senderhochschaltung und die Sende-Empfangsumschaltung aus.
(2) Sendeart A 1

Bei Telegrafiebetrieb, Sendeart A 1 , wird der Sender mit der Morse.taste hochgeschaltet, bzw. der HF-Träger getastet.

\section*{(3) Sendeart F1 \(\square\) und F1 \(\square\)}

Die Hübe für beide Sendearten sind
Sendeart F1 \(\square\) (Schmalband) \(\pm 85 \mathrm{~Hz} \mathrm{bzw} \pm 42,5 \mathrm{~Hz}\) (intern ursch
Sendeart \(\mathrm{F} 1 \square\) (Breitband) \(\pm 425 \mathrm{~Hz}\). bar)
Die erwähnten Hübe sind innerhalb des cerätes um etw: \(\pm 10 \%\) veränder bar.
Die Trenn-/Zeichenschrittzuordnung zur Frequenzablage für F1 ist mittels eines Schraubendrehers am Schalter Fl-polarimá voreinstellbar:
+ untere Frequenzlage bei Trennschritt
- obere Erequenzlage bei Trennschritt

Fl-Polarität + ist international üblich und beim Rauptsender SK \(210 / 310\) intern \(a b\) Werk eingestellt.
Die Senderhochschaltung und die Sende/Ernpfangsunschaltung wird mit dem Schalter El-BETRIEBSAKT vorgenommen.

\subsection*{2.1.3.3.4 Freguenzeinstellung}
(1) Frequenzwechsel

Frequenzwechsel von Hand oder mit vorgewählen Kanälen ist grundm sätzlich bei jeder Einstellung der übrigen Bedienelementa (z.B.

Sende- und Betriebsart) möglich. Fehlfunktionen werden durch intern elektronische Verriegelungen und automatische Ablaufsteuerungen vermieden.

\section*{(2) Kanaleinstellung}

Der gewünschte Kanal wird mit dem Kipphebel KANAL (4/6) eingestellit Wird der Kipphebel nach unten bzw. nach oben gedrückt, erhöht bzw. erniedrigt sich die eingestellte Kanal-Nr.. Die dem Kanal zugeordnete Frequenz erscheint ca. 10 s in dem Anzeigefeld \(E R E Q . \mathrm{kHz}(4 / 3)\) ungerlöscht dann bis auf den Dezimalpunkt. Ausnahme: bei Kanal 0 wird die Frequenz dauernd angezeigt.
Eine nochmalige inzaige der eingestellten Erequenz ist jederzeit durch Betätigen der Taste SpEICHERN oder eines Kipphebels EREQ. kHz möglich. Nach Ablauf der \(10 s\) erlischt die Anzeige wieder (Grund: Stromersparnis bei Empfangsbetrieb!)

Achtung: Taste SPEICHERN (4/18) nicht gleichzeitig mit einem Kipphebel FREQ. \(k H z(4 / 4)\) drücken! Siehe (4).
(3) Frequenzeinstellung vor Hand

Mit Kipphebel KANAL (4/6) Kanal 0 einstellen. Anschliebend mit den Kipphebeln FREQ. \(\mathrm{kHz}(4 / 4)\) gewünschte Frequenz einstellen. Betäti... gunssweise wie unter (2) beschrieben. Jede Stelle kann fur sich eingestellt wercien, eine Ubertragsbildung erfolgt nicht.
(4) Programmierung der Kanäle

Mit Kipphebel KANAL \((4 / 6)\) den neu \(z u\) programmierenden Kanal ejnstellen. AnschlieBend mit den Kipphebeln FREQ. kHz (4/4) bei gleiol zeitigem Drücken der Taste SPEICHERN(4/18) die neue Frequenz einstellen. Damit ist dem Kanal die neu eingestellte Frequanz zugeordnet.
Nach Loslassen der Taste SPEICHERN (4/18) verschwindet die Frequen: anzeige wieder nach ca. 10 sec .

Den Kanälen sind neben Frequenzen auch Daten für stumabstimmung des Antennen-AnpaBgerates EK 213 zugeordnet. Um Fehlerabstimmungen zu vermeiden, soilten gleichzeitig mit neuen Frequenzen auch die neuen Abstimmaten eingespeichert werden (siehe nächstes Kapitel: "Abstimmen").

\section*{Hinweis:}

Bei der Erstinbetriebnahme nach einem Speicherbatteriewechsel. jönnen, bedingt durch einen willkurlichen Speicherinhalt, bei verschiedenen Kanälen einzelne Ziffern der Frequenzanzeige dunkel bleiben. Dies ist unbedeutend! Bei der Neuprogramierung ist durch evtl. nochmaliges Betätigen des zugehörigen Kipphebels die gewünschte Zjiffer einzustellen. Ein Frequenzwechsel bei hochgeschaltetem Sender (Anzeige HF-LEISTUNG (4/1) sollte alis betriebstechnisci) Gründen vermieden werden, un unerwünschte Aussendungen auf anderen Frequenzen während der Frequenzeinstellung zu verhindern. Eine Fehlfunktion der Funkanlage tritt jedoch nicht auf. Empfohlen wird, vor jedem Frequenzwechsel mit fandeinstellung, (nicht jedoch Kanalwahl) die Betriebsart "Emprangen" einzustellen.

\subsection*{2.1.3.3.5 Abstimmen}

Der voll transistorierte \(H E\)-Verstärker VK 213 benötigt keine fb... stimnung. Die Oberwellenfilter werden nach jedem preguenzwechsel und nach einem Netzausfall automatisch und ohne Leistung auszusenden, eingestellt. Auch wenn die Beti-iebsartstellung SENDEN/ENo, (o und (O) ohne vorherige "BEREIT"-Stellung gewählt wurde, ist der HF-Leistungsverstärker VK 213 für den Botrieb an einer Breitbandantenne nach der vernachlässigbaren Ejnschaltzejt sofort einsatzbereit, die sendefrequenz hat jedoch wegen des thermostatgehejzten Normalfrequenzgenerators noch eine größere Abiage von der eingestellten Nennfrequenz. Dieser Zustand (= Heizen des Quaregeneratozs) wird im Test-Anzeigefeld (4/7) mit einer "1" argezeigt. AuBer in Notfallen sollte deshalb mit dem Aussenden einer Nachricht gewartet werden, bis die Anzeige " 1 " verlischt, d.h. der Quarzgenerator seinen Frequenzeinlauf beendet hat (typ. Wert bei \(Z i m m e r t e m p e r a t u r e n\) ca. 10 min.)

Gibt der HF-Verstärker VK 213 Leistung ab, so leuchtet die Kontroll-lampe HE-LEISTUNG (4/1) am Empfänger/Steuersender XK 043 auf. Das angeschlossene Antennen-Anpaßgerät EK 213 stimnt sich bei Kanal-
- wechse? oder Umschaltung von EMPEANGEN auf: SENDEN/EMPr. stumm (ohne HF-Abstrahlung) auf die im Kanal 0 bis 7 gespeicherten Frequenz \(a b\). Abstimmung mit \(H F-A b s t r a h l u n j\) erfolgt nach Frequenzwechsel
(im Kanal 1 bis 7 nur durch gleichzeitiges Drücken der Taste SPEICHERN möglich) bei dem ersten folgenden Hochschalten, sowie nach Drücken auf die Taste ABSTIMMUNG. Ist die Antennenanpassung schlecht, so erscheint die Ziffer 6 im Testanzeigefeld des Empfänger/Steuersenders \(X: 043\) sobald \(R F\) ausgesendet wird. Die HF-Leistung (4/1) kann erlöschen (Funktionsüberwachung der Testzentrale, genaueres siehe Test 2.1.3.3.9). Es wird in diesem Fall empfohlen, eine zweite Abstimmung durch Beiätigen der Abstimmtaste auszulösen.

Achtung: Bei diesem Abstimmen mit HF-Leistungsabgabe wird für max. 25 s HF-Leistung ausgesendet. Dies kann jedoch in der Leistungsstufe 0 (10...20W) erfolgen. Bei gleichzeitiger Fremdleistungseinstrahlung durch Simultanbetrieb mit weiteren Sendeanlagen, kann hierbei eine Fehlabstimmung erfolgen!

Eine automatische Nachstimmung des Antennen-AnpaBgerätes FK 213 nach beendetem Abstimmvorgang bei Fremdleistungseinstrahlung erfolgt nicht! Nach jedem Abstimmvorgang werden die Abstimmotoren stillg̈elegt. Eine Beeinflussung der Abstimmung durch simultan... betrieb mit anderen Sendern kann nicht mehr erfolgen. Während einer Fremdleistung iojnstrahlung durch andere Sender kann jedoch jederzeit ein Kanalwechsel vorgenomuen werden. Infolge der Stummabstimnung stellt sich das Antennen-AnpaBgerät FK 213 unbeeinflubt auf den einprogramierten Wert ein.

Programmiérung der Kanäle fü Stummabstimmung
Um eine erfolgreiche Stummabstimmung zu ermöglichen, müssen die einer Kanalfrequenz zugeordneten Abstimmaten für das AntennenAnpaBgerat FK 213 mit abgespeichert werden.
Dazu sind folgende Schritte notwendig:
a) Betriebsart SENDEN/EMPF, (O) einstellen (nicht hochschalten)
b) Kanal mit gewünschter Frequenz (wie bei 4 beschrieben) programmieren
c) Mit der linken Hand Taste SPEICHERN drucken, mit der rechten Hand gleichzeitig Taste ATSTIMMUNG drücken. Durch das kurze gleichzeitige Drücken dieser beiden Tasten wird sowohl eine HF-Abstimmung ausgelöst, sowie das anschlieBende Einspeichern
der Abstimmaten vorgenommen. Bei Drücken der Taste ABSTMMEN allein erfolgt \(H F-A b s t i m m u n g\) ohne Einspeicherung der Abstimmdaten.

\subsection*{2.1.3.3.6 Weitere Bedienungselemente}
a) Taste Test (4/8) und 2-stellige Anzeige TEST (4/7)
- Drücken der Taste TEST löst einen Funktionstest des HF-Funkgerätesatzes XK 403 (siehe 2.1.3.3.8) mit anschließender Anzeige des Testergebnisses aus.
b) Schalter LAUTSPRECHER AUS/EIN (4/11) Der interne Lautsprecher kann hiermit ausgeschaltet werden.
c) Regler LAUTSTARKE (4/12)

Durch Betätigen des Reglers kann die Lautstärke des eingebauten Lautsprechers, eines externen Lautsprechers oder eines Kopf̂hörers eingestellt werden.

\subsection*{2.1.3.3.7 Periphere ceräte}

Morsetaste, Mikrofon mit Hochschalttaste sowie Kopfhörer können parallel zu den Anschlüssen an der Rückseite des Empfänger/Steversenders \(X K 043\) (St 67) (5/10) an den Klinkenbuchsen (4/19) angeselizossen werden.

\subsection*{2.1.3.3.8 Uberwachung.}

Die Testzentrale führt eine permanente Funktionsüberwachung des HF-Funkgerätesatzes XK 403 jn der eingeschalteten Betriebsart durch. So wird in Stellung EMPFANGEN nur der Empfänger/Steuersender XK 043, in Stellung SENDEN/EMPE, der gesamte Sende-Empfangs... Funkgeratesatz uberwacht. Die Anzeige des Uberwachungszustandes erfolgt an der Anzeige TEST (4/7).
a) Während des normalen Betriebsablaufes werden drei wichtige Betriebszustände dem Operateur gemeldet, die bei intakter Anlage nach bestimmen typischen Zeiten beendet sind, so daB die Anzeigen erlöschen.

Nr. 1 Empfänger/Steuersender XK 043: Thermostat heizt, Frequenzei lauf noch nicht beendet (10...20 Minuten)

Nr. 5 HF-Verstärker VK 213: Umschaltung des Oberwelienfilters (ca. 1 Sekunde)

Nr. 7 Antennen-AnpaBgerat FK 213:

Die Abstimmung läuft (max. 25 Sekunden
b) Während des betriebsmäBigen Einsatzes ermöglicht die Funktionsüberwachung eine Meldung über den Funktionszustand des Gerätesatzes. Bei "Nicht Gut"-Anzeige erlaubt sie eine Fehlererkennung und -lokalisierung der fehlerhaften Baugruppe. Folgende Meldungen erfolgen an Anzeige TEST: MatErhstufe 1 "Dunkel" GO-Anzeige HF-Funkgerätesatz XK 403 in ordnung "Einstellige Ziffer"

NOGO-Anzeige HF-Funkgerätesatz XK 403 nioht in Ordnung Ausnahme: kurzzeitige Eetriebszuständ unter a)
-...Fehiermeldungen an Anzeige TEST: MathErhstufe 2

Nr. 1, 2 und 3 Baugruppenfehler.
Nr. 4

Nr. 5
Nr. 6

Baugruppenfehler

Baugruppenfenler
Baugruppenfehler

Empfänger/Steuersencies: XK 043
sonstige systemkompatible Geräte wie z.B. HF-Selektionseinheit FK falls angeschlossen.
He-Leistungsverstänet EK 213
Antennen-Anpa\&gerät FK 213 oder defekte Antennenanlage

\subsection*{2.1.3.3.9 Test}

Vor jeder Aufnahme eines uber längere zeit unterbrochenen Funkbetriebes ist der betriebsbereite HF-Funkgerätesat: XK 403 einer Funktionsprüfung durch die interne Testeinrichtung zu unterziehen. Betriebsbereitschaft heibt, daB der Frequenzeinlauf des Quarzoszillators sowie bei Betriebsarten SENDEN ein Abstinnvorgang des
- Antennen-AnpaBgerates FK 213 (siehe 2.1.3.3.8 Uberwachung) beendet ist.

Die Testzentrale fuhrt die Funktionsprüfung des HF-Funkgerätesatzes XK 403 nach Auslösen der Testtaste an der Frontplatte des Empränger/ Steuersenders XK 043 in der eingeschalteten Betriebsart, Senceart und mit der eingestellten Frequenz durch. So werden in Stellung EMPFANGEN nur der Empfänger/Steuersencier XK 043 sowie die "statischer Daten" des HF-Leistungsverstärkers VK 213 und des Antennen-Anpaßgerä

FK 213 wje Betriebsspannungen ohne HP-Aussendung gepruft.
In Ste lung SENDEN/EMPF. Werden alle Funktionen des HF-Funkgeratesatzes XK 403 optimal gepruft. Durch die Aussendung von HF erreicht man hierbei die höchste Fehlererkennunys- und - Lokalisierungswahrscheinlichkeit.

Wie schon bei der Funktionsuberwachung beschrieben, fuhrt die restzentrale die Fehlererkennung und -lokalisierung sowohl bis zur schad haften Baugruppe wie auch zur schadhaften Unterbaugruppe durch. (Sieh auch Tabelle 3 und Tabelle 6).

\section*{Vor Beginn der Testauslösung also gewinschte Betriebs-, Senceart} sowie Freguenz einstellen und evtl. Abstimmung des AnternenAnpaBgerätes FK 213 abwarten

Die Wiederholung des Tests kann jederzeit mit anderen Einstellungen durchgeführt werden. Das Testergebnis wird im Gegensatz zur Uberwachung mit einem iinktakt versehen, um eine unterscheidung zu ermöglichen. Folgende Meldungen erfolgen an Anzeige TEST:
(siehe Tabelle 6 una Flubdiagrama Bild 21)
Fehlererkennung in Materialerhaltuncsstufe i:
Nr. 88
Test läuft nach Auslösung ciurch die Taste Jesm Mithören zur Kontrolle des Tests ist nöglich.

Nr. 00
GO-Anzeige
HF-Funkgeratesatz \(X K 403\) in Ordnarg, Durch ein weiteres Betatigen der Testtaste wird Funktionsprüfung beendet. Anzeige "00" erlischt.
"Einstellige Ziffer"
NOGO-Anzeige

HF-Funkgerätesatz XK 403 in der eingestellten Betriebsart, Sendeart und bei der eingestellten Frequenz nicht in ordnung.
Fehlerexkennung und -lokalisierang zur höheren Matnerhstufe 2 notwendig.

Fehlexerkennung und -lokalisierung in Materielerhaltungsstufe 2:

Nr. 1, 2 und 3
Nr. 4

Baugruppenfehkex
Baugruppenfehler

Empfänger/Steuersender XK 043 sonstige systenkompatible Geräte wie z.B. HF-Selektionseinheit EK 100
\begin{tabular}{rl}
Baugruppenfehler & HFwLeistungsverstärker VK 21 \\
Baugruppenfehler Antennen-AnpaBgerät FK 213 \\
Baugruppenfehler & Ermittlung der fehlerhaften \\
& Baugruppe erfolgt. \\
& Fehlererkennang und -1okali= \\
& sierung zur Materialerhaltun \\
& stufe 3 durch weiteres Be- \\
& tatigen der Testtaste. \\
& Zweistellige Ziffer erschein
\end{tabular}

Fehlererkemmung und -lokalisierung in Materialerhaltungsstufe 3:
Nr. 17, 20 bis 69

\section*{Unterbaugruppenfehler}

Unterbaugruppenfehler
siehe Tabelle 6

Ermittlung der fehlerhaften un baugruppe erfolgt.
Weitere Ernittlung von fehlerhaften Unterbaugruppen durch weiteres Betätigen der Testtas? Es können, wenn vorhanden, mehrere fehlerhatte Module aum erneutes Abrufen (Taste TEST) ermittelt werden. Liegt keine fehlerhafte Baugruppe mehr vor. so kann die FunktionspraEung durch ein weiteres Betaticen der Testtaste beendet werden. Dies wird durch anschliebende Dunkelschaltung der Testanzefgs signalisiert. Sollte ein Eentez vorliegen, den auch die uberwachung durch Einschubrehler \(\cong\) einstellige ziffer anzeigt, oce vor Testbeginn angezeigt hat, dann erscheint diese Anzeige wieder ohne Blinktakt

\section*{Anmerkung:}

In der Praxis wird nach dem ersten Abrufen eines Modulfehiers durch ejinen erneuten Druck auf die Testtaste die Funktionsprüfung beerdet sein, da die weitaus gröbte Zahl der Fehlemelaungen durch polgefehle eines schadhaften Moduls entstehen würden. Der Mikrocomputer bricht in diesen Fällen die Fehlerauswertung \(a b\). Nux in wenigen sinnvollen Fällen wird deshalb eine zweite schadhafte Modulbaugruppe ermittelt und damit abrufbar sein. Dies entspricht der praktischen Erfahrung bei Geräteausfällen: Mit fast an Sicherheit grenzender Wahrscheinlichkeit fällt zu einem Zeitpunkt auch nur ein Bauteil bzw. Unterbaugruppe aus.

\section*{Hinweis:}

Bei Fehlermeldungen durch Uberwachungs - oder Testeinrichtung kann trotzdem der Funkbetrieb mit dem HF-Funkgerätesatz XK 403 solançe aufrecht erhalten bleiben, bis die Funkverbindung abreibt

Anders ausgedrückt: Eine angezeigte Fehlermeldung bedeutet nicht immer Totalausfall der Anlage, sondern weist in vielen fällen nur auf eine Uberschreitung von Toleranzwerten hin, die bei nächster Gelegenheit überprüft werden sollten.

\subsection*{2.1.4 Bedjenung und Betrieb des Senders unter besonderen kl.imatischen Bedingungen}
Die Geräte sind fur einen Betrieb bei Umgebungstenperaturen von \(-40^{\circ} \mathrm{C}\) bis \(+55^{\circ} \mathrm{C}\) ausgelegt (APG bis \(+65^{\circ} \mathrm{C}\)).

\section*{ACHTUNG}

Bei Temperaturen uber \(440^{\circ} \mathrm{C}\) sollten jedoch, um die Lebensdauer des HE-Verstärkers VK 213 und des Antennen-AnpaBgerates FK 213 nicnt unnötig zu verkürzen, nach längeren Sendezeiten, besonders wenn bei El-Bereich keine Information gesendet werden muß, Pausen eingelegt, d.h. es sollte auf Betriebsart EMPFANGEN umgeschaltet werden.

\subsection*{2.2.1 AnschlieBen der Kabel}

Vor dem Anschließen der Kabel muß der Einschub gemäß Montageanleitung montiert worden sein. Nach dem Aufstellen des HF-Verstärkers VK 213 wird dieser mit dem Empfänger/Steuersender XK 043 und dem AnpaBgerät FK 213 verkabelt. Ein Verkabelungsplan ist in Bila 2 und 3 dargestellt. Die Steuerund Stromversorgungskabel werden mit Bajonettverschlüssen verriegejt während die Koaxialkabel aufgeschraubt werden. Hier ist besonders auf geraden Sitz zu achten, damit der Innenleiter (Stift) und das Gewinde nicht zerstört werden.

ACHTUNG: Netzkabel erst nach Erdung der Geräte einstecken!
2.2.2 Bedienung und Betrieb des HF-Verstärkers VK 213
2.2.2.1 Hinweis zur Unfallverhuitung

Vor dem Öffnen des Geräts ist stets das Netz am Sicherungsautomaten im Eunkraum abzuschalten, um die Berwhrung mit hohen Spannungen auszuschlieben. Bei geschlossenem und einwancifrei instaliziertem sender besteht keine Unfallgerahr.
2.2.2.2

Uberprüfen vor dem Einschalten des Gerats
ACHTUNG: Vor dem ersten Einschalten der Anlage ist zu . prüfen, ob bei Netzbetrieb die richtige Spannung (220 V oder 115) im HF-Verstärker VK 213 eingestellt ist oder die richtige Gleichspannungsversorgung von \(U_{N}=24 \mathrm{~V}\) (Toleranz \(21 \ldots\) 31 V) am Gerat anliegt.

Die Umstellung von 220 V auf 115 V und limgekehrt geschieht folgendermaßen:

Haube des Verstärkers VK 213 abnehmen. Am Netz-
trafo folgende Brücken (Schraubbrücken) einstel-
len: (siehe Montageanleitung)
220-v-Betrieb: \(5-3\) und \(6-8\)
115-V-Betrieb: \(4-2\) und \(9-7\)
2-15

\section*{2.2 .2 .3}

\section*{Inbetriebnahme und Bedienung des \(\mathrm{HE}-\) Leistungsverstarlers VK 213}

Sämtliche Bedienungselemente für den Sender befincien sich am Empfänger/Steuersender XK 043, so daB an HF-Leistungsverstärker VK 213 keine Bedienung vorgenommen wird. Vor der ersten Inbetriebnahme des HF -Leistungsverstärkers Vk 213 ist alleroings zu prüfen, ob der (iberspannungschutzschalter an der Rucksejte eingeschaltet ist. (Ein \(=\) Schalterstellung oben) Der Verstarker gibt seine Nennleistung nach dem Einschalten des Gerats bei mit \(50 \Omega\) abgeschlossenem Ausgang ab. Da die Endstufe leerlauf- und kurzschluberst ausgelegt ist, kann sie im eingeschalteten Zustand beliebig abgeschlossen sein. Bei zu grober Fehlanpassung reduziert der HE-Verstärker VK 213 autonatisch proportional der Fehlanpassung seine Ausgancsieistung. Es tritt daher kein Echaden auf, wenn die Verbindung zum Aug-he-reil und zur Aiftenne fehit. An der Anzeige Test meldet die Uberwachung (2.1.3.3.8) jedoch Fehlex im Antennen-AnpaBgerät Nr. 6.

\subsection*{2.2.2.3.1 Notbetrieb und Betrieb an Breitbandantenne}

Zum Betrieb an einer Notantenne (Langdraht) wird das HF-Kabel zur Antenne direkt am HE-Ausgang des Verstärkers VK. 213 angeschlossen. Zur Unterdruckung der Fehlermeldung APG Nr. 6 und zur Freigabe der Senderhochschaltung muß an steuerausgang 23 zusatzlich ein Adapterstecker mit einer Kurzschlußbrucke aufgesteckt werden. Bei Dauerbetrieb an einer Breitbandantenne ist dieser Adapterstecker zur Sicherstellung der Funktionsüberwachung und -prüfung erforderlich. (Siehe 1.3.5)
2.3.
\(2.3: 1\)

\subsection*{2.3.1.1}

Das Antennen-Ampaßgerät FK 213 wird mit Schwinguntecsatz in der Antenne (\(<0,5 \mathrm{~m}\)) mit vier Schrauben befestigt. Es ist zweckmäßig das Antennen-anpaBgerat FK 213 so zu montieren, das das Gerät gegen intensive Sonnenbestrahlung geschutzt ist (siehe Montageanleitung).
2.3.1.2 AnschluB des Antennen-AnpaByerates \(E k\) 213 (Bild ? und 3) Nach der Montage des Antennen-Anpabgerätes könner die Verbindungskabel K2 urd \(k 3\) angeschlossen werden. Die Antenne mub mit geeignetem Draht (Kupferdraht, Mindestdurchmesser 1,5 min oder Kupferband) angeschlossen werden.

Achtung: max. 7 kV Hochspannung!
Anterne und Antennenanschluß muissen vor unbeabsichtigtem Berühren gesichert werden,

Das Antennen-AnpaBgerät FK 213 muB an der dafur vorgesehenen Schraubverbindung mit kurzen induktionsarmen Leitungen mit Masse verbunden werden (sieie Montageanieitung) .

\section*{2.3 .1 .3 \\ Abbau}

Der Abbau des Antennen-AnpaBgerätes FK 213 erfolgt in umgekehnter Reihenfolge. Zuerst Anlage stromlos schalten und Versorgungsspannungen abtrennen, dann steuerkabel K3 auftrennen, dann HF-Steuer- und Nasse~ kabel \(K 2\) und \(k 3\) lösen. Anschließend die Geräteschrabon lösen und APG vom Montageplatz abheben.
2.3.2 Bedienung und Betrieb des Antennen-AnpaBgerätes F . 213

Das Antennen-AnpaBgerät \(F K 213\) wird automatisch vom Enpfänger/Steuersender XK 043 und HF-Verstärker \(F K 213\) angesteuert und besitzt keinerlei Bedienungselemente.

Nach jedem Kanalwechsel stimmt das Gerat stumm ab. Abstimudauer ca. 16... 25 sec.. Bei Abstimmung mit HF-Ausstrahlung versucht das Gerät innerhalb von 3 Sekunden direkt abzustimmen. Gelingt dies nicht, erfolgt ohne HF-Ausstrahlung ein Lauf zur Grundstellung (\(<10\) Sekunden) mit anschlieBend neuer HF-Abstimmung, so daB dann die Gesamtabstimmauer ca. 10...50 Sekunden beträgt. Ein laufender
- Abstimmvorgang wird am Empfänger/Exciter mit Ziffer "7" angezeigt. (Siehe 2.1.3.3.8)
Nach dem Abstimmen werden die Servoantriebe ausgeschaltet, so daB kurzzeitige Veränderungen des Antennenwiderstandes nicht nachgestimnt wexden. Sollte eine bleibende Veränderung eintreten, kann das durch nochmaliges Abstimuen und Neuprogrammieren dex Stumnabstimmung ausgeglichen werden. Ist die Antennenanpassung schlecht oder liegt eine Störung des Antennen-AnpaBgerätes FK 213 vor, so erscheint die Zifferfolge "6" an der Fehleranzeige auf der Frontplatte des Empfänger/Steuersenders XK 043. Vor der Fehlerlokalisiezung durch die interne prufeinrichtung (1.4.1.4 und 2.1.3.3.9) wird empfonlen, einen Abstimmorgang durch Drücken der Taste ABSTIMMUNG in Betriebsart SENDEN/EMPE. (0) auszulösen.

\subsection*{2.4 Pflege}

Die Pflege hat den Zweck, das Gerät funktionsfähig zu erhalten.
Sie ist vom Bediener nach Gebrauch - jedoch mindestens 1-mal wöchentiich - mit den beigegebenen Werkzeugen und Ffiegemitteln durchzuführen.

Die pflege erstreckt sj.ch auf:
- Uberprüfen der Vollzähligkeit des Gerätes
- Reinigen der äußeren Teile von Staub, Schmutz, Feuchtigkeit
- Beseitigung vor Isolationsschäden an äuBeren Kabeln
- Uberprüfen der Steckverbindungen und Bedienungselementen auf festen Sitz, Gängigkeit und evtl. defekte Steckerstifte
- Festziehen der von außen zugänglichen Schrauben und Mattern
- Beseitigen von Lackschäden, dabei nur RAL 7001 verwenden
-- Betriebsprüfung entsprechend Abschnitt 2.1.3.3.9
- Prüfen der Masseverbindung zwischen Antennen-Anpaßgerät und den Montageort
- Reinigen des Antennenisolators (sowohl Antenne wie auch APG) (Versalzungsgefahr)

Materialerhaltung im Truppenbereich
(Truppeninstandhaj.tung)

\subsection*{3.1 Wartung}

Die Wartung des Geräts obliegt den Fachpersonal. Sie ist - wenn nicht anders angeordnet - mindestens alle 12 Monate mit dem vorhandenen Werkzeug durchzuführen.

\subsection*{3.1.1 Wartungshinweise}

Zusätzlich zu den Pflegearbeiten gem. Abschnitt 2.4 sind die folgenden Kontrollen durchzufuhren:

\subsection*{3.1.1.1 Kontrolle des Quarzoszillators}

Bei Betrieb spez. in der Sendeart \(F 1[\square\) ist der Quarzoszillator nach einem Jahr zu prüfen und ggf. nachzugleichen. Diese Arbeit erfolgt in der MatFrhStufe 3.

\subsection*{3.1.1.2 Kontrolle der Speicherbatterie}

Die Kontrolle der Speicherbatterie wird sowohl durch die interne Funktionsüberwachung wie auch durch die interne funktionsprüfung erfabt (siehe \(2.1,3.3 .8\) und 2.1.3.3.9). Es wird empfohlen, das Auswechseln der Speicherbatterie jährlich durchzufuhren. Bei AusEall der Speicherbatterie ist die Eunktion der Anlage keineswegs beeinträchtigt. Es können nach wie vor Kanäle abgerufen und auch neu eingespeichert werden. Nach einem Netzausfall oder nach Abschalten der Anlage (AUS und BEREIT) geht die Kanal~ FrequenzZuordnung (Netzausfallsjcherheit des Kanalspeichérs) jedoch verloren. Diese Arbeit kann in der MatErhstufe 2 erfolgen. Bei Einlagerung des Gerätesatzes über einem Jahr muß grundsätzlich die Speicherbatterie aus dem Empfänger/Steversender XK 043 entnommen werden. Bei Einlagerungszeiten unter einem Jahr wird Entnahme empfohlen.

ACHTUNG: Batterie enthält Quecksilber. Sie muß kontroliiert vernichtet werden, evtl. durch Rückgewinnung (Recycling) des Quecksilbers beim Herstellwerk.

\subsection*{3.1.1.3 Wartung des Antennen-Anpaßgerates FK 213}

ACHTUNG: Hochspannung! Anlage stromlos schalten!

HF-und Steuerkabel immer trennen, bevor Gerät gewartet wird. Die Wartungsabstände richten sich nach dem eingebauten Abstirmzähler.
Alle 10000 Abstirmungen, jedoch mindestens in j-Jahresabständen sollen folgende Punkte kontrolliert werden:
(1) Uberprüfung der elektrischen Varioneterkoncakte:

2 Rollen, Achsen, Schieifkontakte auf Sauberkeit.
(2) Uberprüfung der Vakuum-Kondensator-Baugruppe auf Sauberkeit.
(3) Uberprüfung der Variometer-Baugruppe auf Sauberkejt der Wicklung (siehe Bild 19 und 20). Bei Bedarf Reinigung entsprechend 3.1.1.3.1 und Schraierung entsprechend 3.1.1.3.1 und 3.1.1.3.2. Diese Arbeiten erfolgen in MatErhstufe 3.

Reinigung und Schmierung
Das Antennenanpaßgerät \(F K 213\) ist dicht und kann deshalb innen durch äußere Einrichtungen nicht verschmutzen.
Trotzdem ist auf größte Sauberkeit zu achien.
Die Baugruppen könen mit preßluft von fremden partikeln gesaubert werden.

\section*{HINWEIS:}

Öffnen des AntennenanpaBgerätes FK 213 nur in geschlossenen Räumen. Nach jedem Öffner. ist der Zustand der Trockenpatrone zu kontrollieren gegebenenfalls zu wechseln.
blau \(=\) in Ordinung
rosa \(=\) muß gegen eine blaue ausgewechselt werden
Der
HF-Antennen-Isolator sollte öfters gereinigt werden, besonders wenn das Gerat an exponierter Stelle montiert ist (Versaluungsgefahr) (sieh 2.4)

\subsection*{3.1.1.3.1 Variometer}

ACHTUNG: Zum Reinigen des Variometers ist ausschließlich Alkohol zu verwenden. Andere putzmittel können das Variometer beschädigen.
- Die Spulenwindungen, die Achsen, die Kontakte werden zuerst mit Alkohol gereinigt, dann mit einem silicon-Fett (DOW CORNING DC 33) - geschmiert. Das Fett wird hauchdün auf die Windungen aufgetragen (Bild 22), so daß eine unsichtbare Schicht entsteht. An den Kontakten und Lagern kann eine dickere schicht verwendet werden. Eine Schmierung der Kunststoffzahnräder ist nicht notwendig. Die Motorlager brauchen nicht gewartet werden.

\subsection*{3.1.1.3.2 Vakuum-Kondensator}

Gefettet wird der Vakuum-Kordensator in der Ausgancsstellung durch eine Bohrung in der Mitte des Führungsgehäuses (Bild 22).

Es ist eine kleine bienge Silicon-Fett einzufuhren, danach muB das Antemnen-Anpabgerät bei mehreren Frequenzen abgestimmt werden, um das Fett auf dem ganzen Gewinde zu verteilen.
3.1.1.4 Kontrolle des HF-Funkgerätesatzes XK 403

Zur Wartung der Anlage gehört das Auslösen des Testprograrnes, wie es in Abschnitt 2.1.3.3.9 beschrieben ist.

Vor Kontrolle des HF-Funkgerätesatzes XK 403 soli Zer HF*Antemnenisolator gereinigt werden, da evtl. Versalzung und sonstige Verschmutzung den Wirkungsgraci der Leistungsabstrahlung verringert. Das Antennen-AnpaBgerat ist jedoch imner in der Lage, sich an veränderte Impedanzverhältnisse anzupassen. (Siehe 2.1)

Beim Lagern sind die Geräte vor übermäßigen mechanischen und klimatiscl Belastungen zu schutzen. Der Lagextemperaturbereich beträgt bei Empfänger/Steuersender XK 043, HF-Leistungsverstärker VK 2.13 und Antennen-AnpaBgerät EK \(213-40 \ldots+70^{\circ} \mathrm{C}\).

Die Einschübe sind bis zum Einlagern in Transportkisten oder Lagerbehältern zu schützen, um Beschädigungen zu verhindern. Die Anschlub~ elemente sind mit ihren Schutzkappen zu versehen (Ausbau der Teilgeräte siehe Abschnitt \(2.1,2.2,2.3)\)

Bei längerer Lagerzeit (> \(1 / 2\) Jahr) die Speicherbattexie entnehmen.
ACHTUNG: Entnahme Speicherbatterie siehe 3.1.1.2.

\section*{Truppeninstandsetzung}

\subsection*{3.2.1 Instandsetzungshinweise}

Die Truppeninstandsetzung beschränkt sich auf:
- Prüfen der Betriebsfähigkeit des HF-Funkgerätesatzes XK 403
- Störungs-- und Fehjersuche,
- Austausch von Schadteilen, die in der MatErhStufe 3 angefordert oder bevorratet werden durfen.

Vor jeder Fehlersuche ist das Gerät gem. Abschnitt 2.1.3 in Betrieb zu nehmen, um Störungen durch etwaige Bedienungsfehler auszuschlieBen.

\subsection*{3.2.2 Prüfen der Betriebsfähigkeit}

\subsection*{3.2.2.1 Kontrolle der \(H F\)-leistung und der Abstimmung}
-. Beim Betätigen der Morsetaste in Sendeari M 1 ,
- Beim Drüken der Sprechtaste in Sendeart A.3H,
- Beim Drücken der Sprechtaste in Sendeart \(\AA 3 J\) und Besprechen des Mikrofons,
- Wenn in Sendeart F1 P1-Betriebsartenschalter auf SENDEN gesfellt wird, muß die Lampe HF-Anzesge an der Frontplatte des Empfänger/ Steuersenders XK 043 aufleuchten. Diese Prüfung muß bei allen Betriebsfrequenzen wiederholt werden. Voraussetzung ist natirlich, daß Betriebsartenschalter auf SENDEN/EMPF. sieht.

Leuchtet die Anzeige Test ifr. 6 auf, so ist bei der eingestellten Frequenz die Reflexion \(s>2 \ldots 3\) (siehe dazu 2.1.3.3.8). Die HE~Anzeige kann je nach Leistungsabgabe des Verstärkers leuchten. In Notfallen kann ein Funkbetrieb aufrecnterhalten bleiben, da der HF-Leistungsverstärker VK 213 seine Leistung vermindert, jedoch nicht abschaltet.

Hinweis: Bei dieser Prüfung wird Leistung abgestrahlt.

\subsection*{3.2.2.2 Test und Uberwachung des HF-Funkgerätesatzes XK 403}

Der HF-Funkgerätesatz XK 403 wird, wie in 2.1.3.3.9 beschrieben, einer Funktionsprüfung durch die interne Testzentrale unterzogen. Nach jedem Testvorgang ist die Sendeart zu. wechseln und der Test zu wiederholen. Die Prüfung möglichst auf allen Betriebsfrequenzen durchführen.
-

\section*{ACHTUNG:}
~ Test bei Betriebsart EMPFANGEN:
Keine HF-Abstrahlung, jedoch nur Prüfung Empfänger/Steuersender XK 043 und statische Funktionen des Leistungsverstärkers VK 213 und Antennen-AnpaBgerät FK 213 wie z.B. Betriebsspannungen.
- Test bei Betriebsart SENDEN/EMPFANG:

HF-Abstrahlung bei dieser Prüfung, jedoch optimale Funktionsprüfung des gesamten HF-Funkgerätesatzes XK 403.

Fehler, die durch die Funktionsüberwachung (2.1.3.3.8) gemeldet werden, werden auch auberhalb des Testprograms sofort während des Funkbetriebes angezeigt.

\subsection*{3.2.3 Störungs- und Fehlersuche}

An den Geratiten auftretende Fehler werden durch die Anzeige TEST gemeldet (siehe 2.1.3.3.8, 2.1.3.3.9 und Tabelle 6)

\section*{Anmerkung:}

Wird ein Fehler angezeigt, so ist die Anlage nicht unoedingt auch funktionsunfahig. Ursache der Störung kann das uberschreiten von Grenzwerten sein, das einen eingeschränkten Funkbetrieb durchaus noch gestattet.

\subsection*{3.2.4 Ein- und Ausbau}
3.2.4.1 Empfänger/Steuersender XK 043

Bei allen Unterbaugruppen außer der Speicherbatterie muß die Hable wie folgt abgebaut werden:
- Die acht Kreuzschlitzschrauben (5/5) lösen
- Die Haube nach hinten von Empfänger/Steuersender XK 043 abziehen
- Anschliebend für einen leichteren Ein- und Ausbau der unterbau*gruppen den Modulträger ausfahren.
- Die sechs unverlierbaren Kreuzschlitzschrauben (10/14) lösen
- Den Modulträger glejchmäBig nach oben aus dem Gerat ziehen und entsprechend der Führung den Modulträger auf den Rahmen schieben.
(1) Batterie
- Die beiden Kreazschlitzschrauben der Batterie-Halterung (4/13) lösen
-- Nach Abnahme der Halterung kann die Batterie entnommen werden
- Der Einbau erfolgt in ungekehrter Reihenfolge

ACHTUNG

Beim Eintau der Batterie mue de: Pluspol zum Gerät zeigen.
(2) EMC-Filter
- Die vier unverlierbaren Kreuzschlitzschrauben (Rild 10/2) des

EMC-Filters lösen.
- Anschlußstecker des EMC-Filters abziehen und das EiC-Filtex nach hinten aus dem Empfänger/Steversender XK 043 herausziehen
(3)

Netzteil \((9 / 1)\)
- EMC-Filter gemäB (2) ausbauen
- HE- und 2E-Kabel (10/1) lösen
- Die vier Kreuzschlitzschrauben der Rückwand lösen
- Anschlußstecker des Netzteils abziehen und das
- Netzteil abnehmen.
(4) HF -Filter \((9 / 2)\)

Nach Lösen der rückwärtigen Schrauben kann das HF-Filter aus dem Gerüst gezogen werden.
(5) \(\quad\) HE-Umsetzer \((9 / 3)\)

Gemäß (4)
(6) \(\quad\) ZF-Verstäker (9/4)

Gemäß (4)
(7) Schleife \(2 a(9 / 5)\)

Gemäß (4)
(8) Schleife \(2 b\) (9/6)

Gemäß (4)
(9) Schleife 1 (9/7)

Gemäß (4)
(10) Hilfsumsetzung \((9 / 8)\)

Gemäß (4)
(11) Quarzgenczator (9/9)

Gemäß (4)
- Die sechs unverlierbaren Kreuzschlitzschrauben (4/20) lösen
- Anschlubstecker abziehen und Bedienteil nach vorn abnehmen

\section*{(13) Stummabstimmung}
- Bedienteil gemäß (12) abbauen
- Die vier Schrauben (9/11) des Abdeckblechs lösen.
- Abdeckblech abnehmen
- Die vier Kreuzschlitzschrauben der Platirenvefestigung lösen
- Stumabstimmung nach oben abnehmen
(14) 2F-Filter \((10 / 4)\)
- Modulträger gemäB (4) ausfahren
- 2F-Filter herausziehen
(15) A3J/A3F Modulator (10/5)

Gemäß (14)
(16) AT/A3J Denodiulator \((10 / 6)\)

GemäB (14)
(17) A1/F1 Modulator (10/7)

Gemäß (14)
(18) F1 Demodulator \((10 / 8)\)

Gemäß (14)

\subsection*{3.2.4.2 HF--Eeistungsverstärker vK 213}

Eei Austausch der Pos. (11/2) und (22) ist die Frontplatte (Bjld 11/4 abzunehmen, bei Austausch der pos. (15/1, 3, 5, 6, 8, 12)
die Abdeckung oben (Bild 11/3) bei Austausch der Pos. (16/2, 6, 9, 11, 12, 13, 15, 17, 18, 19, 21 unc 22) die Abdeckung unten. Bei Austausch der Pos. (15/10) und \((16 / 7)\) sind beide Abdeckungen abzunenmen.
```

(1) Luifterbaugruppe (Bild 11/2)

```

Vier Schrauben Iösen, Lüfrerbaugruppe herausziehen bis drei Lötstellen sichtbar werden und Leitungen ablöten. Neue Baugruppe laut Kontageschaltbild 23 anlöten und in ungekehrter Reihenfolge montieren.

\section*{Vorverstarker (Bild 15/12)}

Nach Lösen der sechs Befestigungsschrauben (Bild 15/13) kann die Baugruppe abgezogen und herausgenommen werden. Die Ersatzbaugruppe
- einsetzen und anscifauber.

Schrumpfschlauch an den Lötstellen der Anschlubdrähte entfernen und Anschlußdrähte ablöten. Beide Koax-Leitungen nach Lösen der Uberwurfmuttern abziehen.

Lösen der sechs Befestigungsschrauben (Bild 15/2) und Leitungsstufe herausnehmen. Der Einbau erfolgt in umgekehrter Reihenfolge. Es ist darauf zu achten, dab dje Lötstellen der AnschluBdrähte mit Schrumpfschlauch isoliert werden. Die Lage der Anschlubdrähte ist in Bild 24 angegeben.
(4) Drosselbaugruppe (Bild 15/3)

Schrumpfschiauch an den Lötstellen der Anschlubdrähte entrernen und Anschlubdränte ablöten. 12 Schrauben (Bild 12/11) lösen und die Baugruppe nach hinten herausziehen.
Der Einbau der Baugruppe erfolgt in umgekehrter Reihenfolge. Die Lage der Anschlubdrante ist in Bild 24 angegeben. Beim Einlöten der Anschlußdrähte ist darauf zu achten, daB die Lötstellen mit Schrumpfschlauch isoliert werden.

Oberwelienfilter (Bild 15/4)

Fontplatte abschrauben. Zwei Befestigungsschrauben lösen und das Oberwellenfilter herausziehen. Der Einbau erfolgt in umgekehrter Reihenfolge.
(6)

Steuerlogik (Bild 15/6)
Zwei Befestigungsschrauben (Bild 15/7) lösen und Steckkarte herausziehen.
Der Einbau erfolgt in ungekehzter Reihenfolge.
(7) Filterlogik (15/8)

Zwei Befestigungsschrauben (Bild 15/9) lösen und Steckkarte herausnehmen.

Der Einbau erfolgt in umgekehrtrr Rejhenfolge.

Beide Koax-Leitungen nach Lösen der Uberwhrfmuttern abziehen Vier Befestigungsschrauben lösen
Baugruppe herausnehmen
Der Einbau erfolgt in uragekehrter Reihenfolge

Tiefpaßfilter (Bild 15/10)

Koax-Leitung am TiefpaB ablöten (Gexäteunterseite)
An der Geräteoberseite. ist nach Lösen der Uberwurfmutter die Koax-Leitung abzuziehen. Vier Befestigungsschrauben (Bild 15/11) lösen und Baugruppe nach unten herausnehmen. Der Einbau erfolgt in umgekehrter Reihenfolge.
(10) S/E-Umschaltung (Bild 16/6)

Zwei Befestigungsschrauben (Bild 16/5) lösen und Baugruppe heraus-ziehen
Der. Einbau erfolgt in umgekehrter Reihenfolge
\(\frac{\text { Gleichrichter (Bild 16/13) }}{6}\)
Alle Leitungen von den vier Anschlubfahnen abschrauben. Zwei Befestigungsschrauben (Bild 16/14) lösen und Gleichrichter herausnehmen. Der Einbau erfolgt in Lngekehrter Reihenfolge.
Anschrauben der Anschlußdrähte und des Kondensators (Bild 16/43). Die Lage der Anschlußdrähte ist in Bild 25 und 26 Bl .1 und Bl. 2 angegeben.

Steuer-Baugruppe (Bild 16/9)
Zwei Befestigungsschrauben (Bild 16/10) lösen und Baugruppe herausziehen.
Der Einbau erfolgt in umgekehrter Reihenfolge.

Schrumpfischlauch an den Lötstellen der AnschluBdrähte entfernen und AnschluBdrähte ablöten. Ablöten der Diode. Je eine Schraube (Bild \(16 / 16\)) an beiden Seiten des Relais lösen und das schadhafte Relais austauschen. Der Einbau erfolgt in umgekehrter Reihenfolge, wobei die Lage der Anschlubdräte und der Diode aus Bild 25 ersichtlich ist. Die Lötstellen sind mit Schrumpfschlauch zu isolieren.
(14) Transientschutz (Bild 16/17)

Schraube mit AnschluBdrähten lösen
Vier. Befestigungsschrauben lösen und Transientschutz herausnehmen. Der Einbau erfolgt in umgekehrter Reihenfolge. Lage der Anschlußdrähte ist in Bild 25 angegeben.

Uberspannungs-Schutzschalter (Bild \(12 / 10\)).

Schrumpfschlauch an den Lötstellen der Anschlubcirahte entfernen und Anschlußdrähte ablöten.
Schutzschalter abschrauben und nach hinten herausziehen. Der Einbau erfolgt in ungekehrter Reihenfolge. Lage der Anschiußdrähte ist in Bild 26 angegeben. Die Lötstellen sind mit Schrumpfschlauch zu isolieren.
(16) Wigerstand (Bild 16/23).

Defekten Widerstand ablöten und ersetzen.

5 V-Regler (Bild 16/19)
- Ausbau der Steuer-Baugruppe (Bild 16/9) siehe (12). Schsumpfschlauchen den Lötstellen der Anschlußdrähte entfernen. Anschlubdrähte und Kondensatoren (Bild 16/49) ablöten. Sechs Befestigungsschrauben des Netzteils lösen und Netzteil nach oben ziehen, bis die zwei Befestigungsschrauben (Bild 16/20) des Reglers zugänglich werden. Befestigungsschrauben lösen und Regler herausnehmen. Der Einbau erfolgt in umgekehrter Reihenfolge. Die Lage der Anschlußdrähte ist in Bild 25 angegeben. Die Lötstellen sind mit. Schrumpfschlauch \(z u\) isoliexen.

Haltebügel (16/3) abschrauben. Sechskantmutter (16/1) Iösen und Kondensator schräg herausnehmen. Kontaktschraube (16/4) zum lösen des Kabelschuhs herausschrauben. Der Ejnbau erfolgt in umgekehrter Reihenfolge.
Die Lage der Anschlußdrähte ist in Bild 25 angegeben.

Haltebügel (Bild \(16 / 3\)) und AnschluB-Schraube (Bild 16/4) abschrauben. BefestigungswMutter (Bild 16/1) lösen. Kondensator um \(90^{\circ}\) dreher und zur Gerätemitte ziehen, bis Befestigungsschraube frei wird. 'Kondensator schräg herausnehmen.
Einbau in umgekehrter Reihenfolge. Auf richtige Polung des Kondensators achten.

Kondensator (Bild 16/18)
Defekten Kondensator ablöten und ersetzen.
(21) Kondensator (Bild 16/12)

Schrumpfschlauch an den Lötstellen des Kondensators entfernen und schadhaften Kondensator auswechseln. Lötstellen mit Schrumpfschiauch isolieren.

Transformator (Bila 16/7)
Die Anschlußdrähte am Trafo abklemmen. Sechs Befestigungsschrauben (Bild \(15 / 2\)) des Leistungsmoduls (Bild \(15 / 1\)) lösen und Leistungsmodul. herausschwenken, bis die vier Befestigungsschrauben des Trafos sichtbar werden. Die 4 Schrauben lösen und Trafo herausnehmen. Der Einbau erfolgt in umgekehrter Reihenfolge.

Widerstand (Bild 16/11)
Schrumpfschlauch an den Lötstelien der Anschlußdrähte entfernen und Anschlubdrähte ablöten.

Zwei Befestigungsschrauben lösen und Widerstand herausnehmen.
Der Einbau erfolgt in umgekehrter Reihenfolge.
Die Lötstellen müssen wieder mit Schrumpfschlauch isoliert werden.
(24)

\section*{Diode}

Die Diode ist direkt am Relais (Bild \(16 / 15\)) an den beiden unteren Lötfahnen angelötet. Das Auswechseln der Diode geschieht wie folgt: Zwei Befestigungsschrauben (Bild \(16 / 16\)) lösen. Relais mit Anschlußdrähten nach oben kippen. Schrumpfschlauch an den Lötstellen der Diode entfernen. Anschlußdrähte und Diode ablöten und schadhafte Diode ersetzen. Es ist darauf zu achten, daB die Lötstellen der Diode mit Schrumpfschlauch isoliert werden.

\subsection*{3.2.4.3 Sicherungen}

Die Sicherungen in den reilgeräten sind fest eingebaut una von auben nicht zugänglich. Ist eine Sicherung schadhaft, so liegt ein Fehler im Gerät vor. Dieses muß dann zur Instandsetzung an die nächsthöhere MatErhstufe abgegeben werden (Ausbau siehe 2.1, 2.2, 2.3)

\subsection*{3.2.4.4 Auswechseln der Lifter}

Alle 10000 Betriebsstunden sollen die zwei Lüfter im Hr-Leistungsverstärker VK 213 gewechselt werden.
Alle 10000 Betriebsstunden soll der Lüfter im Antennen-Anpabgerät
FK 213 ausgevechselt werden.
Jhe Jüfter sowohl im Verstärker VK 213 wie auch im Anpaßgèrät \(E K 213\) haben eine garantierte Lebensdauer von 10000 Stunden. Sie werden aber nicht imner bei voller Leistung betrieben:

HF-Leistungsverstärker VK 213: Drehzahl abhängig von Temperatux
im Leistungsverstärker VK 213.
Antennen-Anpaßgerat FK 213: Nur bej. Hochschalten des Senders wird Lüfter angeschaltet.

Diese Arbeiten sind in der Materhstufe 3 auszufuhren.
Die Betriebsstunden des HF-Leistungsverstärkers VK 213 werden an dessen Betriebsstundenzahler abgelesen, der sich auf der Frontplatte befindet.

Die Betriebsstunden des Antennen-AnpaBgerätes FK 213 werden am Abstinmzähler abçelesen. Dabei entsprechen 10000 Abstimmungen einer durchschnittlichen Betriebsdauer des Lüfters von ca. 2000 Stunden (vorläufiger Wert!)
3.2.4.5 Auswechseln der Trockenpatrone:

Das AntennenanpaBgerät Öffnen. Die Trockenpatrone aus den Halteklammern entfernen.

Ereitband (fotbetries)

> K.. Dieho Tabolin 1, Kisal
S.. sieho Tabeli. 2, SCHIMTSTELLE Mit-ANPASSGBRXIT EK 213
(wettexresti)

1 Anzeige HF-Leistung
2 Anzeige Batteriebetrieb
3 Frequenzanzeige
4 Frequenzwanischalter
5 Kanalanzeige
6 Kanalwahlschalter
7 Anzeige TeST
8 Taste TWST
9 Taste ABSIIMMUNG
10 Lautsprecher

11 Abschaltung int. Lautsprecher
12 NF-Lautstarkeregler
13 Halterung für Speicherbatterie
14 Betriabsartenschalter
15 F1-Betriebsartesschalter
16 sendeartenschalter
17 F1-Polarit葛tsumschaltung
18 progranmiertaste fur Frequenzkanaleingabe
19 Anschlüsse für periphere Geräte an Frontplatte

20 Befest. Schrauben fur Bedienteil

Bild 4 Frontansicht Empfänger/Steversender XK 043

1 Uberspannungsschutzschalter (\(\mathrm{U}>32 \mathrm{~V}\) DC)

2 Kühlkörper Netzteil
3 Steuerausgang 56 zu Leistungsverstärker
4 FS-Buchse 68
5 Befest. Schrauben für Haube
6 FS-Meßbuchse 63

7 Einstellung FS-Linienstrom
(Linienstrom)

8 HF-Ausgang 55
9 Zer-Ein- Ausçang
10 Audio-Buchse 67 für periphere Gerate

11 Erdungsschraube
12 Stromversorgungsanschluß
13 Schutzhaube

Bild 5 Rückansicht Empfänger/Steuersender XK 043

TDV 5820/170-13

Bild 6 Blockschaltbild
Bild 8 Anordnung der Baugruppen im Empfänger/Steuersender XK 043

Bild

\begin{tabular}{ll}
1 & Netztejll \\
2 & HF-Filter \\
3 & HF-Umsetzer \\
4 & ZF-Verstärker \\
5 & Schleife 2 a \\
6 & Schleife 2 b
\end{tabular}

7 Schleife 1
8 Hilfsumsetzung
9 Quarzgenerator
10 Stummabstimnung
11 Befest. Schrauben Abdeckblech für Stummabstimmung
12 Trägerplatte 1 (2F-NE~Seite)

\section*{Bild 9 Einschubansicht oben Empfänger/Steuersender XV 043} (ohne Haube)

Bild 10. Einschubansicht unter Empfänger/Steuersender xK 043 (ohne Haube)

1 Abdeckung LufteinlaB
2 Lüfterbaugr.
3 Abdeckung oben
4 Frontplatte
5 ' Befest. Schrauben Deckel oben

6 Befest. Schrauben für Einbau

7 Betriebsstundenzähler

\section*{Bild 11 Frontansicht HF~Leistungsverstärker VK 213}

1. Leistungsmodul

2 Befestigungsschrauben f. 1
3 Drosselbaugruppe
4 Oberwellenfilter
5 Leitungsnachbildung
6 Steuerlogik
7 Befestigungsschrauben f. 6
8 Filterlogik

9 Befestigungsschrauben f. 8
10 Tiefpaßfilter
11 Befestigungsschrauben E. 10
12 Vorverstärker
13 Befestigungsschrauben f. 13

1 Befestigungs-Mutter
2 Kondensator Elko
3 Befestigungs-Schrauben für Bligel.

4 Anschluß \(\rightarrow\) Schraube für Kondensator

5 Befestigungsschrauben für S/E Umschaltung

6 S/E Unschaltung
7 Transformator
8 Befestigungsschrauben
9 Steuer-Baugruppe
10 Befestigungsschrauben
11 Widerstand
12 Kondensator

13 Gleichrichter
14 Befestigungsschrauben
15 Relais
16 Befestigun'gsschrauben
17 Iransientschutz
18 Kondensator
195 V Regler
20 Befestigungsschrauben
21 Widerstand
22 Kondensator

1 GuBfrontplatte
2 Haube
3 HF-Isolator
4 HF-Ausgang

Bild 17 Ansicht Antennen-Anpaßgerät FK 213

GuBfrontplatte
GuBfrontplatte
Lufter
Lufter
Variometer
Variometer
4 Stellmotor L
4 Stellmotor L
5 \mp@code { M e B k o p f }
5 \mp@code { M e B k o p f }

Bild 19 Einschubansicht oben Antennen-AnpaBgerät FK 213 (ohne Haube)

\footnotetext{
EMC-Filter
Steuerung
}

Bild \(20 \frac{\text { Einschubansicht unten Antennen-AnpaBgerät FK } 213}{\text { (ohne Haube) }}\)

anterkung : testanzelge blilkt, übernachungonazeige blynt nicht I

Vakúumbondensator

Bild 22 Wartung APG

\section*{Bild 23 AnschluBplan der Lüfterbaugruppe \(z u\) HF-Leistungsverstarker VK 213}

TDV 5820/170-13

TDV 5820/170-13
\begin{tabular}{|c|c|c|c|}
\hline Belmittstelle & Kontaktbelegunes & Gexätebvchse/-steckex & Deschateibumg \\
\hline \[
31
\] & & Buchso U 79/U & \\
\hline - S ? & Faierkentskt inrent Federkontakt suberi & Klinkenstacker PL 055 & \\
\hline S 3 & Fodericontrist imon Federkentakt nitten Foderkontekt außen & Klinkonsteckor PL. ols & \\
\hline S 4 & Federtontakt inamen Federkontakt mitton Federkontekt außen & Klinkonsteaker PL 060 & \\
\hline 35 & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& 0
\end{aligned}
\] & Fornmeldo-Anschluß doso B-pol. ADO T995 & \\
\hline S 6 & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 5 \\
& 7 \\
& 8
\end{aligned}
\] & Fernmoldo-Anochlu9dosc 8-po1. ADO TO95 & \begin{tabular}{l}
Sondeicontakt Fernschroiber \\
Serrietiontakt Fornschroiber \\
Erfyongamagnet Fornschreiber \\
Empfangsmagnot Fernschroiber \\
(a) Linienstromqualio intorn \\
(b) \(E M=60 \mathrm{~V}\) \\
\(\left(\mathrm{H}_{2}\right)\) 4o ... 60 mA intorn ainstalibas \\
(o) Brlicko Intorn \(\mathrm{K} \mathrm{2-3}\) Anschiub SondekontaktLochstroifenleaer K :-4
\end{tabular} \\
\hline S 7 & - & ZF-Ein-Ausgang & boi Senden 126 mvV Eingangsspg. Ri. . 600 几 fur 100 K PEP boi Empfang ca, -10... +10 (B Vorstirkung, \(R_{R}=50 \Omega\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Materiolerhaltuncesture & Fehiorerkennmag & Entdeckungswahrachoinlichk & Jokelisierungs wahxscheinlichk. & \[
\begin{array}{ll}
\operatorname{ITR} \\
(\min) & 1)
\end{array}
\] & Auswechseln von \\
\hline 1,2 & Go/NOGO Teot mit oingebautor Tcutoinrichtg, (OITE) und Botriobsverhalien & > \(95 \%\) & > \(00 \%\) & 15 & \[
\begin{aligned}
& \text { Baugruppe } \\
& \text { (8-Einhait) }
\end{aligned}
\] \\
\hline 2,3 & \begin{tabular}{l}
a) Einjcheuto Tostain richtung (BITE) and Betrieissyerhalt. \\
b) Frufstation REMus wit Athat~Prufprogr. oder handjodicatem idegphatz
\end{tabular} & \begin{tabular}{l}
\[
>80 x
\] \\
100 \%
\end{tabular} & \[
\begin{gathered}
>75 \% \\
>90 \% \text { Ruf } 1 \text { Modul } \\
>95 \% \text { auf } 2 \text { Moduln }
\end{gathered}
\] & \[
5
\]
\[
5^{2)}
\] & Unterbaugruppe (C-Einheit) \\
\hline 3,4 & Prifalation cemids mit AThismerufprozramm oder handoredientem Vespiatz & \(100 \%\) & 3) & 2), 3) ! & Suticil ojor Unterbrugruppo, yionn Roparatur des Modula vorgosahon. (0 -Einheit) \\
\hline
\end{tabular}

\footnotetext{
1) Orne \(\operatorname{logistischo}\) und verwaltungstuchinischo Zeiten 2) Hingt stark von Eigonschafton doe Prüfautoraten ás
3) Hangt vor Ausbildungastand dos Porsonals und
}
HF-Funkgerätesatz XK 403

TDV 5820/170-13

\begin{tabular}{|c|c|c|c|}
\hline & EMPFANGER／STEUERSENDER
XK 043 & LETSTUNGSVERSTARKER VK 213 & ANTENNEN－ANPASSGERAT
FK 213 \\
\hline TEMPERATUR Betrieb Lagerung & \[
\begin{aligned}
& -35 \ldots+55^{\circ} \mathrm{C} \text { (VB } 95332,81.4 \text {) } \\
& -40 \ldots+70^{\circ} \mathrm{C} \text { (vo } 95332,81.22,81.23 \text {) }
\end{aligned}
\] & \[
\begin{aligned}
& -35 \ldots+3 j^{3} \mathrm{C} \text { (VG } 95332,81.4 \text {) } \\
& -40 \ldots+70^{\circ} \mathrm{C} \text { (VG } 95332,62.22,81,23 \text {) }
\end{aligned}
\] & \[
\begin{aligned}
& -35 \ldots+65^{\circ} \mathrm{C} \text { (VG } 95332, \text { 日1.4) } \\
& -10 \ldots+70^{\circ} \mathrm{C} \text { (VG } 95332, \text { 日1.22, 81.23) }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
FEUCHTIGKETT \\
Betrieb \\
Lagerung
\end{tabular} & \begin{tabular}{l}
95 \＆boi \(+55^{\circ} \mathrm{C}\)（VG \(95332, \mathrm{BL} .5\) ） \\
95 \％bel \(44^{\circ} \mathrm{C}\) ！VG \(95332,01,6\) ， \\
DEF 133.11 .1 ）
\end{tabular} & \[
\begin{gathered}
95 \not x \text { boi }+50^{\circ} \mathrm{C}(V G 95332, \text { B1.5) } \\
95 x \text { boi }+40^{\circ} \mathrm{C}(V G 95332, ~ B 1.6 \\
O E F 133.11 .1)
\end{gathered}
\] & \[
\begin{aligned}
& 95 \times \text { boi }+55{ }^{\circ} \mathrm{C} \text { (VO } 95332,81.5 \text {) } \\
& 95 \times \text { bod }+40^{\circ} \mathrm{C}(V G 95332,91.6 \\
& \text { OEF } 133.11 .1 \text {) }
\end{aligned}
\] \\
\hline SCHOC： & V6 95 332，11．16： 309 jedoch 6ms VO 95 332，32，16： \(30 \mathrm{~g}^{++1}, 1 \mathrm{me}\) VG \(955332,81.16: 509,11 \mathrm{~ms}\) & VG 95 332，B1．16：jodach 6ms vg 95 332，82．16： \(30 \mathrm{~g}^{++1}, 11 \mathrm{mo}\) VG 95 332，81．16： \(50 \mathrm{~g}, 11 \mathrm{ma}\) & vG 95 332，82．16：309 jodoch 6ma v6 95 332，82．16： \(30_{\mathrm{g}}{ }^{++)}\)， 11 m 3 vg 95 332，01．16： \(50 \mathrm{~g}, 11 \mathrm{~ms}\) \\
\hline ```
VIBRATION
 ohne Schwingrahmen
 mit Schwingrahmen
(Ausführg. 30g++)}0.50\textrm{g}\mathrm{)
``` &  &  & \[
\begin{gathered}
0,3 \mathrm{~mm} \mathrm{O} \\
0,7 \mathrm{~mm} \mathrm{OA}^{+4}, 10 \ldots . . .55 \mathrm{~Hz}(\mathrm{VG} 95332,81,25) \\
(\mathrm{VG} 9533 \mathrm{~Hz} ; 5 \mathrm{~g}, 55 \ldots 500 \mathrm{~Hz}, 81.25)
\end{gathered}
\] \\
\hline sross & & & \\
\hline mit Schwingrahmen （Ausfuhrg． \(30 \mathrm{~g}^{++ \text {）}} 0.50 \mathrm{~g}\) ） &  （vo \(95332,81.11\) ） &  （VG 95 332，B1．11） & 259，6ms， 2000 StrB in \(X_{m}, y_{-\alpha}, 2-R_{i \text { chtg }}\) （VG 95 332，81．11） \\
\hline \multirow[t]{3}{*}{Schurz} & & & \\
\hline & \[
\begin{aligned}
& 1 \mathrm{mog} \\
& 15^{\circ}
\end{aligned} \text { IP 42, DIN } 4005082.1
\] & \[
\begin{aligned}
& 1 \operatorname{mon} \varnothing \\
& 15^{\circ}
\end{aligned} \text { IP 42, DIN } 40550 \text { 日1.1 }
\] & Staub IP 66 \\
\hline & & & \begin{tabular}{l}
Spritzwaseor \\
kurzxeltig uborflutbar Gohsuse u．Stockverbindungen aind soomasoerbestundig \\

\end{tabular} \\
\hline HOHENFESTIGKEIT & & & \\
\hline Betrieb & \[
+30^{\circ} \mathrm{G}, 3000 \mathrm{~m} / 40^{\circ} \mathrm{C}, 2000 \mathrm{~m}
\] & \(+30^{\circ} \mathrm{C}, 3000 \mathrm{mi} / 40^{\circ} \mathrm{C}, 2000 \mathrm{o}\) & \(+30^{\circ} \mathrm{C}, 3000 \mathrm{a} / 440^{\circ} \mathrm{C}, 2000\) a \\
\hline Transport & \[
9000 \mathrm{~m}\left(\mathrm{VO} 95332, \text { i1. } 21, \text { jodoch }-40^{\circ} \mathrm{C}\right. \text { ) }
\] & 9000 m （VG \(95332,81.21\), josoch \(-40^{\circ} \mathrm{C}\) ） & \(9000 \mathrm{~m}\left(\mathrm{VG} 95332,81.21\right.\), Jodoch \(-40^{\circ} \mathrm{C}\) ） \\
\hline KORROSION & Sioho Fountigkoit & aloho fouchtigkoit & \[
+35^{\circ} \mathrm{C}, 12 y \times 1 \text { ua zu } 48 \text { Stuncon }
\]
\[
\text { (vo } 95332,81,14 \text { ) }
\] \\
\hline
\end{tabular}

\section*{}

4） \(\mathrm{OA}=\) Doppolanplícude．
н）Olmansiondort fur Ein
＋）Olmansioniont fur Einsatz auf Sailifon und Booton

\subsection*{3.3. Fehlersuche mit Testeinrichtung und Remusstecker}

Wird mit der Testeinrichtung ein mehrdeutiger Fehler gemäB Tabelle 6 angezeigt, kann in Verbindung mit den Buchsen Bu 50 und Bu 51 (Remusstecker) am Empfänger/Steuersender. XK 043 sowie der Buchse \(B u 20\) am \(H F\)-Verstärker VK 213 die fehlerhafte Unterbaugruppe gefunden werden.

Im Folgenden ist die Kontaktbelegung der Drüfbuchsen mit den entsprechenden Signalen dargestellt.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \begin{tabular}{c}
8 \\
\(?\) \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
2 \\
2 \\
\(\vdots\) \\
\(\vdots\) \\
\hline
\end{tabular} & & &  & & & \\
\hline & \[
\begin{aligned}
& \vdots \\
& \vdots \\
& c \\
& c \\
& \vdots \\
& \vdots \\
& \vdots \\
& \vdots \\
& \vdots
\end{aligned}
\] & & & LOW \(\hat{=}\) Dảmpfung ein &  &  &  \\
\hline \multirow[t]{2}{*}{} &  & & & \begin{tabular}{l}
4 \\
+ \\
\hline
\end{tabular} & \(\pm\) & 4 & 4 \\
\hline &  & & &  &  &  &  \\
\hline \multirow[t]{3}{*}{Kintaktbelegung} & \[
\begin{aligned}
& . \infty \\
& c \\
& \omega
\end{aligned}
\] & 8
0
0
0
0 & \[
\left.\begin{array}{|c|}
\cdots \\
\cdots \\
\cdots \\
\\
\cdots \\
3 \\
3 \\
4 \\
4
\end{array} \right\rvert\,
\] &  &  & \[
\begin{aligned}
& \text { g } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 4 \\
& \tilde{3} \\
& \ddot{-r} \\
& 4 \\
& 4 \\
& 4
\end{aligned}
\] &  \\
\hline &  & & & ' 1. & & & \\
\hline &  & \(\stackrel{\square}{\square}\) & \begin{tabular}{|c}
\(\pi\) \\
\(\therefore\)
\end{tabular} & \(\cdots\) & \(\stackrel{\square}{\square}\) & \(\stackrel{3}{n}\) & \[
0
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  &  & & & & & - &  \\
\hline  & \[
\begin{gathered}
\vdots \\
\vdots
\end{gathered}
\] & & & . &  &  &  \\
\hline \(\because\) &  & & & & \(\hat{i}^{+}\) & \(t\) & \(\dagger\) \\
\hline erät: \(\underset{\text { (Benennungl }}{\text { Empfānger/steuersender }} \underset{\text { Trol }}{\text { xK }} 043\) &  & & & &  &  &  \\
\hline GunbelaqłyD! & \[
\begin{gathered}
\infty \\
\substack{0 \\
c \\
c \\
c \\
\vdots \\
\vdots \\
\hline}
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& \hat{0} \\
& \stackrel{n}{\Sigma}
\end{aligned}
\] &  & \[
\begin{aligned}
& 0 \\
& 0 \\
& n \\
& \tilde{r}
\end{aligned}
\] &  &  & or
5
3
0
H
0
0
0
0
4
0
0
0 \\
\hline \(x\) & 年 & & & & & & \\
\hline  &  & 4 & \% & \begin{tabular}{l}
5 \\
0 \\
\hline
\end{tabular} & - & \(\square\)
\(\cdots\) & \[
\begin{aligned}
& \text { N } \\
& \underset{\sim}{n}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} &  & & & \\
\hline & &  & LOW \(\triangle \mathrm{A} 3 \mathrm{~J}-\mathrm{MOC}\). ein &  &  \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{l}
\(\stackrel{m}{0}\) \\
x. \\
 \\
Gerät:
\end{tabular}}} & - & \(\ddagger\) & 4 & \(\stackrel{1}{4}\) \\
\hline & &  &  &  &  \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} &  &  &  &  \\
\hline & & 嵒 & 1 & & \\
\hline & & & \({ }^{3}\) & \[
\underset{\sim}{\pi}
\] & \[
\begin{aligned}
& \approx \\
& \sim
\end{aligned}
\] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline  &  & & & \\
\hline  & \[
\begin{aligned}
& \vdots \\
& \hline
\end{aligned}
\] &  &  & \\
\hline \(\because\) &  & \(\stackrel{+}{+}\) & 1. & ＋ \\
\hline \begin{tabular}{l}
管 \\
菓 \\
 \\
 \\

\end{tabular} &  &  &  &  \\
\hline  & （\％ &  & ¢
\(\stackrel{y}{0}\)
\％
0
0
0 &  \\
\hline \(\bigcirc\) & \[
\begin{gathered}
0 \\
5 \\
5 \\
5 \\
\hline
\end{gathered}
\] & & & \\
\hline &  & \(\stackrel{\circ}{\circ}\) & \[
\stackrel{\approx}{\tilde{n}}
\] & \[
\begin{aligned}
& \approx \\
& \underset{\sim}{*}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} &  & & & \\
\hline &  &  &  &  \\
\hline \multirow[b]{2}{*}{} & ｜l｜ & \(\ddagger\) & 1 & \\
\hline &  &  &  &  \\
\hline \multirow[t]{3}{*}{} &  & Testtaste &  &  \\
\hline & － & & & \\
\hline &  & \(\stackrel{\sim}{\sim}\) & \[
\begin{aligned}
& \pi \\
& \sim \\
& N
\end{aligned}
\] & \[
\begin{aligned}
& \approx \\
& \sim
\end{aligned}
\] \\
\hline
\end{tabular}

TDv 5820/170~13

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} &  &  & &  \\
\hline &  &  &  &  \\
\hline \multirow[b]{2}{*}{} & - & 4 & 4 & 4 \\
\hline &  &  &  &  \\
\hline \multirow[t]{3}{*}{Gunbalagirpli:oy} &  &  &  &  \\
\hline & ( & & & \\
\hline &  & \(\stackrel{\oplus}{\sim}\) & ®
\(\sim\) & \[
\begin{aligned}
& \text { r } \\
& \text { o }
\end{aligned}
\] \\
\hline
\end{tabular}
\(\stackrel{\square}{4}\)


TDv 5820/170-13
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  & & ( & & & & & \\
\hline  &  & & \(\underbrace{\cdot}\) & &  &  &  & \\
\hline \(\because\) &  & & . . & & 4 & \(t\) & 4 & \\
\hline  &  & &  & &  &  &  & \\
\hline 0
5
0
0
0
0
0
0
0
0
0 &  &  & \[
\begin{aligned}
& > \\
& 8 \\
& + \\
& +
\end{aligned}
\] & &  &  &  &  \\
\hline צ & (1) & & 1 & & & & & \\
\hline & 年 & \(\cdots\) & - c & \(\cdots\) & \(\stackrel{-}{\square}\) & ᄂ & \(\stackrel{\square}{-}\) & \(\stackrel{\sim}{2}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} &  & & & & . & \\
\hline & \[
\begin{aligned}
& \varsigma \\
& \vdots \\
& \hline
\end{aligned}
\] & & - & & & \[
\therefore
\] \\
\hline \multirow[t]{2}{*}{} &  & \(\uparrow\) & & \(i\) & & \\
\hline &  &  & &  &  &  \\
\hline \multirow[t]{3}{*}{Knritoktbelegung} &  &  & \[
\begin{aligned}
& \stackrel{3}{\omega} \\
& \stackrel{n}{2}
\end{aligned}
\] &  &  &  \\
\hline & 年 & & & & & \\
\hline &  & \(\stackrel{1}{\infty}\) & a & \[
\begin{aligned}
& a \\
& a \\
& a
\end{aligned}
\] & \[
\begin{aligned}
& \because \\
& =
\end{aligned}
\] & \[
\begin{aligned}
& 9 \\
& \sim \\
& \hdashline
\end{aligned}
\] \\
\hline
\end{tabular}
TDV 5820/170-13

- "
0
\begin{tabular}{|c|c|c|c|}
\hline  &  & & \\
\hline  &  &  &  \\
\hline \(\because\) &  & \(\pm\). & \({ }_{i}\) \\
\hline  &  &  &  \\
\hline  & - &  &  \\
\hline \(\times\) & ( & 1. & \\
\hline & (1) & \(\stackrel{8}{9}\) & \[
\begin{aligned}
& \Omega \\
& \stackrel{a}{0}
\end{aligned}
\] \\
\hline
\end{tabular}


TDV 5820/170-13


ஷUV \(>ช \angle U / 7 / 0-13\)
\begin{tabular}{|c|c|c|c|}
\hline  &  & -

. & \\
\hline \[
\begin{aligned}
& \text { Bu } 50 \text { (REM } \\
& 1 \text { Dezectanung im core }
\end{aligned}
\] &  &  &  \\
\hline \(\because\) & (\%) & 4 & \\
\hline  &  &  &  \\
\hline \begin{tabular}{l}
0 \\
0 \\
- \\
0 \\
0 \\
0 \\
0 \\
0 \\
\(\square\) \\
0 \\
\hline 1
\end{tabular} & \[
\begin{gathered}
o \\
c \\
c \\
c \\
c \\
c \\
\infty \\
\hline
\end{gathered}
\] &  &  \\
\hline \(x\) &  & & \\
\hline  & 㾝 & \(\stackrel{\sim}{\sim}\) & \[
\begin{aligned}
& \Omega \\
& \stackrel{a}{i}
\end{aligned}
\] \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|}
\hline  &  & & & & & \\
\hline  & \[
\begin{aligned}
& \check{5} \\
& c \\
& \vdots \\
& \vdots \\
& \vdots \\
& \vdots \\
& \vdots
\end{aligned}
\] &  &  & &  & \\
\hline \(\because\) & ｜l｜ & 1 & \(t\) & & ＋ & \\
\hline  &  &  &  & &  & \(\checkmark\) \\
\hline \begin{tabular}{l}
0 \\
5 \\
5 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline 8 \\
0 \\
\hline 0
\end{tabular} &  &  &  & 0
\(\stackrel{0}{0}\)
\(\cong\) &  & cis \\
\hline & （1） & & & & & \\
\hline & （1） & \(\stackrel{\sim}{\square}\) & －\({ }^{3}\) & m & 8 & \(\sqrt{3}\) \\
\hline
\end{tabular}



TDV 5820/170-13

 サ\＃サ
\begin{tabular}{|c|c|c|c|c|}
\hline &  & 520 & \[
1^{170-13}
\] & \\
\hline &  &  &  &  \\
\hline \multirow[t]{2}{*}{F} & \(\because\) &  & 1 & \(\dagger\) \\
\hline &  &  &  &  \\
\hline \multirow[t]{3}{*}{} & \[
\begin{aligned}
& 0 \\
& 5 \\
& 5 \\
& 0 \\
& 0 \\
& \hline 0 \\
& 0 \\
& \hline 0 \\
& \hline 0 \\
& \hline 0
\end{aligned}
\] & （1） &  &  \\
\hline & & － & & \\
\hline & & 管： & \(\stackrel{\sim}{\sim}\) & \[
\begin{aligned}
& \because \\
& \ddot{\sim}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \[
\left[\begin{array}{c}
5 \\
\frac{9}{3} \\
0 \\
y \\
\vdots \\
\vdots \\
2 \\
\vdots \\
\vdots \\
\vdots
\end{array}\right.
\] & , & &  & - & \(\because \cdot\) \\
\hline & \[
\begin{aligned}
& \check{亡} \\
& \stackrel{c}{c} \\
& \vdots \\
& \vdots \\
& \vdots \\
& \vdots \\
&
\end{aligned}
\] & & y
y
官
\(\sim\)
\(\sim\) & &  &  \\
\hline \multirow[b]{2}{*}{} &  & & \(\dagger\) & & \(t\) & \(\uparrow\) \\
\hline &  & &  & &  &  \\
\hline \multirow[t]{3}{*}{: tupas bunôalaqiyoluox} &  & \[
\begin{aligned}
& 0 \\
& \ddot{n} \\
& \tilde{\sim} \\
&
\end{aligned}
\] &  &  &  &  \\
\hline & (1) & & & & & \\
\hline &  & \[
\begin{aligned}
& \mathrm{a} \\
& \stackrel{1}{2}
\end{aligned}
\] & \[
\begin{aligned}
& \% \\
& \sim \\
& \sim \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& i \\
& \underset{\sim}{n}
\end{aligned}
\] & \[
\begin{aligned}
& \pi \\
& \text { is } \\
& 0
\end{aligned}
\] & \[
\stackrel{a}{m}
\] \\
\hline
\end{tabular}

'L'NV \(3 \cup<U / 1 / U-1 s\)


1上V \(30 \angle U / 1 / U-1 J\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
5 \\
\hline \\
0 \\
\hline
\end{tabular} &  & - & . & & & & \\
\hline  &  & \begin{tabular}{l}
\(>\) \\
4 \\
\(\leftarrow\)
\[
+
\]
\end{tabular} & \[
\begin{aligned}
& 5 \\
& 0 \\
& +1 \\
& \text { in } \\
& +
\end{aligned}
\] &  & \[
\begin{array}{cc}
1 \\
\sim & 8 \\
0 & 0 \\
4 & \Omega \\
4 & 0 \\
0 & 0 \\
4 & 0 \\
\sim & 0 \\
11 & \\
> & \\
> & \\
0 &
\end{array}
\] &  &  \\
\hline  &  & & & & & & \\
\hline  &  &  &  &  &  &  &  \\
\hline \[
\begin{gathered}
\square \\
C \\
\square \\
0 \\
0 \\
\hline 0 \\
0 \\
-\infty \\
-\square \\
\hline-
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& c \\
& \vdots \\
& c \\
& c
\end{aligned}
\] &  & \[
\text { Spannung } 5 V
\] & Ubertemperatur &  & Riickl. Sperrung &  \\
\hline \(\underline{1}\) & \begin{tabular}{c}
\(a\) \\
\(c\) \\
2 \\
2 \\
\(\vdots\) \\
3 \\
7 \\
7 \\
\hline
\end{tabular} & & & & . & & \\
\hline & \(\begin{array}{ll}\dot{c} \\ i & \\ c & \\ i & \\ i & z \\ i & z\end{array}\) & \(\cdots\) & \(\bigcirc\) & \(\stackrel{3}{3}\) & - & \(\cdots\) & \(\overrightarrow{4}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \[
\begin{aligned}
& £ \\
& E \\
& E \\
& \vdots \\
& E \\
& \vdots \\
& \vdots
\end{aligned}
\] & . & & & & & & & \\
\hline &  & \[
\begin{aligned}
& 3 \\
& 3 \\
& 30 \\
& 08 \\
& 0 \\
& 40 \\
& 40 \\
& i n \\
& =0 \\
& =0
\end{aligned}
\] & \[
\begin{gathered}
+1,5 V \text { bei offnem } \\
\text { Ausgang }
\end{gathered}
\] &  & & & & & \\
\hline \multirow[t]{2}{*}{} & ¢ & & & & & & & & \\
\hline &  &  & \[
\begin{gathered}
Y \\
\\
= \\
\square \\
\square
\end{gathered}
\] &  &  & & & & \\
\hline \multirow[t]{3}{*}{\[
: 10+1 a 0 \text { Dunbajaqtyofuox }
\]} & \[
\begin{aligned}
& \vec{a} \\
& \vec{c} \\
& \stackrel{c}{c} \\
& \check{c} \\
& \underset{\sim}{c}
\end{aligned}
\] &  &  & \[
\] & E
L
+
U & \[
\] & \({ }_{4}^{4}\) & - & -
ü
cher \\
\hline &  & & & & & & & & \\
\hline & 言 & \(\stackrel{4}{4}\) & \(\stackrel{\sim}{\sim}\) & \(\hat{\sim}\) & \(\stackrel{\sim}{N}\) & a & in & \(\cdots\) & \(\stackrel{\sim}{\sim}\) \\
\hline
\end{tabular}

ANHANG

\section*{Anhang \(A\)}

\section*{A1 Einstellen des Linienstromes}
- Fernschreibmaschine an Bu 68 des Empfanger/Steuersenders \(x \times 043\) anschlieBen
- Schalter Fi - BETRIEBSART- in Stellung "BEREIT" bringen (Stellung des Schalters -SENDEART- beliebig, des Schaiters -bETRIEBSART- auf "EMPFANGEN" oder "SENDEN/EMPF.")
- Gleichspannungs-Voltmeter an die MeBbuchse 63 anschlieben ( Ri \(1000 \Omega / \mathrm{V})(5 / 26)\) gemessen wird \(\mathcal{G} e x\) spannungsabfall an einem \(15 \Omega\) widerstand
\begin{tabular}{|c|c|c|}
\hline Linienstrom & 40 mA & 60 m A \\
\hline Mebspannung & \(0,60 \mathrm{~V}\) & \(0,90 \mathrm{~V}\) \\
\hline
\end{tabular}
- Je nach Fernschreibertyp entsprechenden Linienstrom durch Drehen am potentiometerR121 (5/7) einstelien.

\section*{A2 Hubumschaltung}

A1/F1-Modulator 514.5079 gemäB Abschnitt 3.2.4.1 Unterabschnitt (17) ausbauen. Den isoliexten Kurzschlußbügel entsprechend der Reschriftung 42,5 oder 85 Hz umstecken. A1/F1-Modulator wieder einbauen.
```

TDV 5820/170-13
Anhang }

```

A3 Steckerbelegungsplan für Empfänger/Steversender XK 043
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline xontoxt. & & Kontaktbelegung & & & & \\
\hline nr. & abkürrung & Genannung & \begin{tabular}{l}
Schnittsselfendzschrelbung \\
Strom. Spannum . Que!t-od Lostmiderstand, wirks ! bel Schatt!
\end{tabular} &  & Bemarkungen & von u. xu waterom Gerotema \\
\hline \(\wedge\) & & Sendelelatuncs &  & <-- & \[
\text { Mr-Loistung } \xlongequal[A]{=} \text { LON }
\] & \\
\hline & & & - . . & & ... .i. .i. . . & … . .. . \\
\hline B & & Daten &  & <-> & \[
\begin{aligned}
& \text { 110 Bd-Betrieb } \\
& \text { ASCII-?-Code }
\end{aligned}
\] & . \\
\hline c & & \begin{tabular}{l}
Tostergebnis \\
Solektion
\end{tabular} &  & --- & \[
\begin{aligned}
\text { Low } & =\text { Selektion } \\
& \text { in ordnung }
\end{aligned}
\] & \\
\hline D & & Abetimminpuia &  & -- & \begin{tabular}{l}
LON-Tmpuls \(t=100 \mathrm{~ms}\) \\
bed 1) Frequenzvechisel \\
2) Uaschalten E--> \(E / S\) \\
3) Driliction aur Abotimmtartol
\end{tabular} & - \\
\hline
\end{tabular}
TDV 5820/170-13
\begin{tabular}{|c|c|c|c|c|}
\hline  &  & &  &  \\
\hline  & (1) &  & \[
\begin{gathered}
= \\
0 \\
0 \\
-8 \\
0
\end{gathered}
\] &  \\
\hline m: &  & \(\stackrel{i}{\square}\) & \% & \(\frac{1}{2}\) \\
\hline  &  &  &  &  \\
\hline 0
5
0
0
0
0
0
0
0
0
0 &  &  &  &  \\
\hline - & (1) & & \(\cdots\) & \\
\hline & ¢ & \(\Leftrightarrow\) & \(\pm\) & \(\checkmark\) \\
\hline
\end{tabular}
\[
\begin{array}{r}
\because \\
\therefore \\
\hdashline \\
\hline \text { 웅 }
\end{array}
\]
\[
\begin{aligned}
& n \\
& \\
& \cdots,
\end{aligned}
\]
＇I＇DV \(5820 / 1 / 0-13\)
Anhang A
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline  & \[
\left[\begin{array}{c} 
\pm \\
0 \\
0 \\
\vdots \\
\vdots \\
\vdots \\
3 \\
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{array}\right.
\] &  &  &  &  &  \\
\hline Bu & ¢ &  &  &  &  &  \\
\hline \(\cdots\) &  & \(\hat{i}\) & \(\stackrel{1}{\vdots}\) & ． & \(\hat{i}\) & \\
\hline  &  & a＊95 nct จ40тs &  &  &  &  \\
\hline Бuñョlaqtyol &  &  & In－Freigabo & \[
\] &  &  \\
\hline צ & － & & & & & \(\cdots\) \\
\hline & 年 & ： & ゅ & ： & \(\rightarrow\) & \\
\hline
\end{tabular}

TDV 5820/1/0-13
Anhang A

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  & &  \\
\hline  &  &  &  &  & \[
\begin{aligned}
& \dot{+} \\
& i+
\end{aligned}
\] &  &  &  \\
\hline \[
\therefore
\] &  & \(\hat{i}\) & & \(\hat{i}\) & \(\hat{i}\) & \(\hat{i}\) & \(\hat{i}\) & \(\hat{i}\) \\
\hline  &  &  &  &  & \[
\begin{aligned}
& \dot{0} \\
& +3 \\
& +3
\end{aligned}
\] & \(\stackrel{\stackrel{-}{\circ}}{\stackrel{+}{+}}\) & \[
\begin{gathered}
\dot{0} \\
\substack{i, c i s}
\end{gathered}
\] & - \\
\hline Bunbayaqiydi &  & \[
\begin{aligned}
& \text { Binochaltuncs } \\
& \text { Verntisicer/Are }
\end{aligned}
\] &  &  & \[
\begin{aligned}
& \text { N } \\
& \text { N } \\
& \text { N } \\
& \stackrel{\circ}{\circ}
\end{aligned}
\] & 会 & \[
\begin{aligned}
& \text { N } \\
& \stackrel{s}{\mathrm{~s}} \\
& \text { r- }
\end{aligned}
\] &  \\
\hline 1- &  & \(\square\) & & & & & & \\
\hline . &  & : & : & R & \(\stackrel{\sim}{2}\) & \(\mathrm{CL}_{2}\) & f-i & \(:\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  &  & \begin{tabular}{l}
\[
170-
\] \\
A
\end{tabular} &  & &  &  & \(\because\) & & &  &  &  & \(\cdots\) & & ． \\
\hline  &  &  & \[
\underset{\substack{+0 \\ \hline \\ \hline}}{\dot{c}}
\] & \[
\begin{gathered}
\dot{0} \\
\forall \\
\forall
\end{gathered}
\] & \[
\underset{\sim}{\dot{\sim}}
\] & \[
\underset{0}{\dot{0}}
\] & \[
\begin{aligned}
& \dot{8} \\
& 0 \\
& 0
\end{aligned}
\] & － & ＋ & \(\dot{8}\)
+
+ & \(\stackrel{8}{\square}\) & \(\begin{array}{r}\stackrel{1}{\circ} \\ \stackrel{3}{\circ} \\ \hline\end{array}\) & \(\stackrel{\dot{8}}{\substack{3 \\ 5}}\) & \(\stackrel{8}{+}\)
+ & － \\
\hline \(\because\) &  & \(\hat{\mathrm{i}}\) & \(\hat{i}\) & 介 & \(\hat{1}\) & \(\hat{i}\) & \(\uparrow\) & \(\hat{\dagger}\) & \(\hat{\imath}\) \\
\hline  &  &  & \(\stackrel{\dot{c}}{\substack{4 \\ i s \\ \hline}}\) & \[
\underset{\substack{c \\ 0 \\ 0}}{\dot{c}}
\] & \(\stackrel{\dot{~}}{\stackrel{+}{5}}\) & \[
\stackrel{\dot{\circ}}{\stackrel{+}{\sigma}}
\] & \[
\begin{aligned}
& \ddots \\
& \\
& \dot{0} \\
& \dot{8} \\
& i
\end{aligned}
\] & \(\stackrel{+}{8}\) & \(\stackrel{\circ}{\circ}\) &  &  &  & \(\stackrel{+}{+}\) & \(\stackrel{\circ}{\square}\) & \(\stackrel{\circ}{\circ}\) \\
\hline \[
\begin{aligned}
& 0 \\
& \vdots \\
& \vdots \\
& o \\
& \frac{c}{a} \\
& 0 \\
& \frac{\square}{\square} \\
& \frac{\square}{c}
\end{aligned}
\] &  & － \(\begin{array}{r}\infty \\ \text { N } \\ \text { N } \\ \sim \\ \sim\end{array}\) & \[
\begin{aligned}
& \stackrel{3}{3} \\
& \stackrel{\circ}{巳} \\
& \stackrel{\circ}{\circ}
\end{aligned}
\] &  & \[
\begin{aligned}
& \stackrel{y}{4} \\
& \text { N } \\
& \text { - } \\
& \circ \\
& \circ
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& N \\
& \text { N } \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& - \\
& \frac{12}{5} \\
& \vdots \\
& \stackrel{2}{2}
\end{aligned}
\] & \[
\begin{aligned}
& \sim \\
& \text { N } \\
& \text { n } \\
& \sim \\
& \sim
\end{aligned}
\] &  & c
t
H
0
0 & \[
\begin{aligned}
& - \\
& \text { 皆 } \\
& r
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \text { N } \\
& \stackrel{y}{3} \\
& \sim
\end{aligned}
\] &  & \[
\begin{aligned}
& c \\
& \text { B } \\
& \text { r } \\
& \text { r }
\end{aligned}
\] & \begin{tabular}{l}
\(\circ\) \\
\(\therefore\) \\
\(\therefore\) \\
\(\therefore\) \\
\(\therefore\) \\
\hline
\end{tabular} \\
\hline 8 &  & & & & & & & & & & & & & & \\
\hline & － & \(>\) & \(=\) & \(x\) & \(\gg\) & N & c & ．o & 0 & \(\checkmark\) & \(c\) & 4 & \(\pm\) & \(=\) & － \\
\hline
\end{tabular}




Anhang \(A\)


TDV 5820/170-13

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\underset{\mathrm{An}}{\mathrm{TDD}}
\] & ang \(\stackrel{5}{5}\) \begin{tabular}{l} 
E \\
\(\vdots\) \\
\hline
\end{tabular} 2
\(\vec{k}\)
\(j\)
\(\vdots\)
\(i\) & \[
170-13
\] &  &  &  \\
\hline  &  & \[
50 \text { mit an } 600 \text { ? }
\] &  &  & \(\begin{array}{r}\square \\ \hdashline\end{array}\) \\
\hline \(\because\) &  & \(\hat{i}\) & & \(\stackrel{1}{\square}\) & \\
\hline  &  &  &  &  & E
0
0
0
0
0
0
0
0 \\
\hline \[
\begin{aligned}
& 0 \\
& 5 \\
& 5 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] &  & \[
\begin{gathered}
\text { H } \\
\text { K } \\
\text { 枵 } \\
\hline
\end{gathered}
\] &  &  & \\
\hline & (1) & & & & \\
\hline &  & \(<\) & A & \(\bigcirc\) & A \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline * & Ko & ntaktbelegung &  & (\%) & \[
\mathrm{Bu} \quad 68
\] &  \\
\hline  & Lskür rutiq & genennuns &  &  & Bemerkungen & Von u. zu writemem Goroten \\
\hline 1 & & Sendekontakt &  & &  & - \\
\hline 2 & & Sendokontakt & Bxicke mach 3u 68.3 & & ' & \\
\hline 3 & & Emproneomarnot & Drilcke machi Bu 68.2 & <-- & & \\
\hline 4 & & Emprangrmarnet & sithe fu 68.1 & <-.. & & \\
\hline 5 & & Reserve & & & & \\
\hline 6 & & Bereit &  & & Berext \(\xlongequal{=}\) LOW Open CollectorAusgane in is - Box . "jereit" u. "Sendon" hagn \(\hat{A}\) "mprang" & \(\bigcirc\) \\
\hline
\end{tabular}

TDV 5820/170-13


TDV 5820/170-13
Anhang \(A\)

A4 Steckerbelegungsplan für HF-Verstärker VK 213

TDv 5820/170~13
Anthand A


TDV 5820/170-13
Anhang A
\begin{tabular}{|c|c|c|c|c|c|}
\hline  &  & . & & & - \\
\hline  &  &  &  &  &  \\
\hline \(\because\) & ¢ & \(\checkmark\) & \(\hat{\text { i }}\) & \(\hat{\mathrm{i}}\) & \(\hat{i}\) \\
\hline  &  &  &  & durohgeschleift zu St 26.H &  \\
\hline 0
5
5
0
0
0
0
0
0
0 & \[
\begin{aligned}
& 0 \\
& \stackrel{0}{c} \\
& \stackrel{c}{c} \\
& \vdots \\
& \vdots \\
& \infty
\end{aligned}
\] &  &  &  &  \\
\hline \(\pm\) & - & & & & \\
\hline &  & ¢ & \(A\) & \(\bigcirc\) & \(=\) \\
\hline
\end{tabular}

TDv 5820/170-13
Anhang A



TDV 5820/170-13
Anhang \(A\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline  &  &  & \(\square\) &  &  &  \\
\hline  &  &  &  & &  & \\
\hline \(\because\) & 言宮 & & \(\hat{\jmath}\) & & \(\dot{1}\) & \\
\hline  &  &  &  &  &  &  \\
\hline 0
5
5
0
0
0
0
0
0
0 &  &  & \[
\begin{aligned}
& \text { E } \\
& \stackrel{\rightharpoonup}{\square} \\
& \AA A
\end{aligned}
\] &  &  &  \\
\hline 은 &  & & & & & \\
\hline & ¢ & \(<\) & \& & \(\bigcirc\) & ¢ & \(\stackrel{\sim}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TDV 5 Anh \(\sim\)官 &  & \[
170-13
\] &  &  &  & \\
\hline  &  & \begin{tabular}{l}
\(\geq\) \\
\(\stackrel{\circ}{-}\) \\
4 \\
亏ิ
\end{tabular} & LO：\(\hat{=}\) Metzbetrieb &  &  & \\
\hline \(\because\) &  & \(\stackrel{1}{1}\) & \(\stackrel{\hat{i}}{1}\) & \(\stackrel{1}{*}\) & \(\hat{i}\) & \\
\hline  &  &  &  &  & \[
\text { durcheeschleift zu Du } 23 . \mathrm{J}
\] & \\
\hline \[
\begin{aligned}
& 0 \\
& \\
& 0 \\
& 5 \\
& 5 \\
& 0 \\
& 0 \\
& \hline \\
& 0 \\
& \vdots \\
& 0 \\
& \hline
\end{aligned}
\] &  & Umechaltune \(10 / 100 \mathrm{~V}\) &  &  &  &  \\
\hline צ & ［ & & & & & \\
\hline & （ex & 5 & 0 & \(\cdots\) & r & ：．： \\
\hline
\end{tabular}




```

TDV 5820/170-13

```
Anhang \(A\)

A5 Steckerbelegungsplan für Antennen-AnpaBgerät FK 213

TDV 5820/170-13



\section*{TDV 5820/170-13 \\ Anhang \(A\).}



A 6 Impulsaiagramme der Gesamtanlage
Abstimainapuls
Hochschaltunc (z.B.
Sprechtasto)
Verbtirker bereit
S/E-Relaibunechaltung
S/E-Relaibuniechaltunis
Avstimmen
veschaltung \(10 / 100 \mathrm{~V}\)
Wescheltung \(10 / 100 \mathrm{~W}\)
A1 ein (hart)
A1 ein (hart)
ij-Moc. cin
Mi-Frcigabe
Tr-sussondung

\section*{LON-Fegel \(\triangleq\) "EIN"}
in
willkurlioh, jo nach Art und Geschwindigicelt dos Frequenzwochsels

cesperrt durch
Eetrieboplatte
```

TDV 5820/170-13
Anhang A

```


Umochaltung E \(\rightarrow->E / S 1\)
Abstimeicpula
Hochschaltung (z.B.Taste)
VK 213/PK 243 oin
Verot:iricer bereit
S/E-Rclaisumochaltuns

\section*{Abotimmen}

Unschaltung \(10 / 100 \mathrm{~W}\)
A1 cine (hart)
HF-Freigabe
is-Ausecndung
IO:I-Fecol \(\hat{=}\) "EIII"



abstimanimpuls


\section*{VF 213/FK 243 e1n}

\section*{Vergtarkor bexelt}

Sin? T0yo umstrequ⿺𠃊/S
Abotimmen
Uuschaltung \(10 / 100 \mathrm{~W}\)
A1 ein (hart)
ES-Fie1gabe
H-Ausrendung

LOW-RcGel A "EIT"
```

TDV 5820/170-13

[^4]LON-Pegol $\widehat{*}$ "EIN"

```
TDV 5820/170-13
    Anhanq A .
```


-TDV 5820/170-13
Anhang A

.

[^5]```
TDV 5820/170-13
.....Anhana A. .. .
```

$\rightarrow \infty, \cdots$

\& $x$

S/E-Relaisunschaltung
(von Letricuspiatte)
IF-Freicabo
$(\operatorname{von} \operatorname{FK} 001)$

UR-Froigabe
(von FK 2.43)
-Arasendune
(FK OOT)
(Fin: 243 condung
(Fin
LOV-Pegel $\cong$ "EIN"


Cx 22


## TDV 5820/170-13

Anhang A
4
Unechaltung $\mathrm{E} \rightarrow-\mathrm{E} / \mathrm{S} 1$ Hochschaltung (z.B. Abetinmimpule

## 

Verstänker bexeit
S/E-Relaisumochaltung

[^6]Hir-Aussendung






rück-
stoildn
Ben
otelld

$\left|\begin{array}{l}\text { bel } \\ 0>\end{array}\right|$
-
翌
4
1

- Pruifen a>2?

Botriebsertenwechsol E --> E/S1 ait anochlieBender llochochaltung


XK 403 - Siummabstimmung


## 2) Einspeichern



## ÄNDERUNGSNACHWEIS




最


N7OM RBEM

i!Rys
^OI
AN-กI
0 0S-otplor85
h988085




in










$\begin{array}{llll}a & a & e & l\end{array}$


$$
12345
$$

$$
\text { MJT NITNOSSTNHY XN O } A x
$$

$$
\begin{array}{lll}
x & x & x \\
x & A & A \\
x
\end{array}
$$

$\circ$



品曷 号

## 

| 2 |
| :--- |
| 0 |
|  |

21SH
I ミפナาNも
 ARMAMENT SYSTEMS PRODUCTS OEPT

 FRANKLIN PARK 12 6Oi3l
 MOTOROLA COMMUN！CATIONS
AND ELECTRON！CS INC 0 －8000 MUENCHEN OALANSTR 73 FACH 801709 DAUELEMENTE B VERTRIEB SIEMENS AG
UNTERNEHMENSEEREICH D－8000 MUENCHEN 80
 MESSGERAETE NACHRICHTENANLAGEN －zabmbios añ 3orfors
 OL NJHON3 2 W 0008－

ZLOO OLHOV」 IS ZLSNNVWAOH



HERSTELLERKODEVERZEICHNIS

$\forall d Z$ othy $\times 3$ SSOS 153 M GATWICK RD CRAWLEY MAILORY BATIERIESLID
PO BOX 24
 รI9た2 OW 3 Jofiawvo AIRPAX ELECTRONICS INC
WOOUS ROAO
DEPARTMENTS／AGENCIES Pronill gateo by military MHITAIRY SNECIFICATIONS
 โร0ร6 $\forall$ OVะンาว V VINVS NATIONAI．SEMICONDUCTOR CORP
2900 SAN Y SIORO WAY

ozsic vO＞ibud runamen Guoy $773+1011 \mathrm{w} 259$ 181021：331～25

 リ14：51：0u 514.3130 514251103 LSOごっ15
 V422256：52A vzおCうりATASz
 S4，20455：193A1 1v7：
 $51: 3045: 540 \times 1$ $5: 2045: 548 \mathrm{AL}$ $5420455^{3} 4641$ S． $20955475 A 1$ 51501555474M $\therefore 420455417 M$

 LH10 KK Jantitedis
 1631111312 $352 ? 9: 192201$




 \begin{tabular}{l}
$\stackrel{\circ}{C}$ <br>
$\stackrel{\sim}{n}$ <br>
<br>
\hline

 

$c$ <br>
$\substack{c \\
\vdots \\
0 \\
\\
\hline}$

 

$\circ$ <br>
$\stackrel{\circ}{c}$ <br>
\multirow{2}{c}{} <br>
\hline
\end{tabular} 01）036

 $\underset{\substack{e \\ \vdots \\ i}}{ }$ $\stackrel{8}{8}$ 00019 00027 $\circ$
$\stackrel{\circ}{-}$
-

zヶaca C0047 0004.1 \begin{tabular}{l}
8 <br>
\hline <br>
\hline

 $\underset{c}{c}$ 

8 <br>
\multirow{4}{c}{} <br>
\hline
\end{tabular} Dermon recoo 5159661

5159310
5160116
51890020


 5159713 5158513 N゙ 5156756 5156510 525601002 | $n$ |
| :---: |
|  |
|  |
|  | ＊EEBッ！ $\stackrel{\sim}{c}$ 5143310

 $\sim$
$\stackrel{n}{a}$
$\stackrel{y}{2}$
$\vdots$ 5146652 ？
 250タッチー 5145727 orssuic $\underset{\sim}{\approx}$ $\stackrel{N}{\stackrel{4}{N}}$ 16is\％15 2015：15 …
芯
U． \％0：Sum $2 \times 1$

：

|  |
| :---: |
| 570000 |
| －Sroon |
| Fsunon |
| arcron |
| 506000 |
| 07nonn |
| rarcoo |
| Forono |
| atronot |
| 1 coono |
| 11 roons |
| 215000 |
| r 10000 |
| bicono |
| sinono |
| \＄20000 |
| ricroo |
| 720000 |
| 120000 |
| ＂20．00\％ |
| 10scon |
| 156000 |
| 1／5 51 |


$\stackrel{\stackrel{c}{c}}{\stackrel{y}{c}}$


| $5 S O D O D$ |  |
| :---: | :---: |
| COOOOD | DODF02ヶ685819 |
| 050000 | snnsslyztsuss |
| 090000 | 00585，1719035 |
| 65000\％ |  |
| $2 * 0030$ | $1180061.707965$ |
| 90000？ |  |
| 190000 | ワを16ヶロッ001965 |
| 5ヶロกワロ |  |
| aspoos |  |
| ？50000 | LEFOEA12T546G |
| ロッロロッロ | 88768912754\％5 |
| irrono | 001591010¢75S |
| 190nno | アロッでのロ100？ |
| 2H530 | YNSH3A |


$\preceq$
さ $\preceq \preccurlyeq ~ ふ$
$ふ ふ ふ ふ ふ$ ふ $\underset{\sim}{\alpha} \underset{\sim}{c}$ $\underset{\omega}{\underset{\omega}{s}}$ $\lesssim$ $\underset{\sim}{\mathrm{N}}$ $\stackrel{\alpha}{\omega}$ え $\checkmark$ $\dot{\hat{\omega}} \underset{\sim}{x}$范 $=$



[^0]:    IIF-SERDE-TMPFANGSANLAGE XK 4.03 ATEBAE
    $\qquad$
    .

[^1]:    1) Ohne logistische und verwaltungstechnische Zeiten 2) Hängt stark von Eigensohaften dos Prüfautomaten ab
    2) Erst nach Definition dor Unterbaugruppe angebbar
[^2]:    1) einschl. 117/220 V-Netzteil der gesamten HT-Sende-Empfangsanlage XK 403
    2) entfällt bei entsprechend eingerichteten Arbeitsplätzen (z.B. Fernmeldearbeitsplatz FMA-S)
[^3]:    *) Ermāchtigung nach ErlaB BifVg-InspM-Fũ M VII 1Az 60-01~00 vom 26.11.1971

[^4]:    F-Froicabe
    HiP-fussondung

[^5]:    

[^6]:    Aostimen
    Umachaltung $10 / 100 \mathrm{~W}$
    A1 ein (hart)
    HF-Freigabe

