Reparaturanleitung

Empfänger EKD Typenreihen EKD 100 und EKD 300

VEB FUNKWERK KÖPENICK

BETRIEB DES VEB KOMBINAT NACHRICHTENELEKTRONIK

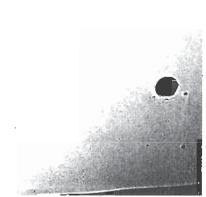
DDR · 1170 Berlin, Wendenschloßstr. 142-174

Einlegeblatt 1

für EKD 300 1340.038-90001 Ra Zugehörige Unterlagen			Ausgabe 5 bis 7
1040.039-01253 SH 1340.039-01258 Sp 1340.039-01358 Sp	sokie "	Bestückungsplan	1340.039-01253 1340.039-01258 1340.039-01358

Auf Grund von Gütesicherungsmaßnahmen und Bauelementesubstitutionen sind in den Geräten EKB 300, ab Baujahr 1986, folgende Baugruppen mit einer neuen Leichnungsnummer eingesetzt:

Baugruppe	Zeichnungs		
	bis 1985	ab 1986	
Cazillator 3 (gadr. Schalfung)	1360.037-01253	1340.039-01253	
P1-Demodulator (gedr. Schaltung)	1540.037~01258	1340.039-01258	
Demodulator	1349.037-01356	1340.039-01358	Bibführung 1987


- , Die Nachfolgeausführung ist gegen die bisherige austauschbar.
- . Für Ersatzbestückung wird nur noch die Nachfolgeausführung geliefert.

Bestell-No. dos Bimlegeblattes

1340.038-90001 Ra - B

Anderungen in Konstruktion und Ausführung, die der technischen Verbesserung und Weiterentwicklung unserer Erzeugnisse dienen, behalten wir uns vor.

Bestell-Nr. der Reparaturanleitung 1340.038-90001 Ra 665/BkG011/00499/80 Ausgabe 7/1984

	Innait	Seite
1.	Allgemeine Hinweise	5
2.	Prüfmittel und Prüfhilfsmittel	6
3.	Hinweise zur Demontage und Montage	9
4.	Hinweise und Regeln für die Fehlersuche	10
5.	Prüfung und Reparatur	13
5.1.	Funktionskontrolle des Empfängers	16
5.1.1.	Netz-Batteriebetrieb	16
5.1.2.	Eingabeblock	16
5.1.3.	Sendearten	18
5.1.4.	Reglung	21
5.1.5.	Bandbreiten	22
5.1.6.	Kontrolle der Frequenzgenauigkeit	23
5.1.7.	Kontrolle der Empfangssperre	23
5.2.	Einschubprüfung	24
5.2.1.	Betriebsspannungen	24
5.2.2.	Ausgangssignale der Frequenzaufbereitung	24
5.2.3.	Verstärkung des Signalweges	24
5.3.	Frequenzaufbereitung	32
5.3.1.	Systematik für die Fehlersuche	32
5.3.2.	Frequenzaufbereitung - Übersicht	33
5.3.3.	Phasenregelkreis 1 (PLL 1)	36
5.3.4.	Oszillator 1	38
5.3.5.	Frequenzteiler 1	42
5.3.6.	Oszillator 3 (PLL 3)	47
5.3.7.	Phasenregelkreis 2 (PLL 2)	52
5.3.8.	Oszillator 2	54
5.3.9.	Frequenzteiler 2	58
5.3.10.	Referenzfrequenz	62
5.3.11.	Prüfung und Reparatur "Eingabeblock"	66
5.4.	Signalweg	77
5.4.1.	Einstellung der Verstärkung	7 7
5.4.2.	Einstellen der Verstärkungsreglung	78
5.4.3.	A3-Pegelung	80
5.4.4.	A1-Tonhöhe	81
5.4.5.	Trägersynchronisation bei A3A und A3Ba	81

		<u>Seite</u>
5.4.6.	ZF2-Bandbreiten	81
5.4.7.	ZF- und NF-Ausgangspegel	82
5.4.8.	Signalweg 1	83
5.4.9.	Vorselektor 1, Vorselektor 2	87
5.4.10.	Dekoder	94
5.4.11.	Mischer 1 und Mischer 2	98
5.4.12.	Signalweg 2	106
5.4.13.	Trägeroszillator	112
5.4.14.	"Filterplatte 2" und "Filterplatte 1"	120
5.4.15.	Demodulator und NF-Teil	126
5.4.16.	F1-Demodulator	133
5.5.	Stromversorgungsteil 1340.037-01801	140
5.5.1.	Stromaufnahme des Gesamtgerätes	140
5.5.2.	Betriebaspannungen	140
5.6.	Stromversorgungsteil 1340.039-01500	145
5.6.1.	Ein- und Ausgangswerte	145
5.6.2.	Meßwerte innerhalb des	146
	Stromversorgungsteiles	
5.6.3.	Fehlersuchtabelle	148
5.7.	Vom Gerätehersteller speziell	154
	ausgewählte Bauelemente	
6.	Messen der Hauptparameter	155
6.1.	Frequenzgenauigkeit	155
6.2.	Empfindlichkeit	155
6.2.1.	Sendeart A1	155
6.2.2.	Sendeart A3	156
6.2.3.	Sendearten A3J, A3A, A3Bj, A3Ba	156
6.3.	Verstärkungsreglung	156
	\") /Reglung	156
	Automatik-Regions ()	157

Anhang

Umwandlungstabelle 1340.038-91700 E

1. Allgemeine Hinweise

Für die Durchführung von Reparaturen ist als komplette Service-Unterlage für die Typenreihen EKD 100 und EKD 300 folgende gerätespezifische Dokumentation erforderlich:

- Erzeugnisunterlage Typenreihe EKD 100: 1340.038-90001 Eu bzw. Typenreihe EKD 300: 1340.040-90001 Eu (Beschreibung, Bedienungsanleitung, Wartungsvorschrift)
- Reparaturanleitung EKD: 1340.038-90001 Ra Band 1 (Reparaturhinweise, Stromlaufpläne, Bestückungspläne)
- Reparaturanleitung EKD: 1340.038-00001 Ra (4) Band 2 (Listen der elektrischen Bauelemente, Ersatzteillisten und Zubehörlisten)

Reparaturen dürfen nur von eingewiesenen Fachkräften vorgenommen werden. Gute Kenntnisse über die analoge und digitale integrierte Schaltungstechnik sowie über das allgemeine Verhalten an elektronischen Geräten sind bei der Reparatur notwendig.

Der Ersatzteilbedarf ist möglichst vom Gerätehersteller zu beziehen. Das Ersatzteilsortiment ist aus den Ersatzteillisten

- El 1: außerhalb der Kassetten liegende Ersatzteile
- El 7: komplette Ersatzbaugruppen (Kassetten, Eingabeblock, Stromversorgung)
- El 9: Lagerersatzteile nach Bedarf
- zu entnehmen, enthalten im Band 2 dieser Reparaturanleitung.

Kondensatoren, Widerstände, Dioden, Transistoren und integrierte Schaltkreise können im Reparaturfall auch von anderen Bezugsquellen verwendet werden, wenn sie elektrisch und mechanisch äquivalent sind.

Der Bauelemente-Austausch auf den doppelkaschierten Leiterplatten erfordert beim Löten an den durchkontaktierten Bohrungen höchste Sorgfalt.

Es ist nur kurzzeitig mit einem spitzen Lötkolben z. löten. Vor dem Einsetzen des neuen Bauelementes sind durchkontaktierte Bohrungen mit einem Absauglötkolben vom Zinn zu befreien. Beim Auswechseln von Schaltkreisen, Filtern, bewickelten Bauelementen und dgl. sind alle Anschlüsse gleichzeitig mit einem geeigneten Lötkolben-Einsatz zu erwärmen.

Sind diese notwendigen Voraussetzungen nicht gegeben, empfehlen wir, die komplette Kassette bzw. die gestörte gedruckte Schaltung auszuwechseln und die Reparatur in einer Servicewerkstatt ausführen zu lassen.

Ziffern, denen ein "M" vorgesetzt ist (z.B. M 06), sind Meß-punkte. Sie sind in dem entsprechenden Stromlaufplan eingezeichnet.

2. Prüfmittel und Prüfhilfsmittel

Im nachfolgenden Text der Reparaturanleitung werden nur die Kurzzeichen der Prüf- und Prüfhilfsmittel genannt (z.B. anstelle Universalmesser P 8).

P 1		Zählfre	quenzmesser	z.B. TR-5259-2
		е	≥ 120 MHz ≤ 1.10 ⁻⁷	VR Ungarn

 $U_e \leq 50 \text{ mV}$

Ue

P 2 HF-mV-Meter mit HF- 2.B. TR 1350

Durchgangskopf und VR Ungarn

50 Ohm Belastung

f = 10 kHz ... 200 MHz

P 3 NF-mV-Meter z.B. WV 20

= 3 mV \dots 10 V

(2x) f = 5 Hz bis 100 kHz VEB Präcitronic Dresden U_e = 15 mV bis 5 V R_o \geq 100 kOhm/V

- 6 -

P 4 HF-Generator z.B. PG 18 f \approx 10 kHz bis 30 MHz VR Polen

R_i = 75 Ohm EMK = 1/uV bis 3 V unmoduliert/moduliert 1000 Hz m = 0.3 P 5 Zweistrahloszilloskop $f_{\triangle} \stackrel{\geq}{=} 50 \text{ MHz}$

P 6 Einstrahloszilloskop f_E ≧ 10 MHz

P 7 Wobbelgenerator mit
Sichtgerät und Tastkopf
f = 100 kHz bis 200 MHz

P 8 Universalmesser $R_{i} \ge 100 \text{ kOhm/V}$

P 9 Digitalvoltmeter U_e ≤ 30 V ==

P 10 Tongenerator $f = 300 \dots 6000 \text{ Hz}$ $R_i \not\equiv 20 \text{ Ohm}$ $U_0 = 2 \text{ mV} \dots 1 \text{ V}$ z.B. EMG 1555

VR Ungarn

z.B. EO 174 A

VEB Radio und Fernsehen

Karl-Marx-Stadt.

z.B. WG 4

VEB Meßelektronik Berlin

z.B. UNI 7

VEB Meßtechnik Mellenbach

z.B. S-1101.010

VEB Funkwerk Erfurt

z.B. GF 20

Lief.: VEB Präcitronic
Dresden

P 11 Anschlußadapter (für Einschub ohne Gehäuse)

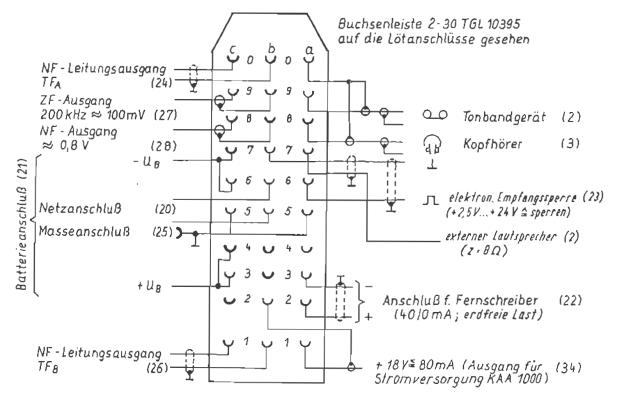


Bild 1

```
P 12
                              z.B. ST 250/6
       Netzregeltrafo
P 13
       Leitungsprüfer
                              z.B. Leitungeprüfer 100 kOhm
                              VEB Gerätewerk Karl-Marx-Stadt
P 14
       Anschlußadapter (für Funktionsprüfung "Eingabeblock")
       Buchsenleiste 222-58 TGL 29331-03
       Steckerleiste 122-58 TGL 29331-03
                     +18V(FJL)
                                                      1
        29 -
                                        ~ 29
                 F1 · Signal (demoduliert)
        28 -
        27
                                          3 + 3,6 V (-1- HEM)
         3
                            Bild 2
R 1
       Schiebewiderstand 0 ... 100 Ohm, 10 W
R 2
       BNC-Stecker mit 50 0hm
       Abschlußwiderstand
R 3
       Schichtwiderstand
                              75 Ohm, 0,125 W, 2 %
R 4
       Schichtwiderstand
                              110 Ohm, 0,125 W, 2 %
R 5
       Schichtwiderstand
                              300 Ohm. 0.125 W. 2 %
       2 Stck.
R 6
       Schichtwiderstand
                              590 Ohm, 0,125 W, 2 %
       2 Stck.
       Schichtwiderstand
                              200 Ohm, 0,5 W, 5 %
HF-Kabel (BNC-50 Ohm) 2 Stck. Z.Nr. 1340.037-01124 (im Zubehör
                               1340.037-10001 21 (4) enthalten)
HF-Zwischenstück
                              33 TGL 200-3800 (im Zubehör
                              1340.037-10001 Zl (4) enthalten)
HF-Zwischenstück
                              31 TGL 200-3800
HF-Zwischenstück
                              32 TGL 200-3800
```

3. Hinweise zur Demontage und Montage

Vor Beginn der Demontage Netzstecker ziehen. Die unterhalb der Einschubgriffe befindlichen mit Rotring gekennzeichneten Schrauben lösen. Einschub aus dem Gehäuse ziehen und dabei die seitlich angeordneten Sperrklinken nach innen drücken.

Achtung! Einschub unmittelbar am Gehäuse absetzen und den BNC-Stecker des Antennenkabels vom Einschub trennen.

Nach Ziehen des Netzsteckers kann der Einschub über das im Zubehör des EKD befindliche 30polige Prüfkabel 1340.037-01146 mit dem Gehäuse Wieder elektrisch verbunden werden.

Der Stromversorgungsteil kann nach Lösen der 8 mit Rotring gekennzeichneten Schrauben an der rechten Einschubwand nach oben herausgezogen werden und über das im Zubehör befindliche 16polige Prüfkabel 1340.037-01145 mit dem Einschub wieder verbunden werden.

Das Abklappen der Frontplatte ermöglicht den Zugang zu den Anschlüssen aller Bedienelemente und zu den Anschlüssen der Kassetten. Dazu sind die jeweils 2 neben den Einschubgriffen angeordneten Schrauben zu lösen.

Für den Austausch defekter Bedienelemente ist die Montageplatte von der Frontplatte zu trennen. Zu diesem Zweck sind die Hohlschrauben für die Einschubgriffbefestigung von der Innenseite her abzuschrauben. Außerdem sind die Verbindungen zu Bu 1018, Bu 1019, Gr 1001 und Gr 1002 abzulöten.

Alle Bauelemente der Kassetten sind nach Lösen der 4 Flügelmuttern und Ausschwenken der beiden äußeren Kassetten sowie
nach Abschrauben der 4 Innendeckel (mit den eingedrückten
Befestigungspunkten) zugänglich.

Für den Kassettenaustausch sind die Flügelmuttern und pro Kassette 2 Sechskantschrauben an der Vorderseite zu lösen. Beim Austausch einer gedruckten Schaltung sind nach Herausnahme der Kassetten beide Deckel der betreffenden Kassette
abzuschrauben. Auf der Lötseite sind die 4 Sechskantschrauben
mit einem Steckschlüssel (7 mm) zu lösen und auf der Bestückungsseite evtl. direkte Verbindungen zur benachbarten
Schaltung abzulöten.

Die Leiterplatte kann dann schräg nach hinten herausgezogen werden.

Bei Reparaturarbeiten an der Innenseite der Gehäuserückwand kann nach Lösen der 4 Sechskantschrauben an der Gehäuserückseite und der Masseverbindung an der rechten Gehäuseinnenseite die Gehäuserückwand demontiert werden.

Die Montagearbeiten werden in entgegengesetzter Reihenfolge durchgeführt.

4. Hinweise und Regeln für die Fehlersuche

Im Störungsfall ist eine grobe Fehlereinkreisung zur gezielten Reparatur erforderlich. Es ist wie folgt zu verfahren:

- Außere Fehlerquellen in den Zu- und Anschlußleitungen sind durch Kontrolle auszuschließen.
- Fehlbedienung des Gerätes ist auszuschließen.
- Bei Totalausfall sind die Schmelzeinsätze im Empfängereinschub zu kontrollieren.
- Funktionskontrolle entspr. Erzeugnisunterlage EKD Pkt. III.2.5. durchführen.
- Einschub aus dem Gehäuse nehmen und über Prüfkabel 1340.037-01146 anschließen und bei geschlossenen Kassetten Weitere Fehlereinkreisung durch Überprüfung
 - . der Umsetzersignale von der Frequenzaufbereitung
 - . der Versorgungsspannungen
 - . von Teilstrecken des Signalweges.

- Alle Baugruppen sind durch zweistellige Ziffern gekennzeichnet:

Kennziffer	Baugruppe
00	Gehäuse
10	Einschub
11	Matrixplatte
12	Widerstandsaufbau
13	Verbundplatte
14	Empfangssperre
21	Oszillator 1
22	Frequenzteiler 1
23	Oszillator 3
24	Referenzfrequenz
25	Oszillator 2
26	Frequenzteiler 2
27	Dekoder
28	P1-Demodulator
31	Vorselektor 1
32	Vorselektor 2
33	Mischer 1
34	Mischer 2
35	Trägeroszillator
36	Filterplatte 2
37	Filterplatte 1
38	Demodulator und NF-Teil
41	Eingabeblock
43	Anzeigeelektronik
45	Eingabeelektronik
46	Speicherelektronik
48	Impulsdrehgeber
50	Stromversorgungsteil (EKD 300)
51	Transverter
-52	Schaltregler
80	Stromversorgungsteil (EKD 100)
81	E-Teilaufbau (Transverter)
82	E-Teilaufbau (Stabilisierung)

- Alle Bauelemente sind durch vierstellige Ziffern gekennzeichnet. Die zwei ersten Ziffern entsprechen der Baugruppenkennzeichnung:
 - z.B. C 36 im Stromlaufplan "Mischer 1" : C 3336 C 36 im Stromlaufplan "Oszillator 2": C 2536

Bei Ersatzteilanforderungen sind diese vierstelligen Ziffern anzugeben.

- Bei Fehlererkennung Austausch der defekten Kassette oder Stromversorgung bzw. nach weiterer Lokalisierung des Fehlers Ersetzen der defekten gedruckten Schaltung oder des defekten Bauelementes.
- Bei der Fehlersuche in den Kassetten bzw. in den einzelnen Funktionsgruppen ist entsprechend Pkt. 5 der Reparaturanleitung zu verfahren.
- Bemerkung zu TTL-Pegeln: Die in den Wahrheitstabellen benutzten Wertigkeiten von binären Veränderlichen sind O und 1. Logische Funktionen werden mit TTL-Schaltkreisen realisiert. Es gilt:

logischer Wert	zugeordnete Pegelbereiche	Potential- angabe
0	O O,4 V für Ausgänge	L (Low)
	0 0,8 V für Eingänge	2 8
1	2,4 5,25 V für Ausgänge	H (High)
-	2 5,5 V für Eingänge	

4.1. Hinweise für den Baugruppen-Austausch

Zur Erleichterung von Servicearbeiten sowie zur Reduzierung der Ausfallzeiten wird der Austausch kompletter Baugruppen empfohlen (Ersatzteilsatz nach El 7 sowie enthalten im Lagerersatzteilsortiment nach El 9).

Verfabrensweise:

- Fehlerlokalisierung durch Funktionskontrolle ≙ Pkt. 5.1.
- <u>Demontage u. Montage</u> der auszutauschenden Baugruppen ≙ Pkt. 3.
- Die Gerätefunktion ist ohne elektr. Justierung gewährleistet

- Die volle Datenhaltimiteit des Gerätes enfordert beim Austausch von:

Strouversorgung Kassette "Trequenzaufbersitung 1"	keine elektr. Justierung
Kassette "Frequenzaufberelturg 2" Eingabeblock	bei f = 00.000.00/m/± 3000 Hz/
Kassette "Signalweg 1" Kassette "Signalweg 2"	Paarlgkeit nur für A3B erforderlich.

Bei paarweisem Austausch gegen Kassetten aus dem El 7- Satz (mit A281D-Paaren bestückt) ist keine elektr. Justierung notwendig. Bei Austausch einzelner Kassetten: für A3B-Betrieb Paarigkeit von X 3401 (SW1/TFB) und X 3701 (SW2/TFA) herstellen (A281D mit gleicher Kennzeichnung, d.h. weißer Farbpunkt über gleicher PIN-Nr.).

Bei El 9-Kassetten ist der zum eingebauten X 3401 bzw. X 3701 passende 2. Schaltkreis außen an der Kassette befestigt!! Elektr. Justierung entsprechend Pkt. 5.4.1. (Verstärkung) und Pkt. 5.4.2. (Verstärkungsregelung) durcht ühren.

- Beide Eingabeblock-Varianten (1340.039-01400 bzw. -01401) sind gegeneinander austauschbar.
- Beide Varianten der gedruckten Schaltungen "Anzeigeelektronik" (1340.039-01452 bzw. -01453) und "Eingabeelektronik" (1340.039-01454 bzw. -01455) sind nicht gegeneinander austauschbar.

5. Profung und Reparatur

Prafablauf (siche auch Bild 6,7 und 8)

Bild 3

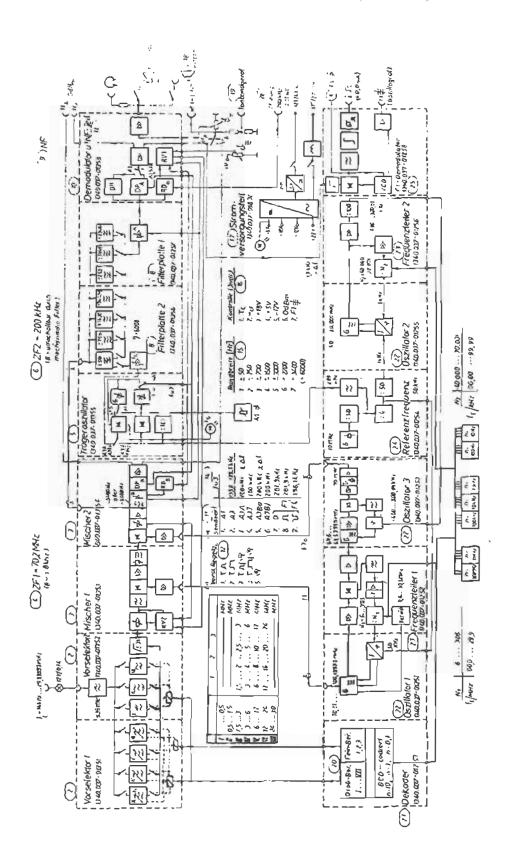


Bild 4
Empfänger EKD 100 1340.037-00001 Up

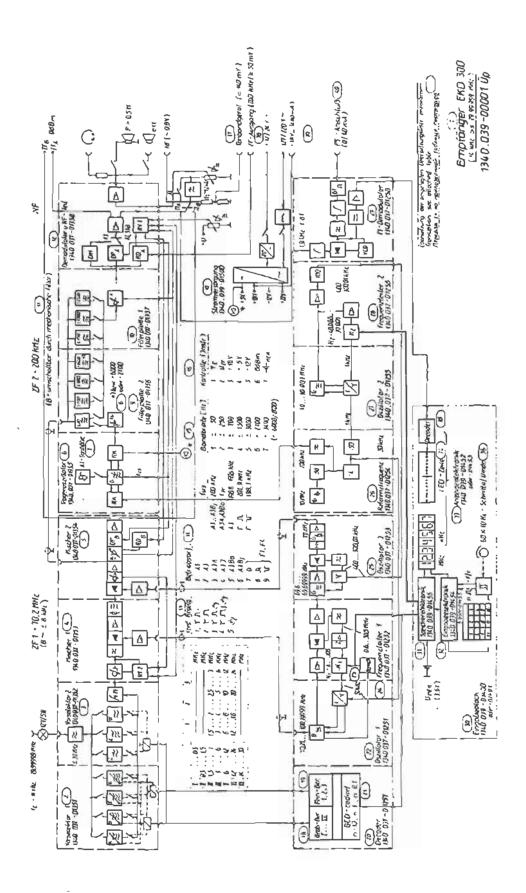


Bild 5 Empfänger EKD 300 1340.039-00001 Up

5.1. Funktionskontrolle des Empfängers

Die Funktionskontrolle erfordert keine Prüfmittel.

Voraussetzungen sind:

- Netz- (20) und/oder Batteriespannung (21) liegt an
- Antenne Y (29) und Erde (19) liegen an
- Kopfhörer an Bu ⟨s⟩ (3), Außenlautsprecher/Tonbandgerät an Bu □ 0.0 (2) oder 2. Kopfhörer

5.1.1. Netz-Batteriebetrieb

	Bedienvorgang	Sollfunktion
1.	Schalter (15) Gerät "Aus" (Betriebsanzeige (16) leuchtet nicht
2.	Schalter (15) Gerät "Ein"	Betriebsanzeige (16) leuchtet
3.	Kontrollschalter (13) in Stellung +18 V; +5 V; -12 V und → MEM schalten	Kontrollinstrument (14) Zeiger im unteren blauen Sektor (→ MEM = oberer blauer Sektor)
4.	Netzstecker ziehen bzw. Netzspannung abschalten Bedienvorgänge 1 bis 3 wiederholen	Batteriebetrieb, Sollfunktion wie 1 bis 3

5.1.2. Eingabeblock

- 5. Ziffereingabe-Löschung-Drehgeber:
- Löschtaste X| (36) betätigen. Keine Ziffer leuchtet, außer Kommastellen.
- Ziffern (35) 00.000.00 bis 29.999.99 eingeben.
- Alle Ziffern leuchten an der Frequenzanzeige (10) vollständig.

Sollfunktion

- Taste ♯ (37) leuchtet nicht, der Ziffernwert bleibt erhalten.

6. Speicherung (MEM):

- Ziffern (35) 12.345.67 eingeben, Netz- (20) bzw. Batterieanschluß(21) kurzzeitig unterbrechen(simulierter Stromausfall).
- Ziffern (35) 12.345.67 erneut eingeben und Schalter (15) aus- und einschalten.
- Ziffernfolge 12.345.67 erscheint durch Speicherung wieder, sonst " → MEM" = 3,2 ... 4,2 V überprüfen.
- Keine Speicherung der Ziffernfolge.

7. Signalsperre (unvollständige Frequenz):

- Sendeartenumschalter (8) auf A1; Bandbreitenumschalter (6) auf ± 3000 Hz; Reglungsumschalter (7) auf T ∫ Abhörumschalter (4) auf TF_A-int. 6 x Ziffer O eingeben.
- Die 7. Ziffer O eingeben.
- A1-Ton ist schwach oder nicht hörbar bei mittlerer Abhörlautstärke (5).
- A1-Ton ist mit eingestellter Lautstärke hörbar.

5.1.3. Sendearten

8. "A3" Sendeartenumschalter
(8) auf A3; Bandbreitenumschalter (6) auf
±3000 Hz; Reglungsumschalter (7) auf T
Abhörumschalter (4) auf
TF_A intern, extern;
Empfänger auf A3-Rundfunkaender mit bekannter Frequenz abstimmen und Lautstärke
mit NF-Verstärkungsregler
≈ (5) einstellen. Kontrollschalter (13) in

Sendeartenumschalter Rundfunk-A3-Empfang.

(8) auf A3; Bandbrei- Kontrollinstrument (14)

tenumschalter (6) auf Zeiger für "UZF" im oberen

+3000 Hz; Reglungsum- blauen Sektor. Kopfhörer

schalter (7) auf T ; an Buchse ds (3), AußenlautAbhörumschalter (4) auf sprecher und Tonbandgerät

TF_A intern, extern; an Buchse (2)

Empfänger auf A3-Rund- prüfen.

9. "A3A" Sendeartenumschalter

Stellung "UZR"

stärkungsregler ≥ ≈ (5) einstellen. Kontrollschalter (13)

in Stellung Y E.

Einseitenband-Empfang der
A3-Rundfunksender im oberen
Seitenband mit Trägersynchronisation. Anzeige-LED
(12) leuchtet bei Verstimmungen \(\frac{1}{2}\) to Hz. Kontrollinstrument (14) \(\frac{1}{2}\);
wirksame Antennen-EMK 1/uV
bis 1 V.

Sollfunktion

10. "A3J" Sendeartenumschalter
(8) auf A3J, übrige
Einstellungen wie 9.
10-Hz-Feinabstimmung
mittels Zifferntastenfeld (35) bzw.

Drehknopf (38).

Einseitenband-Empfang der A3-Rundfunksender im oberen Seitenband mit internem Träger, Anzeige-LED — (12) leuchtet nicht. Bei Verstimmung > ± 10 Hz unsauberer Empfang.

11. "A3Ba" Sendeartenumschalter
(8) auf A3Ba, Abhörumschalter (4) auf
TF_A-intern, danach
auf TF_B-intern schalten, übrige Einstellungen wie 9.

Einseitenband-Empfang der A3-Rundfunksender im oberen (TF_A) und unteren (TF_B) Seitenband mit Träger-synchronisation. Anzeige-LED \frown (12) leuchtet bei Verstimmungen $\leq \pm$ 50 Hz.

12. "A3Bj" Sendeartenumschalter
(8) auf A3Bj, Abhörumschalter (4) auf
TFA-intern schalten,
übrige Einstellungen
wie 9. Feinabstimmung
vornehmen.

Einseitenband-Empfang der A3-Rundfunksender im oberen (TF_A) und unteren (TF_B) Seitenband mit internem Träger. Anzeige-LED \(\sigma^*\) (12) leuchtet nicht. Bei Verstimmungen > ± 10 Hz unsauberer Empfang.

13. "A1" - Sendeartenumschalter (8) auf A1, Bandbreitenumschalter (6) auf
±3000 Hz, Reglungsumschalter (7) auf [],
Abhörumschalter (4)
'auf TF_A-intern, Empfänger auf 00.000.00
stellen.

- Empfang der eigenen Dekadenfrequenz 70,2 MHz. Änderung der Tonhöhe mit Regler
A1 ≉ (11) von ≦ 500 Hz bis
≧ 1200 Hz. Kontrollinstrument (14) für 0 dBm im
oberen blauen Sektor.

Sollfunktion

Tonhöbenregler A1 ≉ (11) von Links- bis Rechtsanschlag drehen. Kontrollschalter (13) in Stellung O dBm.

- Empfänger (EKD 300) auf 00.003.00, Sendeartenumschalter (8) Wechselseitig auf Al und A3J stellen.
- Abhörlautstärke bei A1 ist um Faktor 100 kleiner gegenüber A3J und 3 kHz (NF-Bandbeuchneidung bei A1).

- Empfang der eigenen Dekaden-

frequenz 70,2 MHz. In der

Stellung O. A. und I muß

1900 Hz betragen. Bei O

muß Linienstrom den Fernschreiber in Ruhe helten.

Mittelstrich der LED-Zeile

Kontrollinstrument (14)

im unteren blauen Sektor.

(32) leuchtet.

die Tonhöhe gleich sein und

- 14. "F" - Sendeartenumschalter (8) erst auf 0, dann auf I und I , übrige Einstellungen Wie 13. Frequenzanzeige = 00.000.00. Bei 0 Fernschreiber anschalten. bzw.
 - Kontrollschalter (13) auf Stellung F 🕏 (EKD 100).
 - Reglungsumschalter (7) Mittelstrich der LED-Zeile (32) verbleibt in Zeilenmitte, sonst VCO-F₁-Demodulator verstimmt (EKD 300).
 - in Stellung (); HF-Verstärkungsregler $\geqslant \approx (9) = \text{Links}$ anschlag.
 - in Stellung [,]; mit Drehknopf (38) 00.000.50 einstellen; Sendeartenumschalter (8) wechselseitig F1/F4 - Gchalten.
 - Reglungsumschalter (7) Der 8. Strich links (P1/F4∫) bzw. rechts (F1/F4])der Zeilenmitte leuchtet (EKD 300).

Sollfunktion

5.1.4. Reglung

15." []" Alle Einstellungen
wie 8. Bei A3-Rundfunkempfang Antenne
> 10 s von Buchse
(29) abtrennen.

Ca. 4 s nach dem Abtrennen der Antenne rauscht der Empfänger.

16." T \(\Pi \) Reglungsumschalter

(7) in Stellung

\(\T \) \(\T \) \(\T \) \(\T \) brige Einstellungen wie 15.

Ca. 0,3 s nach dem Abtrennen der Antenne rauscht der Empfänger.

17."[] "Reglungsumschalter Signal-Lau
(7) in Stellung trollinstr
[] [] , übrige steigt von
Einstellungen wie 16. darüber ke
HF-Verstärkungsregler Ca. 0,3 s
[] (9) langsam der Antenn
von Links- auf Rechts- Empfänger.
anschlag drehen. Bei
Rechtsanschlag Antenne
abtrennen.

Signal-Lautstärke und Kontrollinstrument (14) U_{ZF} steigt von O auf Nennwert, darüber keine Zunahme.
Ca. 0,3 s nach dem Abtrennen der Antenne rauscht der Empfänger.

in Stellung T J , wiprige Einstellungen wie 17.

Signallautstärke und Kontrollinstrument (14) U_{ZF} steigt von O auf Nennwert, darüber keine Zunahme. Ca. 4 s nach dem Abtrennen der Antenne rauscht der Empfänger.

"Reglungsumschalter (7) Signallautstärke steigt von in Stellung (1), A3- 0 bis zur Übersteuerung. Rundfunkempfang wie Kontrollinstrument (14) 18. HF-Verstärkungs- U_{ZF} steigt von 0 bis Vollregler \nearrow \approx (9) ausschlag.

Sollfunktion

drehen, Kontrollschalter (13) in Stellung UZF schalten.

5.1.5. Bandbreiten

20. +3000 Hz Bandbreitenumschalter (6) auf \pm 3000 Hz, Sendeartenumschalter (8) auf A1, Reglungsumschalter (7) auf din, dämpfung der übrigen Abhörumschalter (4) auf TF,-intern, Empfänger auf 00.000.00 stellen. Kontrollschalter (13) in Stellung $\mathbf{U}_{\mathbf{ZP}}$ und mit HF-Verstärkungsregler instrument (14) auf blaue Sektormitte einpegeln. Tonhöhenregler (11) auf ca. 1000 Hz

Kontrollinstrument (14) Uzp (blaue Sektormitte) ist Bezugswert für die Kontrolle der Einfüge-Zweiseitenbandfilter.

21. +1500 Hz Bandbreitenumschalter

einstellen.

+ 700 Hz (6) auî + 1500 Hz,

 \pm 250 Hz \pm 700 Hz, \pm 250 Hz

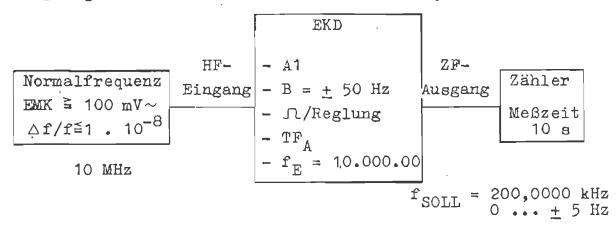
+ 50 Hz bzw. + 50 Hz stellen. Übrige Einstellungen unverändert wie 20.

Kontrollinstrument (14) " U_{ZR} " < \pm 5 mm von 20. abweichend.

Bedienvorgang

Sollfunktion

22. +2700 Hz Diese Bandbreiten Signallautstärke muß
+3400 Hz sind bereits beim annähernd gleich, bei
+6000 Hz Rundfunkempfang in verändertem Klangbild


A3A/A3J/A3Ba/A3Bj - sein.

Betrieb nach 9.

bis, 12. kontrolliert.

5.1.6. Kontrolle der Frequenzgenauigkeit

- Empfänger = 12 h bei Standardmeßbedingungen +15 bis +35° C und 45 bis 75 % rel. Feuchte ausgeschaltet.
- Empfänger einschalten und nach 10 min Frequenz messen.

- bei größerem Frequenzfehler Korrektur mit W 2410 (Referenzfrequenz).

5.1.7. Kontrolle der Empfangssperre (Sende-Empfangsumschaltung)

- P.4 an Bu 3004/ \forall , f_E = 3 MHz, EMK > 1 V/R_i = 75 Ohm EKD: f_E = 3 MHz, $| \Box |$ /Regler $| \rightarrow |$, B = +2,7 kHz, A3J mit P 4 auf ca. 1000 Hz-Schwebung abstimmen.
- An Anschlußadapter Pkt. a6 +2,5 ... +10 V (b7 = Masse) bzw. an Buchsenpaar (23) anlegen und NF-Lautstärke max. einstellen. Der 1000-Hz-Ton darf nicht hörbar sein.
- Kontrollwerte der Leiterplatte Empfangssperre siehe Seite 29 und 30.

5.2. Einschubprüfung

Empfänger-Einschub aus dem Gehäuse nehmen und über 30poliges Prüfkabel 1340.037-01146 elektrische Verbindung mit dem Gehäuse wieder herstellen (siehe Pkt. 3.). Steht kein Gehäuse zur Verfügung, ist der Empfänger-Einschub über P 11 anzuschließen (s. Pkt. 2.).

5.2.1. Betriebsspannungen

Es sind die Ausgangsspannungen des Stromversorgungsteiles zu kontrollieren (s. Bild 7 u. 8).

- + 18 V an Bu 1001/A3-B3
- + 5 V an Bu 1003/A1
- 12 V an Bu 1003/A5-B5
- + 22 V an Bu 1003/A7-B7

5.2.2. Ausgangssignale der "Frequenzaufbereitung"(s.Bild 6,7u.8)

an Bu 2001: f70 = 70 MHz \pm \triangle f70 bei \triangle f70 > 1 kHz mit Sp 2313 (Oszill. 3) korrigieren

Uf70 = \sim 80 ... 100 mV an 50 0hm

an Bu 2002: $f1 = 70,21400 \dots 100,19999 \text{ MHz} + \triangle f70$ Uf1 = $\sim 80 \dots 100 \text{ mV}$ an 50 Ohm

an Bu 1002/B11 (Gestell): 200 kHz/ > \sim 200 mV

5.2.3. Verstärkung des Signalweges

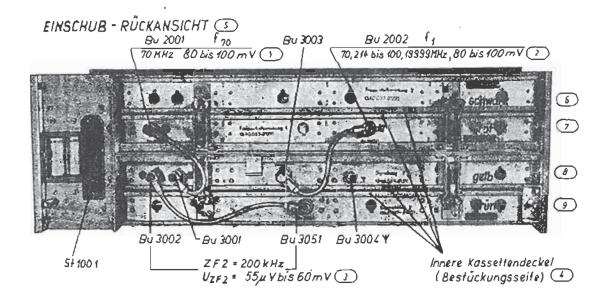
Zur Fehlerlokalisierung bei Verstärkungsdefekten sind die Teilstrecken Signalweg 1 und Signalweg 2 zu kontrollieren:

- Signalweg 1

Emp. Eingangsbuchse Bu 3004/ Y - Bu 3002 (200 kHz)

P 4 an Bu $3004/\Upsilon$, $f_{E} = 5.5$ MHz, EMK = 1 mV/R₁ = 75 Ohm

P 2 (150 mV-Bereich) an Bu 3002


EKD: $f_E = 05.500.00$, \(\frac{11}{2}\) /Regler \(\frac{1}{2}\), $B = \pm 3000$ Hz, A3J

mit P 4 auf Schwebungsnull (Solldurchlaßmitte) abstimmen.

Soll-Anzeige am P 2 47 ... 63 mV.

- Signalweg 2

Bu 3005 (200-kHz-Eing.Signal) — Leitungsausg. TF_A P 4 an Bu 3051, f = 200 kHz, $U_e = 55/uV$... 60 mV/ $R_1 = 75$ Ohm. P 3 (1,5-V-Bereich) an Leitungsausgang TF_A . Mit P 4 auf 1000-Hz-Ton im Kanal A abstimmen, mit '''| /Regler müssen für Eingangssignale 55/uV ... 60 mV am Leitungsausgang TF_A O dBm an 600 Ohm einstellbar sein. Bei Automatik-Reglung Π und Π muß bei dieser Eingangs-Signal-Änderung der Ausgangspegel innerhalb -3 dBm ... +3 dBm bleiben.

① Einschub (Frontplatte abgeklappt) Sch 1001 -URZ N 1005 -+0,8,... Q) ¥ 200 KHz (ca. 100 m/m) Sch 1001 . Emplangesperre 80 1002/81 2 Seh 1002 51h 1006. BU 10H/85 W 1086 -Bu 1003/15-85 1th 1007 Widerslands. 00/00# 300,01., 400,00 kHz ,C.C. (Tr.(ca.200 kHz) 80... 170 mY & 8-, 1004/AB Holsiypiclie Sch 1005 Sch 1006 5:01 270Y~A T315 121Y~£ T630 (Si.) F2X 5102 7315 7*6*90

Bild 7
Typenreihe EKD 100

Einschub (Frontplatte abgeklappt) W 1314 W 1317 W 1318 Ba 1001 2) (NC-ACCU) BU 1001 1 A3- B3 Sch 1001 UR2 6 W 1005 Bu 1014 | B5 Emplangssperre +0,8...0,31 Sch 1003 Bu 10021B11 200 kHz Sch 1002 (ca.300 mV≈) Bu 1002/B1 50 kHz Sch 1004 \mathcal{M} W 1006 URI Bu 1011/B5 Eingabeblock +15...+9V Bu 10031A7-B7 -22V Eingabeelektronik Bu 1003/A5- B5 -12V 4 Bu 1003/A1 -+5V URL By 1011 / A5 (5) Speicherelektronk 0.....4 W 4553 300,01...400,00 kHz Bu 1004/48 W 4557 \mathcal{T} W 4552 <u>/ T</u>r.(ca. 200 kHz) 80...170 mV ≈ Bu 1020 W 1011 Sch 1005 Sch 1006 Si 1001 Si 1002 Si 5101 F2A ~220V \$ T315 ~127 V \$ T 630

Typenreine EKD 300

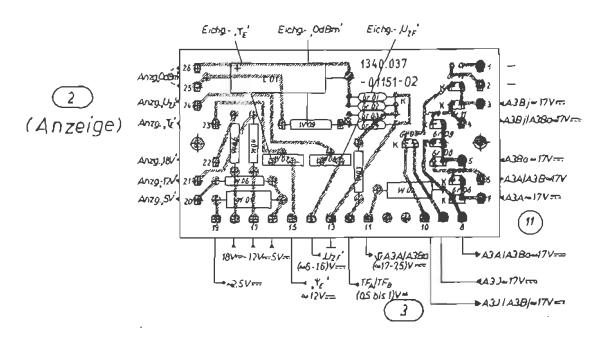
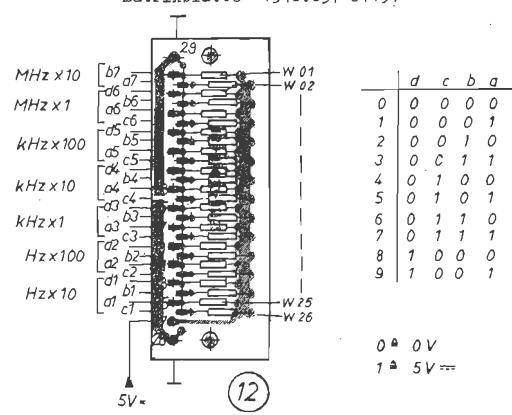
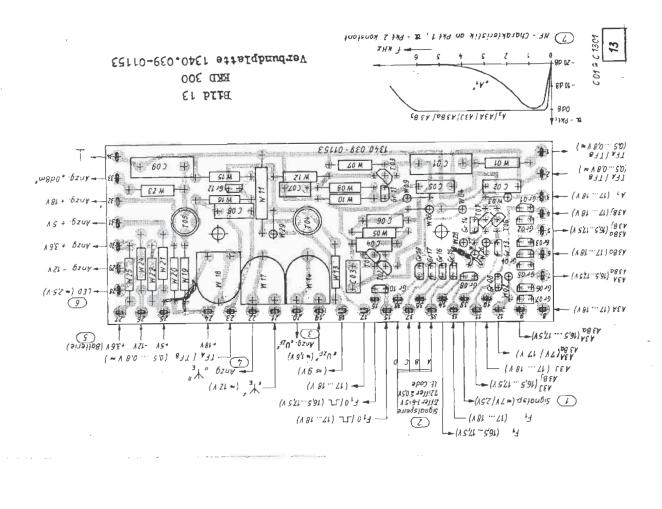
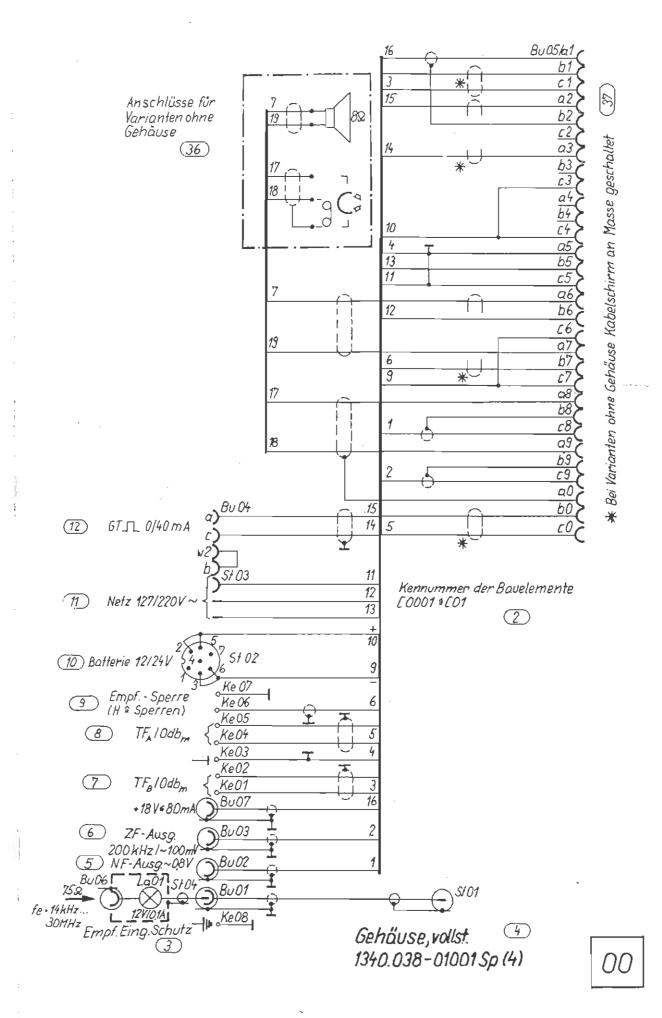


Bild 9
Matrixplatte 1340.037-01151




Bild 10
Widerstandsaufbau 1340.037-01152
EKD 100

80


#

29

Senennung Empfänger EKD

r Bauelemente 1001 <u>a</u> St 01 16) AF - Kobel on der Geräte - Rückseite Kennummer der St 10 (१९वाहमञ्ज) Ττα**ge**τοszillator Demodulator u. NF-Teil Filterplatte 1 Filterplotte 2 (5l)(71) (71) $(\epsilon\iota$ 9075 (11 200 KHz Vorselektor 2 S 1973SIM (Of Vorselektor 1 L JOYJSIW (ii ZHM 6661,001 36 SU 15 OI 10,214. (80 300¢) (100E19)V (7) 75 10010 - 880 0781 υ6 70 75 4, 5048 מוֹ חַבְּיוֹם וֹנְבָּטׁוּ וְיִם (*800*8 79) (24 0001) 6 () a6 (0 75 1 u6 (20 75 9 necogek. מszillator Frequenzteiler1 Oszillatar 3 8 2 (2007 ng) (٤ (*1*007 ng) (1502 118) snaupartzna, atak F1 - Demodulator ווצצותמנסג Frequenzteiler 2 S (7) Ε 2)

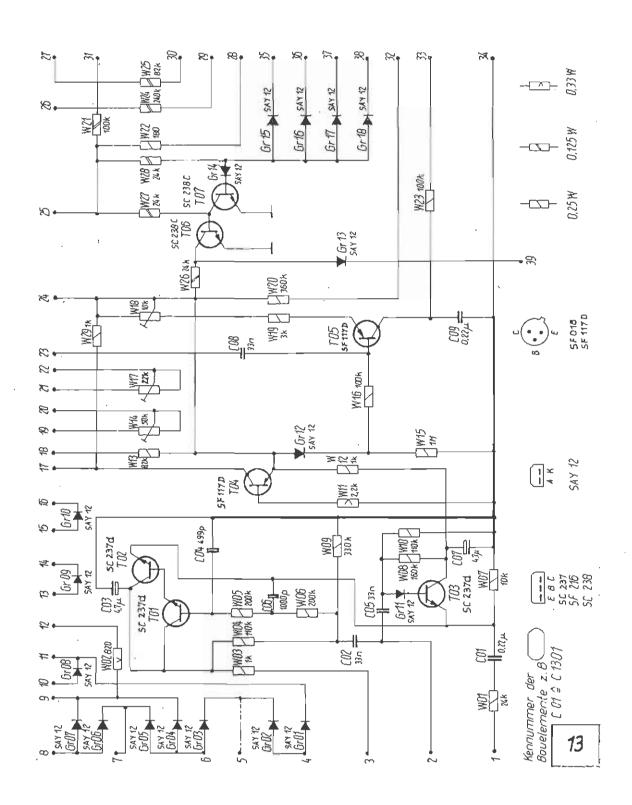
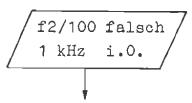
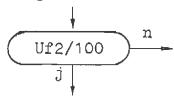



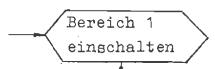
Bild 14 EKD 300 Verbundplatte 1340.039-01153 **S**p

5.3. Frequenzaufbereitung


5.3.1. Systematik für die Fehlersuche

Entsprechend dem Prinzip der Frequenzaufbereitung werden Prüfprogramme für die Fehlersuche angegeben. Jedes Programm beginnt mit einer Angabe des Fehlers, z.B.

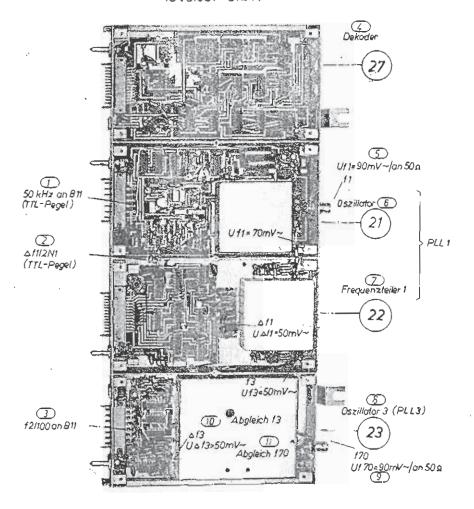
d.h., die Frequenz f2/100 ist falsch, das 1 kHz-Signal ist in Ordnung (i.O.).


Dann werden verschiedene Kontrollmessungen durchgeführt, die als Fragen in Kurzform angegeben sind, z.B.

d.h., die Spannung bzw. der Spannungsverlauf Uf2/100 wie in dem Übersichtsschaltplan dargestellt ist vorhanden.

Diese Messungen geben Hinweise, welche Baueinheit zu prüfen ist. Das dafür notwendige Prüfprogramm oder die Prüfanweisung werden angegeben, z.B.

Für manuelle Tätigkeiten, die nicht selbstverständlich sind, wird eine Anweisung gegeben, z.B.



Zu jedem Prüfprögramm werden die Meßstellen in nebenstehenden Darstellungen angegeben.

Am Ende des Prüfprogramms steht die Information, daß die zu prüfende Baueinheit in Ordnung ist, z.B.

5.3.2. Frequenzaufbereitung - Übersicht

D Frequenzaufbereitung1 1340.037-01211

© Frequenzaufbereitung 2 1340.037-01221

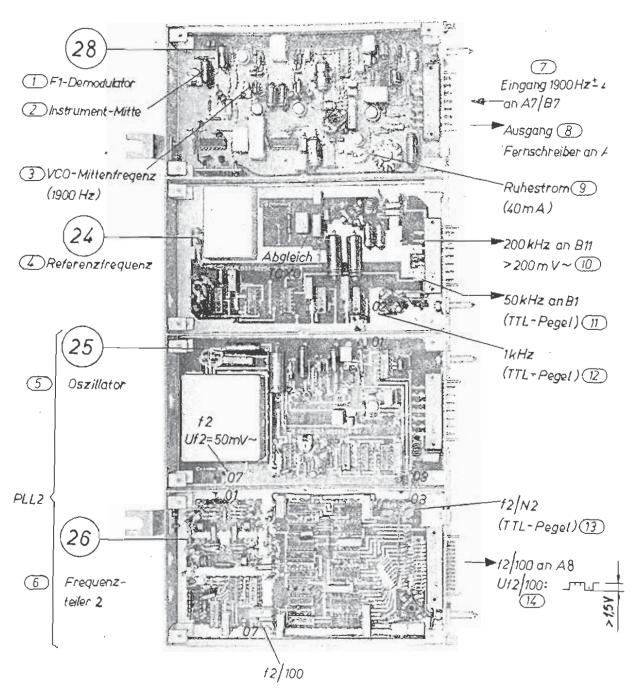


Bild 16

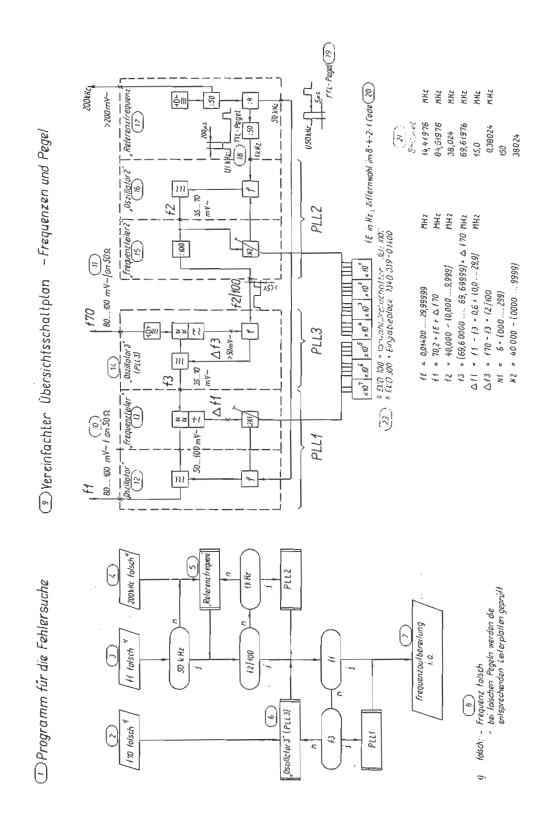


Bild 17
Frequenzaufbereitung - Übersicht

1) synchronisierter Zustand 50 kHz US1 27...10 V= Bereich Referenzfrequenz 29.14V= 80..100 mV~ an 50**Ω** UP1= 7...10 V= Af1/2N1 3 (TTL-Pegel 50...100 mV~ Z 67 a7 d6 c6 Af1= f1-f3 UAf1= 35...70 mV~ 86 a6-

Bild 18
Lage der Meßpunkte PLL 1

d5′ c5′

&5'

α5′

Uf3 = 35...70 mV~

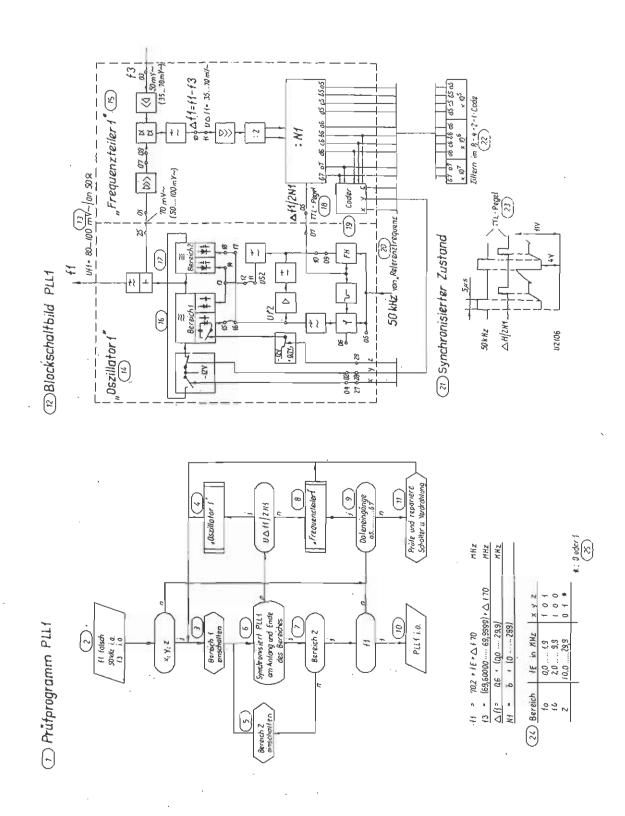


Bild 19
Phasenregelkreis 1 (PLL 1)

5.3.4. Oszillator 1

Keine duogengeegennung [1]

1. UC45 bzw. UC47

2. Uff (15..18)

3. US1 (12)

4. Schwingt Osillator?

Begelkreie synchronisiori nicht (0b)

1. Beitebespanungen

3. AP1/2M1 (07)

4. Uff (15..10)

5. US1 (12)

6. Brücke 11...12 öffen, an 12 ca. +8V...enlegen, at Frequentscheiter **10 bHz** u. **1MHz** synchroniskeren

7. Fanghilfe und ZO6 überprüfen

0. Abgleich Phasendiekriminator

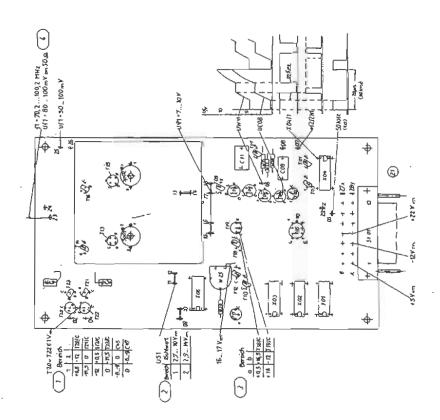


Bild 20

(6) Schollerlaige hervorgerulen durch Zerlverzögerung der Gotter S) Imputsschema des Frequenzdiskniminators (2) Anchaitmenism das Phonemaliskritminartons J Schalter in Stellung "y" f2/N2 > 50 kHz f(x) 0 0 +1/2M1 (E) A 11/2WS x 03/2 X 02/11 50 AMZ x 05/₩ 30 kHz x 03/5 X OK/ # × 04/6 8 /10 X x 01/8 X DAYS X 01/3 x 02/3 Abgleich derroexillatoren notwendig. Der Abgleick erfolgt im Dereich 1 Wenn Gr2102, Gr2103, Gr2105 oder Gr2106 gewecheelt werden, 181 ein mit C24 und im Bereich 2 mit C34 durch Wechseln der Komdensatoren. \ \ V 14 √ 8 Ug en Pkt. 11 P 8, R4>3 MER Pins am 12 cm. +8 V- anlegen (C15 hat geeignete Appending) U % = 7...10 Y an Pkt. 15...18 bet $f_{\rm g}$ 20 000 00 Abgleichbedingungen (mit Abschimm-Kappe gemessen!) synchronisiert 7 Komtwolle des Prequennediskriminatores (Yangakife) 2,7 ... 2,9 V = U (1,) H 0,2 Y XO 9 ...11 V Derillogreem en C2105 und W2111 beachten! < 14 V Pin9 U (11) < 2 Y U (11) >13 Y bgleigh des Phegendiskrimingtorg Abgleich der Osmillatorfrequens < 50 kHz Xontrolle des Verstürkers 106 > 50 kHz X01, X02, X03, T10, T11 u. T12 F1/11 Brucke 11...12 Uffnen Brdcke Og...10 Sffnen Brucke 11...12 öffnen Deteks 09...10 öffnen Kinstellen mit W2125 Mit W2125 elnatellen Prequent-Singtellung 30 000 00 Upind >> Upin5 10 000 00 Upin4 << Upin5 2. 30 000 00 3. 31 000 00 4. 00 000 00 5. 09 999 99 1, 10 000 00 fe

Bild 21 Oszillator 1

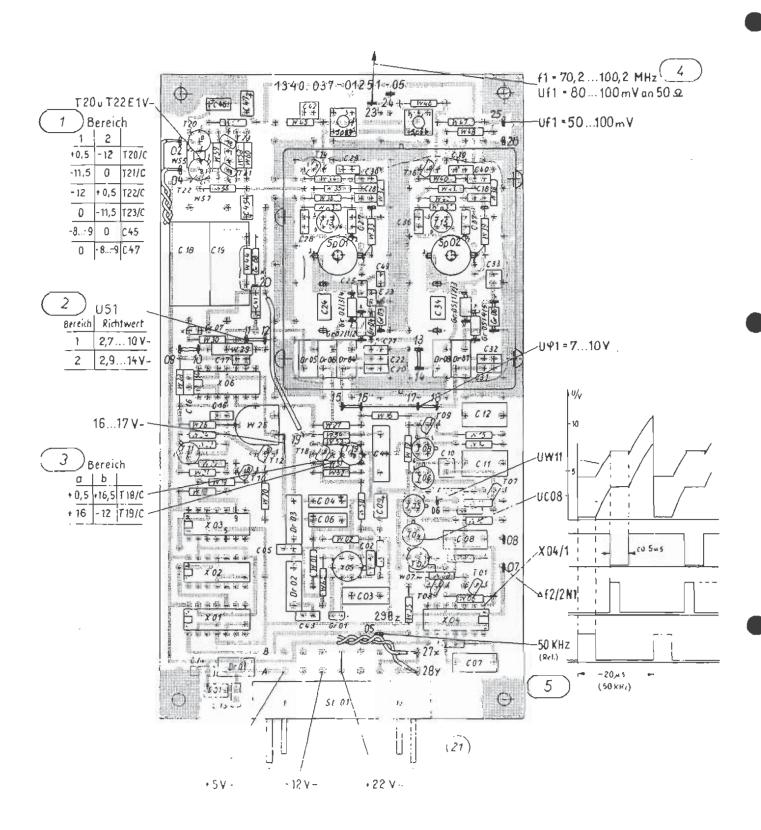


Bild 22 Oszillator

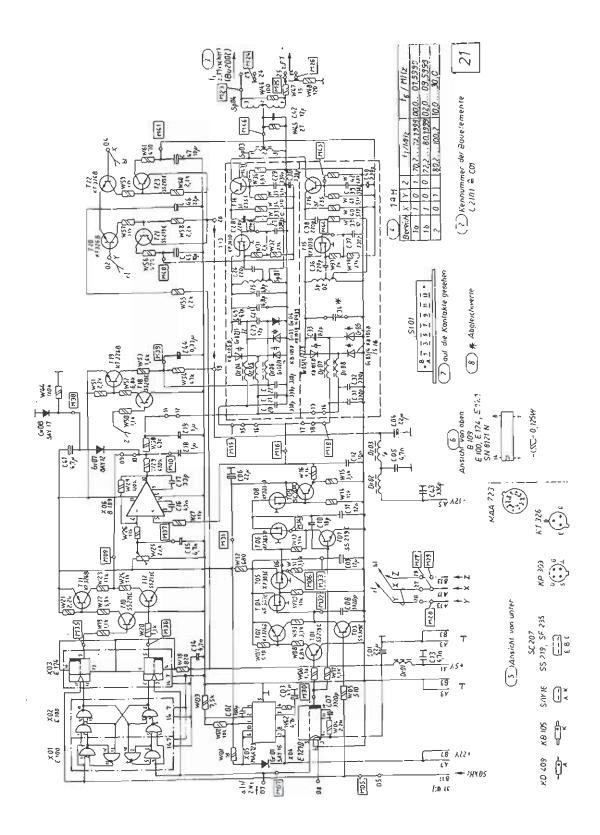


Bild 23 Oszillator 1 1340.037-01251 Sp

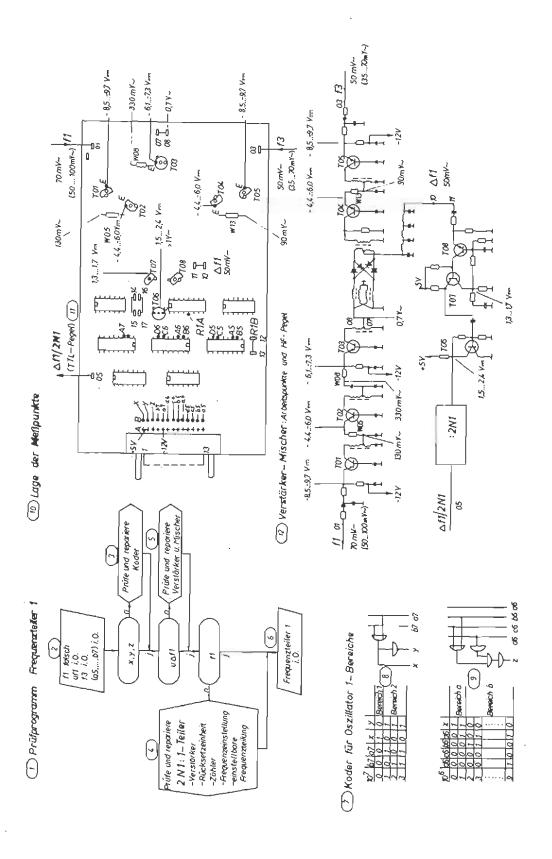


Bild 24

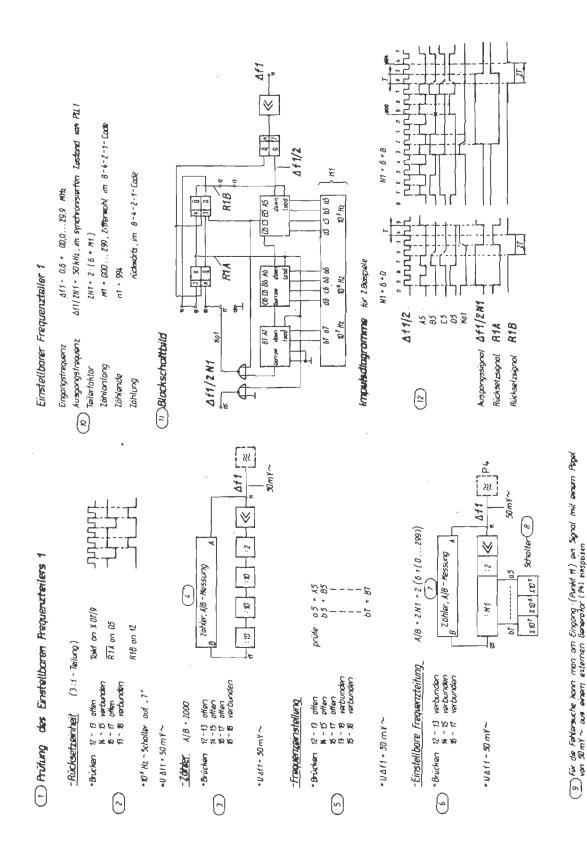
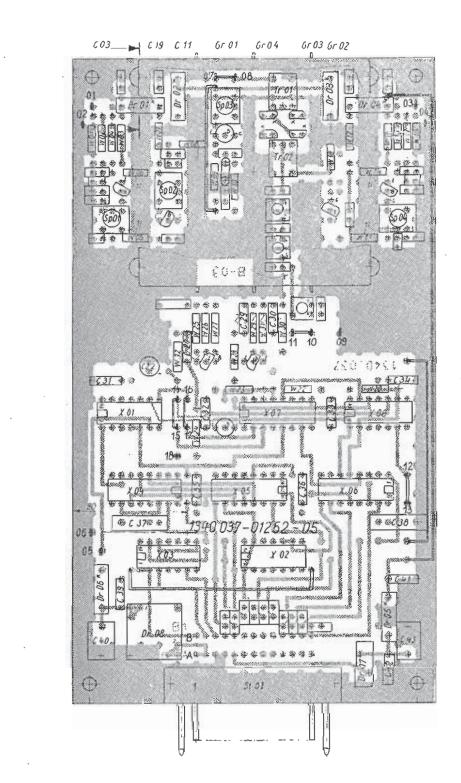



Bild 25 Frequenzteiler 1

15

003

608

C 02

L 01

€ 04

C 05

702

C 07

C 10

€ 28

Sp 07 C 25

5006

C 24 C 28 T 01


9

12

C 45

644

Bild 26 Frequenzteiler 1

C 15

13

T03 W11 **

16

C 17

C 18

615

T 05

612

C 14

C 13

704

623

Sp 05

11

T08

T 06 14

649

650

C 51 C52 C 53

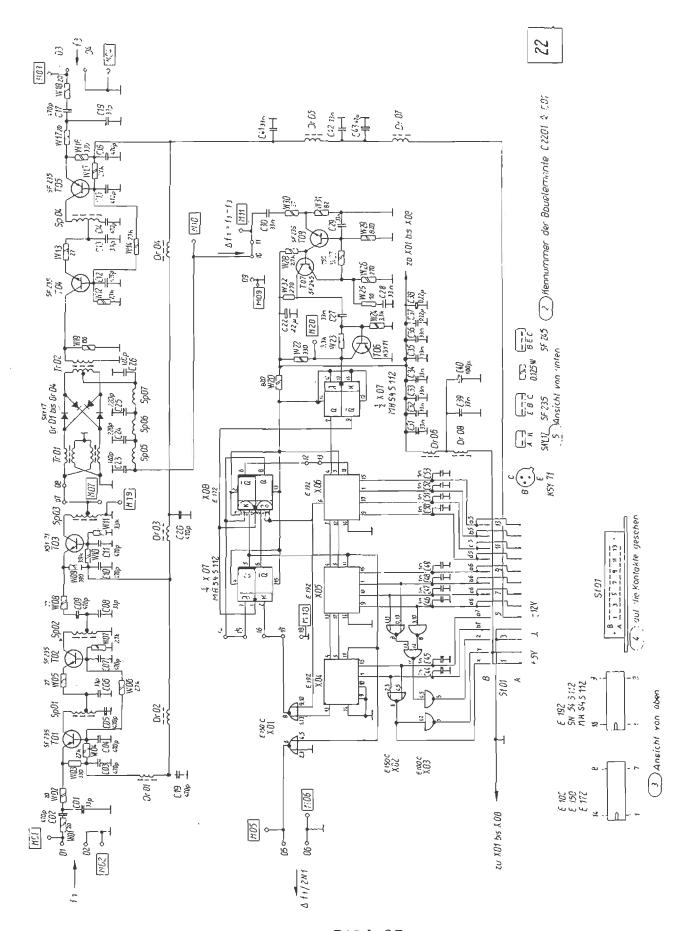
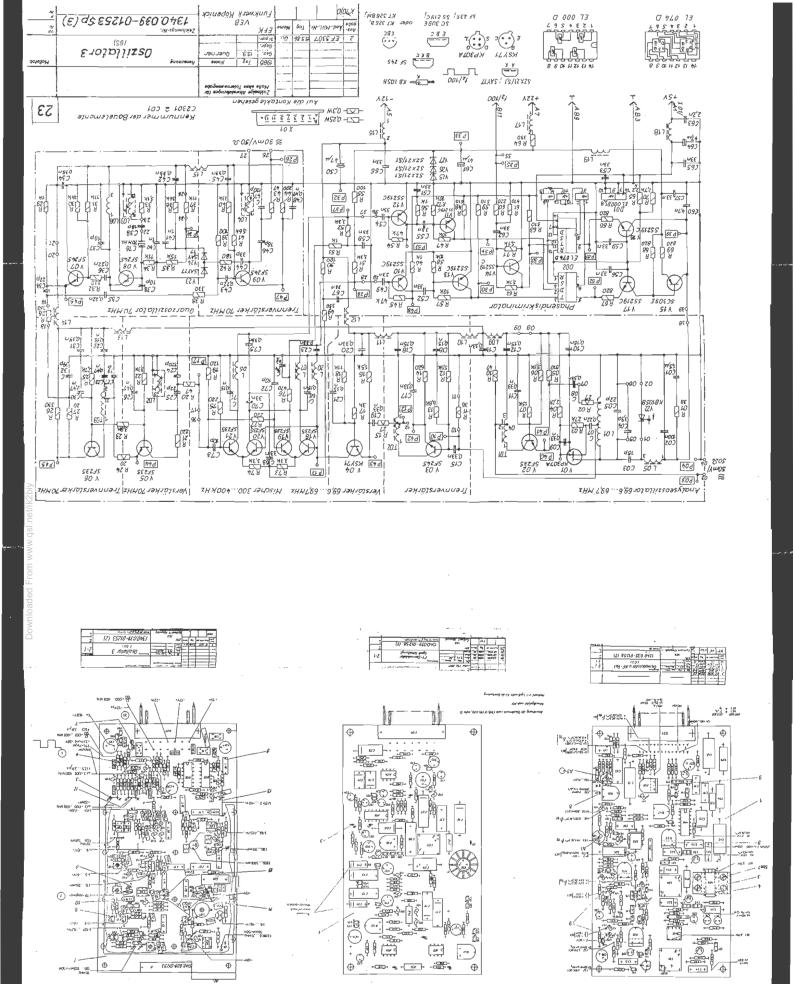



Bild 27
Frequenzteiler 1 1340.037-01252 Sp

5.3.6. Oszillator 3 (PLL 3)

5.3.6.1. Quarzoszillator

Pegelabgleich:

Mit Sp 14 70 MHz-Spannung an 17 auf Minimum.

Mit Sp 10 70 MHz-Spannung an 17 auf Maximum.

Mit W 37 70 MHz-Spannung an 26 einstellen.

Mit W 28 70 MHz-Spannung an 17 einstellen.

Frequenzabgleich:

Mit Sp 13 f = 70 MHz abgleichen, $\triangle f < \pm 150$ Hz.

5.3.6.2. f₃-Oszillator und Fanghilfe

Pegelabgleich f3:

Mit W 02 (Abgriff entlang der Spulenauskoppelschleife der Sp 02) ~ 50 mV/50 0hm an 03 einstellen.

Frequenzabgleich f3:

Brücke 38/39 öffnen.

Brücke 36/37 öffnen.

Brucke 36/37 offnen.
+12,5 V == an 38 legen:
$$\frac{33}{10 k\Omega}$$
 $\frac{10k\Omega}{38}$ $\frac{36}{51 k\Omega}$ $\frac{34}{15 V}$ $\frac{15 V}{15 V}$

Mit Trimmer C 06 $f_3 = 69,650$ MHz einstellen.

Fanghilfe:

 $f_2/100 = 350 \text{ kHz an } 35 \text{ und } \triangle f_3 \ (>50 \text{ mV} \sim) \text{ an } 28/29.$

$$f_3 < 69,650 \text{ MHz} \rightarrow \text{positive Impulse PKT. 9 X 04} \rightarrow U_{37} = +10 \dots +15 \text{ V} = +15 \text{ V} = -10 \text{ MHz}$$

 $f_3 > 69,650 \text{ MHz} - \text{positive Impulse Pkt.} 5 \text{ X } 04 - U_{37} = 0 \text{ V} = 0$ Brücken 38/39; 36/37 schließen.

5.3.6.3. Phasendiskriminator

 $f_2/100 = 350 \text{ kHz} \text{ an } 35 \text{ und } \triangle f_3 \text{ an } 28/29.$ Oszillogramm "synchronisierter Zustand" an 31 mit C 06 einstellen.

f₂/100 alle 10 kHz-Schritte Synchronisation prüfen.

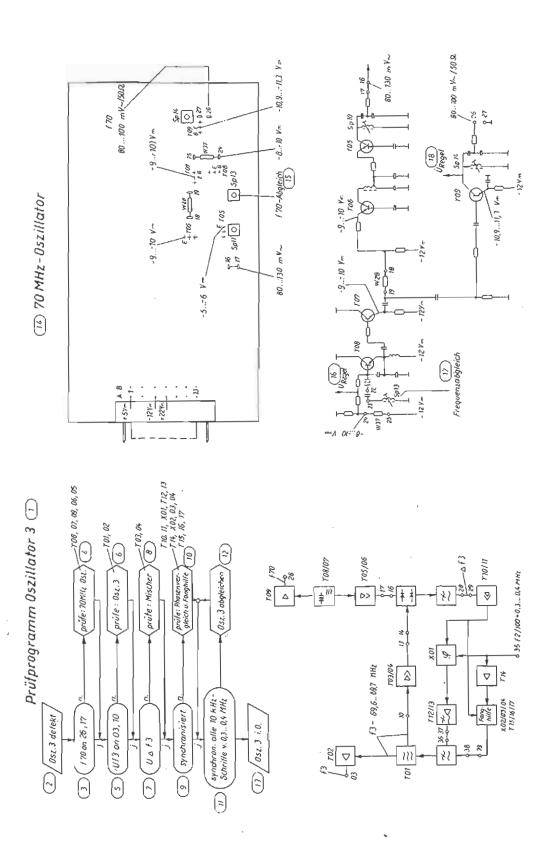


Bild 28 Oszillator 3

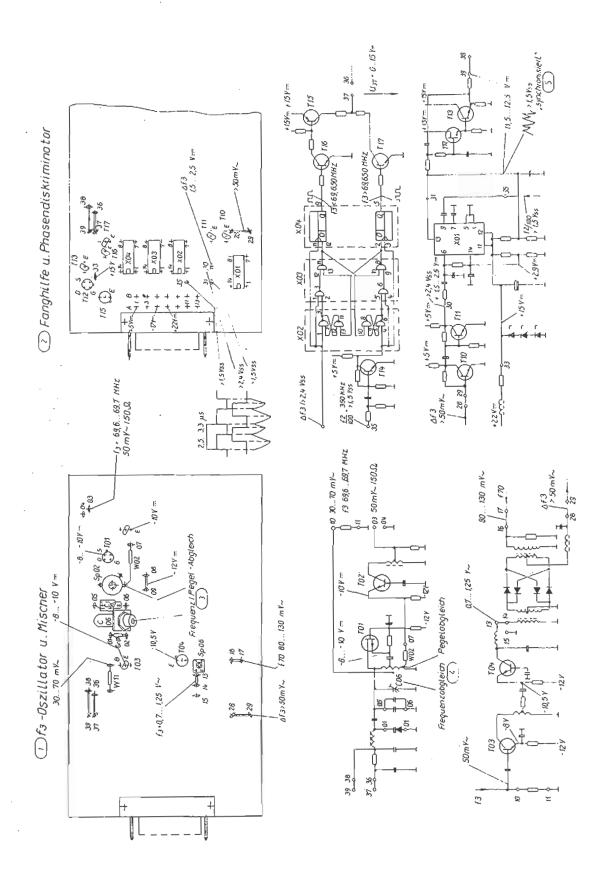


Bild 29 Oszillator 3

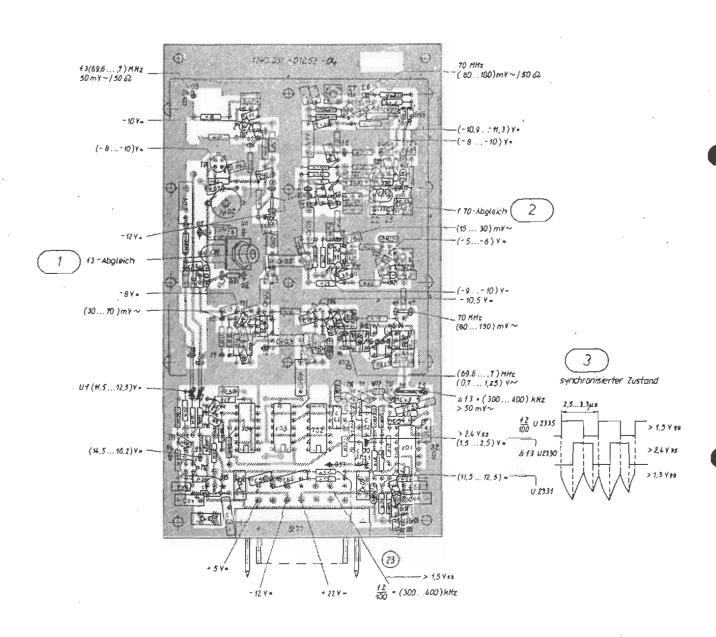


Bild 30 Oszillator 3

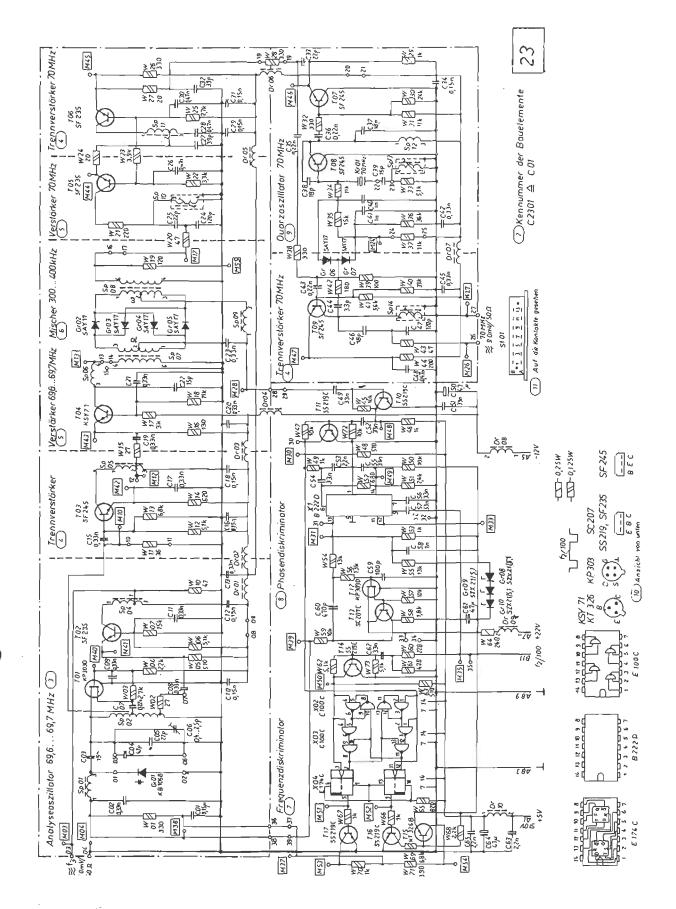


Bild 31 Oszillator 3 1340.037-01253 Sp

5.3.7. Phaseudegelkreis 2 (PLL 2)

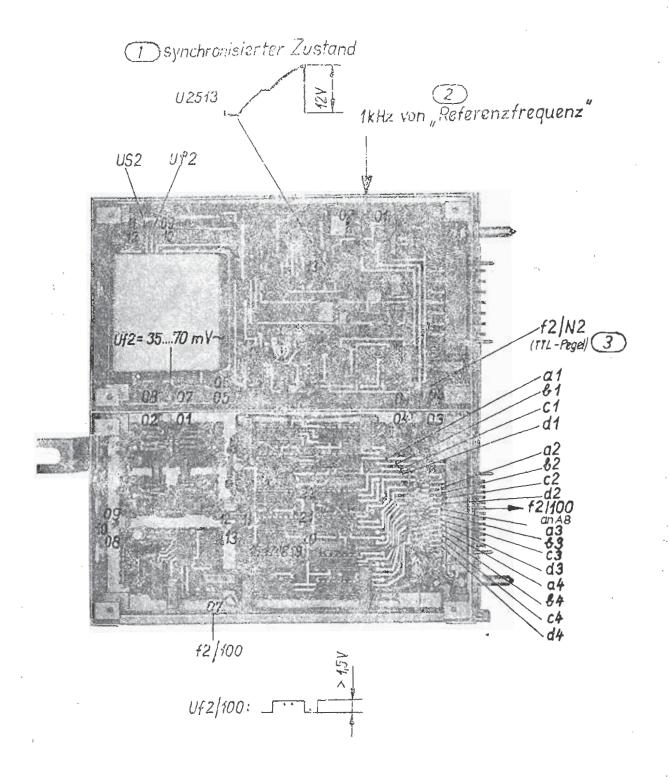


Bild 32 Lage der Meßpunkte PLL 2

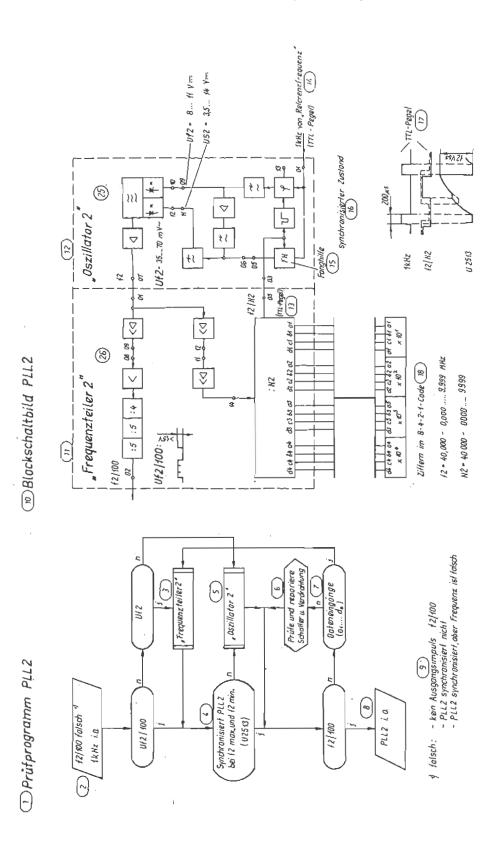
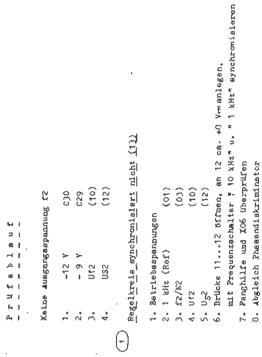



Bild 33 Phasenregelkreis 2 (PLL 2)

5.3.8. Oszillator 2

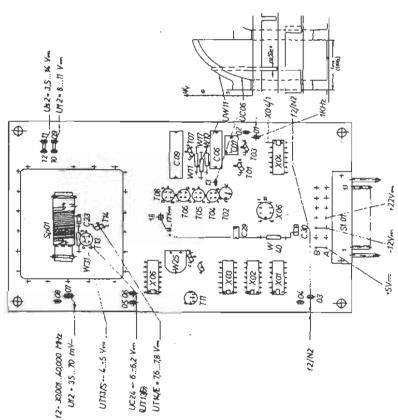


Bild 34

XO1, XO2, XO3, T10, T11 und T12

Brücke 05...06 öffnen

sa 12 ce. +8V_ anlegen (C14 hat geeignete Spenaung) Brücke 11...12 Uffnen

	05	< 1 V	> 14 V
xo3	Pin 5	4	
×	Pin 9		7
•	£2/N2	> 1 kHz	2H3 - >
	fe	9999 xxx	00000

Kontrolle des Verstärkers XO6

Mrticke Os ... 06 Mfnen

Bruoke 11...12 bffnen Mit W2525 etastellen + ((11) > 13 4 Upin4 << Upin5

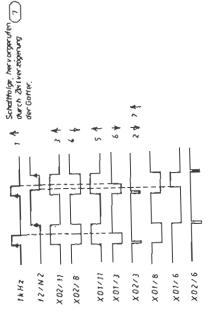
Upiza4 >> Upin5 --- U (11)

Abgleich wird mit der Zusatzwicklung auf Sp2501 - Draht O,6 um Ø wendig den Frequenzbøreich des Oszillators zu kontrollieren. Ein Wenn Gr2502 ader Gr2503 (KB105B) gewachselt werden, ist es not-Abgleich der Onzillatorfrequenz Cul - vorgenomen.

Mbglichkeiten ; 2 Wdg.gleicher Wickelsinn • 1 " ontgogengesotzter Wickelsinn

Bein Messen Absobirateppe suf-sotten! > 3,5V " 4,5.V P B, R1 " MOLEM <14 V Typ 13 V Pkt. 12 x - Einstellung beliebig 30 0001 kHz 40 0000 kHz 9999 xxx 00000 xxx

Abgleich dee Phasendiskriminstors


UF = 0...11 V Bn Pkt. 09 bai fg = xxx 5000 Oszillogramm en C2506 und W2511 beachten! Einstellen mit W2525

(2) Arbeitsweise des Phasendiskriminators

TOTO WILLIAM

W09 +U

£2/N2 > 1kHz 12/N2-X03/3 X03/2 1 KHZ

X03/5

55

Bild 35

Oszillator

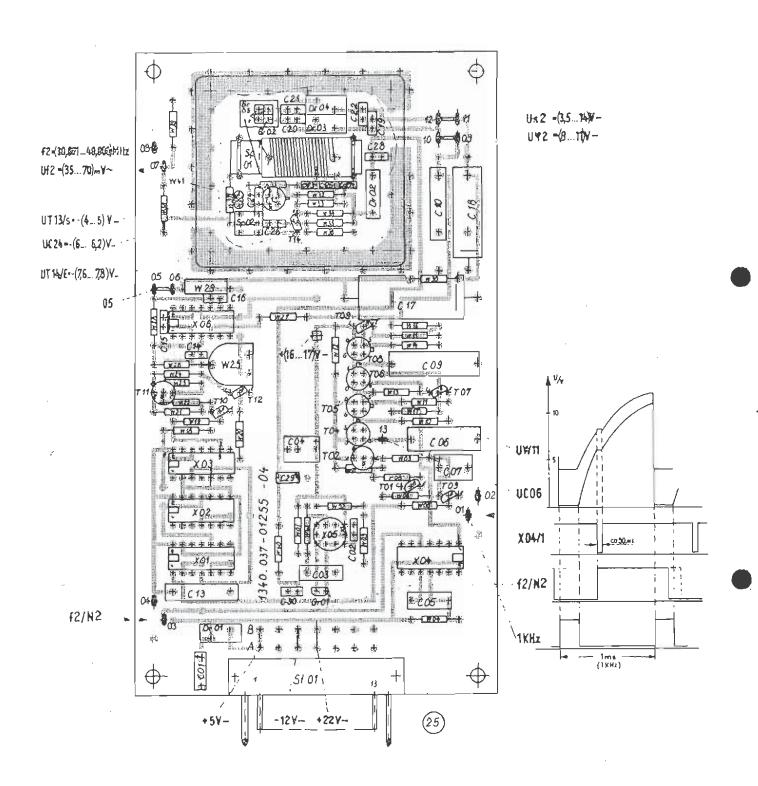
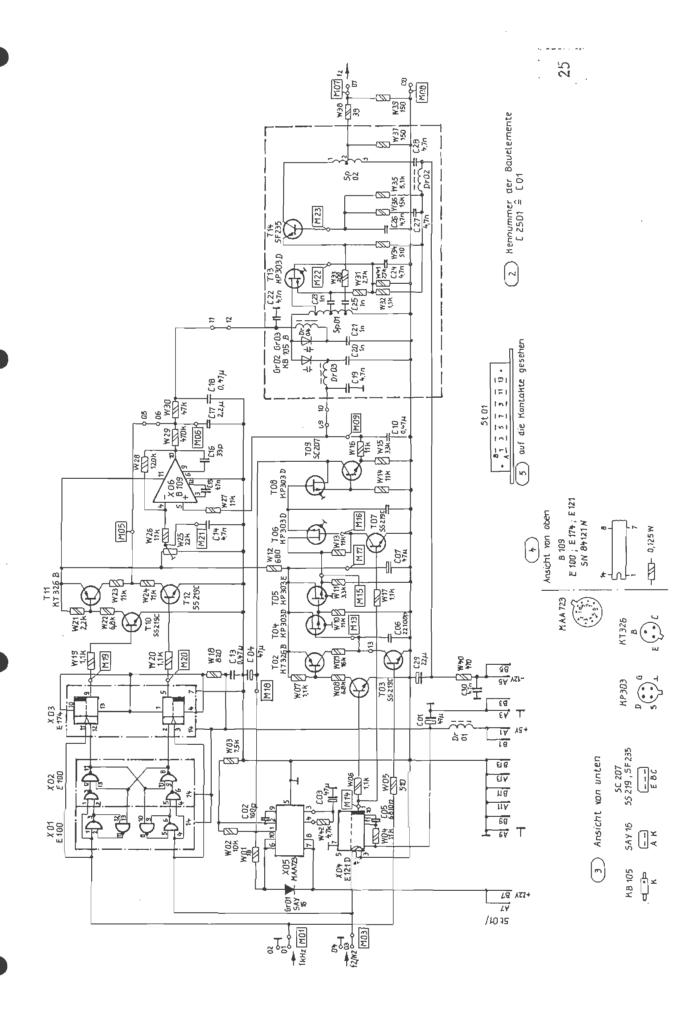



Bild 36 Oszillator 2

5.3.9. Frequenzteiler 2

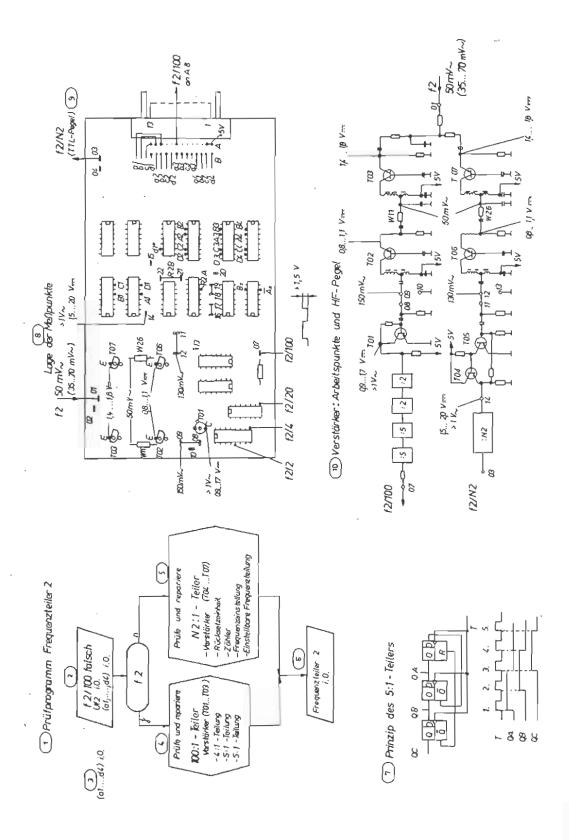


Bild 38

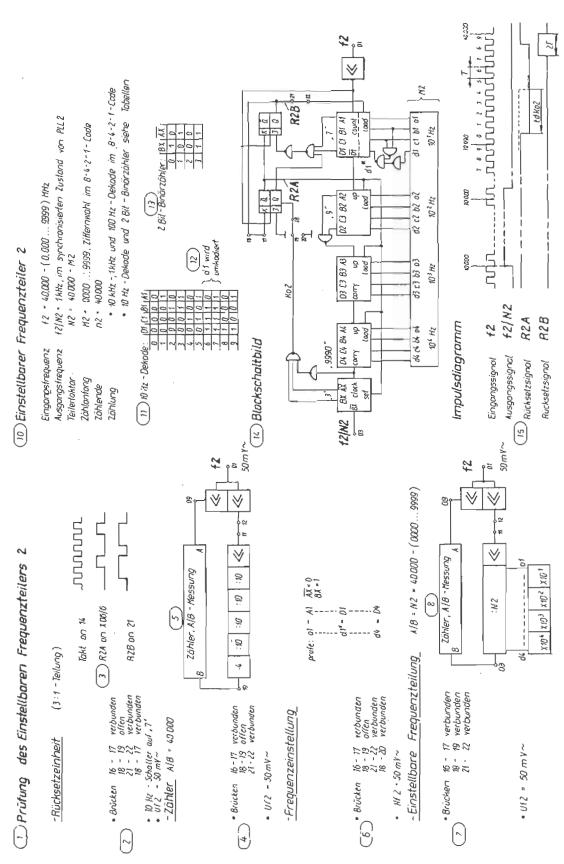


Bild 39 Frequenzteiler 2

Für die Fehlersuche kann man an Punkt 11 ein Signal mit einem Pegel von co 150 mV $^{\sim}$ und einer frequenz < 30 MHz einspeisen (D4).

60

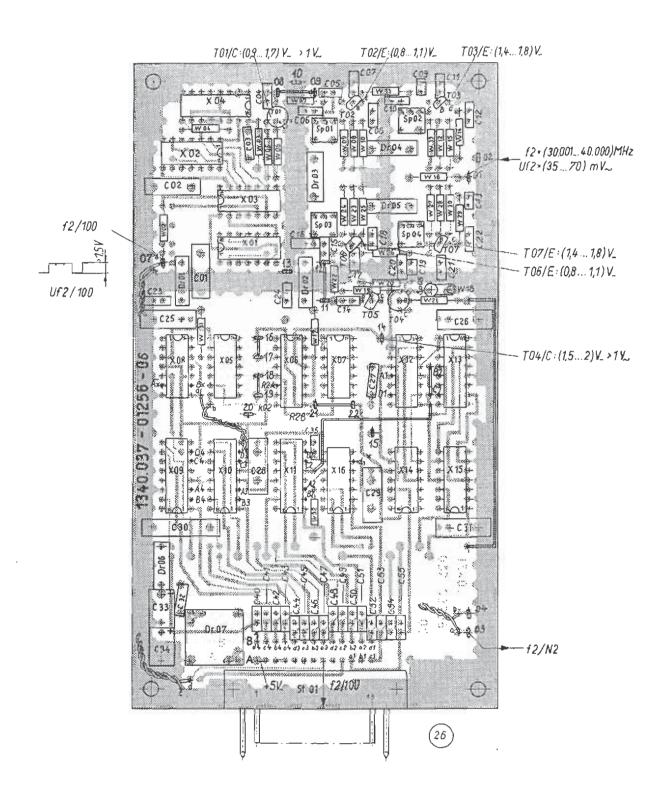
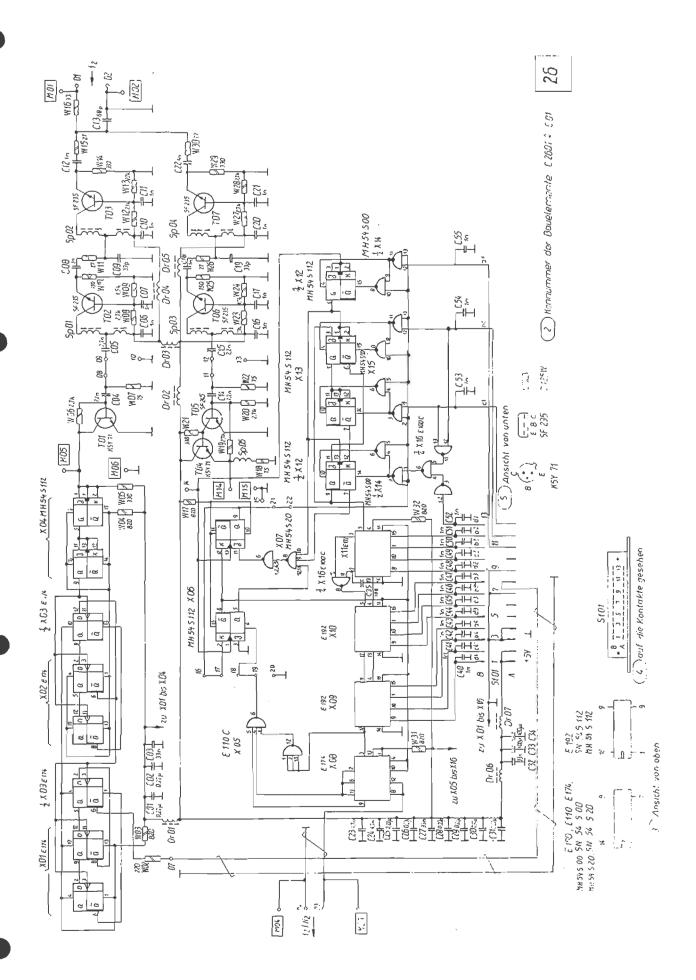



Bild 40 Frequenzteiler 2

5.3.10. Referenzfrequenz

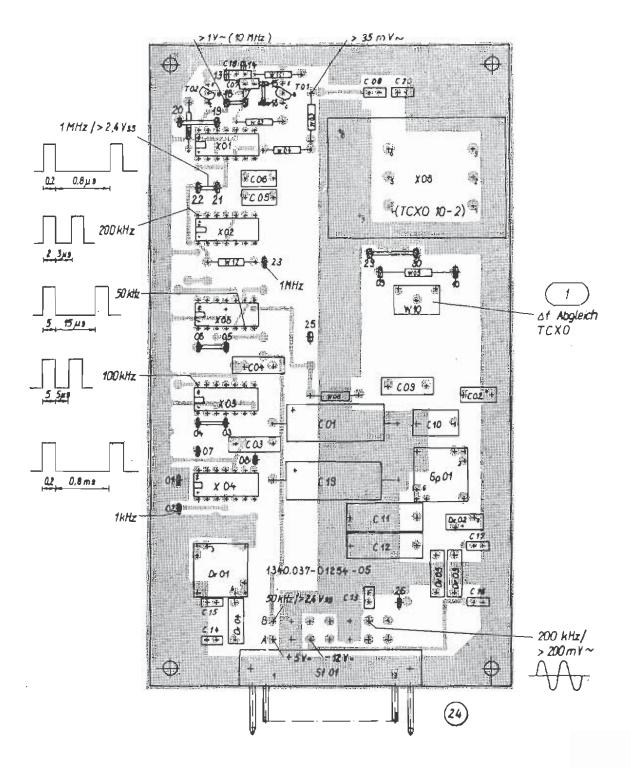


Bild 42 Gilt für TCXO 10 - 2

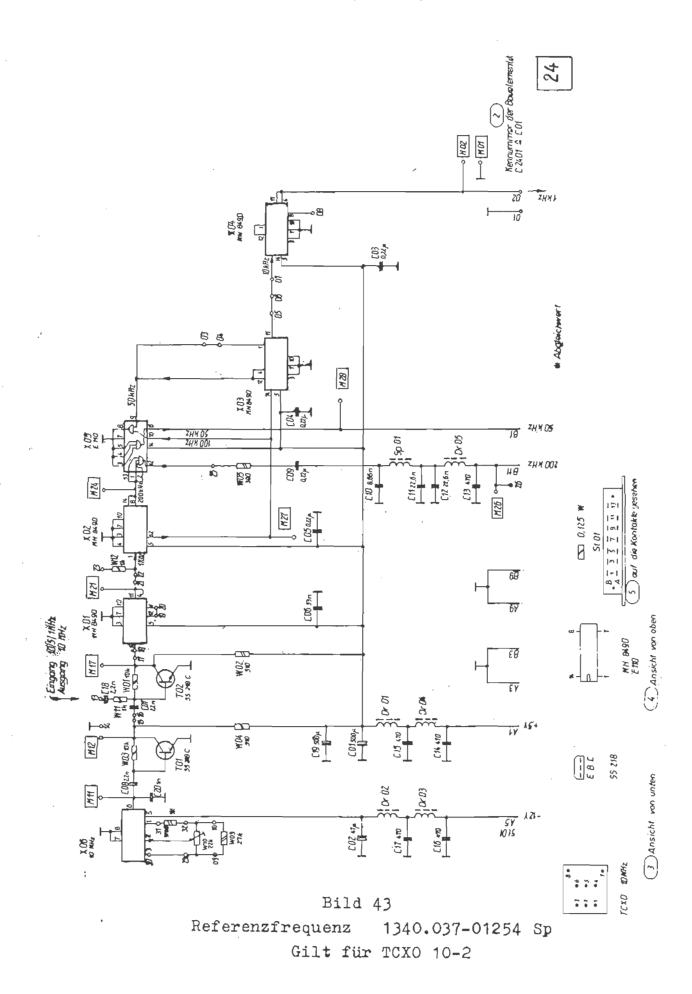


Bild 44 Gilt für TCXO 10 - 3

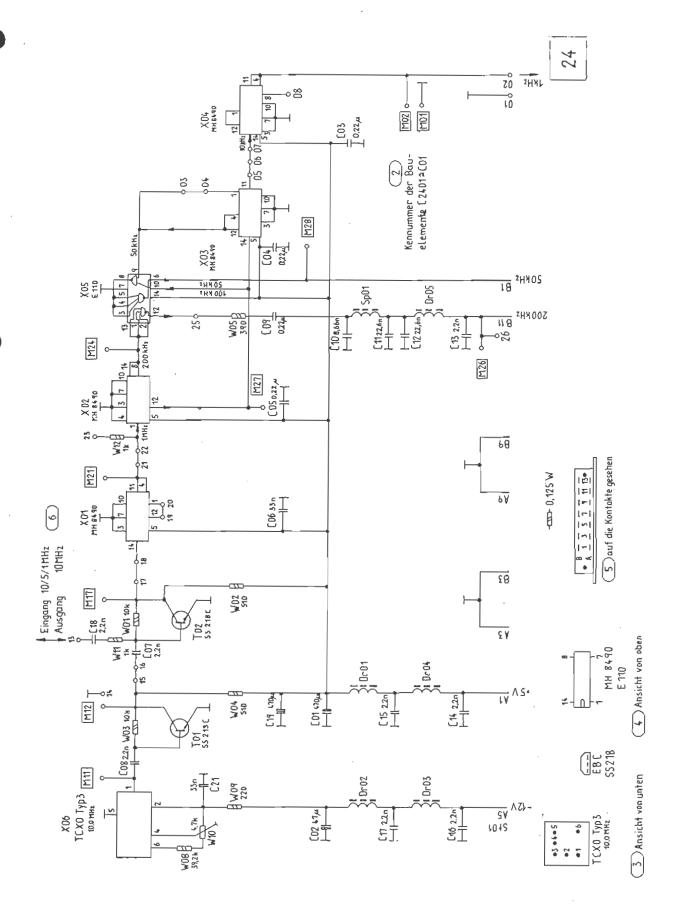
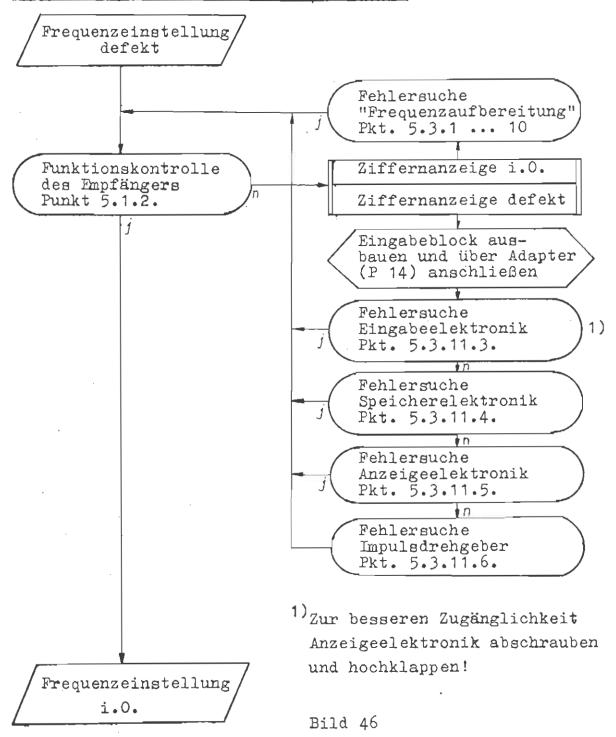



Bild 45
Referenzfrequenz 1340.037-01254 Sp
Gilt für TCXO 10 - 3

5.3.11. Prüfung und Reparatur "Eingabeblock"

5.3.11.1. Prüfablauf (siehe auch Bild 8)

5.3.11.2. Erforderliche Prüfmittel

P 5, P 6, P 8, P 9, P 13, P 14 entspr. Pkt. 2

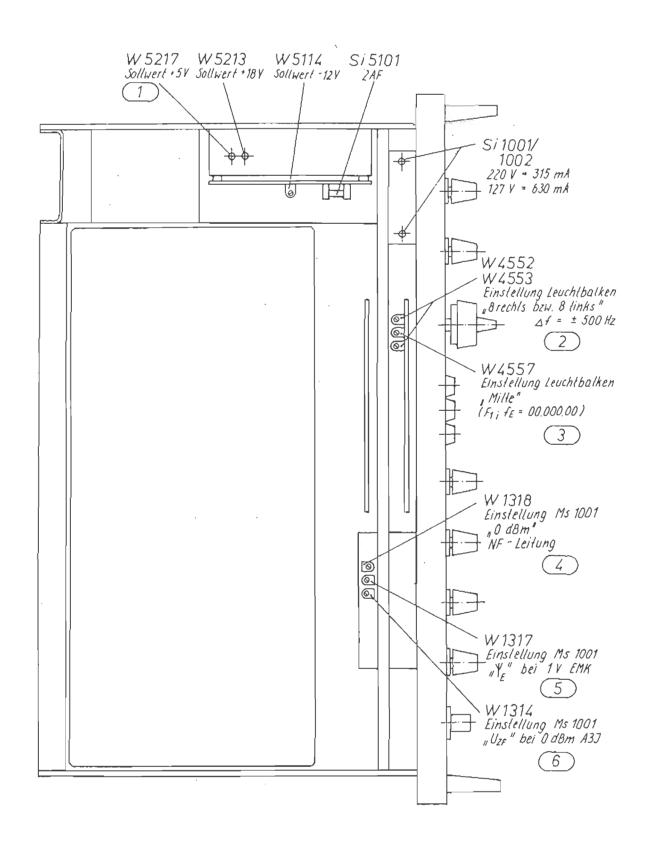


Bild 47 Typenreihe EKD 300

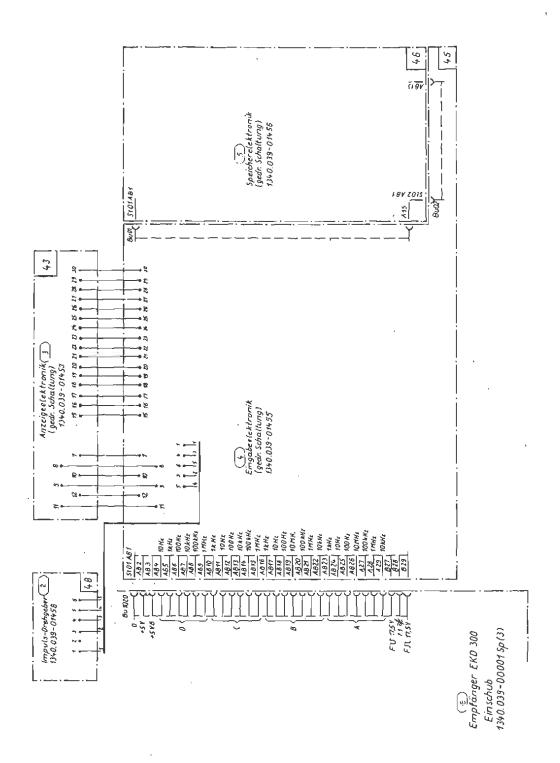


Bild 48 Eingabeblock 1340.039-01401 Sp

CD	40	30	
a	р	j	
0	0	0	
1	0	1	
0	1	1	
1	1	0	

CD 4029									
Kontrolle Eingang	Logikpegel	Arbeitsweise							
Binär/Dekadisch (B/D)	1 0	Binärzähler Dekad.Zähler							
Vorwärts-Rückwärtsz.	1 0	vorwärtszählen rückwärtszählen							
Freigabe setzen (P E)	1 0	parallelsetzen parallelsperren							
Taktfreigabe	1 0	zählen gesperrt Zählen							

	CD 4028												
d	С	ď	a	0	1	2	3	4	5	6	7	8	9
0	0	0	0	1	0	0	С	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0
0	0	1	1	. 0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1

		CD	405	1					
Ei	nga	ng			Ausgang				
d	С	ъ	a						
0	0	0	0		0				
0	0	0	1		1				
0	0	1	0		2				
0	0	1	1		3 .				
0	1	. 0	0		4				
0	1	0	1		5 .				
0	1	1	0		6				
0	1	1	1	ſ	7				
1	ve	rbo	ten		keine Ausgabe				

CD 4013									
CL 🛦	D	R	S	Ų	Q				
	0	0	0	0	1				
	1	0	0	1	0				
	X	0	0	Q	Q				
x	X	1	0	0	1				
x	X	0	1	1	0				
Х	Х	1	1	1	1				

Kein Wechsel

▲ Pegelwechsel X 1 oder 0

Gilt auch für Äquivalent-Typen, wie z.B. V 4029 D.

Tabelle 1
Wahrheitstabellen für

1340.039-01455 Sp 1340.039-01456 Sp

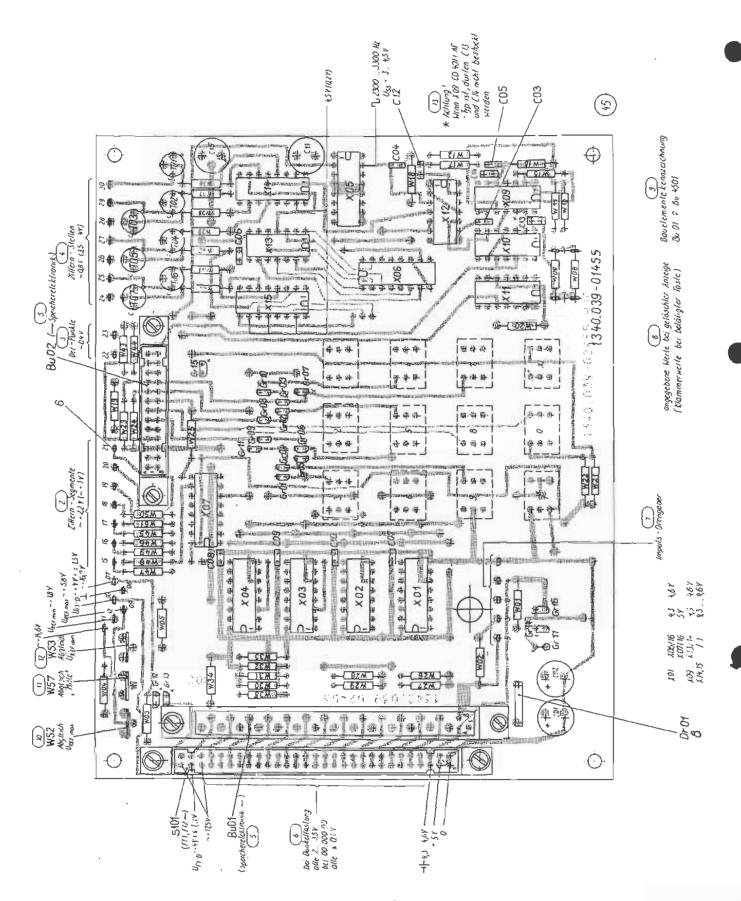
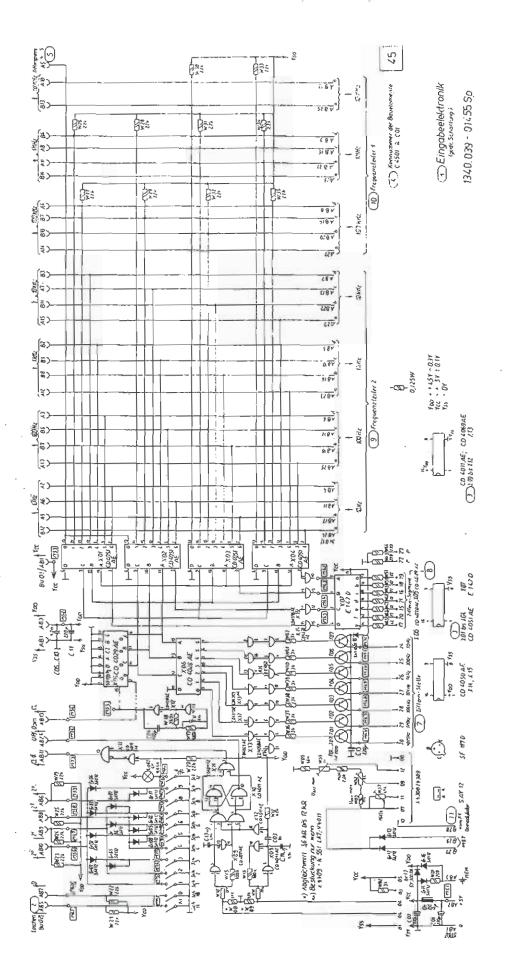



Bild 49

5.3.11.4. Speicherelektronik

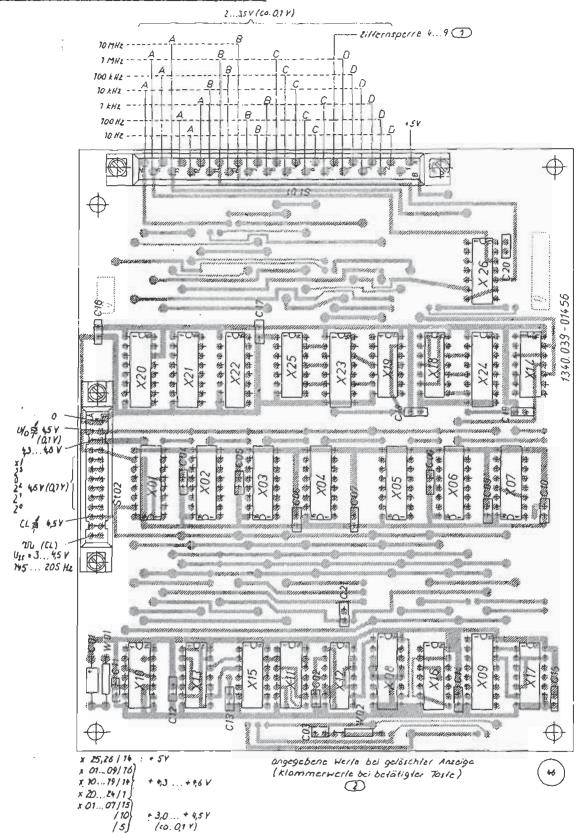


Bild 51

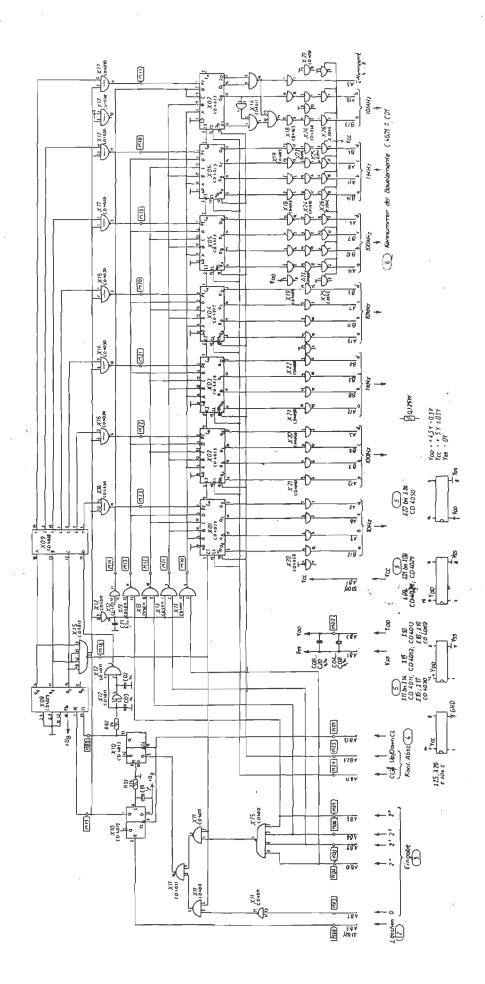
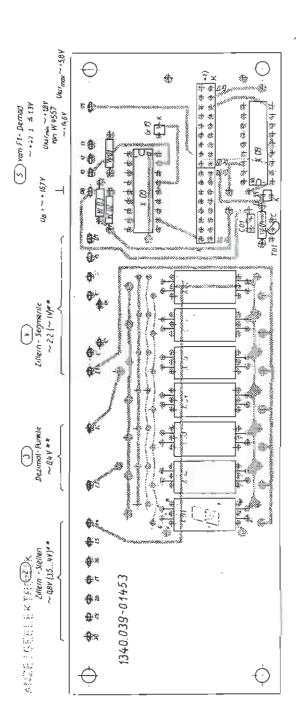



Bild 52 Speicherelektronik 1340.039-01456 Sp

ForbpurMI

rol

schworz

grun

*** ongegebere Wate bei geiöst. In Austage

blou (Klommerweite bei michandesist Austage)

Klommerweite bei michandesist Austage)

2) forbpunkt zw. Kennscennung der Helligkeitsgruppe der Einzeldioden kw. Grat bis Gra

43

- 74 -

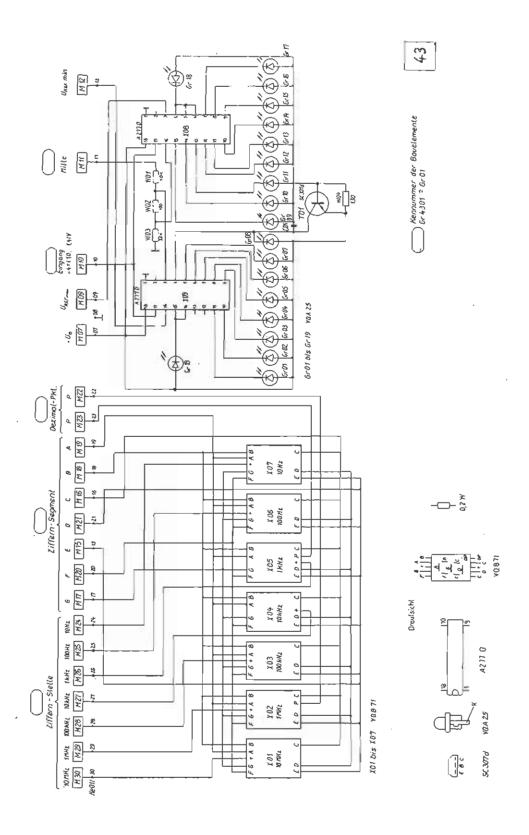


Bild 54 Anzeigeelektronik 1340.039-01453 Sp

- Spannung an den Dioden (Gr 4801, Gr 4802)

02
$$\longrightarrow$$
 03 : 1,2 V \pm 0,2 V Diodenstrom: 28 mA \pm 5 mA

01
$$\longrightarrow$$
 03 : 2,4 V \pm 0,2 V

- Nach Austausch defekter Dioden bzw. Fototransistoren (T 4801, T 4802) sind bei Einhaltung der Eintauchtiefe der Bauelemente die jeweils gegenüberliegenden Opto-Elemente auf Maximum zu justieren.

	ptis	cher	We	g frei _		opt	isch	er W	eg	gesperrt	
01		04	=	4,7 V .		01		04	=	0,3 V	-
01		06	=	4,7 V		01		06	=	0,3 V	

Lage der Opto-Elemente mit Kleber fixieren (CENUSIL)

- Funktionsprüfung mit Meßinstrument (2 Stck. P 9)

(je 1 x P 9 an 06 bzw. 04 gegen ↓)

Bei langsamster Drehung des Impulsdrehgebers sollen o

Bei langsamster Drehung des Impulsdrehgebers sollen o.g. maximale und minimale Ausgangsspannungen erreicht werden:

- Dynamische Prüfung mit Oszillograf (P 5)
Kippeinstellung:int.T = 5 mS, Taste CHOP, Kipplinien
5 mm auseinander

 Ψ_A an A, Ψ_B an B, Verstärkung: $\Psi_A = \Psi_B = 2$ V/T, Gleichsp.-Eingang

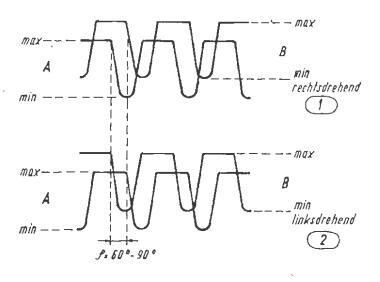
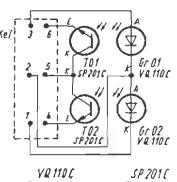
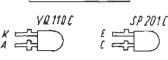




Bild 55

Kennummer der Bauelemente

z.B. Gr 01 2 Gr 4801

Bild 56

Impulsdrehgeber

1340.039-01458 Sp

5.4. Signalweg

5.4.1. Einstellung der Verstärkung

Sichtvermerk für paarige Bestückung von X 3401/Mischer 2 und X 3701/Filterplatte 1 kontrollieren (siehe Pkt. 5.7.)

5.4.1.1. Verstärkung "ZF1/ZF2"

P 4 an Bu 3004/ \forall , f_E = 5,5 MHz, EMK = 1 mV/ R_i = 75 Ohm, P 2 (150 mV-Bereich) an Bu 3002 (200 kHz),

EKD: $f_E = 0550000$, $^{\text{N}}$ -Reglung \nearrow , $B = \pm 3$ kHz, A3J, mit P 4 auf Schwebungsnull (Solldurchlaßmitte) abstimmen. Mit Einstellregler W 3406 (Mischer 2) auf 47 ... 63 mV an Bu 3002 einstellen.

5.4.1.2. Verstärkung "Kanal A/Kanal B"

P 4 an Bu 3004/ \forall , f_E = 5,5 MHz, EMK = 1/uV/R_i = 75 0hm je ein P 3 (1,5-V-Bereich) und R 6 Abschlußwiderstand an die Leitungsausgänge TF_A und TF_B.

EKD: $f_E = 0550000$, Parallel Paralle

Mit Einstellregler W 3855 (Demodulator/NF-Teil) auf O dBm \triangleq 0,775 V am Leitungsausgang TF_A abgleichen.

Mit Einstellregler W 3431 (Mischer 2) auf 0 dBm $\stackrel{\triangle}{=}$ 0,775 V am Leitungsausgang TF_B abgleichen.

5.4.1.3. Korrektur Gleichlauf "Kanal A/Kanal B"

Signal-EMK auf 10/uV erhöhen, mit $^{\text{N}}$ -Reglung auf 0 dBm $\stackrel{\triangle}{=}$ 0,775 V am Leitungsausgang TF_B einstellen. NF-Pegel am Leitungsausgang TF_A mit Einstellregler W 3719 (Filterplatte 1) an TF_B-Pegel angleichen.

5.4.1.4. Kontrolle Gleichlauf "Kanal A/Kanal B"

Signal-EMK in 20 dB-Schritten bis 1 V EMK erhöhen, mit -Reglung jeweils auf 0 dBm \triangleq 0,775 V an TF_B-Leitungsausgang einstellen.

Sollwerte der Pegeldifferenzen der beiden Leitungsausgänge ≤ 2 dB.

5.4.2. Einstellen der Verstärkungsreglung

Verstärkungseinstellungen nach Pkt. 5.4.1. sind Voraussetzung.

5.4.2.1. Meßaufbau

P 4 an Bu 3004/ Υ , f_E = 5,5 MHz, EMK = 200 mV bzw. $2/uV/R_i = 75$ Ohm. Je ein P $\frac{3}{3}$ (1,5-V-Bereich) und 590 Ohm (R 6) an die Leitungsausgänge $\mathtt{TF}_{\mathtt{A}}$ und $\mathtt{TF}_{\mathtt{B}}$.

5.4.2.2. Einstellen Regeldetektor "Kanal A"

EKD: $f_E = 055000$, Λ /Reglung, B = +3,4 kHz, A3J, mit P 4 auf 1000-Hz-Ton im Kanal A abstimmen, Signal-EMK = 200 mV mit Einstellregler W 3801 (Demodulator/NF-Teil) auf +2 dBm $\stackrel{\triangle}{=}$ 0,98 V am Leitungsausgang TF_A abgleichen. Sollwert für Signal-EMK = 2,uV: -2 ... 0 dBm.

5.4.2.3. Einstellen Regeldetektor "Kanal B"

EKD: $f_E = 0550000$, $\int Reglung$, B = +3.4 kHz, A3Bj, mit P 4 auf 1000-Hz-Ton im Kanal B abstimmen, Signal-EMK = 200 mV mit Einstellregler W 3430 (Mischer 2) auf +2 dBm = 0,98 V am Leitungsausgang TF_R abgleichen.

Sollwert für Signal-EMK = 2/uV: -2 ... 0 dBm.

5.4.2.4. Kontrolle Regel-Gleichlauf "Kanal A/Kanal B"

EKD: $f_R = 0550000$, Λ /Reglung, $B = \pm 3$ kHz, A3Bj, mit P 4 auf 1000 Hz-Ton im Kanal A und im Kanal B abstimmen. Signal-EMK von 2/uV ... 200 mV in 20 dB-Schritten erhöhen. Sollwerte der Leitungspegel TF, und TFB: -3,5 ... +3,5 dBm.

Sollwerte der Pegeldifferenzen an den beiden Leitungsausgängen TF_A und $\text{TF}_B \colon \cong \text{2 dB}_\bullet$

5.4.2.5. Einstellen Regeleinsatz "Regelglied 1" (Mischer 1)

EKD: $f_E = 05\,500\,00$, Reglung, $B = +2,7\,$ kHz, A3J, mit P 4 auf 1000-Hz-Ton im Kanal A abstimmen. Einstellregler W 3836 (Demodulator/NF-Teil) in Mittelstellung bringen. Signal-EMK = 30/uV, mit Reglung O dBm Leitungspegel TFA einstellen und Einstellregler W 3836 rechtsdrehend auf -2 dBm Leitungspegel TFA abgleichen, P 8 (6-V-Bereich) an Kollektor T 3305 (Mischer 1) und Masse. Sollwert: 2,6 ... 3 V.

5.4.2.6. Einstellen des Triggers

EKD: f_E = 05 500 00, ____ /Reglung, B = +2,7 kHz, A3J, mit P 4 auf 1000-Hz-Ton im Kanal A abstimmen.

Signal-EMK 30/uV, P 8 (= 30-V-Bereich) am Meßpunkt M 3805 (Demodulator/NF-Teil) und Masse (≜ Kollektorspannung T 3806).

Einstellregler W 3813 von Rechtsanschlag linksdrehend einstellen bis Spannung am Meßpunkt M 3805 von ≦ 1,5 V auf ca. +18 V springt. Signal-EMK sprunghaft auf 10/uV (um 10 dB) verringern. Spannung am Meßpunkt M 3805 muß kurzzeitig auf ≦ 1,5 V abfallen und wieder ca. +18 V annehmen.

5.4.2.7. Einstellen des Kurzzeit-Detektors

EKD: f_E = 05 500 00, \square /Reglung, B = +2,7 kHz, A3J, mit P 4 auf 1000-Hz-Ton im Kanal A abstimmen, Signal-EAK = 30/uV: Spannung an C 3808 (Demodulator/NF-Teil) mit P 8 (= 6-V-Bereich) messen, Richtwert ca. 4,2 V, P 8 am Schleifer Einstellregler W 3829 (Demodulator/NF-Teil) und Masse; Spannung am Schleifer von W 3829 auf U_{C3808} -0,9 V \triangleq ca. 3,3 V einstellen.

5.4.2.8. Eichung "Y E"

EKD: f_E = 05 500 00, \int L /Reglung, B = +2,7 kHz, Λ 3J, mit P 4 auf 1000-Hz-Ton im Kanal A abstimmen. Kontrollschalter Sch 1005 auf " $\Upsilon_{\rm E}$ ".

Signal-EWK = 1 V, Einstellregler W 1108 (Matrixplatte) bzw. W 1317 (Verbundplatte) auf Zeigerausschlag 1 V am Ms 1001. einstellen.

Signal-EMK von 1 V ausgehend in 20 dB-Schritten auf 1/uV verringern. Die Skalenwerte am Ms 1001 sind nur Orientierungs-werte.

5.4.2.9. Eichung " U_{ZF} "/"O dBm"

EKD: $\mathcal{I}_E = 05\,500\,00$, where the property of the property

Korrektur mit W 1109 (Matrixplatte) - Abgleichwerte 910 Ohm, 1 kOhm, 1,1 kOhm bzw. mit Einstellregler W 1318 (Verbund-platte).

5.4.3. A3-Pegelung

Verstärkungseinstellungen nach Pkt. 5.4.1. und Reglungseinstellungen nach Pkt. 5.4.2. sind Voraussetzung.

P 4 an Bu 3004/ \forall , $f_E = 5.5$ MHz, EMK = 15/uV/m = 0.3 bzw. $m = 0.5/f_m = 1000$ Hz, P 3 (== 1.5-V-Bereich) und Abschlußwiderstand R 6 an Leitungsausgang TF_A.

Einstellregler W 3847 (Demodulator/NF-Teil) bei m = 0,3 auf -2 dBm \triangleq 0,62 V bzw. bei m = 0,5 auf +1 dBm \triangleq 0,87 V am Leitungsausgang TF_A einstellen.

5.4.4. A1-Tonhöhe

5.4.5. Trägersynchronisation bei A3A und A3Ba

P 4 an Bu 3004/ \forall , $f_E = 100,55$ kHz, EMK = 1/uV EKD: $f_E = 00 100 55$, \forall /Reglung, $B = \pm 1,5$ kHz, A3A bzw. A3Ba, Kanal A, Signalfrequenz exakt auf Schwebungsnull abstimmen(die LED " f_{Tr} " muß leuchten). Sollwert der Synchr. Empfindlichkeit \leq 1/uV EMK. Signal-EMK auf 3/uV erhöhen, durch \pm Feinverstimmung mittels 10 Hz-Dekade den Leuchtbereich der LED " f_{Tr} " ermitteln. Sollwert des Synchron.Bereiches \geq 100 Hz.

5.4.6. ZF2-Bandbreiten

P 4 an Bu 3004/ \forall , f \sim 100 kHz, EMK = 30/uV/R_i = 75 0hm P 1 an NF-Ausgang/Bu 0002

P 3 (== 150-mV-Bereich) an ZF-Ausgang/Bu 0003

EKD: $f_E = 00 100 00$, /// /Reglung, TF_A ,

bei $B \le + 250 \text{ Hz}$: - F1, 4/0,

bei $B \ge \pm 700 \text{ Hz u. Seitenbandfilter:} \longrightarrow A3J.$

P 4 in jeder Bandbreitestellung auf $U_{\rm ZFmax}$ abstimmen und mit '' /Regler auf 100 mV pegeln.

P 4 nach $\pm \triangle f$ auf -3 dB (70,7 mV) verstimmen und NF mit P 1 messen;

für B \leq \pm 250 Hz: Differenz der gemessenen NF-Werte, für B \leq \pm 700 Hz: Summe der gemessenen NF-Werte, für Seitenbandfilter: die gemessenen NF-Werte.

```
Sollwerte: ± 50 Hz-Filter: 90 ... 160 Hz

± 250 Hz- " : ≥ 500 Hz

± 700 Hz- " : ≥ 1060 Hz

± 1500 Hz- " : ≥ 2500 Hz

± 3000 Hz- " : ≥ 5800 Hz

+ 2700 Hz- " : ≥ 350 ... ≥ 2700 Hz

+ 3400 Hz- " : ≤ 300 ... ≥ 3400 Hz

(-)
```

Die Differenz der Durchlaßdämpfung aller Filter: ≦ 2 dB (außer ± 50-Hz-Filter: ≦ 4 dB)

Welligkeit der Filter: = 1,5 dB

Achtung! Seitenband-Vertauschung bei der 1. Frequenzumsetzung. Seitenbandfilter haben entgegengesetzte Seitenbandlage.

Kontrolle des Seitenbandfilters im Kanal B: P 3 (== 1,5-V-Bereich) parallel zum P 1 am NF-Ausgang-Buchse/Bu 0002 und auf A3Bj schalten.

5.4.7. ZF- und NF-Ausgangspegel

```
P 4 an Bu 3004/Y, f = 100 \text{ kHz},
EXiK = 30/uV/R_i = 75 Ohm.
EKD: f_R = 00 100 00, \Lambda /Reglung, B = \pm 3000 Hz, A3Bj, mit
P 4 auf 1000-Hz-Ton im Kanal A und Kanal B abstimmen.
Mit P 3 messen:
am Leitungsausgang TF_A an 600 Ohm: 0,72 ... 0,88 V
                   TF_{B} an 600 Ohm: 0,72 ... 0,88 V
NF-Ausgang (ohne Last)
                                : 0,64...0,96 V(TF, bzw. TF<sub>R</sub>)
                                 : ≧ 50 mV
ZF2-Ausgang (ohne Last)
Interner Lautsprecher (8 Ohm) : ≥ 2,5 V)
                                              TFA bzw. TFR
Externer "
                      (8 Ohm) : ≥ 2,5 V) Lautstärke max.
                                             TFA bzw. TFR
Kopfhörer (250 Ohm)
                                  : ≧ 2 V
                                              Lautstärke max.
Tonbandgerat-Anschluß(ohne Last) : ≥ 140 mV (TF, bzw. TFB)
```

5.4.8. Signalweg 1

Prüfprogramm

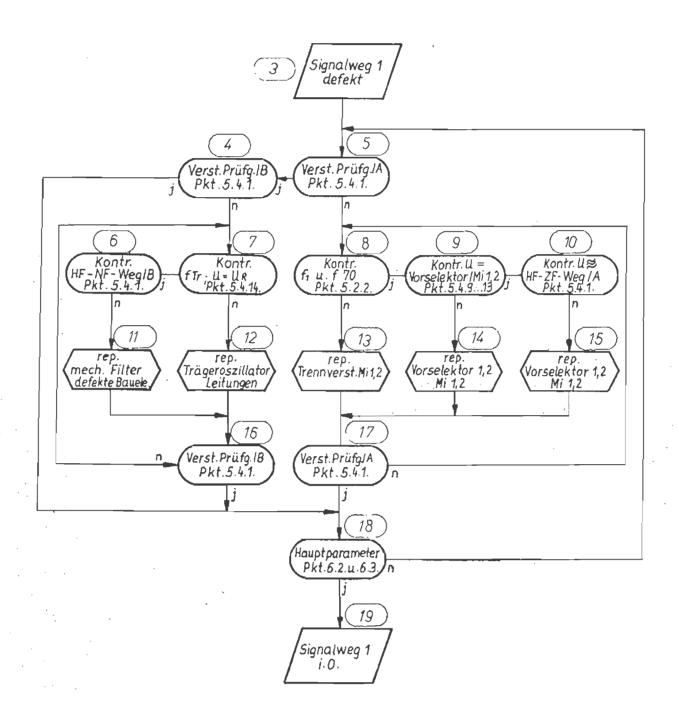
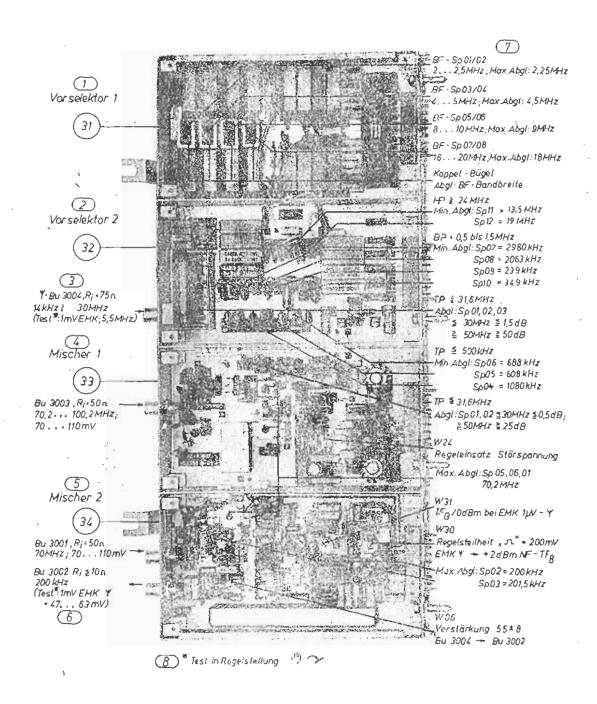



Bild 57

Bilā 58 Signalweg 1 1340.037-01311

Beseltigung	- Ufl und Uf70 sowie f1, f70 messen - Schaltpegel am Mischer 1, 2 messen - Gleichspannung für Dereichsumschaltung messen - La3301 prilfen (♣ // / / / / / / / / / / / / / / / / /	- Gleichopannung/Dereichdumschaltung messen - Wicklungs- u. Kontakt-Durchmang des joweiligen Relais prüfen	- 183301 pruffen bei *) /Reglum; - Verstärkung Bu3004 3002 pruffen - ZR1-Durchlaßkurve wobbeln - Signalweg Bu3004 Bu3002 stufenweise suffrennen bzw., kurzachließen - Symmetrie und Trägerunterdrückung den Ringmodulators pruffen - Regelspannung bei *9 /Reglung überprüfen Regeleinsatz Störspannungsreglung überprüfen	- Dercichaabgleich nach Prüfvorschrift jeweilige Kondensatoren überprüfen - Gerät "Aus" und Dioden mit Ohmmeter überprüfen - jeweilige Kontakte überbrücken Relais auswechseln	- Signalverfolgung It. Pegelplan mit erhöhten Signalpegel . Gleichspannungskonfrolle: X3401X3403, T3407T3409 - Uf _{Tr} bel A3Bj an St3401/B7 messen . 18 V an St3401/B9 bei A3Bj und A3Ba weasen . U _{R2} an St3401/A5 - U _{R2} an St3401/A5 bel \$\frac{A}{A}\$ /Reglung \$\mathcal{A}\$ messen (cs. 0,5 V)	- U _{R3} an St3401/B5 bei Signelanstcuerung im Kanal B messen (ca. 6 V) - Gleichspannung an T3408, T3409 messen
mögliche Pehleruresche	- Uff, Uffo fehlt; ff, ffo falsch (Frequenzaufbereitung defekt) - Trenverstärker Mischer 1, 2 defekt - Vorselektor 1, 2 schaltet nicht um (Dekoder defekt) - La3301 defekt - La3301 leuchtet ständig, Dämpfungsglieder am Mischer 1 und 2 zugeregelt (Regelspannungserzeugung im Signalweg 1 oder 2 defekt) - Unterbrechung oder Kurzschluß im Signalweg	- Gleichspannung für Bereichsumschaltung fohlt - Relais (Vorselektor) defekt	- La3301 defekt - Verstimmung der 2P1-Kreise - Quarzfilter defekt - erhöbtes Rauschen durch defekte Bauelemente - Ringmodulstor - Diode defekt - Dämpfungsglied (Mischer 1) regelt nicht auf Minimaldämpfung	 Verætimmung des Vorselektor-Bereiches durch lockeren Spulenkern oder defekten Kondensator Eingangsschutzdiode defekt Kontaktwiderstand eines Relais (Vorselektor zu groß) 	- Unterbrechung im Kanal B auf "Miacher 2" - $Uf_{Tr}(fu3)$ fehlt zur Demodulation - Betriebsopannung 18 V fehlt bei A3 u und A3Ba - X3401 (ZF-Verstärker/B) ist zugeregelt $U_{R2} \ll 0.8$ V bzw. kurzgeschlossen	- Regeldetektor/Kanal B liefert keine Regelspannung $(U_{\mathrm{R}3})$
Fehler	1. Kein Signaldurchgang Bu3004 — Bu3002 In allen Dereichen	2. Kein Signaldurchgang Bu3004 Bu3002 in einem Frequenzieilbereich	3. Zu geringe Empfindlichkeit im gesamten Frequenz- (Kanal A und B)	4. Zu geringe Dapfindlichkeit in einem Frequenzteilbereich	5. Keis Signaldurchgeng im Kanal B - Albj, Alba (Kanal A in Ordnung)	6. Keine automatische Rcglung im Kanal B AJM, AJBa (Kanal A in Ordnung)

- Kassettenaustausch "Signalweg 1"

nur geprüfte Kassetten einsetzen

Demontage und Montage

s. Pkt. 3.

ZF-Verstärker Kanal A/Kanal B paarweise X 3701 X 3401 !

s. Pkt. 5.6.

Kontrolle und Einstellen

entspr. Pkt. 5.4.1.

und 5.4.2.

Messen der Empfindlichkeit

entspr. Pkt. 6.2.

- Austausch von gedruckten Schaltungen in der Kassette "Signalweg 1"

nur geprüfte gedruckte Schaltungen einsetzen

Demontage und Montage

s. Pkt. 3.

Kontrolle und Einstellen

entspr. Pkt. 5.4.9.

bis 5.4.13.

(außer Pkt. 5.4.11.)

sowie Pkt. 5.4.1. und

5.4.2.

5.4.9. Vorselektor 1, Vorselektor 2

5.4.9.1. Diagramm der Bereichsumschaltung

Gleichspannungen mit P 8 an den Steckerleisten messen.

Ber.].			Vo		lek	tor 2	2 B13	Vo:	310 rsel B3	Leki			B11	B13
I	0	499.99	kHz	x	•	•	•	•	•	٠	•	•	,	•	•
II	0,5	1,499.99	MHz	•	x	•	•	•	•	•	•	•	•	•	•
III ₁	1,5	1,999.99	MHz	•	•	● .	x	• ,	x	' •	•	•	x	•	•
III ₂	2,0	2,499.99	MHz	•	•	•	x	•	•	•	•	•	×	٠	x
III ₃	2,5	2.999.99	MHz	•	•	•	x	•	•	•	•	•	x	•	•
IV ₁	3,0	3,999.99	MHz	•	•	•.	x	•	x	•	x	•	•	•	•
IV ₂	4,0	4,999.99	MHz	•	•	•	x	•	•	•	x	•	. •	•	x
IV ₃	5,0	5,999.99	MHz	•	•	•	x	•		•	x	• .	•	•	•
٧1	6,0	7,999.99	MHz	•	•	•	x	•	x	•	•-	•	,	X	•
₇ 2.	8,0	9,999.99	MHz	•	•	• .	x	•	•	•	•	•	•	x	x
v ₃	10,0	11,999.99	MHz		•	•	X	•	•	•	•	•	•	X	•
	12,0	15,999.99	MHz	•	•	•	x	•	X	x	•	•	•.	•	•
VI ₂	16,0	19,999.99	MHz	•	•	•	x	•	•	x	•	•	•	•	X
VI ₃	20,02	23,999.99	\mathtt{MHz}	•	•	•	x	•	٠	x	•	•	•	•	•
VII	24,02	29,999.99	MHz	•	•	x	• .		٠	•	•	•	•	•	•
			<u>. </u>						- ,-						

^{. ≙ 18} V

x ⁴ ≤ 1 V

5.4.9.2. Abgleich Eingangstiefpaß 0 ... 30 MHz (Vorselektor 2)¹⁾

 $P 7 0 \dots 100 \text{ MHz}, R_i = 75 \text{ Ohm}, \text{ an Bu } 3004,$

Tastkopf an M 3202 | 75 Ohm (R 3).

EKD bleibt ausgeschaltet.

Abgleich der Spulen 3201, 3202 und 3203 auf minimale Welligkeit und Einfügedämpfung im Bereich 0 ... 30 MHz.

Bei f ≥ 31,6 MHz Dämpfungsanstieg.

Einfügedämpfung 0 ... 30 MHz: \leq 1,5 dB, Sperrdämpfung \geq 50 MHz: \geq 50 dB.

5.4.9.3. Abgleich LW-Tiefpaß 0 ... 499 kHz (Vorselektor 2)1)

P 4 0,1 ... 30 MHz, R_i = 75 Ohm, EMK = 2 V an Bu 3004 und auf f_E einstellen.

Verbindung Pkt. 05/Vorselektor 2 - Pkt. 02/Mischer 1 auftrennen. P 2 | 75 Ohm (R 3) an Pkt. 05.

EKD einschalten, Frequenzeinstellung 0 ... 499 kHz, △ LW bzw. Bereich I.

Spulenabgleich auf Minimum:

bei f_E = 1080 kHz mit Sp 3204) bei f_E = 688 kHz mit Sp 3206 } Dämpfungspole bei f_E = 608 kHz mit Sp 3205)

(Abgleich wiederholen!)

Einfügedämpfung 0 ... 520 kHz: \leq 3 dB, Sperrdämpfung \geq 600 kHz: \geq 40 dB.

5.4.9.4. Abgleich MW-Bandpaß 0,5 ... 1,499 MHz (Vorselektor 2) 1)

Meßaufbau wie Pkt. 5.4.9.3.

EKD einschalten, Frequenzeinstellung 0,5 ... 1,499 MHz, MW bzw. Bereich II.

Spulenabgleich auf Minimum:

bei f_E = 2980 kHz mit Sp 3207) bei f_E = 2063 kHz mit Sp 3208 } Dämpfungspole bei f_E = 349 kHz mit Sp 3210) bei f_E = 239 kHz mit Sp 3209 }

¹⁾ Lage der Spulen siehe Seite 84

(Abgleich wiederholen!)

Einfügedämpfung 485 ... 1499 kHz: \leq 2 dB, Sperrdämpfung bei \leq 360 kHz und \geq 2000 kHz: \geq 30 dB.

5.4.9.5. Abgleich KW-Hochpaß \geq 24 MHz (Vorselektor 2)¹⁾

Meßaufbau wie Pkt. 5.4.9.3.

Spulenabgleich auf Minimum:

bei f_E = 19,0 MHz mit Spule Sp 3212) bei f_E = 13,5 MHz mit Spule Sp 3211 } Dämpfungspole

(Abgleich wiederholen!)

Einfügedämpfung 23,6 ... 30 MHz: \leq 2 dB, Sperrdämpfung bei \leq 15 MHz: \geq 26 dB.

5.4.9.6. Abgleich Bandfilter 1,5 ... 24 MHz (Vorselektor 1) 1)

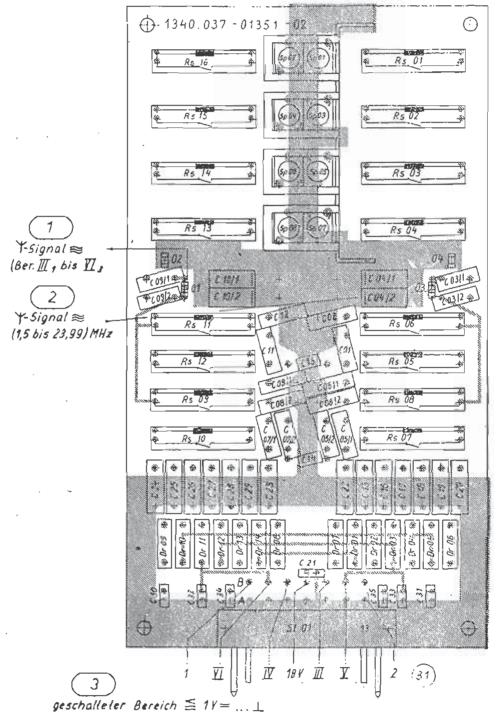
Meßaufbau wie Pkt. 5.4.9.3.

An M 3101 und M 3102 je 300 0hm (R 5) zur wechselseitigen Bedämpfung gegen Masse (L) anlöten. (Die nicht abzugleichende Bandfilterspule mit 300 0hm bedämpfen!)

EKD einschalten, Frequenzeinstellung 1t. Tabelle.

Abgleich auf Maximum: (Abgleich wiederholen!)

Bereich	Frequenz-Einst.	f _E -Generator	Spulen
III2	22,499 MHz	2,25 MHz	Sp 3101 Sp 3102
IV ₂	44,999 MHz	4,50 MHz	Sp 3103 Sp 3104
٧ ₂	89,999 MHz	9,00 MHz	Sp 3105 Sp 3106
VI ₂	1619,999 MHz	18,00 MHz	3107 Sp 3108 رع


Kopplungsbügel nach dem Spulenabgleich auf ≦ 2 dB Einfügedämpfung an den Frequenzbereichsgrenzen einstellen. Einfügedämpfung ≦ 3 dB in den übrigen Frequenzbereichen kontrollieren.

¹⁾ Lage der Spulen siehe Seite 84

Bereich	Frequenz-Einst.	Bereich	Frequenz-Einst.
III,	1,51,999 MHz	V 1	6,0 7,999 MHz
III	2,52,999 MHz	V ₃	10,011,999 MHz
IV ₁	3,03,999 MHz	۷Í ₁	12,015,999 MHz
IV ₃	5,05.999 MHz	VI3	20,023,999 MHz

Selektion ≥ 14 dB bei ≥ 1/2 f-Bereichsende und ≥ 2 f-Bereichs-

anfang.

geschalleler Bereich $\leq 1 \text{ V} = ... \perp$ nichtgeschaltele Bereiche $\sim 18 \text{ V} = ... \perp$

Bild 59 Vorselektor 1

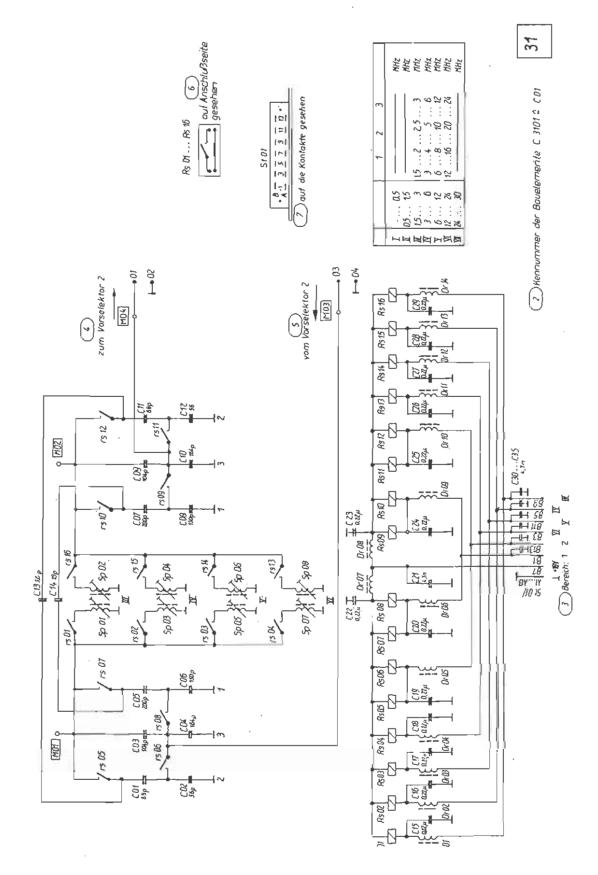


Bild 60 Vorselektor 1 1340.037-01351 Sp

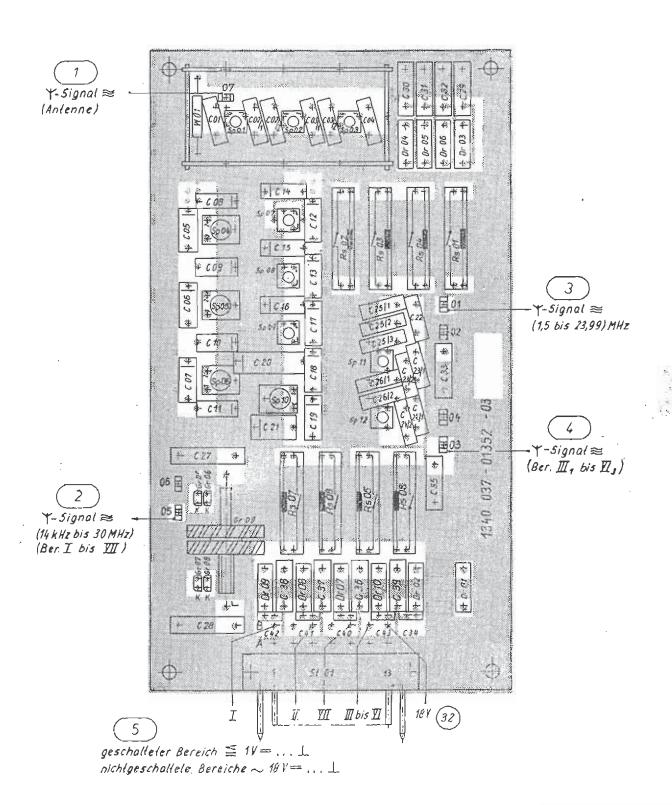
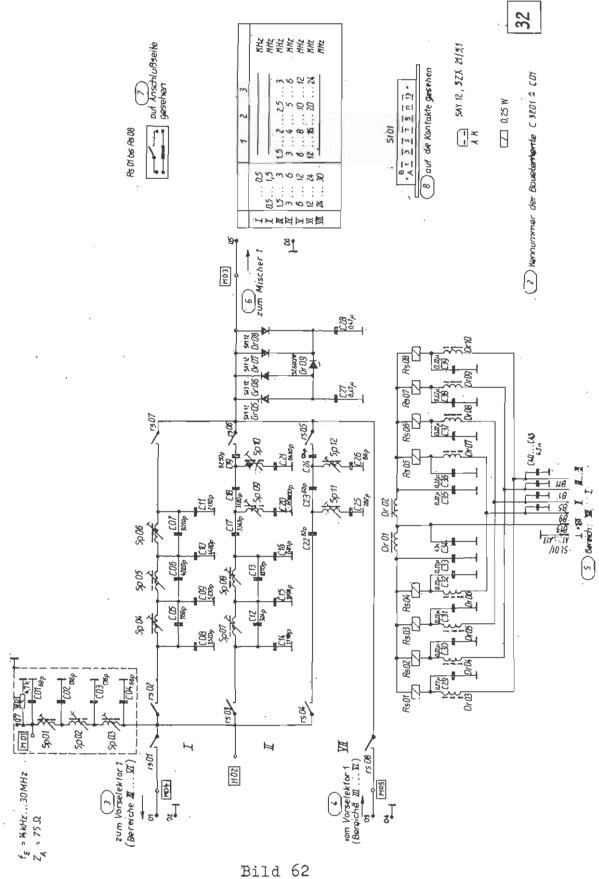



Bild 61 Vorselektor 2

Vorselektor 2 1340.037-01352 Sp

5.4.10. Dekoder

Fehlersuche und Reparatur können im Gerät oder in einer Prüfschaltung erfolgen. Der Stromlaufplan gibt die erforderliche Betriebsgleichspannung (+5 V) sowie die Einund Ausgänge an.

Prüfkriterien sind die Ausgangsvariablen als Funktion der Eingangsvariablen. Die Verknüpfungen zwischen beiden folgen aus der Wahrheitstabelle.

Hinweise:

- 1. Bei Prüfung außerhalb des Gerätes sind die Ausgangsleitungen über Widerstände $R_A=1$ kOhm an +18 V zu führen.
- 2. In der Wahrheitstabelle bedeutet die Angabe " ", daß die Belegung der Eingangsvariablen (BCD-Signal) im 8-4-2-1-Code entsprechend der eingestellten Frequenz O oder 1 sein kann.

	er Leitu	ing		
Dezimalzahl	d	С	р	а
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5.	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9.	1	0	0	1

Tabelle 2

8 V)																				
)1/ in +18	B10	18	18	18	18	18	18	13	18	<u>\</u>	<u>\</u>	∀	18	18	18	18				,
an St01/ kOhm an	B3	18	18	7	V	7	18	18	38	9	18	9	18	9	18	18				
an koj	82	138	18	V	18	18	V	8	18	V	$\frac{7}{\infty}$	j B	V	18	18	18				
ole = 1	B5	18	18	18	Y	18	δ	V	8	130	V	2	9	٧	18	138				
Ausgangsvariable 1 V ; 18 V R_{A} = 1	B4	18	18	18	38	18	18	18	18	18	18	20	V	V	V	18				
sva V	B3	18	18	18	13	18	٧	y	٧	18	18	18	18	18	18	8				
ang 18	B2	18	V	18	18	18	18	18	18	18	18	18	18	18	18	18				
usg: V;	B1	\ \ \	18	18	18	2	18	18	18	18	18	18	18	18	18	18				
۸ <u>A</u>	A6	18	18	ý	Y	V	V	V	V.	V	V	7	V	٧	V	V				
	A3	18	18	18	18	18	18	18	18	18	18	18	13	18	18	-				
	A2	ı	1	ŧ	ı	1	1	i	1	1	1	1	1	1	ţ	1	a 5	22		←
7	49	ı	ı	1	ı	,	1	1	1	1	t	1	1	!	1	1	p 5	MHz		_
St01/	A13	ı	ŧ	ı	1	1	1	ı	1	ı	1	I	ı	1	ı	1	c5	0,1		0
en el)	B13	0	ı	ì	0	1	1	1	1	ı	1	ı	1	ŧ	1	1	d5			0
Eingangsvariable (0; 1 TTL-Pegel	A12	0	1	_	0	0	.	0		1	f	ı	1	ı	1	ı	a 6			0
vari TTL-	A10	0	0	0	~	_	_	0	0	_	0	0		1	1	1	99	MHz		0
ings	B11	0	0	_			_					$\widehat{}$			$\widehat{}$		9	_		0
пġе (0)	12			_	0	0	0	_			0	0	-	-	_		O			
邑	M	0	0	0	0	0	0	0	0	0	_	0	0	1	0	1	, de	- 22		4~
	B7	0	0	0	0	0	0	0	0	0	0	_	_		0	0	a7	OMHZ		7-
	A1	0	0	0	0	0	0	0	0	0	0	0	0	0		<u></u>	p2	10		0
	Hz	4	1,4	1,9	2,4	2,9	3,9	4,9	5,9	7,9	6,6	11,9	15,9	19,9	23,9	29,6				
27	E/MHz	0,4	bis	bis	bis	bis	bis	bis	bis	bis	bis	bis	bis	bis	bis	bis	සි සි	-zu	el:	
nen	44	bis	5 b	5 b	Q 0	5 b	Q Q	Q 0		Q 0		0	Q 0	0	d 0,		tun	que	spi	6
Frequenz	eich	0	0	1,	2,	2,	3	4,	5,0	9	8,0	10,	12,	16,	20,	24,0	Lei tungs symbol	Frequent stelle	Beisp	18
H	Berei	H	H	III1	IIIS	III3	IV1	IV2	IV3	V1	V2	V3	VII	VI2	VI3	TIA				

Tabelle 3 Dekoder, Wahrheitstabelle

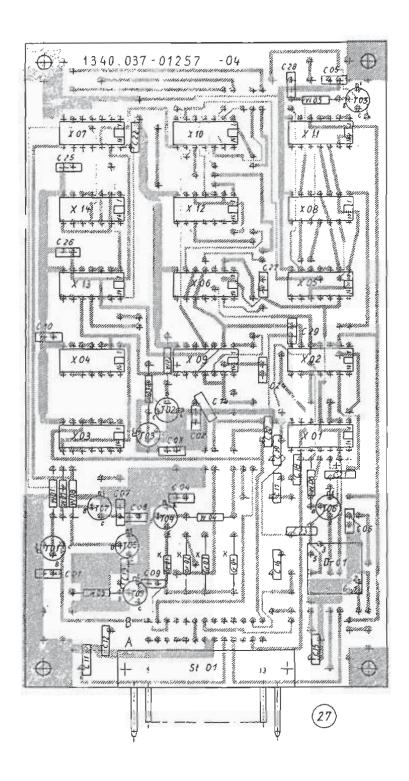


Bild 63 Dekoder

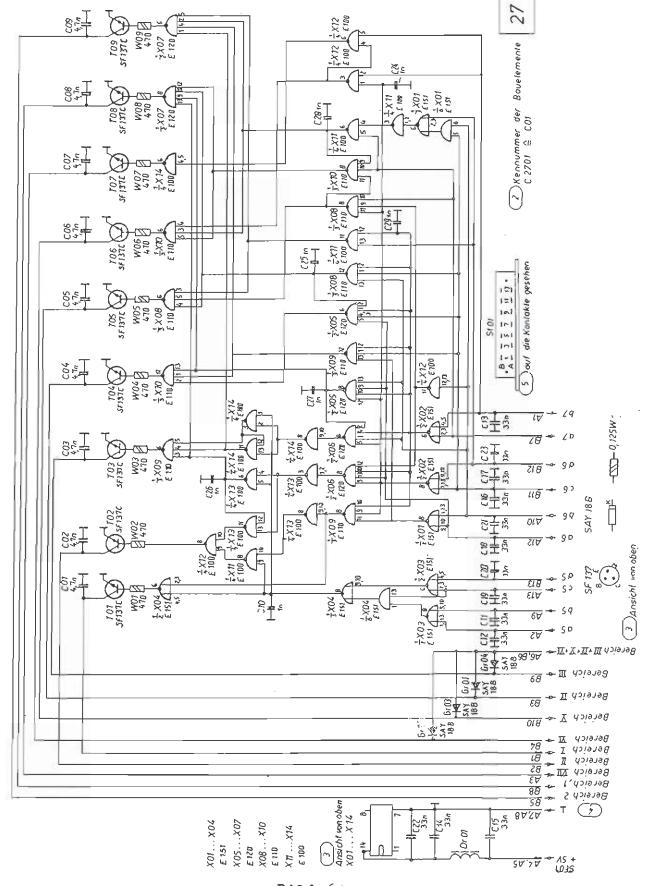


Bild 64 Dekoder 1340.037-01257 Sp

5.4.11. Mischer 1 und Mischer 2

5.4.11.1. Gleichspannungen: (P 8. gegen Masse messen)

Misc	her 1/ St 3301	Misc	her	c 2/ St 3401
.B ₁	= 18 V	A9	=	18 V
B ₅	≧ 14 V " →	В9	=	16,517,5 V(A3BJ/A3Ba
	≤ 9,5 V 1 1			
A ₅	= 0 V 🖑 🤝	A ₅	122	0,750,85 V
	3,54,5 Villy		Ϋ́II	0,3 V
		A ₁₁	=	0 A
				-3,54,5 V

Mischer	1	Mischer 2	
Т01	= 0,82 V	T01/T02-S	= 12,6 V
T02-S	= 0,82 V	TO4-E	= 12,514,5 V
T08-S	= 1,42,4 V	T06-E	= 2,53,5 V
T11-E	= 1415 ∇	T05-E	= 7,510,5 V
T05/T06-	C≦ 0,2 V " >	TO7→E	= 7,59,5 V
T05/T06-	C= 1112 V ₩ 🔭	T08-E	= 0,61,4 V
T10-C	= 13,515,5 V	T09-E	= 812 V
T09-E	= 7 , 59 , 5 ₹	X01-11	= 8,09,5 V
T03-C	≦ 0,5 V [,	X01-1/6	= 0,40,5 V
T04-C	= 3,04,5 V	X02-11	= 12,514,5 V
		X03-10	= 8,59,5 V
T12-E	= 7,510,5 V		
T13-E	= 2,53,5 V		

5.4.11.2. Abgleich Tiefpaß O...30 MHz (Mischer 1)

Leitung Pkt.01 (Mi 1) trennen und P 7 an Pkt. 01 (Mi 1) schalten. Pkt. 09 -- 10 trennen und Tastkopf an Pkt. 09 | 110 Ohm (R 4) gegen \(\perp \).

Abgleich der Spulen 3301 und 3302 auf minimale Welligkeit und Einfügedämpfung im Bereich 0...30 MHz.

Einfügedämpfung 0...30 MHz: ≤ 0,5 dB,

Sperrdämpfung: ≥ 25 dB, für ≥ 50 MHz.

5.4.11.3. Kontrolle Umsetzersignale f₁ und f₇₀ (Mischer 1 und Mischer 2)

Mit P 2 messen:

Mischer 1/M 02 : Uf1

= 80...100 mV/50 Ohm

Mischer 2/Bu 3002: Uf70

= 80...100 mV/50 Ohm

Mischer 1/Tr 3302: Pkt. 1 u. 3... \perp = 480...600 mV

Unsymmetrie ≤ 40 mV

Mischer 2/T01-S u. T02-S... __

= 700...1000 mV

Unsymmetrie ≤ 150 mV

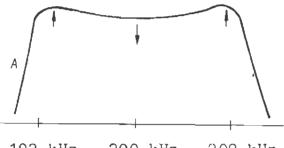
5.4.11.4. Abgleich ZF1-Verstärker (Mischer 1 und Mischer 2)

Schirmbleche auf Leiterzugseite sind angeschraubt.

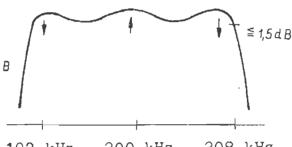
P 7 an Bu $3004/\Upsilon$, Wobbelbereich 5...6 MHz/

 $R_{i} = 75 \text{ Ohm}, EMK = 100 mV.}$

Tastkopf des P 7 an Bu 3002 (200 kHz)


EKD: 5,5 MHz, (1) /Reglung - Mittelstellung,

Wobbelbereich und Hub auf optimale Darstellung der


Filterdurchlaßkurve einstellen.

Die Spulen 3305, 3306 und 3401 auf max. Durchlaßhöhe und min. Welligkeit abgleichen (Kurve A).

/ /Reglung , EMK verringern und Spule 3402 auf Durchlaßmitte abgleichen (Kurve B).

192 kHz 200 kHz 208 kHz

192 kHz 200 kHz 208 kHz

5.4.11.5. Verstärkungseinstellung (Mischer 2)

P 4 an Bu 3004/ Ψ , $f_E = 5.5$ MHz, EMK = 1 mV/ $R_1 = 75$ Ohm. P 2 an Bu 3002/ (200 kHz)

EKD: 5,5 MHz, / /Reglung /, Generatorfrequenz auf Durchlaß-mitte abstimmen.

Mit Einstellregler W 3406 auf 55 mV + 8 mV an Bu 3002 einstellen.

5.4.11.6. Kontrolle Regelumfang (Mischer 1 und Mischer 2)

Meßaufbau und Abstimmung wie Pkt. 5.4.11.5.

-Reglung - EMK des HF-Generators erhöhen bis U an Bu 3002 Wert aus Verstärkungseinstellung erreicht hat.

Sollwert: EMK = 1 mV +54...60 dB.

5.4.11.7. Einstellen der Störspannungsreglung (Mischer 1)

P 4 an Bu 3004/ Υ , f_E = 5,5 MHz, EMK = 3 V/ R_1 = 75 Ohm. P 2 an Pkt. 09/10 (Mischer 1) EKD: 5,55 MHz (ca. +50 kHz zur Generatorfrequenz), Π /Reglung, mit Einstellregler W 3324 von Linksanschlag kommend auf 120 mV an Pkt. 09/10 einstellen.

5.4.11.8. Abgleich ZF2/Kanal B (Mischer 2)

5.4.11.9. Kontrolle: Regelumfang ZF2/Kanal B (Mischer 2)

5.4.11.10. Kontrolle: ZF2-Bandbreite/Kanal B (Mischer 2)

Meßaufbau und EKD-Einstellung wie Pkt. 5.4.11.9., zusätzlich P 1 an Leitungsausgang TF_B.

Generatorfrequenz ± verstimmen und bezogen auf die max.

NF-Amplitude die Bandgrenzen bei -3 dB Abfall ermitteln.

Sollwerte: MF2 "3400 Hz": ≦ 300 Hz...≧ 3400 Hz (EKD 101/111/121)

MF2 "6000 Hz": ≦ 250 Hz...≧ 6000 Hz (EKD 102/112)

5.4.11.11. Kontrolle: Empfindlichkeit (Kanal B)

P 4 an Bu 3004 Y /f = 1,5...30 MHz, EMK = $3 \mu V/R_1 = 75$ Ohm. P 3 (1,5-V - Bereich) an Leitungsausgang TF | 590 Ohm (R 6) EKD: f = Meßfrequenz, A3Bj, -Reglung, TFB, mit P 4 auf 1000-Hz-Ton abstimmen. Mit -Reglung auf O dBm 4 0,775 V am Leitungsausgang TFB pegeln. P 4 von Bu 3004/Y trennen und den Signal-Rauschabstand am P 3 ermitteln. Sollwerte: Bei 1,5...30 MHz mit EMK 3/uV und B = 3,4 kHz $\frac{S+R}{R} \ge 18$ dB ($\frac{U_R}{R} \le 97$ mV); bei 1,5...30 MHz mit EMK 3/uV und B = 6 kHz $\frac{S+R}{R} \ge 16$ dB ($\frac{U_R}{R} \le 123$ mV)

Bei Empfindlichkeitswerten > 22 dB (3,4 kHz) bzw. > 20 dB (6 kHz) ist die ZF1-Verstärkung mit W 3340 (Mischer 1) zugunsten besserer Intermodulationseigenschaften zu verringern. Abgleichswerte: ohne, 1,2 kOhm, 680 Ohm und 330 Ohm. Danach Verstärkungseinstellung (Mischer 2) - siehe Pkt. 5.4.11.5. - wiederholen.

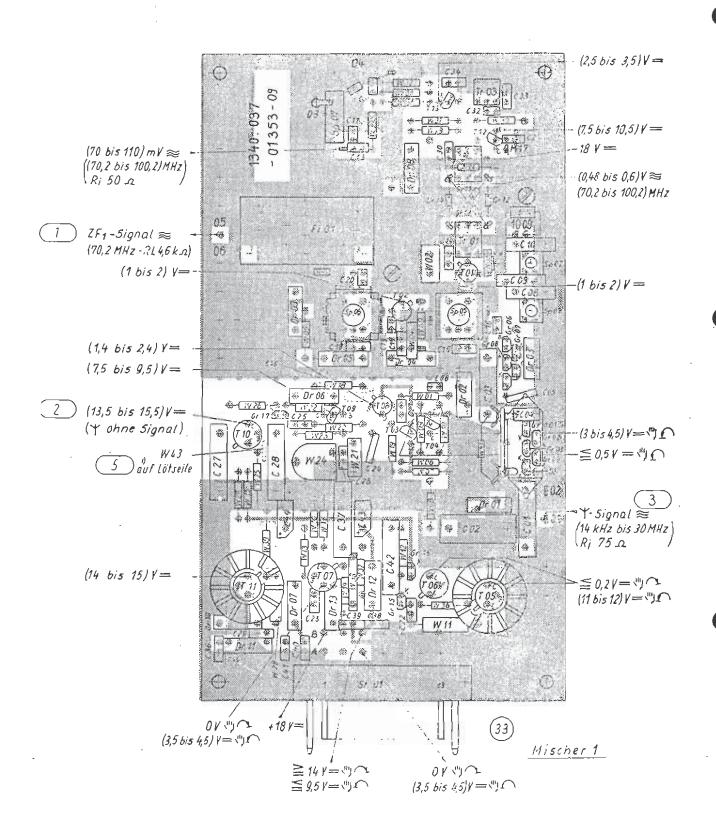
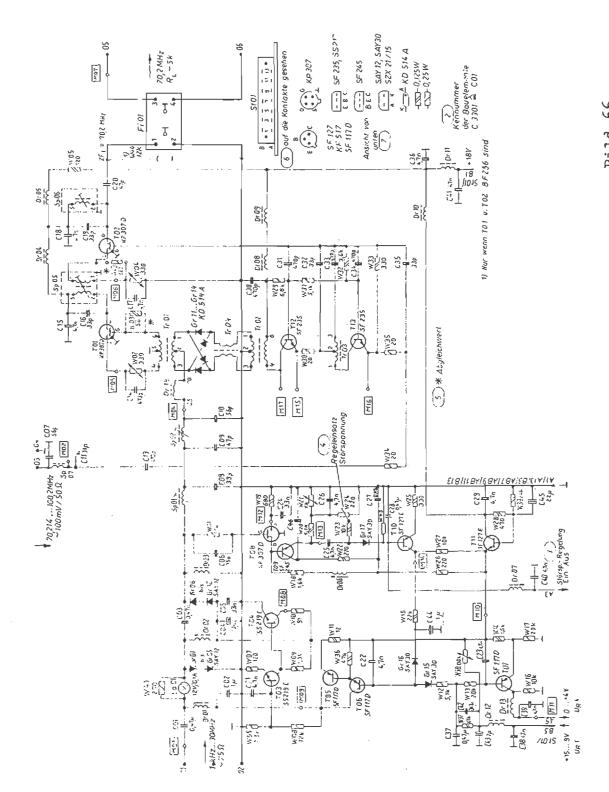



Bild 65 Mischer 1

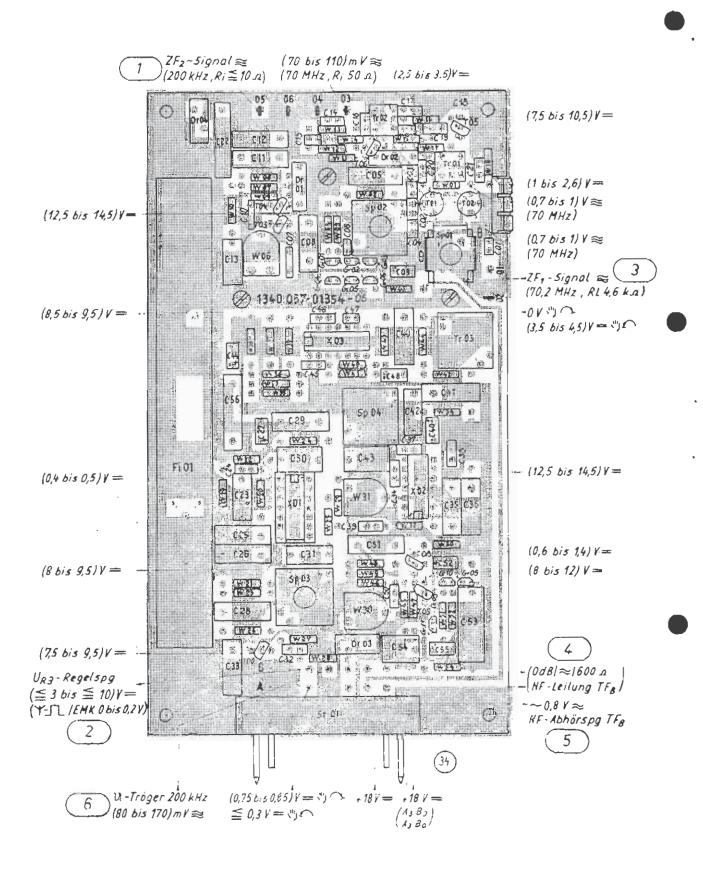
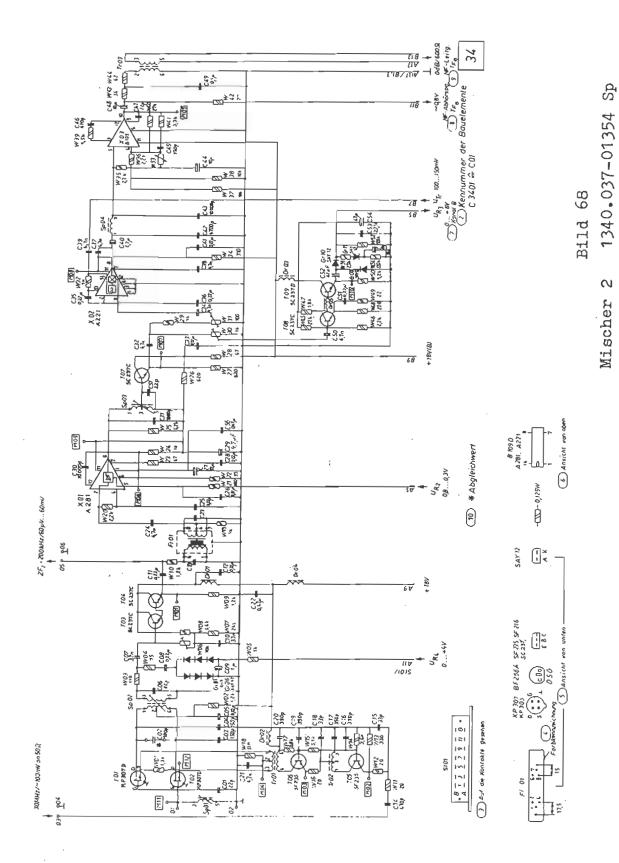



Bild 67 Mischer 2

- 105 -

5.4.12. Signalweg 2

Prüfprogramm

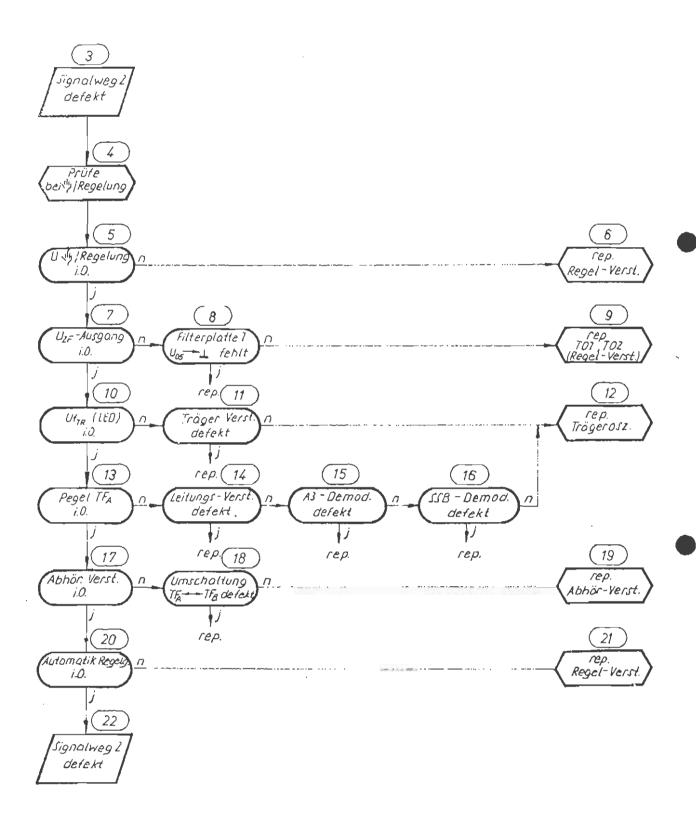


Bild 69

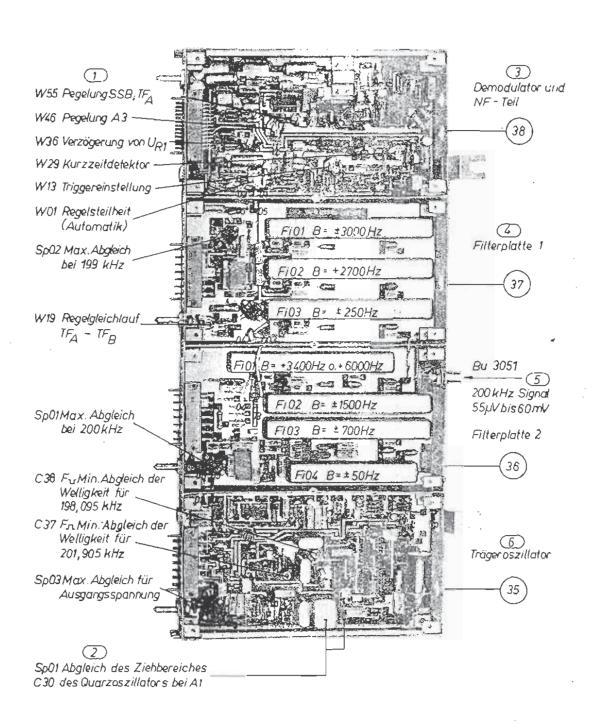
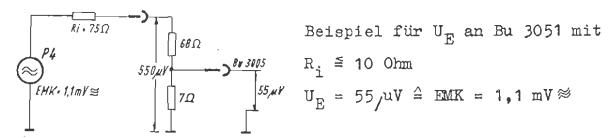


Bild 70 Signalweg 2 1340.037-01321

5.4.12.1. Abgleich und Kontrolle Signalweg 2


(siehe auch Pkt. 5.4.1. bis 5.4.7.)

Fehlersuche und Reparatur können im Gerät oder in einer Prüfschaltung, die die laut Stromlaufplan erforderlichen Betriebsspannungen und Eingangssignale liefert, erfolgen.

Zur Kontrolle der Funktion in den wichtigsten Sendearten siehe Tabelle 4, Seite 110

Bei Abgleich oder Reparatur von gedruckten Schaltungen verbleibt die Kassette ebenfalls im Empfänger.

P 4 an Bu 3051 anschließen und Abgleich nach Tabelle 5 (Seite 111) durchführen! Ausgang TF_{A} mit 590 Ohm (R 6) abschließen!

Achtung! Bei Messungen an den NF-Leitungsausgängen TF_A und TF_B zur Vermeidung von Störungen einseitig an Masse \perp legen.

5.4.12.2. Kassettenaustausch Signalweg 2

Nur geprüfte Kassetten einsetzen!

Demontage und Montage

ZF-Verstärker Kanal A/Kanal B paarweise X 3701/X 3401

siehe Pkt. 5.7. und 4.1.

siehe Pkt. 3

Kontrolle und Einstellen

siehe Pkt. 5.4.1. u. 5.4.2.

Messen der Verstärkungsreglung siehe Pkt. 6.3.

5.4.12.3. Austausch von gedruckten Schaltungen in der Kassette Signalweg 2

Nur geprüfte gedruckte Schaltungen einsetzen!

Demontage und Montage

siehe Pkt. 3

Kontrolle und Einstellen

siehe Pkt. 5.4.1. u. 5.4.2.

Trägeroszillator f_{Tr} u. U_{fTr}.

siehe Tabelle 5 (Seite 111),

kontrollieren.

Filterplatte 2

Kontrolle des Trägerverstärkers und der

Filter (Tabelle 4 u. 5)

Filterplatte 1

Kontrolle der Filter

Austausch des ZF-Verstärkers (Kanal B)

auf "Mischer 2" (paarweise X3701 und

X3401 siehe Punkt 5.7.)

Kontrolle der Verstärkung und des Regel-

umfanges

Korrektur der Verstärkungsreglung (Regel-

gleichlauf TFA TFB)

Demodulator und NF-Teil

Beim Austausch der gedruckten Schaltung

Kühlschelle von X 3803 beachten!

Neuabgleich: Pegelung SSB/TF_A

A3

Triggereinstellg.

25.4.2.

Regelsteilheit

	"Signalweg 2"
	r Kassette
	de
Tabelle 4	Kontrolle

EKD				Ausg	Ausgang TFA	UNF	Ext.	
rrequ. Emst.	sendeart	Bandbreite	Regelung	Frequenz	Pegel	(Bu 0 002)	(8u-1019)	A1 #
00.000.00	A1	± 3000 Hz	"/ /Regelung	> 4,2 KHZ	0 d8m		≥ 2 V ≈	7
00.000.00	A1	± 3000 Hz	"//Regelung	< 500 Hz	о авт	≥ 0,5 √ ≈.	≥ 2V ≈	٧
00.000.00	A1	± 3000 Hz	\"//Regetung	1 K HZ	0 d8m	≥ 0,5 V ≈	keine weitere Hessung	Einstellen 1k Hz ≈
00.000.00	A .	alle Zweiseitenbandfilter	\"// Regelung	1k Hz	-2 d8 m* bis 0 d8m	: :	kane weitere Messung	Einstellen 1kHz ≈
00.000.00	A1	± 3000 Hz	л/ Regelung	1kHz	≤ + 3 dBm	≤ 4,2 4≈	keine weitere Hessung	. Einstellen 1kHz ≈
00.000.00	A3A	± 3000 Hz	72/Regelung			:	keine weitere Messung	,
00.000.00	F1#/1	± 700 Hz	л./ Regelung	1.9 KHZ	\$ +3d8m	≤ 1,2 V ≈	keine weitere Messung	
00.000.00	F14/11	± 700 Hz	72/ Regelung	1.9 KHZ	≤ + 3d8m	≤ 42 4 ≈	keine weitere Ressung	
00.001.00	A3J	±3000 Hz	ת/ Regelung	1 kHz	£+3d8m	≤ 4,2 √∞	keine weitere Messung	

* ± 50 Hz - Filter: -4 d8m bis 0 d8m

bei allen Prúfungen ≥ 100 mV am ZF- Ausgang (8u 0003) bei allen Prúfungen LED (fr.) "AUS" außer bei "A3 A"

110

Tabelle 5	2	Abg	Abgleich und Kontrolle	d Kont.	i	" Signa	"Signalweg 2"			
	t P4	EMK P4	U _E Bu 3005	Sendeart	Bandbreite	Regelung	Průfung	Meßpunkt	HeBgróße (Jah)	Ó.Se (/zhzw.?/ ≅
(") Regelung				A 1	±3000 Hz	てい	Kontrolle	St 3801 / 811		2 0,75 V =
ZF-Verstärkung	199 KHZ	1,1mV≈	55µV≈	41	±3000 Hz	1 m	Sp 3702 Max.	ZF- Ausgang	199 k Hz	> 100 mV ≈
Tråger-Verst.	200 KHZ	200µV≅	10,µ V ≥	A3A	\$3000 Hz	7 /2	Sp 3601 Max.	Filterpl. 2 05 - 1	200 k Hz	> 30mV≅
Uf _{Tr} (LED)	200 KHZ	1mV	50µV ≈	A3A	₹3000 HZ	7 /2	Kontrolle			LED (fr.) hell
				.41	beliebid		A1 # 1)	St 3801 / B2	≤ 198,8 KHZ ≥ 199,5 KHZ	$(40bis 160 \text{km} \text{V} \approx (40bis 160) \text{km} \text{V} \approx$
Tráceroszillator	200 kHz			A3A	-500		Kontralle	st 3801 / 82	200.00 kHz	(120 bis 170)mY ≅
(1)0 ≈ f _T				A3 J	genommen \$ 50 Hz		Kontrolle	St 3801 / 82	200.00 KHZ	(120 bis 170)mV≅
				FJ	!		Kontrolle	St 3801 / 82	201.905 KHZ	(80 bis 130)mY≅
•		 		FU			Kontrolle	5+ 3801 / B2	198.095 kHz	(80 bis 130)mV≈
Pegelung SSB/TFA	201 K HZ	4,4mV≈	55µV ≅	A3 J	±3000 Hz	7.1	W3855 einstellen	7FA - Ausgang	1 k Hz	0 дВт
Repolstoilhoit)	. 201kHz	2,2mV≋	110µV≅	A3 J	±3000Hz	77	W3801 einstellen	TF _A - Ausgang	1 KMZ	-1 dBm
(Automatik)	201 KHZ	500mY ≋	25mV ≋	A37	£3000Hz	7 J	Kontrolle	TFA - Ausgang		\$+4,2d8m
Regeleinsatz UR :	201 kHz	30mY≋	4,5mY ≋	A33	±3000 Hz	7 J	W3836 einstellen	513801	1kHz	12,5 V =
Pegelung A3/TF _A	200 kHz m0,5/1kHz	20mV ≅	1mV ≋	43	±3000Hz	T JL	W3846 einstellen	TFA- Ausgang	1kHz	+1dBm
Abhór- Verstörker		30mV ≋	1,5mV ≋	A3.7	±3000 Hz	11/1	Kontrolle an 🔇 ext.		1k Hz	≥ 2 <i>V/an8</i> Ω

5.4.13. Trägeroszillator

Fehlersuche und Reparatur können im Gerät, in der Kassette Signalweg 2 oder in einer Prüfschaltung, die die laut Stromlaufplan erforderlichen Betriebsspannungen und Eingangs-Spannungen und -frequenzen liefert, erfolgen.

Wichtigste Prüfkriterien sind Betrag und Frequenzverhalten der Ausgangsspannung U_A und die Funktion der Lumineszenzdiode Gr 1001 (LED).

Prüfung und Fehlersuche erfolgt mit Datenflußplänen in der Reihenfolge "Betrag der Ausgangsspannung" - "Frequenz der Ausgangsspannung".

Die Tabellen 6 und 7 zeigen, abhängig von der Stellung des Sendeartenumschalters, die Betriebsspannungen U_B der Funktionsgruppen bzw. die Spannungen und Frequenzen an den Eingängen U_E , f_E und am Ausgang U_A , f_A (f_B funktion der Lumineszenzdiode Gr 1001 (LED).

5.4.13.1. Hinweise zu den Funktionsgruppen

5.4.13.1.1. Ausgangsverstärker und Regelspannungserzeuger

Der Maximumabgleich, Sp 03 erfolgt bei A1 (sehr flaches Maximum) oder bei FU wechselnd mit F \square auf gleichen Wert von U $_{\Lambda}$.

Der Regelspannungserzeuger ermöglicht die automatische Amplitudenreglung des Quarzoszillators.

5.4.13.1.2. Quarzoszillator

Der quarzstabilisierte Oszillator wird in seiner Frequenz mit Hilfe des Parallelkreises Sp 01-C21, C 30 und der Kapazitätsdiode Gr 13 gezogen.

Der Abgleich des Frequenzbereiches erfolgt bei A1 mit C30 (grob) und Sp O1 (fein) auf f_A < 198,8 kHz bei O V an St O1/B 7 und f_A > 199,5 kHz bei 9,5 V an St O1/B7. Der Abgleichkern von Sp O1 ist nach Ablöten des Metallplättchens in Kappenmitte zugänglich. Nach dem Abgleich muß die Spule mit dem Plättchen wieder verschlossen werden.

Prüfprogramm "Trägeroszillator" Ausgangsspannung UA Träger oszillator defekt Prüfe Ausgangs sponnungen UA 5 U_A bei mindestens einer Sendeort i.O. rep. Ausgangsverstärke 9 U_A bei A1; A3A u. A33 i.O. Regelspannungsrep. erzeuger 10 rep. Quarzoszillator 13 12 11 Unbeif Sulo. FU Teiler 200/1,905 kHZ гер. i.0. 1.0. 14 rep. Mischer 200 kHz = 1,905 kHz 15 16 U_A bei F∫L i.O. rep. Quarzfilter 201, 905 kHz 18 U_A bei F\J i.O. rep. Quorzfilter 798,095 KHZ 19 Prūfe Ausgangs frequenzen fA Bild 71

Prüfprogramm "Trägeroszillator" Ausgangsfrequenz $f_A = f_{U3}$

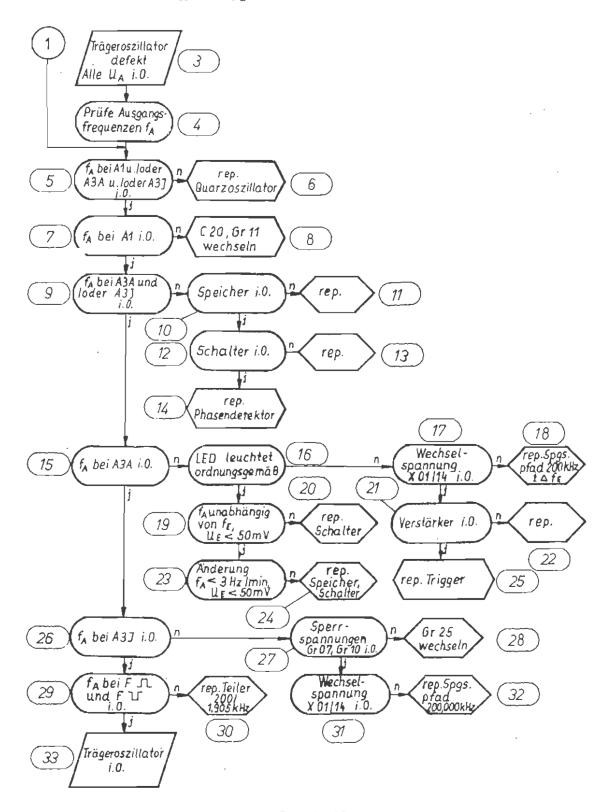


Bild 72

5.4.13.1.3. Speicher und Schalter

Der Schalter wird durch den Trigger geschaltet. Sendeart A3A, $\rm U_E$ = 200 mV, $\rm f_E$ = 200 kHz \pm $\rm \triangle f_E$. Der Schalter ist geschlossen, da Gr 07 und Gr 10 sperren und T08 oder T09 je nach Potentialdifferenz zwischen Emitter und Kollektor öffnen. Damit ist die Phasenregelschleife geschlossen, $\rm \triangle f_A$ = $\rm \triangle f_E$.

Sendeart A3A, U_E = 50 mV, f_E = 200 kHz $\pm \Delta f_E$. Der Schalter ist geöffnet, da T08 und T09 über Gr07 und Gr10 gesperrt sind. Die Phasenregelschleife ist getrennt,

 \triangle f_A ist von \triangle f_E unabhängig, f_A ist annähernd konstant und ändert sich mit < 3 Hz/min (Entladung des Speicherkondensators C18).

Falls f_A dennoch abhängig von f_E : Gr07, Gr10, T08 und T09 prüfen.

Falls Änderung von f_A zu groß: T08, T09, T10, Gr09, C18 in dieser Folge wechseln.

Achtung! T10 ist ein MOS-Transistor. Bei Wechsel von T10 bzw. von Bauelementen, die zu seinen Anschlüssen führen, Anschlüsse kurzschließen.

Bei der Sendeart A3J, U_E = 200 mV, f_E = 200,000 kHz ist der Betriebszustand identisch A3A mit U_E = 200 mV, f_E = 200,000 kHz. Die Sperrspannungen für Gr07 und Gr10 werden über Gr 25 fest angeschaltet.

5.4.13.1.4. Phasendetektor

Gleichspannung an X01/8 bei $U_{\rm E}=0$: ca. 6 V. Bei geschlossener Regelschleife schwankt die Spannung an X01/8 unregelmäßig um ca. \pm 10 % (Phasensprünge von $f_{\rm A}$).

5.4.13.1.5. Spannungspfad 200,000 kHz

Verlauf des Spannungspfades: St 01/B3-W06-Gr01-W03-X01/14

5.4.13.1.6. Spannungspfad 200 kHz \pm \triangle f

Verlauf des Spannungspfades: 01-W08-Gr02-C05-W03-X01/14

5.4.13.1.7. Verstärker und Trigger

In den Verstärker ist das Gatter X06/9, 10, 11, 8 einbezogen.

W 20 bewirkt langsames Umladen von C 17 nach Anlegen der Eingangsspannung und damit verzögertes Ansprechen des Triggers (0,5~s). $U_{\rm E} \stackrel{>}{=} 200~{\rm mV}$: TO4C 15,5 V \rightarrow 5 V; TO3E 3,5 V \rightarrow 13,5 V Gr 05 bewirkt schnelles Umladen von C 17 nach Abschalten der Eingangsspannung und damit sofortiges Ansprechen des Triggers.

5.4.13.1.8. Teiler 200 kHz/1,905 kHz

Teilerverhältnis 1:105.

Der Teiler wird bei den F-Sendearten über den K-Eingang X05/10 durch Anlegen von 2,7 V in Betrieb gesetzt und besteht aus den Zählerbausteinen X03 und X04 sowie der Dekodierschaltung X06 (2 Gatter) und X05 zum Auslösen eines Rücksetzimpulses. Jeder 103. Impuls an X03/14 bewirkt H-Potential an den J-Ein-gängen von X05, so daß der 104. Impuls einen Rücksetzimpuls am Q-Ausgang auslösen kann. Dieser wird mit der Rückflanke des 105. Impulses wieder beendet.

5.4.13.1.9. Mischer 200 kHz + 1,905 kHz

Die Summen- und Differenzfrequenzen liegen gegenphasig an beiden Ausgängen XO2/12 und XO2/13. Gleichspannungen: XO2/6,14 ca. 2V; XO2/7,9 ca. 3,6 V. An XO2/12,13 liegen ca. 400 mV Summenspannung (beide Eingangs- und Mischfrequenzen).

5.4.13.1.10. Quarzfilter 201,905 kHz und 198,095 kHz

Beide Quarzfilter sind Brückenfilter, deren Zweige von X02/12 bzw. X02/13 gegenphasig angesteuert werden. Nach Quarzwechsel ist gegebenenfalls ein Maximumabgleich von UA durch geringfügiges Ziehen der Quarzfrequenz mit C35 bzw. C36 erforderlich. C37 und C38 ermöglichen Minimumabgleich der Welligkeit von UA (Unterdrückung der unerwünschten Frequenzen).

<u>Tabelle 6</u>
Betriebs-Gleichspannungen der Funktionsgruppen in Abhängigkeit von der Stellung des Sendeartenumschalters.

Meßgröße	Funktion	agruppe	Meß- punkte	A 1		FO,F A	FU		
		verstärker und nnungserzeuger	St01/B1	18	18	18	18	18	18
	Quarz-		Gr33/K	16,5	0	16,0	16,0	0	0
	oszillat	A1-Tonhöhen- or regler	St01/B7	09,5	0	0	0	0	0
Betriebs- spannungen der Funktions- gruppen	Speicher	und Schalter	Gr26/K	0	0	16,5	16,5	0	0
	Phasende	tektor	Gro3/K	0	0	16,5	16,0	0	0
	Spannung	9- 200,000 kHz	Gr01/K	0	0	0	0,7	0,7	0,7
	pfad	200 kHz ± 4f	GrO2/K	0	0	0,7	0	0	0
	Verstärk	er und Trigger	Gr30/K	0	0	16,0	(5)	16	16
UB/V =	Teiler 200/1,905 kHz		St01/A1	5	5	5	5	5	5
			X05/10	0	0	0	0	2.7	2,7
	Mischer	200 kHz <u>+</u> 1,905kHz	Gr18/K	0	0	0	0	16,5	16,5
	Quarz-	201,905 kHz	St01/A9	0	0	0	0	17,5	0
	filter	198,095 kHz	St01/A11	0	0	0	0	0	17,5

Meßgröße		Funktions- gruppe	Anschluß- punkte	A1	A3	A3A,A3Ba	A3J,A3Bj	ro, en	ЪЛ
Eingangs- epannungen	FE	Spannunge- pfad 200,000kHz	St01/B3 — St01/A3 _	_	_	-	200 mV 200,00 kHz	200 mV 200,00 kHz	200 mV 200,000 kHz
und Frequenzen (Prüfung)	T _E	Spannungs- pfad 2COkHz ±\Df_E	01 02 <u></u>	_		50mV/200mV 200kHz+△fE △fE=50H2	_		
Ausgangs- spannungen	UA	Ausganga-	St01/B13-		0	120 bis 170 mV	120bie 170mV	80bis 130mV W < 5%	80 bis 130 mV W < 5%
und Frequenzen R _A = 680 Ω	f _A	verstärker	St01/A13	<198,8bis >199,5kHz (A1-Ton- höhen- regler)		200kHz $\pm\Delta f_A$ $U_E = 20 \Omega v$ $\Delta I_A = \Delta f_E$ $U_E \approx 50 mV$ $\Delta f_A = 0 const.$ $(<3 Hz/min)$	200,000 kHz f _A =f _E	201,905 kHz	198,095 kHz
Funktion Träger- anzeige (LED) ^X		Trigger	St01/B13	dunkel	dun- kel	U _E ≈ 200nV hell U _E ≈ 50mV dunkel	dunkel	dunkel	dunkel

x) bei A3A, A3Ba LED über 820 Ohm an 18V anschließen.

Tabelle 7

Spannungen und Frequenzen an den Eingängen und am Ausgang sowie die Funktion der Trägeranzeige (LED) in Abhängigkeit von der Stellung des Sendeartenumschalters.

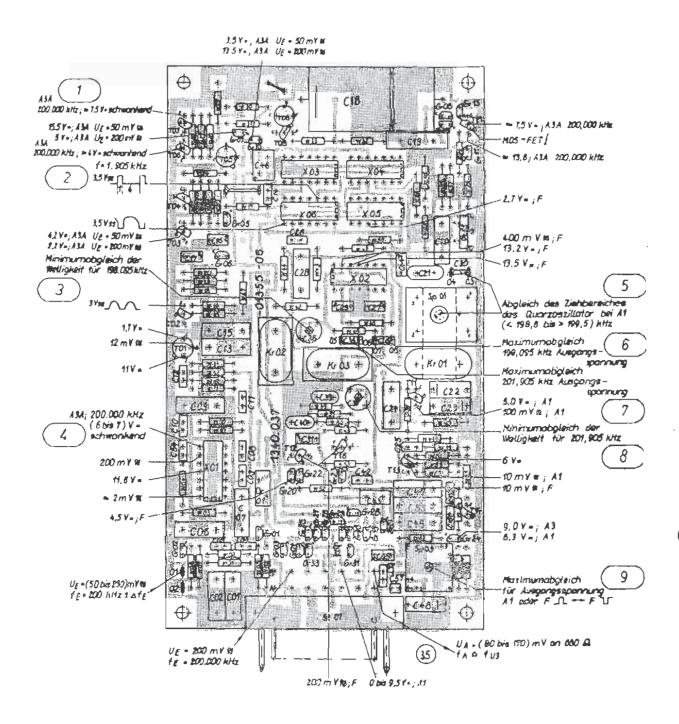
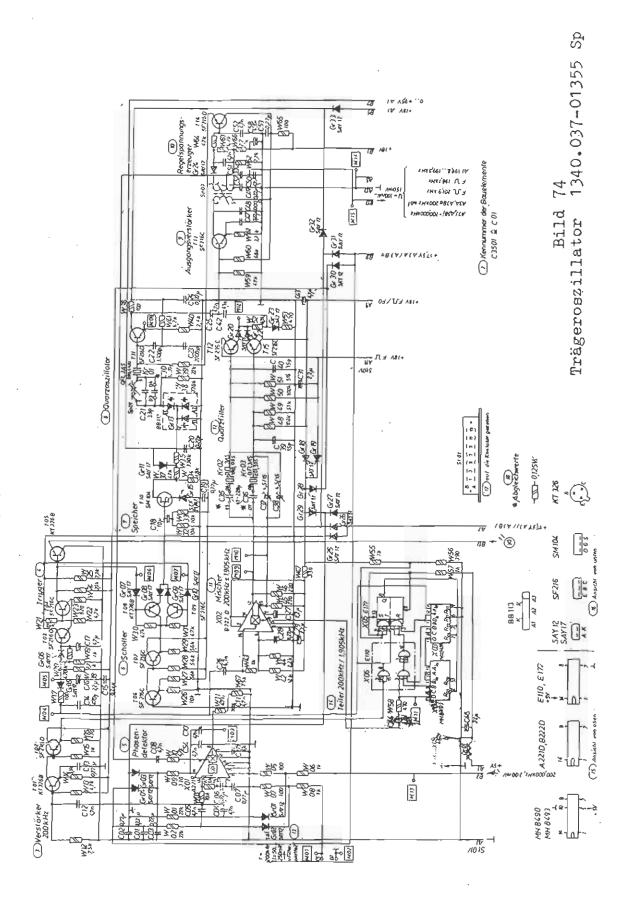



Bild 73 Trägeroszillator

5.4.14. "Filterplatte 2" und "Filterplatte 1"

Fehlersuche und Reparatur können im Gerät, in der Kassette Signalweg 2 oder in einer Prüfschaltung erfolgen, die die laut Stromlaufplan erforderlichen Betriebsspannungen sowie Eingangsspannungen und -frequenzen liefert. Da beide gedruckten Schaltungen in der Funktion eng miteinander verknüpft sind, sollten die Arbeiten an beiden gemeinsam ausgeführt werden.

Prufkriterien sind die Werte beider Ausgangs-Spannungen und deren Frequenzgang, der durch Bandbreite und Nahselektion des vom Bandbreitenumschalter jeweils eingeschalteten Filters bestimmt wird.

5.4.14.1. Bandbreiten und Nahselektion in Abhängigkeit vom Bandbreitenumschalter

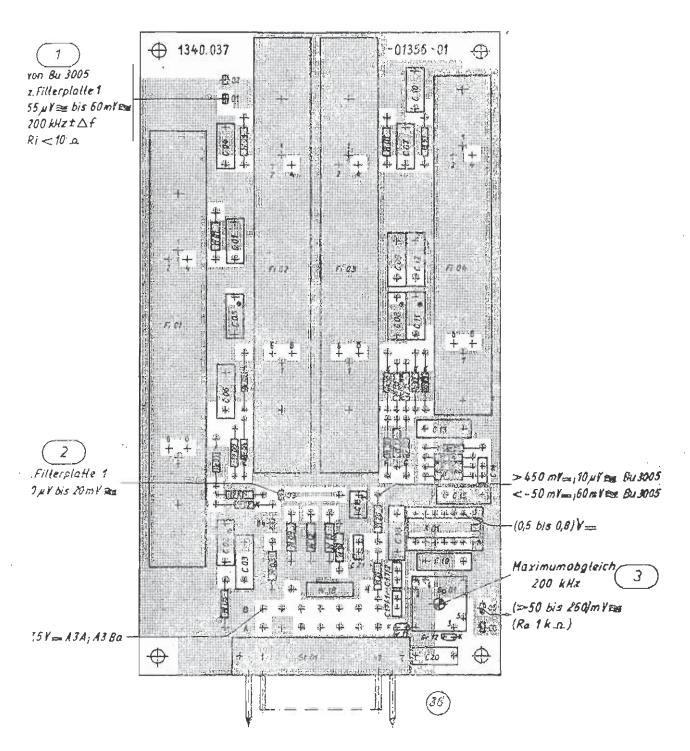
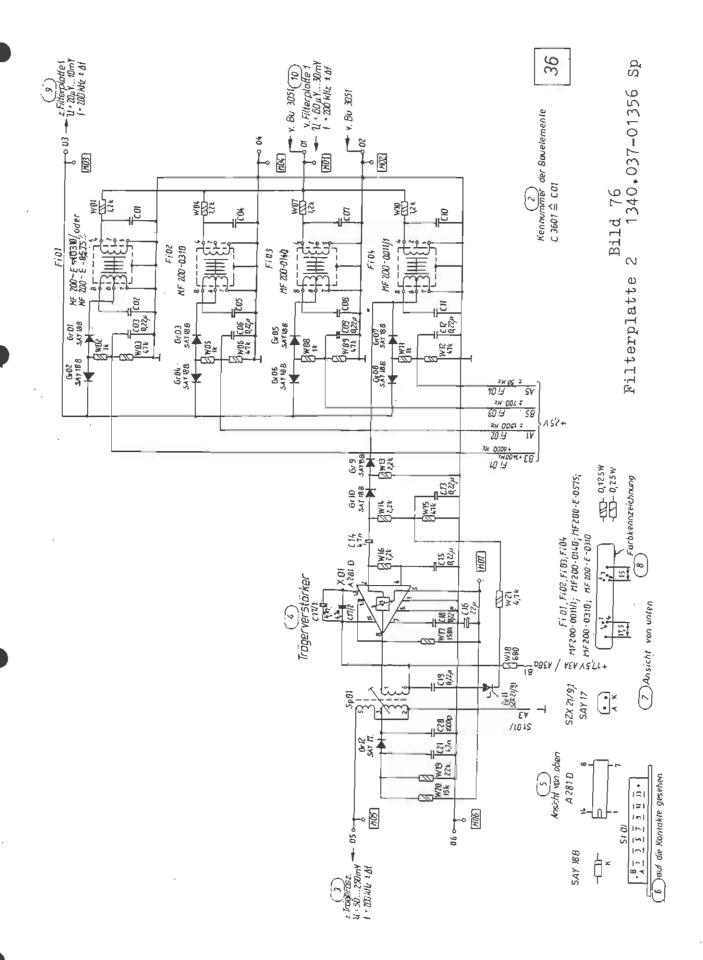
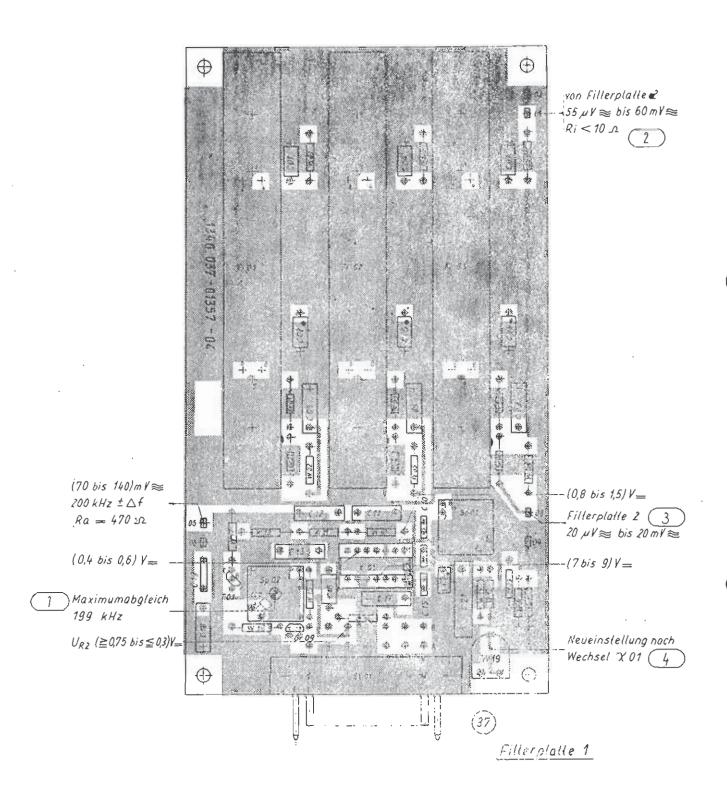
Die Frequenzangaben beziehen sich auf 200,000 kHz mit Ausnahme der durch^{X)} gekennzeichneten Werte.

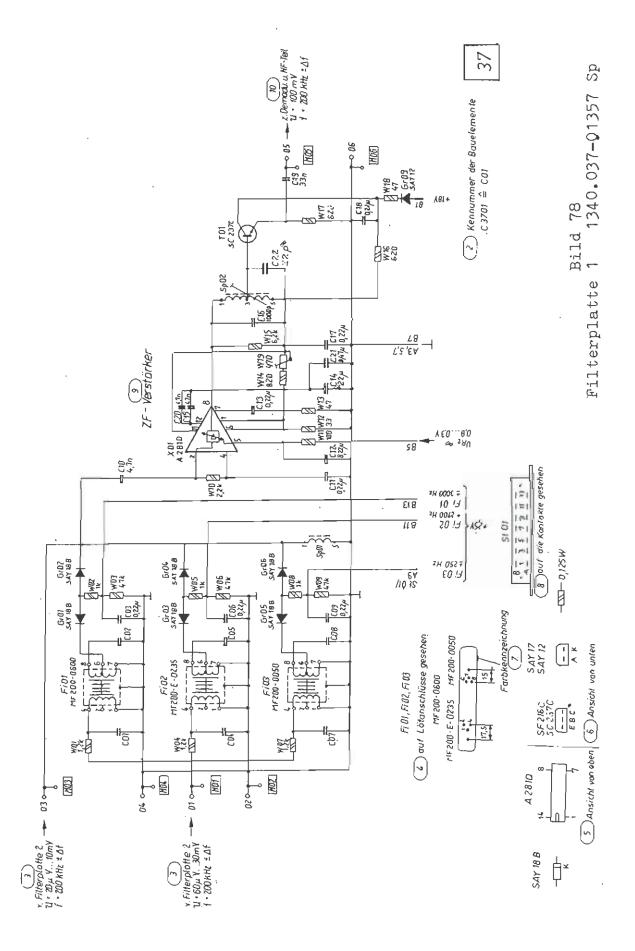
Meßpunkte für Ausgangs- spannungen	Bandbreiten- umschalter	Bandbreite A ≦ 3 dB	Nahselek A ≧ 60 d	
Filterpl. 1	<u>+</u> 50 Hz	90160 Hz ^x)	± 300 H	Z
ZF-Verstärker 05 - 06 (L)	<u>+</u> 250 Hz	<u>+</u> 250 Hz	± 1000 H	Z
0) 00 (=)	<u>+</u> 700 Hz	<u>+</u> 630 Hz	<u>+</u> 1500 H	Z
	<u>+</u> 1500 Hz	<u>+</u> 1500 Hz	<u>+</u> 2500 H	Z
	<u>+</u> 3000 Hz	<u>+</u> 2900 Hz	± 5000 H	\mathbf{z}
	+ 2700 Hz	-3502700 Hz	+ 350 H - 3500 H	
	+ 3400 Hz (-01356 SL)	-3003400 Hz	+ 300 H - 5000 H	
	+ 6000 Hz (-01366 SL)	-2506000 Hz	+ 250 H - 7500 H	
Filterpl. 2 Trägerverst. 05 - 06 (⊥)	beliebig, aus- genommen ±50 H: Sendeartenum- schalter A3A oder A3Ba	z; 90160 Hz ^{x)}	± 300 F	(z

x) Die Mitte zwischen den Frequenzen für A =-3 dB liegt im Bereich 200 kHz + 40 Hz

Hinweise:

- Ausgangsspannung U₀₅₋₀₆/Filterplatte 1, ZF-Verstärker:
 - . Die Differenz der maximalen Ausgangsspannung beträgt von Filter zu Filter maximal 2 dB.
 - . Die Welligkeit innerhalb der Bandbreiten ist < 3 dB.
 - Bei zu niedriger Ausgangsspannung und/oder zu hoher Welligkeit eines Filters ist eine Überprüfung in der Reihenfolge Abschlußkondensatoren der Filter - Filter -Diodennetzwerk erforderlich.
 - . Die Nahselektion ist bei hoher Eingangsspannung zu messen: $U_{01-02}=10\,\,\mathrm{mV}$, Regelspannung U_{R2} ca. 0,45 V. Bei mangelnder Selektion sind die Masseanschlüsse der Filter zu kontrollieren oder die Filter zu wechseln.
 - . Der Schaltkreis X3701 (Filterplatte 1) ist bei Austausch entsprechend Pkt. 5.7. mit X3401 (Mischer 2) zu paaren.
 - W 19 ist mach Austausch von X3701 neu einzustellen, siehe Pkt. 5.4.1.3. Korrektur Gleichlauf Kanal A und Kanal B
- Ausgangsspannung U₀₅₋₀₆, Filterplatte 2, Trägerverstärker:
 - Auf Grund der automatischen Verstärkungsreglung sind Verstärkung und Bandbreite bei niedriger Eingangsspannung zu messen, $U_{0.1-0.2} = 10 \, \mu V$.
 - Das Filter Fi 04 wird als ZF-Filter oder als Trägerfilter genutzt. Bei A3A bzw. A3Ba und gleichzeitiger Bandbreitestellung ± 50 Hz wird es doppelt belastet, so daß beide Ausgangsspannungen ca. 3 dB absinken.


Bild 75 Filterplatte 2

Filterplaste 1

5.4.15. Demodulator und NF-Teil

Fehlersuche und Reparatur können im Gerät, in der Kassette Signalweg 2 oder in einer Prüfschaltung, die die laut Stromlaufplan erforderlichen Betriebsspannungen und Eingangssignale liefert, erfolgen.

5.4.15.1. Demodulator/SSB; A1; F1; F4

Pegelübersicht bei anliegendem Eingangssignal

an $01 \rightarrow \bot$: 2F2-Signal = 201 kHz bzw. 200 kHz/100 mV ($^{(1)}$)

an X01/14 : $Uf_{m_m} = 20 \dots 30 \text{ mV} \approx$

an X01/6 : $Uf_{\pi_n}(begrenzt) = 200 ... 350 mV_{ss}$

an X01/9 : U_{ZF2} = 7 ... 15 mV \approx

an X01/8 : U_{NF} = 50 ... 55 mV \approx

Einstellen mit W 3855

5.4.15.2. Demodulator/A3

Pegelübersicht bei anliegendem Eingangssignal

an 01 - \perp : 2F2-Signal = 200 kHz/m = 0,5; 1 kHz, 100 mV ($^{(1)}$)

an XO1/14 : ZF2-Signal = $3 \dots 5 \text{ mV} \approx$

an X01/8 : $U_{NF} = 50 \dots 55 \text{ mV} \approx$; einstellen mit W 3847

Achtung! Gleichspannung an 01- 1: ca. 1,1 V

5.4.15.3. Leitungsverstärker TF_{A}

Pegelübersicht bei anliegendem Eingangssignal

an XO2/5 : $U_{NP} = 50 \dots 55 \text{ mV} \approx$

an XO2/10 : $U_{NR} = 0,775 V \approx (bei 52 mV an <math>XO1/8)$

an St 01/B4 : $U_{NF} = 0,775 V \approx$

 TF_A -Ausgang : 0 dBm an 600 Ohm \rightarrow St01/B6 \rightarrow B7

Gleichspannung: an XO2/5: 8,8 ... 9,2 V =

an X02/10: 8,8 ... 9,2 V =

5.4.15.4. Abhörverstärker

 $U_{\rm E}$ an St 01/A1: 100 mV (für 0,5 W an 8 0hm Bu 1019 \square ext.) (mit W 71 Korrekturmöglichkeit der Verstärkung!)

Achtung! Bei abgetrennter Kühlschelle des X 3803 keine NF-Leistung erzeugen (Thermische Überlastung)

Prüfprogramm "Demodulator u. NF-Teil"

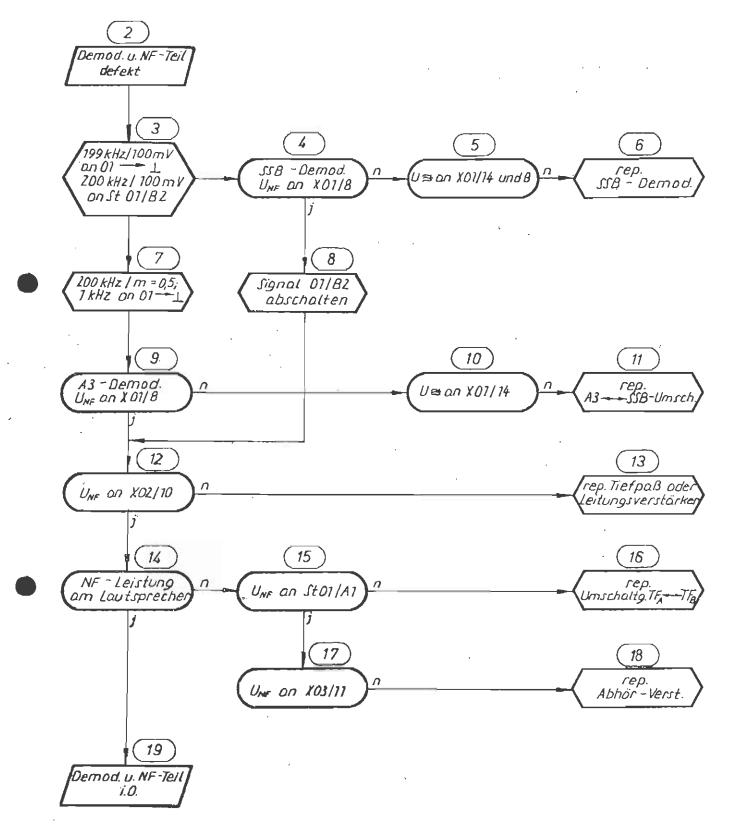
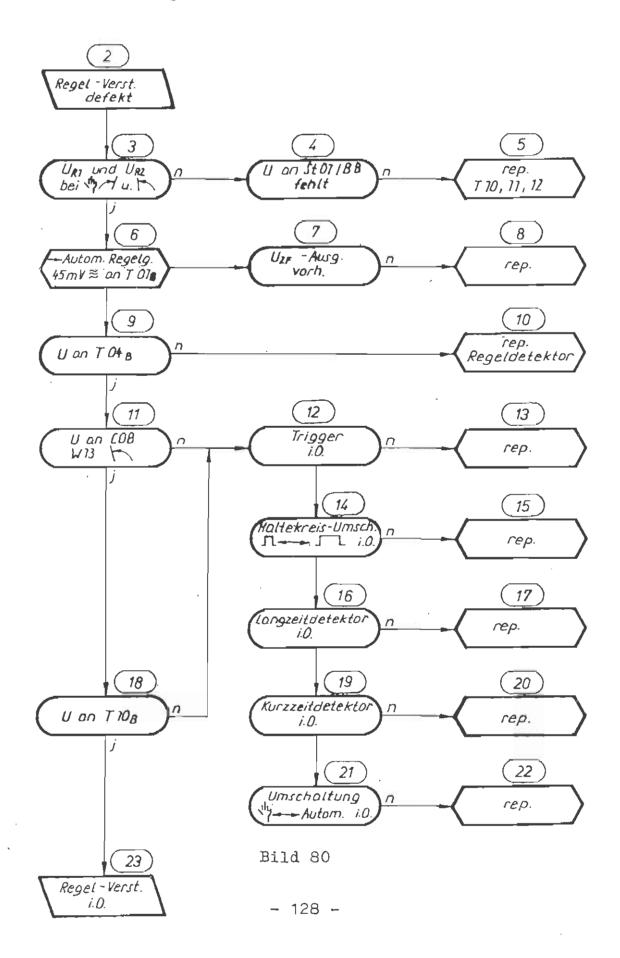



Bild 79

Prüfprogramm "Regelverstärker"

5.4.15.5. Regelverstärker

W 1006	- Mischer 1	-ZF-Verst. A/B
\(\int\)	U _{R1} ≧ 14,5 V ==	U _{R2} ≧ 0,75 V
/III) ~	U _{R1} ≦ 9,5 V	U _{R2} ≦ 0,3 V ==

- Automatische Reglung: (\(\) \(\) \(\) \(\) Reglung)

 U_{ZF2} -Ausg. : \geq 100 mV \approx (ohne Belastung)

	Trigger (nicht angesteuert)	Trigger (angesteuert)
Trigger T06 _C	≦ 0,55 V ~~	> 17 V
Haltekreis ${ m TO7}_{ m C}$	ca. 1,25 V=	ca. 0,25 V
Langzeitdetektor $^{ m TO8}_{ m B}$	ca. 0,66 V ==	0

U_{CO8}: 3 ... 4 V mit P 9

Kurzzeitdetektor $U_{W29/W30} = 3 \cdots 4 V =$

Verstärker T 10_B = 13 ... 14 V ===

Verstärker $T 11_C = 12 \dots 13 V =$

Spannung am Schleifer W29 = $U_{CO8} - 0.8 V =$

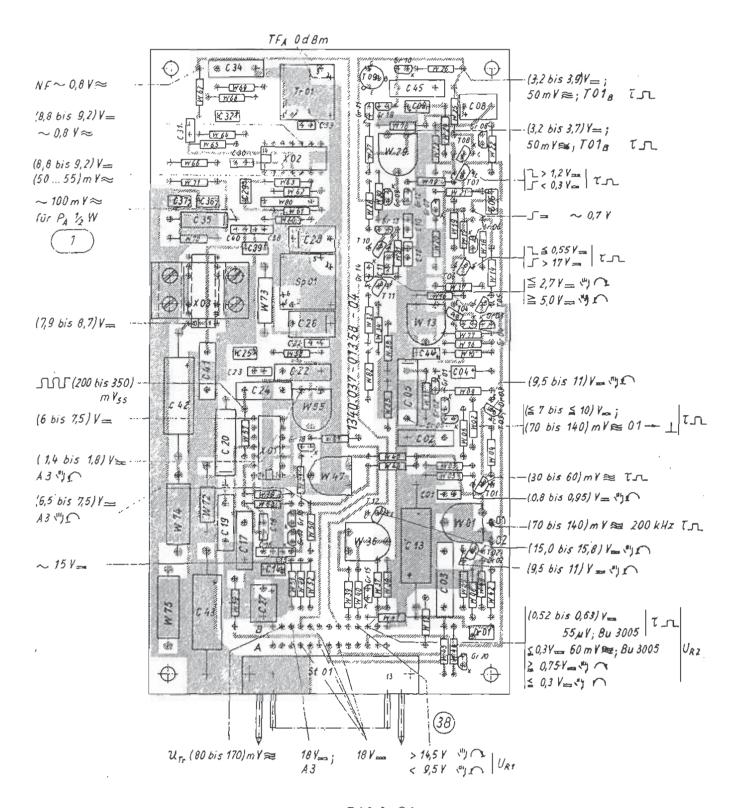


Bild 81
Demodulator und NF-Teil

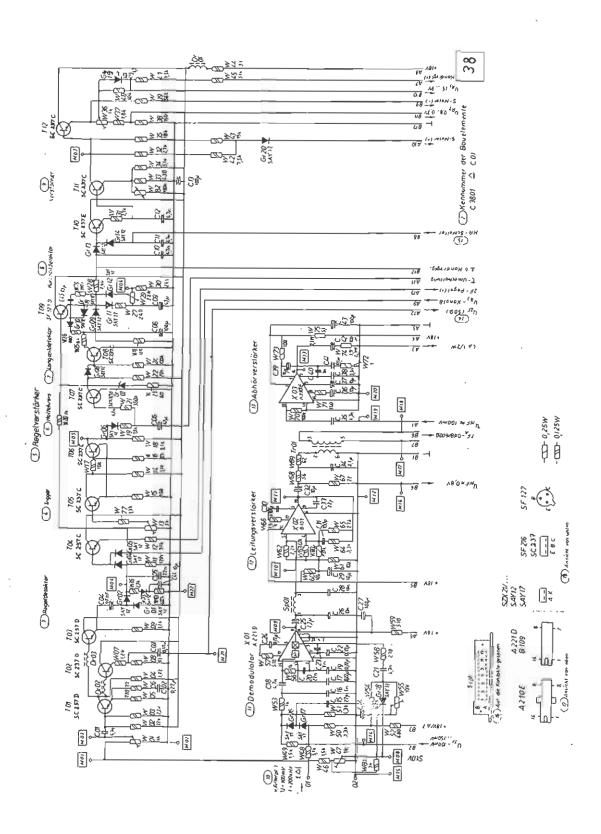
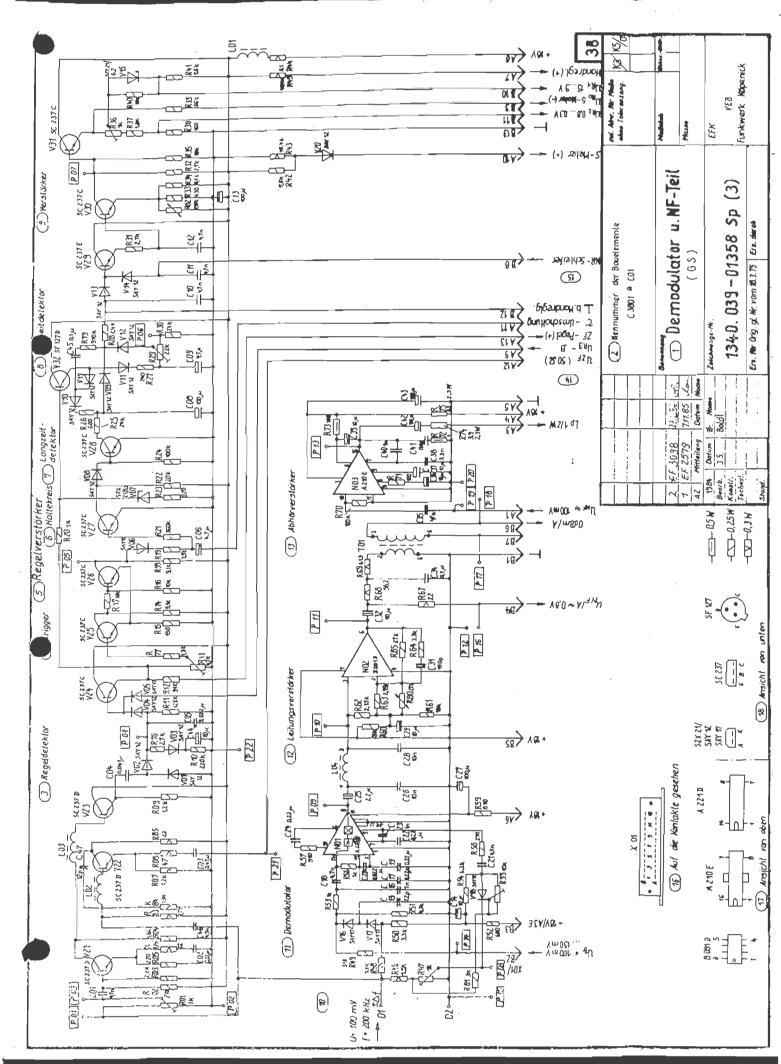



Bild 82 Demodulator und NF-Teil 1340.037-01358 Sp

5.4.16. F1-Demodulator

5.4.16.1. Kontrolle der Eingangsfrequenz

• Typenreihe EKD 100

P 1 an Leitungsausgang TF $_{\Lambda}$.

EKD: $f_E = 00 000 00$, (II) /Reglung, $B = \pm 250 \text{ Hz}$,

Tonfrequenzen in den 3 Stellungen des Sendeartenumschalters messen, Sollwerte: 1905 Hz + 1 Hz

Zeigerausschlag am Kontrollinstrument Ms 1001: Mittelstellung (Korrektur mit Einstellregler W 2830/F1-Demodulator)

• Typenreihe EKD 300

P 1 an Leitungsausgang TF_A .

EKD: $f_E = 00 000 00$, \(\frac{11}{2}\)/Reglung, $B = \pm 3 \text{ kHz}$,

Sendeartenumschalter \longrightarrow \bigcap F1/F4
Kontrollschalter \longrightarrow 0 dBm

Abhörumschalter

/ Reglung auf O dBm einstellen. Die Tonfrequenz in den 3 Stellungen des Sendeartenumschalters messen, Sollwerte: 1905 Hz +1 Hz. Mittlerer Leuchtstrich der LED-Zeile leuchtet. Korrektur der "Mitte" mit W 4452 (Eingabeblock). / Reglung auf Linksanschlag. Leuchtstrich 'Mitte' muß erhalten bleiben, sonst VCO des F1-Demodulators mit W 2816 auf 1905 H2 + 1 Hz nachstimmen.

5.4.16.2. Kontrolle des Fang- und Haltebereiches des VCO

• Typenreihe FKD 100 (Leiterplattenindex ≦ 6)

P 1 an Leitungsausgang TF, .

P 4 an Bu 3004/ Υ , f \sim 100 kHz, EMK'= 1 mV/R; = 75 Ohm. EKD: $f_E = 00 \ 100 \ 00, \ \text{Reglung}, B = \pm 3 \ \text{kHz}, F1, F4/\ \text{\mathbb{L}}$

Kontrollschalter o F \lessapprox , Abhörumschalter o TF,

- Fangbereich

Mit HF-Generator (P4) am Empfängereingang die Eingangsfrequenz des F1-Demodulators von < 1000 Hz bzw. > 3000 Hz ausgehend in Richtung 1900 Hz langsam ändern bis der Zeiger am Ms 1001 eine Sprungfunktion anzeigt. Diese Eingangsfrequenz des F-1 Demodulators jeweils messen.

Sollwerte: ≦ 1400 Hz und ≧ 2400 Hz.

- Haltebereich

Mit HE-Generator (P4) am Emprängereingang die Eingangsfrequenz des F1-Demodulators von 1900 Hz jeweils ausgehend in Richtung 1000 Hz bzw. 3000 Hz langsam ändern bis der Zeiger an Ms 1001 eine Sprungfunktion anzeigt. Diese Eingangsfrequenzen des F1-Demodulators messen.

Sollwerte: ≦ 1200 Hz bis ≥ 2600 Hz.

5.4.16.3. Kontrolle des Anzeige-, Fang- und Haltebereiches

- Typenreihe EKD 300 (Leiterplattenindex ≥ 7)
- EKD: $f_E = 00.000.00$, \mathcal{T}_{\square} , B. = $\frac{+}{3}$ kHz, F1/F4 \square

Leuchtstrichmitte mit W 4557 einstellen Leuchtstrichende (8. LED links) bei "F1/F4 \(\) " mit W 4553 einstellen

Leuchtstrichende (8. LED rechts) bei "F1/F4] mit W 4552 einstellen.

- Zur Ermittlung des Haltebereiches Sendeartenumschalter auf F1/F4 ∏, später auf F1/F4 ∐ schalten. f_E von 00 000 00 mittels Drehknopf (38) in Richtung 00 001 00 stellen, bis der Leuchtstrich Zeilenende erreicht und erlischt. Werte der Ziffernanzeige (10) ablesen.
 Sollwerte: ≧ 700 Hz

Sollwerte: ≥ 500 Hz

5.4.16.4. Kontrolle des Tiefpasses (T 08, T 09)

In M 02 mit P 11 0,8 V \approx einspeisen P 3 an M 04

Kontrolle der Grunddämpfung < 2 dB

Kontrolle der Grenzfrequenz 100 ... 130 Hz

Kontrolle des Dämpfungsanstieges ca. 12 dB/Oktave

5.4.16.5. Kontrolle der Auswerteschaltung

In A7/B7 mit P 11 ca. 0,8 V/1900 Hz einspeisen Mit P 9 U_{MO4} und U_{MO5} messen. Sollwert $U_{MO4} = U_{MO5} \pm 100$ mV.

1600 Hz bzw. 2200 Hz einspeisen und Messung wiederholen. In A7/B7 mit P 11 ca. 0,8 V/1900 Hz einspeisen, P 6 direkt (ohne C) an M06.

Frequenz schnell (sprunghaft) um etwa 100 Hz erhöhen bzw. verringern. U_{M06} muß auf 18 V bzw. 1 ... 2 V springen. Frequenz langsam (kontinuierlich) um 200 Hz erhöhen bzw. verringern. U_{M06} muß auf 18 V bzw. 1 ... 2 V bleiben, sie darf auch während einer langsamen Frequenzänderung in diesem Bereich nicht springen.

5.4.16.6. Kontrolle des Linienstromes für den Fernschreiberanschluß_______

P 8 (== 60 mA-Bereich) in Serie mit Lastwiderstand = 200 0hm (R 7) an Fernschreibanschlußdose Bu 0004/Pkt. a (+) und Pkt. b (-).

EKD: f_E = 00 000 10, Π /Reglung, B = \pm 250 Hz, Sendeartenumschalter von A1 bis F1, F4/0 durchschalten: Der Linienstrom 35 ... 45 mA muß in allen Stellungen erhalten bleiben.

Bei F1, F4/ Π und U Linienstrom kontrollieren.

 $\prod \triangleq \text{kein Linienstrom}$

∆ Linienstrom 35 ... 45 mA

Linienstrom-Korrektur mit Einstellregler W 2842/F1-Demodulator.

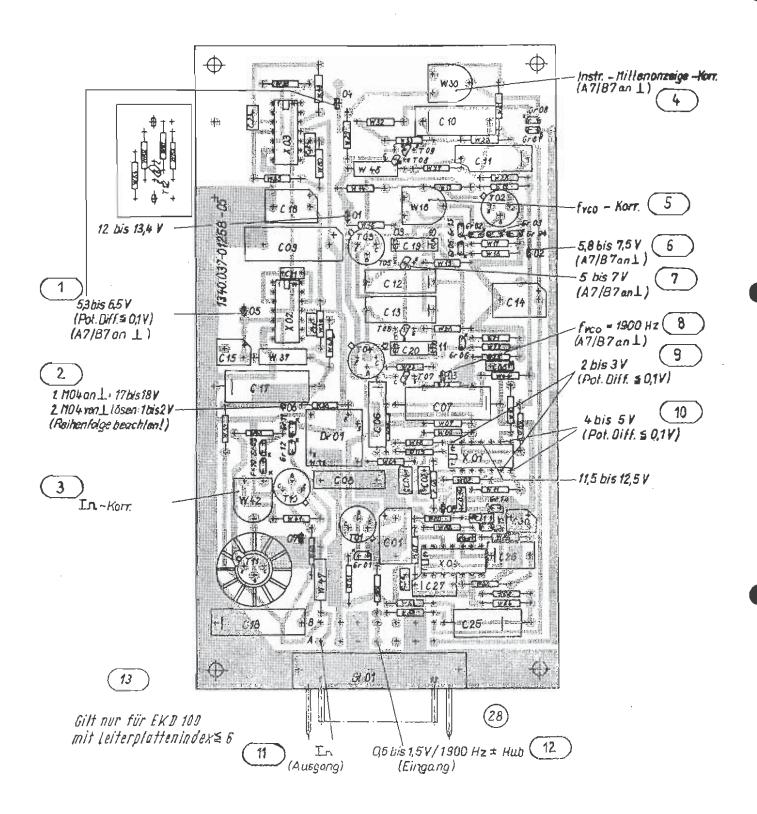


Bild 83
F1-Demodulator
Gilt nur für EKD 100 mit Leitexplattenindex ≤ 6

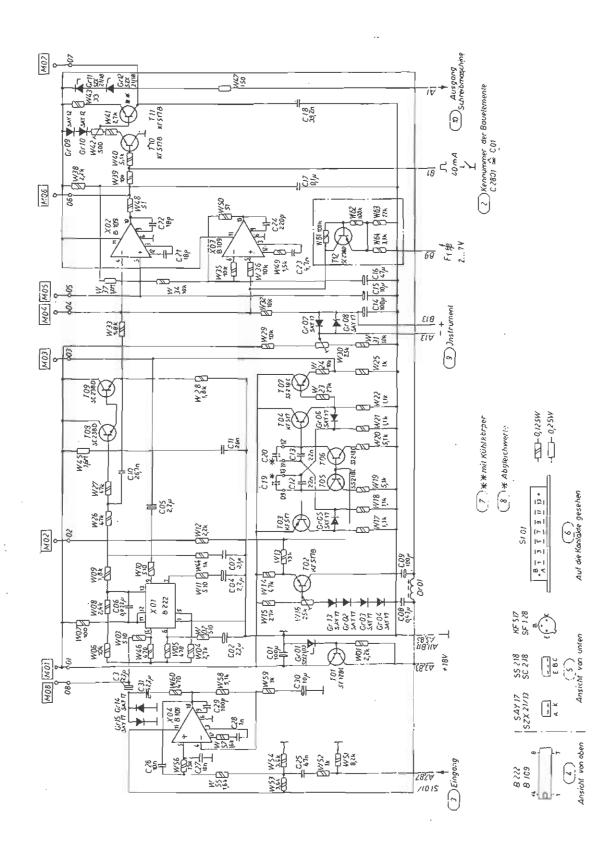
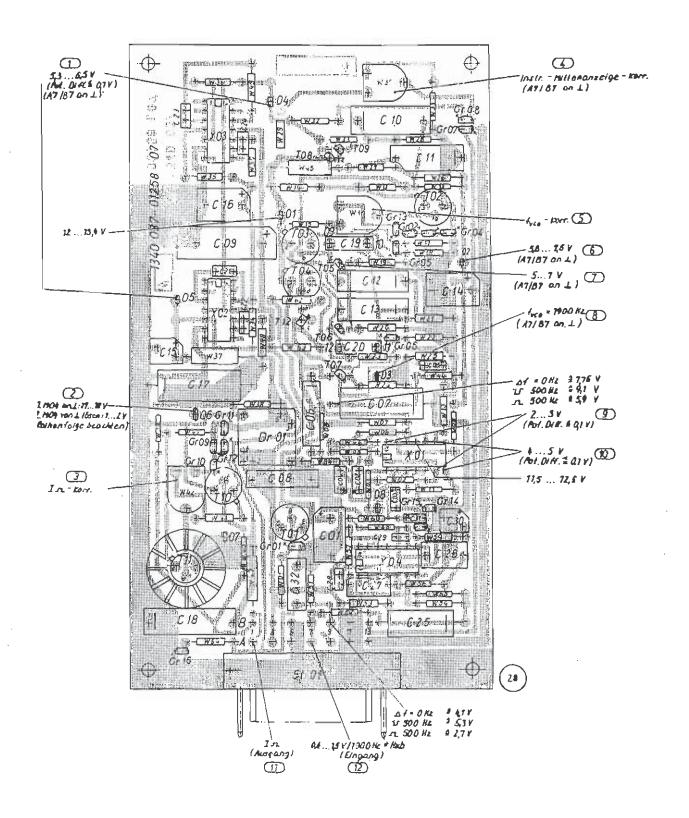
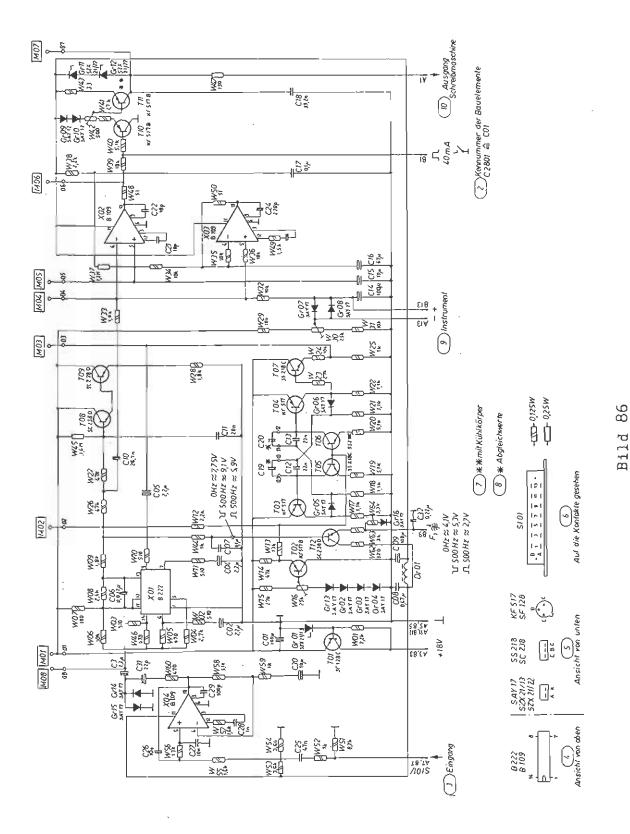




Bild 84 $F1-Demodulator \qquad 1340.037-01258 \ Sp \\ Gilt nur für EKD 100 mit Leiterplattenindex <math>\le 6$

F1-Demodulator 1340.037-01258 Sp Gilt für EKD 300 und EKD 100 mit Leiterplattenindex = 7

5.5. Stromversorgungsteil 1340.037-01801 (1)(D) 100)

5.5.1. Stromaufnahme des Gesamtgerätes:

EKD: $f_E = 00 000 00$, $B = \pm 3000 \text{ Hz}$, A3Ba, TF_A mittlere Lautstärke, In = 40 mA

Strommessungen mit P 8 bei UNENN in der Netz- bzw. Batterie-Stromversorgungsleitung.

Alle angegebenen Ströme sind Richtwerte.

Netzbetrieb: ~220 V/ca. 250 mA

 \sim 127 V/ca. 450 mA

Batteriebetrieb:

-- 24 V/ca. 1.8 A

== 12 V/ca. 3,5 A

5.5.2. Betriebsspannungen

Mit Kontrollschalter Sch 1005 die Stellungen +18 V, +5 V, -12 V abfragen. Zeigerausschlag am Kontrollinstrument Ms 1001 muß im kleinen blauen Kontrollsektor liegen. Mit P 9 die Betriebsspannungen überprüfen. Korrekturen erst. nach ≥ 30 min Betriebszeit des Empfängers durchführen.

+18 V	+	100	mV	Korrektur	mit	W	8020
+ 5 V	+	20	шV	tt	11	W	8005
-12 V	<u>+</u>	50	mV	11	†\$	$V_{\epsilon'}$	8027
+22 V	<u>+</u>	2	V	11	11		_

Vor jeder Korrektur Strombelastung und Strombegrenzung überprüfen.

+18 V
$$I_{NENN} = ca.$$
 550 mA $I_{GRENZ} = 1000$ mA (W 8017)
+ 5 V = ca. 1400 mA = 2000 mA (W 8010)
-12 V = ca. 120 mA = 500 mA (W 8023)

+22 V = ca. 70 mA

 I_{GRENZ} durch zusätzliche Belastung mit Schiebewiderstand (R 1) 100 - 5 Ohm einstellen.

Brummspannungen der geregelten Strecken mittels P 3 messen

+18 V
$$U_{Br}$$
 $\stackrel{\text{def}}{=}$ 20 mV
+ 5 V $\stackrel{\text{def}}{=}$ 50 mV
-12 V $\stackrel{\text{def}}{=}$ 20 mV

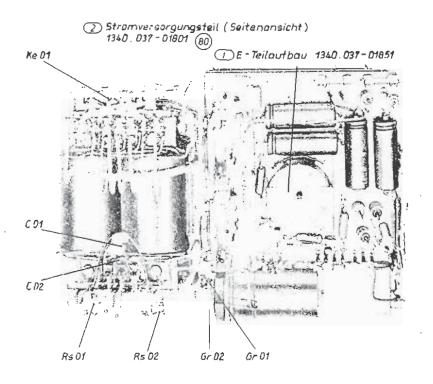


Bild 87 Stromversorgungsteil 1340.037-01801

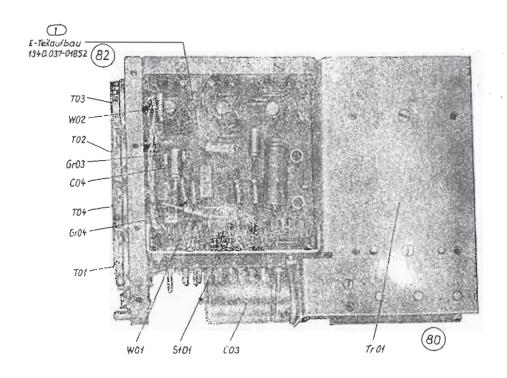


Bild 88 Stromversorgungsteil 1340.037-01801

HARTEN HARTON

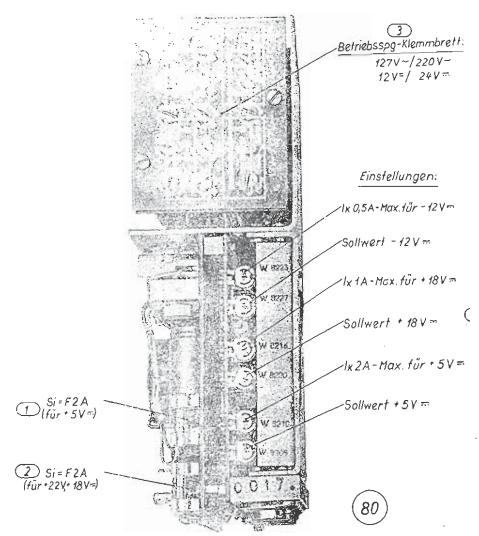


Bild 89 Stromversorgungsteil 1340.037-01801

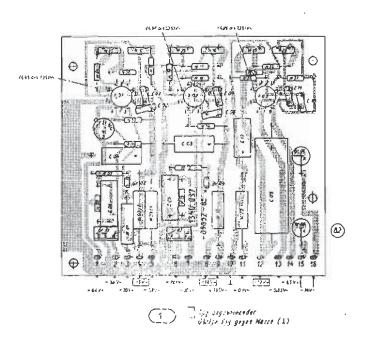


Bild 90 E-Tellaufbau 1340.037-01852

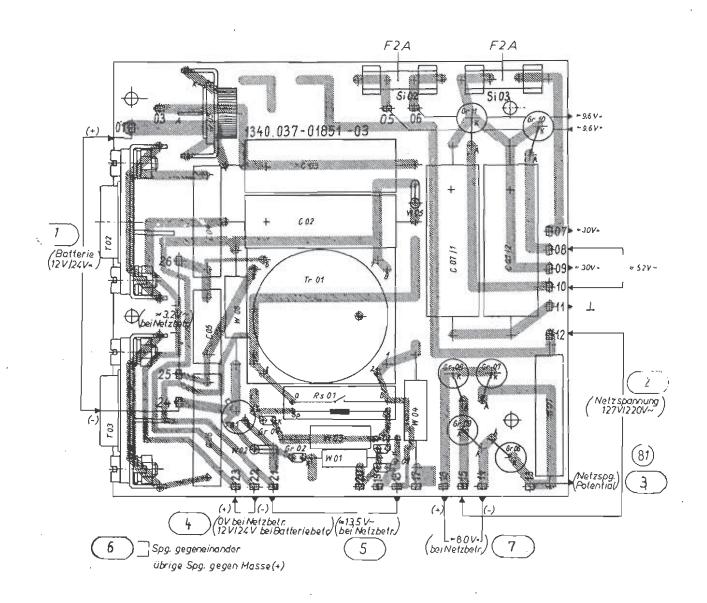
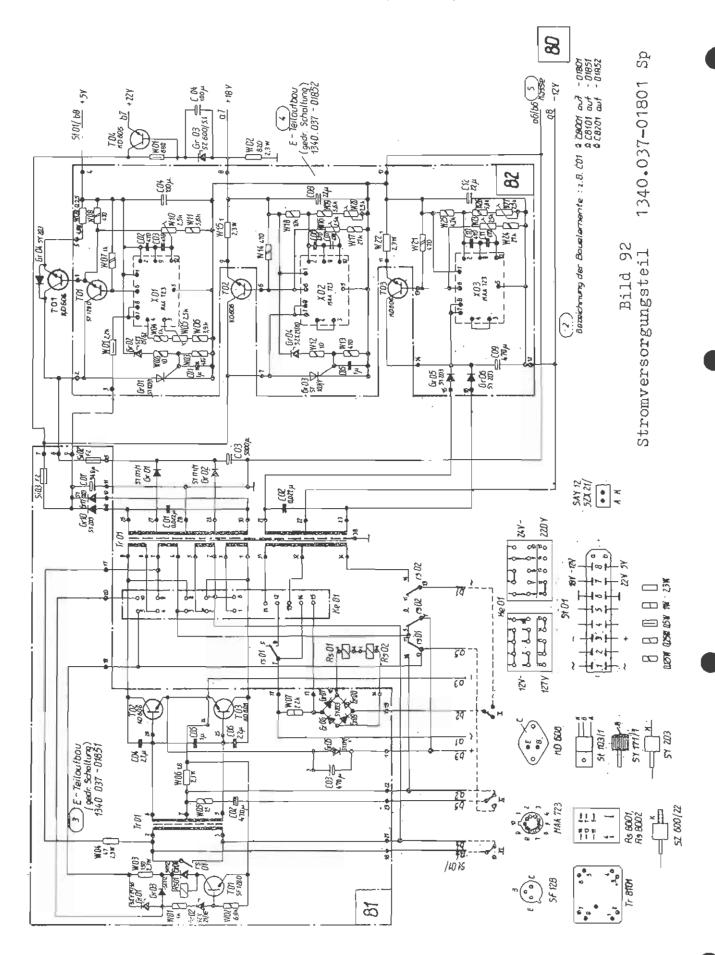



Bild 91 E-Teilaufbau 1340.037-01851

5.6. Stromversorgungsteil 1340.039-01500 (EKD 300)

5.6.1. Ein- und Ausgangswerte

EKD: $f_E = 00 002 00$, $B = \pm 3000 \text{ Hz}$ A3Ba, TF_A mittlere Lautstärke, $I_{\square} = 40 \text{ mA}$

Stromaufnahme des Gesamtgerätes:

Strommessungen mit P 8 bei $U_{\mbox{Nenn}}$ in der Netz- bzw. Batteriezuleitung.

Alle angegebenen Ströme sind Richtwerte.

Netzbetrieb: \sim 127 V : ca. 400 mA

 \sim 220 V : ca. 230 mA

Batteriebetrieb: == 24 V : ca. 1,5 A

-- 12 V : ca. 3,0 A

Ausgangsspannungen:

Mit Kontrollschalter Sch 1005 die Stellungen +18 V, +5 V, -12 V abfragen. Zeigerausschlag am Kontrollinstrument Ms 1001 muß im kleinen blauen Kontrollsektor liegen.
Mit P 9 die Ausgangsspannungen überprüfen. Feinkorrekturen

erst nach ≥ 30 min Betriebszeit des Empfängers durchführen.

+22 V - 2 V

Vor jeder Korrektur Strombelastung überprüfen.

Brummspannungen der Ausgangsspannungen

Die Welligkeit ist bei Belastung und \sim 220 V Eingangsspannung mit P 6 zu messen, wobei der Spitze-Spitze-Wert abzulesen ist.

+18 V-Strecke : \leq 30 mV (20 kHz) + 5 V-Strecke : \leq 50 mV (20 kHz)

-12 V-Strecke : ≦ 20 mV (100 Hz bzw. Rauschen)

+22 V-Strecke : $\leq 50 \text{ mV}$ (20 kHz +100 Hz)

Regelverhalten

Die Abweichungen der einzelnen Ausgangsspannungen bei einer Änderung der Eingangsspannung von \pm 10 %, gemessen mit P 9, betragen:

+18 V-Strecke : \triangle U \leq 60 mV + 5 V-Strecke : \triangle U \leq 20 mV -12 V-Strecke : \triangle U \leq 10 mV

Die Eingangsspannungsabweichung ist mit Stelltrafo (P 12) zu simulieren.

5.6.2. Meßwerte innerhalb des Stromversorgungsteiles

bei 220 V-Netzbetrieb und Belastung

Gleichrichterspannungen

+18/+5 V-Strecke

(gemessen an C 5003) : ca. 30 V

-12 V-Strecke

(gemessen an C 5105) : ca. 20 V

Zusatzspannung für 22 V-Strecke

(gemessen an C 5108) : ca. 4 V

Überstrombegrenzung

Die +18 V-, +5 V- und -12 V-Strecke ist jeweils mit einer fest eingestellten Strombegrenzung ausgerüstet.

Diese Strombegrenzung ist durch zusätzliche Belastung mit Schiebewiderstand (R 1) 100 - 0 Ohm zu überprüfen.

	Kippstrom	Kurzschlubstrom
+18 V-Strecke	ca. 2 A	≤ 2,5 A
+ 5 V-Strecke	ca. 3 A	≦ 4 A
-12 V-Strecke	ca. 0,5 A	≦ 0,15 A

Beim Kurzschließen der +18 V- und +5 V-Strecke treten Schaltreglergeräusche im Hörbereich auf.

Kurvenform

An den im Stromlaufplan angegebenen Meßpunkten M 01 bis M 04 müssen die dort angegebenen Kurvenformen mit P 6 nachgewiesen werden.

Arbeitsfrequenz

Der Transverter arbeitet bei Nennspannung mit einer Frequenz von ca. 80 Hz. Sie ist stark von der Eingangsspannung abhängig.

Die Schaltreglerfrequenz wird mit W 5227 auf 20 kHz \pm 3 kHz eingestellt.

5.6.3. Fehlersuchtabelle

Fehler	mögliche Ursache	Beseitigung
a)Transverter schwingt	-Falschspannungsschutz spricht an	-siehe b)
nicht an	-T5101, T5102 defekt	-T5101,T5102 aus-
	-Kontaktschwierig- keiten bei Rs5001/5002	-Rs5001,Rs5002 aus- wechseln
	-Kontaktschwierig- keiten beim Ein- schalter auf Front- platte	-siehe c)
	-Überlast auf Sekundär- seite	-macht sich bei Netzbetrieb durch erhöhte Stromauf- nahme bemerkbar
b)Falsch- spannungs- schutz spricht an	-Batteriespannung stimmt nicht mit der auf dem Klemmbrett Ke 5001 ein- gestellten Spannung überein -Bauelement in der Schutz- schaltung defekt	-z.B. Gr 5103, Gr 5102, T 5103, Rs 5101
c)Anschwing- hilfe wird nicht ange- regt (C 5101 wird beim Zu- und Abschal- ten nicht auf- bzw. entladen	-Unterbrechung im An- schwingkreis St 5001/b3(+)- rs 02/7/5/11/13- W 5111-Gr 5106-Ein- schalter (auf Front- platte)	
d)Si 5101 spricht an	-Überspannung auf +5 V- oder +18 V-Strecke	-Verbraucher im Gerät (z.B. TTL-Schaltungen)

Fehler	mögliche Ursache	Beseitigung
	-Kurzschluß in der Schaltung	abtrennen - auf Leiterplatte 51 Anschluß 6 u. 7 ablöten - prüfen, ob am Ausgang einer der beiden Strecken zu hohe Spannung ansteht, wenn ja, dann z.B. Transistor T 5101 bzw. T 5102 oder Steuerung (MAA 723) defekt. Nein - 1) -Verbraucher abtrennen u.prüfen, ob weiter- hin die Sicherung an- spricht, dann z.B. Gr 5203, Gr 5204 defekt oder Tran- sistorisolation defekt.
	1) -Überspannungsschutz- kreis nicht in Ordnung	-z.B. Gr 5103 bzw. Gr 5104 defekt bzw. Gr 5105 (Thyristor)
e)Störgeräusch durch Schalt- regler	-Sägezahngenerator (T 5210, T 5207) defekt	-Kurvenform an M 01, M 02 überprüfen. Signalverfolgung bis zum Schalt- kreisanschluß 3

Fehler	mögliche Ursache	Beseitigung
f)zu hohe Aus-	-T 5001 defekt	
gangsspan→	-X 5101 defekt	
nung der		
-12 V-		
Strecke		
g)Frequenz der	-Ein Gleichrichterzweig	-Messung an
Gleichrich-	des jeweiligen Gleich-	C 5105:-12V-Strecke
terbrumm-	richters ist defekt	C 5108:Zusatzspan-
spannung ist		nung für
bei Netz-		22 V-Strecke
betrieb statt		C 5003:+5 V-Strecke
100 Hz nutr		+18 V-Strecke
50 Hz		

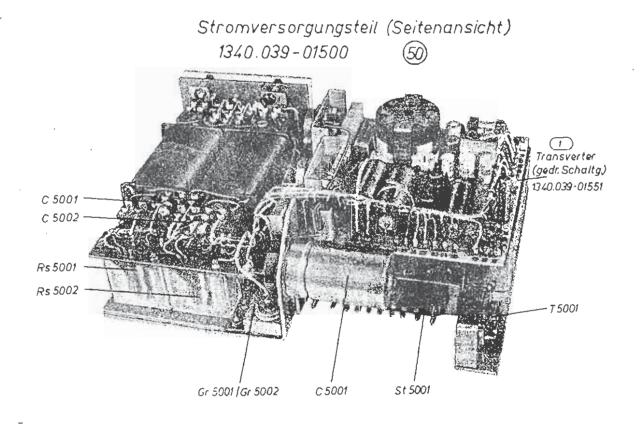


Bild 93 Stromversorgungsteil 1340.039-01500

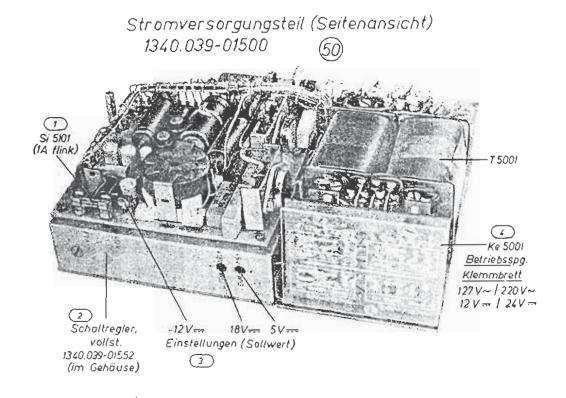
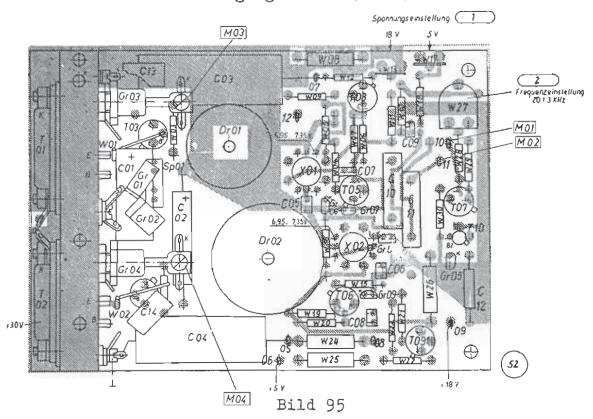



Bild 94 Stromversorgungsteil 1340.039-01500

Schaltregler 1340.039-01552

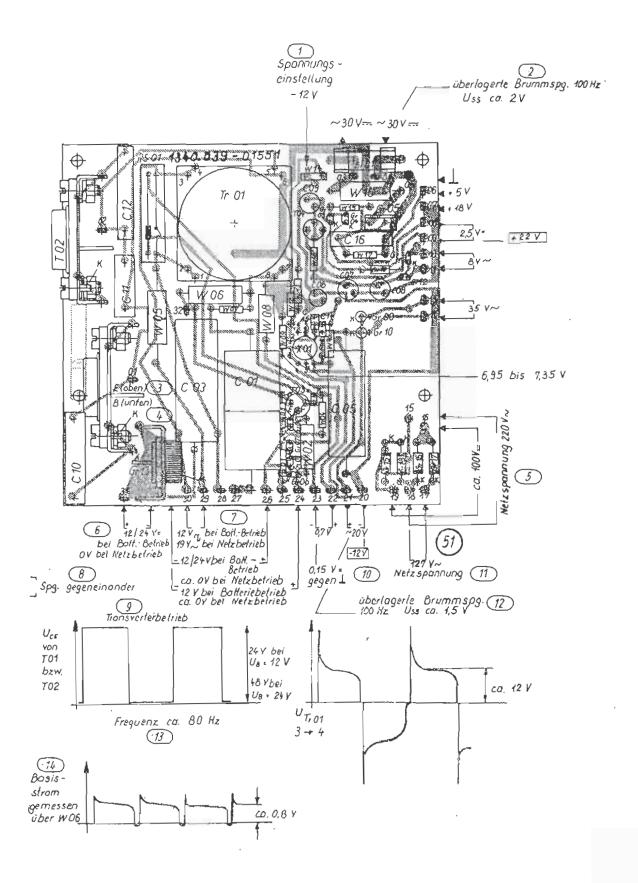
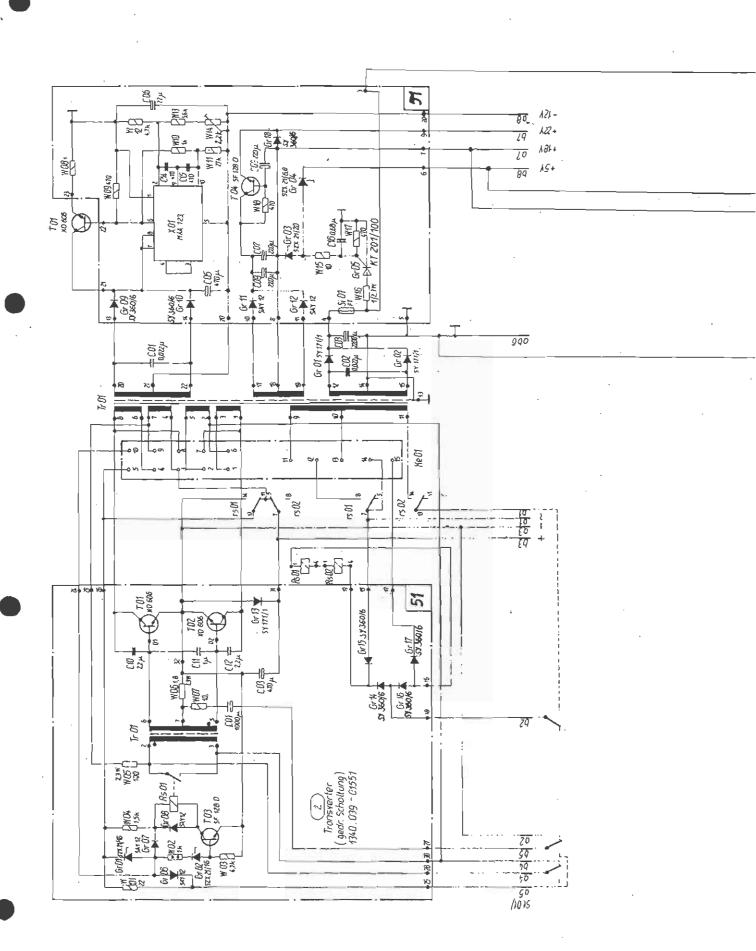
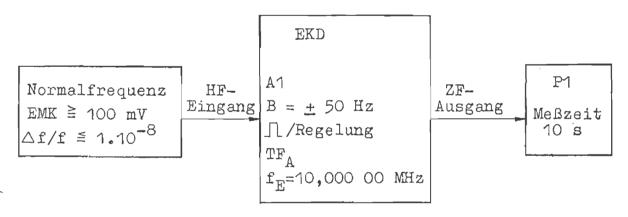



Bild 96 Transverter 1340.039-01551

5.7. Vom Gerätehersteller speziell ausgewählte Bauelemente


Einzelne Schaltungen erfordern den Einsatz speziell ausgewählter Bauelemente, die für Servicearbeiten vom Geräteherstellerwerk bezogen werden können.

```
Si-Schottky-Dioden KD514A (Gr 3311...3314): Ringmodulator-
                                                 quartett nach
                                                 1340.037-01353 PV3
Si-Schaltdioden SAY 17 (Gr 2201...2204)
                                                nach
                                                1340.037-01253 PV2
                                                Co 1,5 pF bei
Si-Schaltdioden SAY 17 (Gr 2302...2305)
                                                   _ 10 MHz
Sperrschicht-FET KP307A (T 3401, T 3402)
Sperrschicht-FET KP307A (T 2104, T 2106,
                                              ) nach
                           T 2108, T 2113,
                                                1340.037-01251 PV2
                           T 2115, T 2301,
                           T 2312, T 2504,
                                                I_D = 3 \text{ mA}
                           т 2506, т 2508,
                                              ) Մ<sub>GS</sub>=0,33...1,1 V
                           T 2513)
                                              Y21s >3,5 mS (20 kHz)
Sperrschicht-FET KP307A (T 2105, T 2505)
                                                nach
                                                1340.037-01251 PV2
                                                Gruppe 9...11
                                                I_D = 3 \text{ mA}
                                                U_{GS=2...4}^{D} V
                                              Y<sub>21s</sub> > 3,5 mS (20 kHz)
Integr. Schaltg. A281D (X 3401, X 3701)
                                                 1340.037-01357 PV2
                                                ZF-Verstärker
                                                Kanal A/Kanal B
                                                 (Gleichlauf für
                                                  Verstärkung und
                                                 Reglung)
```

6. Messen der Hauptparameter

6.1. Frequenzgenauigkeit

- . Empfänger ≥ 12 h bei Standardmeßbedingungen +15 ... 35° C und 45 ... 75 % rel. Feuchte ausgeschaltet.
- . Empfänger einschalten und nach 10 min. Frequenz messen.

10 MHz

 bei größerem Frequenzfehler Korrektur mit W 2410 (Referenzfrequenz)

6.2. Empfindlichkeit

6.2.1. Sendeart A1

- P 4 an Bu 3004/ Y , f_E und EMK-Werte \triangleq Meßfrequenz, P 3 (0,5 V-Bereich) und 590 Ohm Abschlußwiderstand (R 6) an Leitungsausgang TF_A .
 - EKD: $f_E \triangleq Meßfrequenz$, (") /Reglung, $B = \pm 50$ Hz, A1, TF_A ,
- . P 4 auf $U_{\rm NF}$ -Maximum abstimmen und mit \"\\ /Regler 250 mV einpegeln, P 4 vom Empfängereingang trennen und $\frac{S+R}{R}$ am P 3 ermitteln.
- . Sollwerte: $f_E = 14...149$ kHz, EMK = 10/uV, $\frac{S+R}{R} \ge 20$ dB 150 kHz...30 MHz, EMK = 1/uV, $\frac{S+R}{R} \ge 20$ dB

6.2.2. Sendeart A3

- . P 4 an Bu 3004/Y , EMK = 15/uV, m = 0,3
 und f_m = 1000 Hz, P 3 (1,5 V-Bereich) und 590 Ohm
 Abschlußwiderstand (R 6) an Leitungsausgang TF_A.

 EKD: f_E ≜ Meßfrequenz, (N) / Reglung, B = ± 3000 Hz, A3, TF_A.

 P 4 auf Bandmitte abstimmen und mit (N) / Regler auf O dBm
- P 4 auf Bandmitte abstimmen und mit (M) /Regler auf O dBm (0,775 V) pegeln, Modulation des P 4 abschalten und $\frac{S+R}{R}$ am P 3 ermitteln.

Sollwert: $f_E = 150 \text{ kHz...30 MHz}$, EMK = 15/uV, m = 0,3 und $f_m = 1000 \text{ Hz}$, $\frac{S+R}{R} \ge 20 \text{ dB}$.

6.2.3. Sendearten A3J, A3A, A3Bj, A3Ba

P 4 an Bu $3004/\Upsilon$, EMK = 3/uV,

P 3 (1,5-V-Bereich) und R 6 an Leitungsausgang TF_A bzw. TF_B. EKD: $f_E \triangleq \text{MeBfrequenz}$, (N) /Reglung, A3Bj, B = +2700 Hz, TF_A bzw. TF_B: -3400 Hz/-6000 Hz.

P 4 auf 1000-Hz-Ton abstimmen und mit () /Regler auf O dBm am Leitungsausgang TF_A bzw. TF_B pegeln.

P 4 vom Empfängereingang trennen und $\frac{S+R}{R}$ am P 3 ermitteln.

 $f_E = 1,5...30 \text{ MHz}, EMK = 3 \text{ uV}, B = "2700 \text{ Hz"}; \frac{S+R}{R} \ge 20 \text{ dB}$

1,5...30 MHz, 3/uV, ="3400 Hz" ≥ 18 dB 1,5...30 MHz, 3/uV, ="6000 Hz" ≥ 16 dB

Bemerkung: Auf Eigenstörstellen des Empfängers muß bei A3J, EMK = 3/uV, B = "2700 Hz" der Störabstand ≧ 17 dB sein.

6.3. Verstärkungsreglung

6.3.1. /Reglung

P 4 an Bu 3004/ Υ ,EMK = 2/uV ... \geq 200 mV, f_E = 5,5 MHz, P 3 (1,5-V-Bereich) und 590-Ohm-Abschlußwiderstand (R 6) an NF-Leitungsausgang TF_A bzw. TF_B. Frequenzeinstellung 05 500 00, (M) /Reglung, B = \pm 3000 Hz, A3Bj, TF_A bzw. TF_B.

P 4 auf 1000-Hz-Ton im Kanal A und Kanal B abstimmen. EMK von 2/uV in 20-dB-Stufen auf 200 mV erhöhen, jeweils mit $^{\text{H}}$ /Regler 0 dBm (\triangleq 0,775 V) an TF_A bzw. TF_B pegeln. Sollwerte:

hei EMK = 2/uV...200 mV sind mit \\\| /Regler 0 dBm am TF_A- und TF_B-Leitungsausgang || 600 Ohm einstellbar Pegelgleichlauf-Fehler: ≤ 2 dB

6.3.2. Automatik-Reglung (\(\sqrt{1} \)

Meßanordnung wie Pkt. 6.3.1. Frequenzeinstellung 05 500 00, Π bzw. Π /Reglung, $B=\pm3000$ Hz, A3Bj, TF_A bzw. TF_B P 4 auf 1000-Hz-Ton im Kanal A und Kanal B abstimmen, EMK von 2/uV in 20-dB-Stufen auf 200 mV erhöhen und NF-Pegel an den Leitungsausgängen TF_A und TF_B messen.

bei EMK = 2/uV...200 mV sind die TF_A - bzw. TF_B -Leitungs-ausgangs-Pegel -3,5 dBm...+3,5 dBm (\triangleq 0,52 ... 1,16 V).

Sollwerte: