Frequency Measurement with µHz Accuracy

and some

Science and Engineering Resources Discovered during the Journey

Rev C - W2TX

The ARRL FMT

- The test is run twice each year, April and November
- The test signal is usually transmitted on three frequencies, sequentially. Ex.-20M, 40M, 80M
- On each frequency:
 - Call up: 3-5 min.
 - Key down: 2 min.
- K5CM runs other practice sessions throughout the year

How good do you have to be?

March 2016 FMT

Call	Section	Grid	Average PPX
K7HIL	AZ	DM42ph	1.11E-08
AB4RS	VA	FM18hw	1.15E-08
N3I ZN	SDG	DM13ji	1.28E-08
VE3OAT	ON	FN25eg	2.36E-08
N6RDR	ORG	DM13cx	2.43E-08
W60QI	LAX		2.45E-08
W3JW	VA	FM17tn	2.48E-08
N2GL	ORG	cn85kp	3.76E-08
WA2DVU	SNJ	FM29NC	4.15E-08
VE3GSO	ON	EN92JX	4.22E-08
W4JLE	SC	EM96	4.58E-08
КЗКО	NFL	EM90	4.64E-08
VE2I Q	ON	FN15nt	4.69E-08
W2TX	SFL	EL97qw	5.86E-08

- 1x10exp-08 over sky-wave is possible if you have stable ionospheric conditions
- Doppler shifts of up to 0.5
 Hz are common, however

How good do you have to be?

- K5CM measures his transmissions to 0.001 Hz.
- To be in the competitive range in 2016, you need to be able to measure all three frequencies to within about 0.01 Hz.
- 0.1 Hz accuracy on all three frequencies might get you in the top 20
- It is not easy! Frequently there are reports submitted that are KHz off.

My First FMT

- My station assets
 - FTdx-5000
 - Fully synthesized
 - Can be tuned in 1 Hz steps
 - All internal injection oscillators are phase-locked to the radio's master oscillator
 - The SPOT function generates a tone of known frequency so that by matching a received signal's audio tone (by tuning the radio), the radio displays the received signal's frequency
 - Need some type of timebase for frequency resolution finer than 1 Hz

Equipment used in my first FMT

My First FMT-Method

- Find the FMT signal. The approximate frequency is announced in advance
- Tune the radio in 1 Hz steps while activating the SPOT signal, tune for lowest beat note (less than 1 Hz)
- Set the radio just below the FMT signal. Count the beat notes in a defined time period. Set the radio just above the FMT signal and repeat.
- Extrapolate to estimate the exact frequency

First FMT-Method

. /					
	3/29/2015	EMT Pra	etice		
wwv					
	b+ata @261	0.000001	11 bout	15 8	00
			is small		PC
			& Bists		sec
			1000 Zx10"	5×10-7	
10130	20 m vertical	The second second		. 1	
-17/1	SIG Level.	5-3 IS	Fale (52 +0 55	variat	(en)
32-3	a Beath at		0.5	15	300
(H) P(= 75.37)		14 120.620		15	300
		14120-621	2.2	15	sec
36-4	o off		14/20,619.3 subtreet7	COL CLASS	+.706
	4 JOM HORIZ		172130 /186	7 VAA	120,620 036
	SIG Level	5-1 + 2 F	de The	141	20620.000
	Beato		5 7	15	5 FC
	700 30 03	14120620		15	500
		19120,621	26	15	_30C
	the state of the same				
11:00	call up 40 M		Foll		
	SIG Leve	1 57 ==	g 1/2 39		
	Bentaco	7106005	61/2 36	15	_ sec
		7106006		15	sec
		7106807			sec
		7106004	.546 X .000	000005	= ,355
				X004.56	6
		7106 004	2+11	.35.	5
				104004.92	54 0
				1104 004 .9	213 HZ
				1106 004 .9	
			e	(1	

First FMT-Capabilities

- Radio's reference frequency-WWV
 - 2.5, 5, 10, 15, or 20 MHz.
 - Accuracy of the received WWV depends....
 - Time of day and solar activity can affect how stable the ionospheric reflection is
 - Vertical movement of the ionosphere translates into Doppler shift of the signal
 - Doppler shifts of up to 0.5 Hz are common
- Clock it was a Timex! I estimate that I can define a 10 second interval +/- 0.25 sec. Might contribute 0.1 Hz error

First FMT - Results

- Out-of-town for the official FMT, but participated in a practice test on 29 March, 2014
- 20M: my error was 0.032 Hz., or 2.3 x 10exp-9
- 40M: my error was 0.084 Hz., or 1.18 x 10exp-8
- Experience would later tell me that I must have had very good propagation conditions, along with a huge measure of beginner's luck
- Lesson learned:
 - Easy to make a mistake in the rush of making a measurement-a simpler process is better
 - Think through what you want to do and make a form that allows you to just fill in the blanks

The Learning Phase

- FTdx-5000 issues
 - I bought the service manual CD for my radio
 - Its OCXO can only be set in approximately 0.1 Hz increments. This contributes a constant ppm error.
 - The DSP circuitry is clocked by a separate, free-running, crystal oscillator at 18.432 MHz divided down to 72 KHz-another source of error
 - Product detection occurs within the DSP at the 30 KHz IF.
 - Subsequent testing suggests the DSP error is -0.12 Hz.
- Clock issues
 - need a simpler way to make fractional-Hz measurements
- Reference frequency issues
 - WWV has Doppler shift
 - Internal oven has warm-up drift

How to Improve?

- Did not want to modify the FTdx-5000 for this "science project".
 - Need to remove or compensate for the DSP frequency error
 - Decided to resurrect my RF-590
- Discovered the existence of Spectrum Lab SW
- Reference frequency:
 - Something more accurate than WWV reception
 - Need a plan/method to keep it calibrated
 - Improved settability

Spectrum Lab (SL) SW

- Free SW discussed in April 2015 QST article on the FMT
- Uses a computer's sound card (another oscillator!) to digitize the radio's audio output
- Sound card oscillator can be calibrated using an audio tone of known frequency-use WWV
- SL uses FFT's to analyze the audio signal
- Can be configured to provide very fine frequency resolution

Fun with SL

- Decided to "practice" using SL by measuring AM station carrier frequencies.
 - Found two stations that had suspiciously constant carrier frequencies! I later discovered they are GPS-locked
 - Found one station that was initially outside the FCC limit!
- Made my first measurements of Doppler shift of WWV and CHU transmissions

Nearby AM Stations

				8/28/2015	
Freq(KHz)	Call	City	Pwr (KW) Day/Night	Error (Hz)	Comments
540	WFLF	Orlando	50/46	-0.82	
580	WDBO	Orlando	5/5	-0.92	
670	WWFE	Miami	50/1	+9.39	
840	WPGS	Mims	1/-	-1.31	
920	WDMC	Melbourne	5/1	-7.85	
1030	WONQ	Oviedo	45/1.7	-0.5	
1060	WIXC	Titusville	50/5	+2.44	
1160	WIWA	St. Cloud	2.5/0.5	-3.5	
1240	WMMB	Melbourne	1/?	-0.12	GPS locked?
1350	WMMV	Cocoa Beach	1/1	-0.12	GPS locked?
1370	WZTA	Vero Beach	1/0.074	+2.47	
1490	WTTB	Vero Beach	1/?	-7.58	
1510	WWBC	Cocoa Beach	50/25	+2.48	
1560	WLZR	Melbourne	5/-	-1.20	
1590	WPSL	Port St. Lucie	5/0.063	-9.13	
1700	Haiti?			+14.56	

Notes: 1. FCC requirement for AM Broadcast is to be within +/-20 Hz

The following are notes for the 08/28/2015 data:

- 2. Radio used was FTdx-5000, 1 Hz tuning resolution. CW mode was used, with a -500 Hz BFO frequency.
- 3. The audio output of the FTdx-5000 is fed into a PC timecard that has been calibrated to within 0.01 Hz by measuring WWV's 500 Hz tone for successive 45 second periods. SpectrumLab software is used to analyze the audio. Typically Fc=500 and sp=+/- 10 Hz. Sampling rate = 8000 and FFT bin size = 524,288.
- 4. Total measuring equipment error is believed to be about +/- 0.03 Hz. ?

Problems SL Cannot Fix

- Cannot correct for the radio's oscillator errors
- Long-term calibration depends on a constant sound card crystal oscillator frequency. However, that oscillator's frequency is affected by
 - Temperature changes
 - Mechanical vibration (PC's fan, disc drives)
 - Crystal aging/drift
- The result is a fair amount of drift and "jitter" on the measured frequency

Harris RF-590 Receiver

- All analog-no DSP, avoids the DSP clock issue
- All oscillators used for frequency conversion are phase-locked to a master oscillator operating at 40 MHz. The master oscillator is locked to an internal OCXO at 1, 5 or 10 MHz.
- The master oscillator can, instead, be phaselocked to an <u>external</u> frequency reference at 1, 5, or 10 MHz.

Frequency Standards

Туре	Cal. Accuracy	Aging/day	Aging/60 days	Cost-new	Cost-used	Comments
1 MHz OCXO	1x10exp-7	1x10exp-8	6x10exp-7	~\$200	\$20-\$50	"stiction"; periodic cal
10 MHz OCXO	1x10exp-8	1x10exp-8	2x10exp-7	~\$200	\$20-\$50	"stiction"; periodic cal
Rubidium	~10exp-11	5x10exp-13	3x10exp-11		\$200-\$1200	Needs periodic cal; portable
						Derived from NBS; continually corrected;
GPSDO	no cal required				~\$100-\$300	requires an antenna

RF-590

November 2015 FMT

- Used RF-590 with GPSDO
- Used Spectrum Lab SW with the sampling rate (SR) calibrated against WWV's 500 Hz AM signal
- Prepared a data entry sheet beforehand
- Procedure used:
 - Tuned to FMT signal
 - Recorded the Receiver's frequency
 - Recorded the peak frequency reading from SL
 - Let Excel perform the calculations

Nov 2015 FMT Results

W2TX

160m	80m	40m
1,841,988.57	3,598,131.22	7,064,322.29

0.00 -0.08

Remaining issues

- Accuracy, at this point in time, mainly depended on accuracy of the sound card's sampling rate calibration
- Calibration process was tedious and repetitive due to wandering of the cheap oscillator in the sound card.
- SL has a continuous sampling rate correction option
- Decided to invent GPSDO-BOB

GPSDO-BOB

- Driven by GPSDO 10 MHz output
- Provides multiple outputs
 - 10 MHz sine and square-wave
 - 5 MHz square wave
 - 1 MHz sine and square-wave
 - 100 KHz square-wave (old-timey calibrator)
 - 500 Hz sinewave for continuous sound card calibration routine
 - Found that this routine doesn't work very well, don't understand why

GPSDO-BOB Assembly

- Used PCBExpress schematic capture and PCB layout tools
- Made bulk resistor, capacitor, and connector purchases from China (E-Bay)
- Semiconductors from Mouser and Digi-Key

Further Improvement

- Equipment is good enough to do very well in FMT
- RF-590 (5 PLL's) and the sound card sampling rate calibration were thought to be the largest remaining sources of error.
- Total error thought to be in range of tenths of millihertz.
- What might be possible? Could I get to uHz accuracy? I went off the deep end.....

Sound Card PLL

- Sound card oscillator is a 24.576 MHz cheap (<\$5) crystal oscillator. When divided by 512 it provides a 48 KHz sampling clock, etc.
- The Sound Card PLL locks a quality 24.576
 MHz crystal oscillator to the 10 MHz GPSDO
- Used to replace the crystal on the sound card
- Sound card sampling rate calibration is now "plug-and-play" and extremely accurate.

Sound card PLL

- Used a parallel entry PLL chip-1980's thruhole technology, but simple
- 10 MHz input, 24.576
 MHz output
- Sound card clock is now exactly on frequency-no calibration required

Results

- Very preliminary data suggests I can measure a (1.24 MHz) frequency to within 5x10exp-13, or an error of .62 uHz
- This was done by measuring the WMMB carrier for 90 minutes, and plotting the Allan Deviation
- Longer term data analysis needed to better characterize my measurement setup

SL Measurement of WMMB Carrier

Where to from here?

- How good is it?
 - It is much better than needed for the FMT!
 - Characterize
 - Long-term measurements of WMMB carrier
 - Learn about Allan Deviation (statistical tool)
 - Use statistical tools to characterize frequency stability vs time
- Study simultaneous reception of WWV and the FMT signals-can I correct for sky-wave Doppler shift?

Appendixes

- Re-examine FTdx-5000 performance
- Information web sites
- Other FMT stations' equipment
- PLL Loop filter design notes-ask me, if you are interested

Variability of FTdx-5000 Freq Error

SL calibrated, removes FTdx-5000 DSP offset

Information Web Sites

- Spectrum Lab SW: http://www.qsl.net/dl4yhf/spectra1.html
- Time-Nuts: http://www.leapsecond.com/time-nuts.htm
- FMT-nuts reflector: https://groups.yahoo.com/neo/groups/FMT-nuts/info
- K5CM's FMT site: http://www.k5cm.com/
- FCC Station database: https://www.fcc.gov/media/radio/am-query
- ExpressPCB schematic and layout tools: <u>https://www.expresspcb.com/</u>
- LaPlace Transform plots: http://sim.okawa-denshi.jp/en/detatukeisan.htm
- Good, cheap, pcb's: https://www.seeedstudio.com/fusion_pcb.html
- Allan Variance: https://en.wikipedia.org/wiki/Allan variance
- Lady Heather GPSDO Control/Monitor: <u>http://www.ke5fx.com/heather/readme.htm</u>

Other FMT Stations' Equipment

Call	Total Error (ppm) Receiv	er Mode used	Reference	Synthesizer	Software	Antenna	Comments
K5CM	0.00000 FT-1000I	O AM	HP-Z3801	HP-3336C or PTS-250	Spectrum Lab	160M Vert; 80/40 dipoles	Source of FMT signals
W2TX	0.01132 RF-590	CW	Trimble Thunderbolt		Spectrum Lab	Tuned 64 ft. vertical	
AB4RS	0.01933 HP-3586	В	Trimble Thunderbolt	HP-3336C	Spectrum Lab		
WA1ABI	0.02357 WJ-8718		Rb Standard		Spectrum Lab		
WA2DVU	0.03482 HP-3586			HP-3336			
N6SKM	0.03500 FT-857D		GPSDO		FLDigi		
AA6LK	0.04084 FT-847	AM	HP-Z3805A	Marconi-2019	Prologix USB-GPIB	5BTV	
W60QI	0.04781 HP-3586		HP-Z3801B	HP-3336B			
N3IZN	0.05105 TS-440		Trimble Thunderbolt				
N6RDR	0.05319				K1JT Freq. Meas. Tools		
VE2IQ	0.06909 TS-850	CW				Active E-Probe	
КЗКО	0.07016 TS-480		WWV		Spectrum Lab	Indoor 40M dipole	
W3JW	0.08274 IC-7800		GPSDO		Spectrum Lab		
WB4HIR	0.11564 TS-590				K1JT Freq. Meas. Tools		
K6APW/7	0.11745 Ten-Tec		WWV		Uses audio beat note by ear		
W4JLE	0.12657 IC-7100		GPSDO		FLDigi		
KD5MMM	0.12666 FT-847		CHU		Spectrum Lab		
AE5P	0.12965 Flex 670	0	GPS		FLDigi		
WB5UAA	0.20529 IC-756 P	o-II	WWV				
AG2M	0.22372 FT-950				Spectrum Lab		
W5TV	0.26631 Flex 650	0			FLDigi		
W5AJ	0.27116 K3				Spectrum Lab		
W8TM	0.34696 K3/KSYN	3A CW	WWV				
N8OQ	0.37819 K3		GPSDO by G3RUH		Spectrum Lab	Horizontal loop	
N5DM	0.40006 FT-3000				Digipan 2.0	160/80/40 dipoles	
WB2CMF	0.40149 TS-2000				FLDigi	R-8 vert./dipoles	
VE3GSO	0.51556 FT-950	USB	WWV and CHU		Spectrum Lab		

W2TX FMT Station

