# DXing from a small (or even no) garder

## GOKYA

Happisburgh Lighthouse, Norfolk

STEVE NICHOLS 20, Holiy Blue Road Wymondham Norfolk NR18 0XJ ENGLAND

III

#### Steve Nichols G0KYA www.qsl.net/g0kya



## What is DX?

#### Either distant or rare stations





By using a DX newsletter like 425DXNews www.425dxn.org/







- By using a DX newsletter like 425DXNews
- Or Ohio/Penn DX Bulletin



Hore, Mar.

120-1

-- tate - Min. - Mat. Oto-

www.papays.com/opdx.html



Martin Report - 12003 011 TVT and

to the way fitters had of the flat

- By using a DX newsletter like 425DXNews
- Or Ohio/Penn
  DX Bulletin

FH/G3TXF: Mayotte re-visited - January 2006 Nigel Casthorne, G3TXF nigel@G3DXF.com Mayotte - an outpost of France Getting to FH The French possession of Mirsofte (FH) For fig FH operation is 2000, we had travelled to Mayotte via the Septhelles. which lies in the Mozenshipe Channel, between the porthern end of Modegescer and flying from the Seydhelles to Mayotte on Air Merandops on the African national is Amsted. This option was not available in 2006 In Annuary 2006 the journey was from semewhat of a geopolitical oddity Geostructurally Mayorts is part of the Londen to Macritics (3BS), and twen there Conneros group of islands. Before to Réspice (FR) and on to Mevote (FH) independence in 1975, the French colony of with Arr Arneral Connecos used the FH prefix. When the other islands in the Compose group because Air Austral have just three jet succeff in their fleet two 737s and one 777. On this independent and changed their prefix to D6. Mayette alona decided to stay as part of one trip we flerr on all three of them. The France and occtipped to use FH. Both the sheet hap between Manifim and Réspice. was en a 737. However, much to my Conneces (D6) and Mayotte (FH) became new DXCC entities in July 1975. The former service the two-hour flight on the way out Encycle contents of Connecce (FH, FRG) then from Réneises to Massime scatters a sensirie

The sec

Howers H & R and B Done H & C H H & SN + R PD - Breet See

e (a 12

Addy Reader

 Or CDXC News/ forum http://www.cdxc.org.uk/

#### Use the cluster: http://dxcluster.ham-radio.ch/

| 🗿 Ham Radis Dels    | ixe - DX Cluster An   | elysis - I | Nicrosoft Intern | et Explorer |                 |               |                                           | E 🖻 🔀                 |
|---------------------|-----------------------|------------|------------------|-------------|-----------------|---------------|-------------------------------------------|-----------------------|
| File Edit View I    | Ravonites Tools Hel   | p          |                  |             |                 |               |                                           | <b>A</b>              |
| 3 tack + 🕥          | - 🗷 🗟 🐔               | Pre        | ech 🔆 Pavorta    | 00          | • 💐 🛛 • 📘       | . 🖸 🗱         | A                                         |                       |
| Address 🍪 http://do | cluster han-radio ch/ |            |                  |             |                 |               |                                           | io tris <sup>30</sup> |
| Coogle G-           | ~                     | 60 0 50    | 98- 0            | Bookmarks + | AppRiss - SOnec | t - Juto      | NK + 🗑 57.77 🕞 Send to+ 🥒 🛛 👔             | Settings +            |
|                     |                       | A.         |                  |             |                 |               |                                           | -                     |
|                     | -                     |            | Top 50           | 14 MHz      | UTC             | Spotter       | Comment                                   |                       |
| K                   | 12 /                  |            | 15C              | 14265.0     | 16 Jan 18:04    | KGAVEC.       | up 5                                      |                       |
| 6                   | 110                   |            | S\$78TH          | 14254.0     | 16 Jan 18:03    | PHIKW         | TNK Ton                                   |                       |
| Co Co               | course gen            |            | EO/Ord EX        | 14023.0     | 16 Jan 17:50    | 8.5381        | clg cq strong                             |                       |
| 0                   | 3                     |            | STZEB.           | 14174.5     | 10 Jan 17:59    | ST2E8         | i an on this frequency                    |                       |
|                     | 1                     |            | LZIVVV           | 14101.0     | 16 Jan 17:42    | LZ/HDM        | \$/0 co co                                |                       |
| -                   |                       |            | EA2DCE/MON       | 14725.0     | 16 Jan 17:45    | EABCCG        | coreccion de indic.                       |                       |
|                     | 6 .                   |            | TOSET            | 14080.6     | 16 Jan 17:43    | EA7CZI        | UP 5                                      |                       |
|                     |                       |            | TOSET            | 14050.0     | 16 Jan 17:43    | OEdeo         | worked up 3.5                             |                       |
|                     |                       |            | 150              | 14265 0     | 16 1an 17:41    | CASCHY        | und new op sits                           |                       |
|                     |                       |            | EXPERIE ANY      | 14225.0     | 16 Jan 17:42    | FIRCOS        | SE tenerife mu bien escurbado kena        |                       |
| Ten S0              | Tee 250               |            | TOFFIC           | 14090.6     | 4.6 330 47144   | Emplanded and | netry 2 up                                |                       |
| t Ole release to    | A 100x cetrest 4      |            | TOTEL            | 14060.0     | 10 340 17:41    | CALCO         | ACT 14272 Cond sime?                      |                       |
| - 2010 100 0001     | - THERE FOR THE IT    |            | 121              | 14203.0     | 10 Jan 17:41    | EALFO         | USA 1427318 - 6000 31ghai                 |                       |
| ALL                 | ALL                   |            | TORES            | 14080.7     | 10 Jan 17:30    | CH.PEAC       | De la |                       |
| HE                  | HE                    |            | <u>150</u>       | 14024.0     | 10 Jan 17:37    | SPEEDE        | loud had clear,, to:                      |                       |
| 137 kHz             | 137 kH2               |            | 150              | 14265.0     | 16 Jan 17:36    | EARNE         |                                           |                       |
| 1.8 MHZ             | 1.8 MHz               |            | <u>15C</u>       | 14189.0     | 16 Jan 17:36    | FAENK         |                                           |                       |
| 3.5 MHZ             | 3.5 MHZ               |            | 110              | 14265.0     | 16 Jan 17:30    | EA7GMA        | 50+                                       |                       |
| 7 MHZ               | 7 MHZ                 |            | EASCOL           | 14017.1     | 16 Jan 17:23    | NE81          |                                           |                       |
| 10 MHZ              | 10 MH2                |            | 150              | 14265.0     | 16 Jan 17:22    | CT2IVH        | 59 on windon antenna af-020               |                       |
| 14 MHZ              | 14 MHZ                |            | G3 YPN           | 14071.0     | 10 Jan 17:22    | POLKSA        | Trix nice qso Alec psk31.                 |                       |
| 18 MH2              | 18 MHZ                |            | 150              | 14024.0     | 16 Jan 17:20    | Listor        | vy loud :) up 1                           |                       |
| 21 MH2              | 21 MH2                | -          | STALT            | 14070.0     | 10 Jan 17:19    | POINEW        | ivo trx 199 psk31                         |                       |
| 24 MH2              | 24 MH2                |            | IOSEI            | 14082.8     | 16 Jan 17:18    | LPLAC         | qsx up 3 -hai46 >> F6EXV                  |                       |
| ZB PHEZ             | 28 RH2                |            | KILZ             | 14014.5     | 16 Jan 17:18    | OK72H         | cìg cq dx                                 |                       |
|                     | \$ \$ \$              |            | 75505            | 14021.0     | 16 Jan 17:16    | HA2EOD        | the for new yox pan                       |                       |
| 14 S (M             |                       |            | TOSEL            | 14080.7     | 16 Jan 17:16    | IKOYVV        | EU EU UD                                  |                       |
| UHF CO NUM          | VHF                   |            | 15C              | 14024.0     | 16 Jan 17:16    | GAIBLX        | up-1                                      |                       |
| 70 844-             | 20 MHZ                |            | MA.96-849-1      | 14000.0     | 16 Jan 17:16    | HACOLI        | ves, he now wks EU, tks                   |                       |
| 144 MH2             | 144 MH2               |            | TOSET            | 14080.6     | 16 Jan 17:15    | NZUMH         | RTTY UD wrking eu nov                     |                       |
| 220 MHZ             | 220 MH2               |            | TOSET            | 14050.7     | 16 Jan 17:15    | HILCH BRI     | Wed HAOOU, That's FU                      |                       |
| 430 MH2             | 430 MH2               |            | TOSET            | 14081.0     | 16 Jan 17-14    | HACOL         | NON EU UN YESSESSES                       |                       |
| 1.2 GHz             | 1.2 GH2               | ~          | 150              | 14765 0     | 16 1an 17-14    | N TYDO        | up 5-10 TOTA 15-020 gel uda ESTAS         | ~                     |
| Cone .              |                       |            |                  |             |                 |               | 🔮 Internet                                |                       |
| W start             | Marcal Com            | -          | D                |             | w Date I        |               |                                           |                       |

Steve Nichols G0KYA, RSGB Propagation Studies Committee

A

## **Use contests**

CQWW





## Use contests

#### CQWW BERU (Commonwealth contest)





## **Use contests**

#### Doesn't really matter what antenna you use!



They'll hear you!



## **Follow the experts**





## Follow the experts





## G3SXW (Roger)





## **Understand propagation**

#### ACE-HF



| 20   | all option | and the     | danel i La nelle | -      | eloangebbir 12.1 |       | ET 😫     |
|------|------------|-------------|------------------|--------|------------------|-------|----------|
| E.e. | 10000      | and in pass | 1.74             | 2 2 41 | AND AND          | +0    | O SHORE  |
| -    | K 0        |             | 約刀               | 1.1    | A. 4             | - int | I wanted |
| 1.0  | 4.8        | 1.0 7.0     | 81.2 4           | 0.88.2 | 110 119 110      | 504   |          |





#### VoaProp

#### 

## **Choose the right bands**



40m, 20m, 15m and 10m good – especially in contests



## **Choose the right bands**



40m, 20m, 15m and 10m good – especially in contests

But 30m, 17m and 12m better – for DXpeditions



## Scan the bands





## What is the best mode?

- Worst FM!
- Better SSB (PSK31/RTTY) (?)
- Best of all CW every time!



# Can you work DX with low power? *"Life's too short for QRP!"*



Can you work DX with low power? Yes! "Life's too short for QRP?" "It is vain to do with more, what can be done with less"

William of Occam





J38AA – Grenada

100W Hustler vertical (20m)





3B7C St Brandon

20W Indoor dipole (20m)

![](_page_20_Picture_4.jpeg)

![](_page_21_Picture_1.jpeg)

5A7A Libya

10W loft-mounted magnetic loop on 30m

![](_page_21_Picture_4.jpeg)

![](_page_22_Picture_1.jpeg)

J5C – Guinea Bissau

10W loft-mounted dipole

![](_page_22_Picture_4.jpeg)

## Why CW? P40LE Aruba 5W FT-817 15m indoor 40m dipole

![](_page_23_Figure_1.jpeg)

![](_page_23_Picture_2.jpeg)

## Why CW? T77C San Marino 5W FT-817 84ft Long Wire on 30m

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

## How far can you get?

![](_page_25_Picture_1.jpeg)

÷

## Seattle, Washington State

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_2.jpeg)

(

## **G3YMC Dave Sergeant**

- 5W from Elecraft K2
- 222 DXCC countries
- Butternut vertical or 60ft long wire

"Don't be put off by the pundits who say you can only work DX with a big linear amplifier. You too can do it like I have."

![](_page_27_Picture_5.jpeg)

![](_page_27_Picture_6.jpeg)

![](_page_27_Picture_8.jpeg)

## **Digital Master 780**

| CW 🔽 🛃 🖉 🗘 - 💿 Info 🔺 🕨 🔁 📰 😭                                              |                             | 7                   |
|----------------------------------------------------------------------------|-----------------------------|---------------------|
| Tx:                                                                        | 🔎 Signal 🗳 9 to N(ine) 🔗 CW |                     |
| *7N OH7NGC                                                                 |                             |                     |
| -                                                                          |                             |                     |
|                                                                            | CELT CLOBCUDEDI 1873W       |                     |
| -                                                                          | CELISP9BCHDEDLIBZAK         |                     |
| * <ve>SP9BCH DE DL1BZA - O K MOS T O KDRJAN -SRI STRTA</ve>                | N *                         |                     |
| /N * / Q RN - TNX NICE*O HPE UAGN IN BET T E R CO ND X<br>DEDL1BZA*EE      | - GEIT I EET DX ES *LL      | ОКТ ИЗРЭВН          |
| 🕨 Send (F1) 🔰 Auto (F2) 📲 Pause (F3) 🔳 Stop (F4) 🜗 Break-in 🛛 😭 🥔 🚯        | 🕂 🔂 Repeat 🛛 🚰              |                     |
| 🖉 CQ 🦻 QRZ 🧷 Him de Me 🖉 Him de Me - K 🖉 RST, Name, QTH 🥥 Station 🥥 73     | Macros +                    |                     |
| inter text to be sent                                                      | 775 Hz   TMD:               |                     |
|                                                                            | Hone High                   | yn odd flont fenn f |
|                                                                            |                             |                     |
| 🛿 🕂 💽 🛃 🏥 160m 80m 40m 30m 20m 17m 15m 12m 10m                             | 🖣 « » 🕨 🤤 Faves             |                     |
| 4FSK-16 MT63 1000 Olivia 500/16 Olivia 1000/32 RTTY AFC DModes             |                             |                     |
| 8<br>800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 1<br>1 | 2100 2200 2300 2400 2500 25 | 00 2700 2800 2900   |
|                                                                            | 3                           |                     |

Steve Nichols G0KYA, RSGB Propagation Studies Committee

How hard can it be? Him: CQ CQ CQ DX DE 3B7C UP You: GOKYA Him: GOKYA 5NN TU You: 5NN TU

![](_page_29_Picture_1.jpeg)

## What about antennas?

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

## What do you want to work?

- North America: North West
- Caribbean: West
- South America: South West
- Australia/New Zealand: Depends on long/short path (NE/SW)

![](_page_31_Figure_5.jpeg)

![](_page_31_Picture_6.jpeg)

## What do you want to work?

Watch the radiation pattern!

Do you have nulls where you don't want them?

Note: 20m - G5RV as inverted V

![](_page_32_Figure_4.jpeg)

![](_page_32_Picture_5.jpeg)

## How well does it work?

![](_page_33_Figure_1.jpeg)

#### Use MMANA-GAL Free!

![](_page_33_Picture_3.jpeg)

# What about height?

To work the East Coast of the USA on 20m you ideally need a take-off angle less than 23 degrees

![](_page_34_Figure_2.jpeg)

Fig 4—Elevation response patterns of three Yagis at 120, 70 and 35 feet, at 14 MHz over flat ground. The patterns are overlaid with the statistical elevationangles for the path from Boston to continental Europe over the entire 11-year solar sunspot cycle. Clearly, the 120-foot antenna is the best choice to cover the low angles needed, but it suffers some at higher angles.

![](_page_34_Picture_4.jpeg)

# What about height?

To work the West Coast of the USA on 40m you ideally need a take-off angle less than 16 degrees

![](_page_35_Figure_2.jpeg)

Fig 7—Comparison of antenna responses for another propagation path: from San Francisco to Europe on 7 MHz. Here, even a 120-foot high antenna is hardly optimal for the very low elevation angles required on this very long path. In fact, the 200-foot high antenna is far better suited for this path.

![](_page_35_Picture_4.jpeg)

## What about height?

![](_page_36_Figure_1.jpeg)

## Take-off angles 80 metres - Norfolk to Boston, Feb 2007

![](_page_37_Figure_1.jpeg)

## Take-off angles 40 metres - Norfolk to Boston, Feb 2007

![](_page_38_Figure_1.jpeg)

## What about antennas? Twelve designs tested (so you don't have to!)

- Maldol MFB300
- EH antenna
- G5RV
- Cushcraft R5
- Cushcraft MA5V
- Rybakov vertical

- Magnetic loop
- TGM minibeam
- Hustler 5BTV
- W3EDP long wire
- Inverted V
- Multiband loft dipoles

## Maldol MFB300/Comet CHA-250B

"Full 1.8-60MHz frequency coverage, 200W PEP handling, and only 7m tall. Beautifully made in fibre-glass with stainless-steel & alloy fittings. "

## **Results?**

- Not good!
- Signals well down on every band

![](_page_40_Picture_5.jpeg)

#### Use a saucepan!

## EH Antenna

## **Results?**

- Not very good
- Down –2/3 S-points compared with dipole

![](_page_41_Picture_4.jpeg)

 Coax seems to radiate most and/or it needs more investigation

![](_page_41_Picture_6.jpeg)

![](_page_41_Picture_7.jpeg)

## EH Antenna

On tests with W1CG from the UK the EH (#1) was down compared with a Hustler vertical (#2)

![](_page_42_Figure_2.jpeg)

![](_page_43_Figure_1.jpeg)

| © C:Pro                             | gram Files\WW                                                    | NARO3WMANA     | GAL WNTWy ar                                 | itennasVG5RV_i                                                                                                                | nv_V mas                                                  |                                            |        |                     |           |        | E (           | 6 🗙   |
|-------------------------------------|------------------------------------------------------------------|----------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|--------|---------------------|-----------|--------|---------------|-------|
| Pile Edit                           | Service Tools H                                                  | kip<br>da = an |                                              |                                                                                                                               |                                                           |                                            |        |                     |           |        |               |       |
| Geomet                              | try View 0                                                       | Calculate Fa   | field plots                                  |                                                                                                                               |                                                           |                                            |        |                     |           |        |               |       |
| GSRV                                | Inverted V 8                                                     | 0m 40m 20m     | 10m                                          |                                                                                                                               |                                                           |                                            |        |                     |           |        |               |       |
| -Groun<br>O Free<br>O Peri<br>© Res | Freq 21.20<br>d<br>space<br>fect<br>dd height 1.0<br>Material Cu | 0 Ground       | MHz W<br>FI<br>FV<br>VE<br>CL<br>Setup<br>4. | AVE LENGTI<br>DTAL PULSE<br>LL MATRIX<br>ACTOR MATR<br>JLSE U (\<br>5c 1.00<br>URRENT DAT<br>AR FIELD<br>O FATAL ERF<br>3 sec | H = 14.141<br>= 509<br>RX<br>/)<br>+J0.00<br>TA<br>ROR(S) | (m)<br>I (mA)<br>0.24-j0.                  | 19     | Z (Ohm)<br>2530.884 | ;j1988.43 | SWR 8  | 1.87          |       |
| No.                                 | F (MHz)                                                          | R (Ohm)        | JX (Ohm)                                     | SWR 50                                                                                                                        | Gh dBd                                                    | GaldBi                                     | F/B dB | Elev.               | Ground    | Add H. | Polar.        |       |
| 9                                   | 21.2                                                             | 2530.885       | 1988.425                                     | 81.87                                                                                                                         |                                                           | 6.08                                       |        | 42.8                | Real      | 1.0    | hori.         |       |
| 8                                   | 18.12                                                            | 36.37          | 86.604                                       | 6.06                                                                                                                          | <del>200</del> 0                                          | 5.63                                       |        | 48.0                | Real      | 1.0    | hori.         |       |
| 7                                   | 14.15                                                            | 74.924         | 61.439                                       | 2.82                                                                                                                          | 3233)                                                     | 7.4                                        | 823    | 39.2                | Real      | 1.0    | hori.         |       |
| 6                                   | 10.12                                                            | 420.674        | 1098.897                                     | 65.93                                                                                                                         | <u>816</u> 3                                              | 6.19                                       | 2.253  | 36.5                | Real      | 1.0    | hori.         |       |
| 5                                   | 7.05                                                             | 42.107         | 19.754                                       | 1.58                                                                                                                          | 2753                                                      | 5.22                                       |        | 51.5                | Real      | 1.0    | hori.         |       |
| 4                                   | 3.65                                                             | 9.303          | 23.598                                       | 6.61                                                                                                                          | 277 S                                                     | 6.36                                       | -1.12  | 90.0                | Real      | 1.0    | hori.         |       |
| Sta                                 | int C                                                            | Optimization   |                                              | )<br>Optimization k                                                                                                           | og i                                                      | Plots                                      |        | Wire edit           | :         | Elem   | ent edit      |       |
| 🐮 sta                               | 12 D 110                                                         | -              | 2 Hen Pade Dek                               | L. 19204                                                                                                                      | aktor                                                     | Dia anna an anna an an an an an an an an a | .n. @r | hana gal            | mQ        | -      | 6 <b>限</b> 20 | 19:41 |

A very poor match on 30m and 15m

![](_page_44_Picture_3.jpeg)

Ð

| © C:₽re      | gram Files\WW                | NARO 3 WWANA         | -GAL WNTWy at                      | itennasV65RV_i        | mv_V.mas                                          |          |              |             |        |       | 51       | <b>a</b> ( |
|--------------|------------------------------|----------------------|------------------------------------|-----------------------|---------------------------------------------------|----------|--------------|-------------|--------|-------|----------|------------|
| Me Edit      | Service Tools H              | ыþ                   |                                    |                       |                                                   |          |              |             |        |       |          |            |
| 0 🖻          |                              | A 🗎 V                | 1000 0000                          |                       |                                                   |          |              |             |        |       |          |            |
| Geome        | try View 0                   | Calculate Fa         | r field plots                      |                       |                                                   |          |              |             |        |       |          |            |
| GSRV         | Inverted V 80                | 0m, 40m, 20m         | 1,10m                              |                       |                                                   |          |              |             |        |       |          |            |
|              | Freq 28.50                   | 0 🗸                  | MHz W                              | AVE LENGT             | H = 10.519<br>= 677                               | (m)      |              |             |        |       |          |            |
| Groun        | ıd                           |                      | Đ                                  | ACTOR MATE            | 80X                                               |          |              |             |        |       |          |            |
| O Free space |                              | PWC                  | ULSE U (N<br>5c 1.00<br>URRENT DAT | /)<br>+j0.00<br>'A    | I (mA) Z (Ohm) SW<br>9.04-j12.49 38.04+j52.56 3.2 |          |              |             |        |       |          |            |
| ⊙ Res        | 8                            | Ground               | setup 7.                           | O FATAL ERF<br>83 sec | ROR(S)                                            |          |              |             |        |       |          |            |
| A            | dd height 1.0<br>Material Cu | 0<br>Wire<br>R (Ohm) | m<br>M                             | SWR 50                | Gh dBd                                            | GadBi    | E/8 dB       | Elev        | Ground | Add H | Polar    | -          |
| 11           | 10.5                         | 20 027               | 51.58                              | 3.21                  | 1000                                              | 7.74     | 2.14         | 11.0        | Dead   | 1.0   | hori     |            |
|              | 20.0                         | 30.031               | 02.00                              | 0.22                  |                                                   | 1.14     | -2.14        | 1,1,8       | L/A SI | 1.0   | nun,     |            |
| 10           | 24.94                        | 313.225              | 311.098                            | 12.52                 | 1999 (S. 1997)                                    | 6.71     | -3.05        | 16.0        | Real   | 1.0   | hori     |            |
| 9            | 21.2                         | 2530.885             | 1988.425                           | 81.87                 | 2220                                              | 6.08     | 223          | 42.8        | Real   | 1.0   | hori.    |            |
| 8            | 18.12                        | 36.37                | 86.604                             | 6.06                  | <u>916</u> 3                                      | 5.63     | <u>818</u> 8 | 48.0        | Real   | 1.0   | hori.    |            |
| 7            | 14.15                        | 74.924               | 61.439                             | 2.82                  | 2223                                              | 7.4      | 2752         | 39.2        | Real   | 1.0   | hori.    |            |
| 6            | 10.12                        | 420.674              | 1098.897                           | 65.93                 | 2003                                              | 6.19     | 200          | 36.5        | Real   | 1.0   | hori.    |            |
| Sta          | art C                        | optimization         |                                    | Dptimization k        | look Frances                                      | Plots    |              | Wire edit   | :      | Elem  | ent edit |            |
| 🐮 sta        | ri O Ila                     | . 3                  | Hara Radio                         | a outed               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1             | ta 🔟 Hol | STALA        | C Hinero_po | me     |       | e<br>使用の | 19:44      |

A very poor match on 12m too.

High reactance can lead to arcing in the ATU on 10m.

I burned a switch out on a G5RV during JOTA

![](_page_45_Picture_5.jpeg)

SWR measured with MFJ 269 antenna analyser at end of 30ft RG58 coax (and at bottom of matching section), This shows that your coax losses can make your SWR readings look better than they are. The G5RV uses the coax as part of the impedance transformer.

3.5MHz: 2.0 (1.7) 3.6MHz: 3.0 (2.2) 3.8MHz: 4.2 (3.6)

7.0MHz: 2.2(2.2) 7.1MHz: 2.4 (2.3)

10.1Mhz: 7.8 (>31)

14.150MHz: 4.5 (5.7)

18.1MHz: 2.9 (4.8)

21MHz: 3.9 (9.6) 21.450MHz: 3.8 (9.3)

24.9MHz: 4.6 (14.8)

28MHz: 3.6 (12.4) 29MHz: 3.2 (9.5)

## G5RV High SWR on coax leads to high losses

| Line Type:   | Belder | n 8240 (RG-58) 🔽  | Re            | sults  | 7 8  |
|--------------|--------|-------------------|---------------|--------|------|
| Line Length: | 40     | 🗌 💿 Feet 🔿 Meters | Matched Loss: | 0.773  | dB   |
| Frequency:   | 28.5   | MHz               | SWR Loss:     | 2.516  | dB   |
| Load SWR:    | 12.4   | DEP FOR           | Total Loss:   | 3.289  | _ dB |
| Power In:    | 100    | W                 | Power Out:    | 46.891 | w    |

A

On –air comparison with loft-mounted multiband dipoles/magnetic loop

#### 80m

Identical to multi-band dipoles on inter G-signals during day. Better for EU as noise level lower – signal strengths the same/+1 on G5RV.

#### 40m

Noise level 2 S-points better on G5RV (less TV buzz). Signal strengths no different around EU.

#### 30m

Noise level S4 on G5RV, S5 on long wire, S7 on Mag loop. Signal Strengths equal or +1 to 2 S points compared with mag loop.

Down 1-2 S-points compared with long wire.

#### **20m**

Noise levels no different compared with dipoles. Worse 1 S point compared with mag loop. EU signal levels similar or down 1-3 S-points compared with dipoles. Africa: down 2 S-points compared with long wire/dipole.

#### **17m**

Noise levels similar. All signals down 1-2 Spoints. Caribbean down 1 S-point.

#### **15**m

Noise levels 1 S –point better than dipoles. All signals down 2-4 S-points compared with long wire/dipole.

#### 12/10m

Noise levels way down – no signals heard.

![](_page_48_Picture_17.jpeg)

## **Cushcraft R5**

"End-fed half-wave vertical for 20 – 10m"

**Results?** 

- Not bad
- About as good as a dipole
- Didn't like high winds

![](_page_49_Picture_6.jpeg)

![](_page_49_Picture_7.jpeg)

## **Cushcraft MA5V**

"Centre-fed shortened half-wave vertical for 20 – 10m with resonators"

#### **Results?**

- Not bad
- -2 S-points on 20m, better on 17m and up
- SWR went up in the wet

![](_page_50_Picture_6.jpeg)

![](_page_50_Picture_7.jpeg)

## Rybakov 806 vertical (7.6m/8.6m+)

#### **Results?**

- OK-ish not good on 40/80m.
- Better on HF
- Lossy Un-Un
- Cheap

![](_page_51_Figure_6.jpeg)

![](_page_51_Picture_7.jpeg)

http://www.iv3sbe.webfundis.net/

![](_page_51_Picture_9.jpeg)

## MFJ 1786 Magnetic Loop

**Results?** 

- For size excellent
- Better outdoors
- Low noise
- Tuning is a pain
- Better on higher bands than lower

![](_page_52_Picture_7.jpeg)

![](_page_52_Picture_8.jpeg)

![](_page_52_Picture_9.jpeg)

## MFJ 1786 Magnetic Loop –

| C: VDOCUME ~ 1 VSTEVEN ~ 1 VMYDOCU ~ 1 VMagloo                                                                                                                                                                                                                                                            | p\magloop4.                                                    | exe                                                                                                                                      | - 8 ×                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| S. Shape of loop CONCLE<br>P. Perimeter, metres 3.140<br>C. Conductor dia, mm 25.0<br>F. Frequency, MHz 14.000                                                                                                                                                                                            | W. Wa<br>H. He<br>R. So                                        | tts RF power input<br>ight, metres<br>il type: S,L,A,H,D                                                                                 | 100.0<br>10.00<br>m-metres                              |
| Electrical length of perimeter<br>Diameter of equivalent circle<br>Loop current opposite tune capacitor<br>Tuning capacitor setting<br>Voltage across tuning capacitor<br>Inductively coupled ground loss<br>Capacitance coupled ground loss<br>Loss in loop conductor resistance<br>Radiating efficiency | 0.147<br>0.999<br>27.9<br>50.7<br>7405<br>0.0<br>27.5<br>72.49 | wavelengths<br>metres for same encl<br>rms amps<br>picofarads for reson<br>peak RF volts<br>percent of Tx output                         | osed area<br>ance<br>power<br>                          |
| 3-dB receiving bandwidth<br>Transmitting bandwidth<br>Coupling loop diameter<br>Loss relative to ideal antenna<br>Path = 800 km: S-meter reading<br>8000 km:                                                                                                                                              | 19.2<br>6.8<br>0.18<br>1.4<br>\$9+ 0dB<br>"\$"= 2.0            | kilo-Hz with matched<br>kilo-Hz between SWR=<br>metres, to match 50<br>decibels = 0.2 S-un<br>1 hop, darkness, F-1<br>3 hops, daylight . | receiver<br>2:1 points<br>ohms coax<br>its<br>ayer<br>- |
| Vary Freq with keys 1,2 Perim 3,4<br>Hit S.P.C.F.W.H.R to change data.                                                                                                                                                                                                                                    | Diam 5,6<br>B(eg                                               | Height 7,8 Soil<br>in again) or Q(uit) .                                                                                                 | ohms 9,0                                                |

Steve Nichols G0KYA, RSGB Propagation Studies Committee

ASGE

## **TGM Minibeam**

"Two / three-element shortened beam with end-loading"

## **Results?**

- No discernible gain/directivity on 20m
- Better on 15m and 10m

![](_page_54_Figure_5.jpeg)

## Needs decent mast/rotator

## **Hustler 5BTV**

Trapped, loaded vertical for 80 – 10m

#### **Results?**

- Not bad bandwidth not good on 80m
- Works well for DX, poor for inter-G/close EU working
- Needs ground radials (lots of them!)

![](_page_55_Figure_6.jpeg)

![](_page_55_Picture_7.jpeg)

## Hustler 5BTV

Comparison of signals on Hustler and G5RV

| Hustler     | 5BTV     | v loft-mo | unted         | dipoles (S po     | oints)        |             |               |
|-------------|----------|-----------|---------------|-------------------|---------------|-------------|---------------|
|             | Fability | Disala    | Lingtin       |                   |               |             |               |
| 90-m        | Endity   | Dipoles   | Hustler<br>07 | Maica, Unchlas 2  | C a sists hat |             |               |
| 80M         | G        | 00.40     | 57            | Noise: Hustier 3  | 5-points bett | er          |               |
|             | DI DI    | 53+10     | 57            |                   |               | -           |               |
|             | DL       | 37        | 50            |                   | -             |             | -             |
|             | DL       | 50        | 57            |                   |               |             |               |
|             | UL       | 50        | 50            |                   |               |             |               |
|             | G        | 58        | 57            |                   |               | -           |               |
|             | 0        | 36        | 36            |                   |               |             |               |
|             | G        | 58        | 58            |                   |               |             |               |
|             | G        | 57        | 56            |                   | 1             |             |               |
|             | G        | 57        | \$5           |                   |               | -           |               |
|             | GW       | 59        | 57            |                   | -             | -           |               |
|             | DL       | 59        | S5            |                   |               | -           |               |
| 40m         | DL       | S9        | S7            | Noise: Hustler 1- | 4 S points be | tter        |               |
| 0000000     | F        | S7        | S7            |                   |               | 0.000       |               |
|             | DL       | S9        | S8            |                   |               |             |               |
|             | 1        | S9        | S9            |                   |               |             |               |
| Suriname    | PZ       | S7        | S8            | 14                |               |             |               |
|             | DL       | S9        | S9            |                   |               |             |               |
|             | OE       | 59        | S8            |                   |               |             | 1             |
|             | Ĩ        | S9        | S9            |                   |               |             |               |
|             | W        | S5        | S6            |                   |               |             |               |
|             | OK       | S9+       | S9+           |                   |               | 1           | 1             |
|             | V        | S5        | S5            |                   |               |             |               |
|             |          |           |               |                   |               |             |               |
| 20m         | RU       | S5        | S4            | Noise: Hustler 0- | 1 S points be | tter        |               |
|             | BA       | S4        | S3            |                   |               |             |               |
|             | 1        | S6        | S5            |                   |               |             |               |
|             | RU       | S6        | S5            |                   |               |             |               |
|             | DL       | S6        | S6            |                   |               |             |               |
|             | IT9      | S9        | S6            |                   |               |             |               |
|             | T.       | S8        | S6            |                   |               |             |               |
|             | EA7      | S9+       | S9+           |                   |               |             |               |
| New Zealand | ZL3SV    | S4        | S4            | 11/01/2008 09:45  | Mag loop S3/L | ong Wire S3 | (0.5km Sloper |
|             | OH       | S9+       | S8            | mag loop S9       | -             |             |               |
|             | UR5      | S4        | S2            |                   |               |             |               |
|             | YT3      | S9+       | S8            |                   |               |             |               |
|             | BK3      | S7        | S5            |                   |               |             |               |

![](_page_56_Picture_3.jpeg)

## **Hustler 5BTV**

Points to watch:

- 1. If your SWR is 1:1, it isn't working properly!
- 2. Ground radials are non-resonant use radials that are at least the length of the vertical (aim for around 32-64).
- 3. If you can't fit them in, use lots of shorter radials
- 4. Don't cut it to achieve resonance!

![](_page_57_Picture_6.jpeg)

#### **Results:**

- Not bad cheap!
- Watch RF in the shack - use an earth
- Bit noisy
- Good on 80m, 40m and 20m, less so on higher bands

![](_page_58_Figure_6.jpeg)

• 3.5 & 7.0Mhz - 17ft, 14Mhz - 6.5ft, 28Mhz - none

![](_page_58_Picture_8.jpeg)

## Why 84 feet?

- Offers low
  impedance (easy)
  match on most
  bands
- Gets high current point away from the rig and in the clear

![](_page_59_Figure_4.jpeg)

![](_page_59_Picture_5.jpeg)

![](_page_60_Figure_1.jpeg)

![](_page_60_Figure_2.jpeg)

Using MMANA

80m

![](_page_60_Picture_5.jpeg)

![](_page_61_Figure_1.jpeg)

# Great low-angle lobe to south on 17m and above for me – your mileage will vary.

![](_page_61_Picture_3.jpeg)

## Inverted V (with fishing pole)

- Excellent!
- Cut for halfwave at desired frequency
- Use parallel-fed dipoles for two bands
- Gets high current point up

![](_page_62_Picture_5.jpeg)

![](_page_62_Picture_6.jpeg)

# So what have I learned?

- Resonant antennas work better than non-resonant
- Don't underestimate the half-wave dipole
- Get your maximum current point as high as you can (if using dipoles). If vertical, use lots of radials
- You can parallel feed dipoles, but keep the wires apart
- You loose about 0-2 S-points using loft-mounted antennas
- So finally .....

![](_page_63_Picture_7.jpeg)

## The KYA multiband dipole

![](_page_64_Figure_1.jpeg)

(80m), 40m, 20m, 17m, 15m and 10m

![](_page_64_Picture_3.jpeg)

## The KYA multiband dipole

![](_page_65_Figure_1.jpeg)

Adding 80m using traps and zigzag extensions

![](_page_65_Picture_3.jpeg)

# The KYA multi-band dipole

- Suitable for SWLS, QRP, M3 licensees and PSK31 operating. Occasional use up to 100W. NO LINEARS!
- Uses non-inductive (zig-zag) loading for 40m/80m
- Feed point balun reduces RF pick-up and interference, making for a quieter antenna. This may also help prevent RFI.
- Totally stealthy no-one need know you are operating
- Totally weatherproof don't worry about wind, rain or lightning!

![](_page_66_Picture_6.jpeg)

## The KYA multi-band dipole

Over the past 12 months have worked:

> 3X (Guinea) 6Y (Jamaica) 8P (Barbados) 7X (Algeria) J5 (Guinea Bissau) V26 (Antigua) 6W (Senegal) 770 (San Marino) P40 (Aruba) 7Z (Saudi Arabia) ZL2 (New Zealand)

JA (Japan) 3B7 (St. Brandon) A25 (Botswana) HV (Vatican) ST (Sudan) J88 (St. Vincent) ZS6 (South Africa) VP2 (Anguilla) 5L (Liberia) FY (French Guyana) OY (Faroe Islands)

and others - at sunspot minimum!

![](_page_67_Picture_5.jpeg)

## Conclusion

- 1. Find out what is on the bands
- 2. Optimise your station for your working patterns eg day, night, winter, summer, bands
- 3. Use the highest HF frequency you can to minimise absorption
- 4. Get on the air during contests and Dxpeditions
- 5. Use CW, learn to work split, use CW memories
- 6. Have fun!