In this document I try to work out the formula for calculating the peak value of the total Near Electric or Magnetic field vector. ------------------------------------------------------------------- Total Field Strength^2 = Sum of Real parts of each Component^2 e.g. 1. Etot^2 = Ex^2 * cos(W*t + Fx)^2 + Ey^2 * cos(W*t + Fy)^2 + Ez^2 * cos(W*t + Fz)^2 where Etot = Total Field Strength (vector sum) of components, Ex, Ey, Ez = Magnitude of Field components in X, Y, Z directions, eg EX, EY, EZ of NEC2 Fx, Fy, Fz = Phase (in time) of above components, as calculated by NEC2 W = 2 * pi * Freq (omega, angular freq) and t = time (Formula 1. is used by xnecview to animate the near field pattern) To calculate the maximum value of the total field vector, then the right side of eq. 1. must be maximized, e.g. its differential/time must be zero. To make calculations easier, cos(a)^2 is replaced by the equivalent (cos(2a)+1)/2 Etot^2 = 0.5*[Ex^2*(cos(2W*t+2Fx)+1) + Ey^2*(cos(2W*t+2Fy)+1) + Ez^2*(cos(2W*t+2Fz)+1)] Etot^2 = 0.5*(Ex^2 + Ey^2 + Ez^2) + 0.5*[Ex^2*(cos(2W*t+2Fx) + Ey^2*(cos(2W*t+2Fy) + Ez^2*(cos(2W*t+2Fz)+1)] Now we use the equivalence cos(a+b) = cos(a)*cos(b)-sin(a)*sin(b) on cos(2W*t+2Fx) etc Etot^2 = 0.5*(Ex^2 + Ey^2 + Ez^2) + 0.5*[Ex^2*cos(2W*t)*cos(2Fx) + Ey^2*cos(2W*t)*cos(2Fy) + Ez^2*cos(2W*t)*cos(2Fz)] - 0.5*[Ex^2*sin(2W*t)*sin(2Fx) + Ey^2*sin(2W*t)*sin(2Fy) + Ez^2*sin(2W*t)*sin(2Fz)] 2. Etot^2 = 0.5*(Ex^2 + Ey^2 + Ez^2) + 0.5*cos(2W*t)*[Ex^2*cos(2Fx) + Ey^2*cos(2Fy) + Ez^2*cos(2Fz)] - 0.5*sin(2W*t)*[Ex^2*sin(2Fx) + Ey^2*sin(2Fy) + Ez^2*sin(2Fz)] To make things easier, we give abbreviations to constant terms: A = Ex^2*cos(2Fx) + Ey^2*cos(2Fy) + Ez^2*cos(2Fz) B = Ex^2*sin(2Fx) + Ey^2*sin(2Fy) + Ez^2*sin(2Fz) 3. Etot^2 = 0.5*[(Ex^2 + Ey^2 + Ez^2) + cos(2W*t)*A - sin(2W*t)*B] The time differential of the right side is: -W*[A*sin(2W*t) + B*cos(2W*t)] To maximize 3. then: 4. A*sin(2W*t) + B*cos(2W*t) = 0 From this we have: sin(2W*t) = -B/A*cos(2W*t) = -B/A*[1-sin(2W*t)^2]^0.5 Hence sin(2W*t)^2 = (B/A)^2 - (B/A)^2 * sin(2W*t)^2 sin(2W*t)^2 * [1+(B/A)^2] = (B/A)^2 sin(2W*t)^2 = [(B/A)^2]/[1+(B/A)^2] = B^2/(A^2 + B^2) 5. sin(2W*t) = +/- B/(A^2 + B^2)^0.5 cos(2W*t) = +/- A/(A^2 + B^2)^0.5 To satisfy eq. 4., we must choose +/- pairs from the above four solutions to 4., to be substituted in 3., hence: Etot^2 = 0.5*[(Ex^2 + Ey^2 + Ez^2) +/- (A^2 + B^2)/(A^2 + B^2)^0.5] and Etot^2 = 0.5*[(Ex^2 + Ey^2 + Ez^2) +/- (A^2 + B^2)^0.5] From the above, the maximum (absolute) value of the total field strength vector is: 6. Etot = sqrt( 0.5*[(Ex^2 + Ey^2 + Ez^2) +/- sqrt(C)] ) where A = Ex^2 * cos(2Fx) + Ey^2 * cos(2Fy) + Ez^2 * cos(2Fz) B = Ex^2 * sin(2Fx) + Ey^2 * sin(2Fy) + Ez^2 * sin(2Fz) C = A^2 + B^2 While incorporating these formulae in my "xnec2c" GUI for nec2c (my C translation of NEC2) I found that the best results are obtained when I use sin(2W*t) = - B/(A^2 + B^2)^0.5 and cos(2W*t) = + A/(A^2 + B^2)^0.5 and Etot = sqrt( 0.5*[(Ex^2 + Ey^2 + Ez^2) + sqrt(C)] ). In order to find the direction of the total vector I need to calculate the component parts in x,y,z and for this I need to calculate Wt. I found that only the C function atan2 with arguments -B and +A as from 6. gives correct results for Wt. P.S. A, B and C are same as CP, SP and TP in: "An Orientation to NEC Near Fields Part 2. Some Refinements and NEC-4 Additions" by L. B. Cebik, W4RNL